HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA

BMI COMMON AREAS (EASTSIDE) CLARK COUNTY, NEVADA

Prepared for:

Nevada Division of Environmental Protection Bureau of Corrective Actions 2030 E. Flamingo Road, Suite 230 Las Vegas, Nevada 89119-0818

Prepared by:

Basic Remediation Company LLC 875 Warm Springs Road Henderson, Nevada 89011

AUGUST 2015

I hereby certify that I am responsible for the services described in this document and for the preparation of this document. The services described in this document have been provided in a manner consistent with the current standards of the profession and to the best of my knowledge comply with all applicable federal, state and local statutes, regulations and ordinances. I hereby certify that all laboratory analytical data was generated by a laboratory certified by the NDEP for each constituent and media presented herein.

August 24, 2015

Dr. Ranajit Sahu, C.E.M. (No. EM-1699, Exp. 10/07/2015)

Date

BRC Project Manager

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	ES-1
1.0 l	NTRODUCTION	1-1
1.1	PURPOSE OF THE RISK ASSESSMENT	1-2
1.2	METHODOLOGY AND REGULATORY GUIDANCE	1-5
1.3	REPORT ORGANIZATION	1-7
1.4	CLEAN FILL FROM NFAD SUB-AREAS PLACEMENT	1-8
2.0	SITE DESCRIPTION	2-1
2.1	SITE HISTORY	2-3
2.2	ENVIRONMENTAL SETTING	2-3
2.2.1	Site Location, Climate, and Physical Attributes	2-4
2.2.2	Geology/Hydrology	2-5
2.2.3	Surface Water	2-6
2.3	SUMMARY OF HISTORICAL INVESTIGATIONS	2-7
2.4	HISTORICAL REMEDIAL ACTIVITIES	2-10
2.5	CORRECTIVE ACTION PLAN REMEDIATION WITHIN THE SITE	2-11
2.6	CONCEPTUAL SITE MODEL	2-12
2.6.1	Impacted Environmental Media	2-13
2.6.2	Inter-Media Transfers	2-14
2.6.3	Potential Human Exposure Scenarios	2-15
3.0	CONFIRMATION DATA PROCESS AND SUMMARY	3-1
3.1	INITIAL CONFIRMATION SOIL SAMPLING	3-1
3.2	CHEMICALS SELECTED FOR ANALYSIS	3-6
3.3	INTERMEDIATE SAMPLING AND CLEANUP	3-8
3.3.1	Initial Mass Removal Action	3-8
3.3.2	Subsequent Removal Actions	3-8
3.3.3	Clean Fill from NFAD Sub-Areas Placement	3-9
3.4	FINAL CONFIRMATION DATASET	3-9
3.5	FINAL CONFIRMATION DATA SUMMARY	3-10
3.6	EVALUATION OF POTENTIAL 'HOT SPOTS'	3-26
3.7	SURFACE FLUX SAMPLING	3-27
3.8	LEACHATE DATA	3-29

1.0]	DATA EVALUATION	4-1
4.1	CRITERION I – REPORTS TO RISK ASSESSOR (AVAILABILITY OF	
	INFORMATION ASSOCIATED WITH SITE DATA)	4-2
4.2	CRITERION II – DOCUMENTATION REVIEW	4-3
4.3	CRITERION III – DATA SOURCES	4-4
4.4	CRITERION IV – ANALYTICAL METHODS AND DETECTION LIMITS	4-5
4.5	CRITERION V – DATA REVIEW	4-8
4.5.1	Holding Time Exceedances / Sample Condition Qualifications	4-8
4.5.2	2 Blank Contamination	4-11
4.5.3	Internal Standards Outside Acceptance Criteria	4-22
4.5.4	Surrogate Percent Recoveries Outside Laboratory Control Limit	4-28
4.5.5	Calibrations Outside Laboratory Control Limits	4-31
4.5.6	Tentatively Identified Compounds	4-35
4.5.7	Data Review Summary	4-38
4.6	CRITERION VI – DATA QUALITY INDICATORS	4-38
4.6.1	Evaluation of Data Precision	4-39
4.6.2	2 Evaluation of Data Accuracy	4-39
4.6.3	B Evaluation of Data Representativeness	4-45
4.6.4	Evaluation of Data Completeness	4-46
4.6.5	Evaluation of Data Comparability	4-46
4.7	DATA ANALYSIS	4-47
5.0	SELECTION OF CHEMICALS OF POTENTIAL CONCERN	5-1
5.1	EVALUATION OF CONCENTRATIONS/ACTIVITES RELATIVE TO	
	BACKGROUND CONDITIONS	5-1
5.2	ESSENTIAL NUTRIENTS	5 6
5.3	COMPARISON TO RESIDENTIAL SOILS BASIC COMPARISON LEVELS .	5-6
5.4	SUMMARY OF SELECTION OF CHEMICALS OF POTENTIAL CONCERN	
()	HUMAN HEALTH RISK ASSESSMENT	
6.1	DETERMINATION OF EXPOSURE POINT CONCENTRATIONS	
6.1.1		
6.1.3		
6.1.4	Homegrown Produce	0-11

6.2	EXPOSURE ASSESSMENT	6-12		
6.2.1	Exposure Parameters	6-12		
6.2.2	Quantification of Exposure	6-13		
6.2.3	Asbestos	6-15		
6.3	TOXICITY ASSESSMENT	6-16		
6.3.1	Toxicity Values	6-16		
6.3.2	Non-Carcinogenic Health Effects	6-17		
6.3.3	Carcinogenic Health Effects	6-18		
6.3.4	Asbestos	6-18		
6.4	RISK CHARACTERIZATION	6-19		
6.4.1	Methods for Assessing Cancer Risks	6-19		
6.4.2	Methods for Assessing Non-Cancer Health Effects			
6.4.3	Methods for Assessing Asbestos Risks	6-21		
6.4.4	Risk Assessment Results	6-23		
7.0 U	NCERTAINTY ANALYSIS	7-1		
7.1	ENVIRONMENTAL SAMPLING	7-2		
7.2	ESTIMATES OF EXPOSURE	7-4		
7.2.1	Aggregation of Exposure Areas	7-4		
7.2.2	Types of Exposures Examined	7-4		
7.2.3	Intake Assumptions Used	7-4		
7.3	TOXICITY ASSESSMENT	7-6		
7.3.1	Chemicals of Potential Concern Lacking Toxicological Data	7-7		
7.3.2	Uncertainties in Animal and Human Studies	7-7		
7.3.3	Non-Carcinogenic Toxicity Criteria	7-8		
7.3.4	Sub-Chronic Non-Carcinogenic Toxicity Criteria	7-8		
7.3.5	Carcinogenic Toxicity Criteria	7-8		
7.3.6	Uncertainties with the Asbestos Risk Assessment	7-9		
7.4	CUMULATIVE EFFECT OF UNCERTAINTIES	7-10		
8.0 S	UMMARY OF RESULTS	8-1		
8.1	RESIDENTS	8-1		
8.2	CONSTRUCTION WORKERS	8-2		
8.3	COMMERCIAL (INDOOR) WORKERS	8-2		
8 4	8.4 MAINTENANCE (OUTDOOR) WORKERS			

FIGURES Western Hook-Development Sub-Area Location Redevelopment Grading Plan Site Plan with Historical Soil Sample Locations and Monitoring Wells Western Hook-Development Sub-Area Cross-Section A-A' Western Hook-Development Sub-Area Cross-Section B-B' Current Development Plan Conceptual Site Model Diagram for Potential Human Exposures Western Hook-Development Sub-Area Soil Remediation Areas Initial Soil and Surface Flux Sampling Locations Sample Depth Rules Schematic Final Soil and Suface Flux Sampling Locations Western Hook-Development Sub-Area Lithologies
FIGURES Western Hook-Development Sub-Area Location Redevelopment Grading Plan Site Plan with Historical Soil Sample Locations and Monitoring Wells Western Hook-Development Sub-Area Cross-Section A-A' Western Hook-Development Sub-Area Cross-Section B-B' Current Development Plan Conceptual Site Model Diagram for Potential Human Exposures Western Hook-Development Sub-Area Soil Remediation Areas Initial Soil and Surface Flux Sampling Locations Sample Depth Rules Schematic Final Soil and Suface Flux Sampling Locations
1 Western Hook-Development Sub-Area Location 2 Redevelopment Grading Plan 3 Site Plan with Historical Soil Sample Locations and Monitoring Wells 4 Western Hook-Development Sub-Area Cross-Section A-A' 5 Western Hook-Development Sub-Area Cross-Section B-B' 6 Current Development Plan 7 Conceptual Site Model Diagram for Potential Human Exposures 8 Western Hook-Development Sub-Area Soil Remediation Areas 9 Initial Soil and Surface Flux Sampling Locations 10 Sample Depth Rules Schematic 11 Final Soil and Suface Flux Sampling Locations
1 Western Hook-Development Sub-Area Location 2 Redevelopment Grading Plan 3 Site Plan with Historical Soil Sample Locations and Monitoring Wells 4 Western Hook-Development Sub-Area Cross-Section A-A' 5 Western Hook-Development Sub-Area Cross-Section B-B' 6 Current Development Plan 7 Conceptual Site Model Diagram for Potential Human Exposures 8 Western Hook-Development Sub-Area Soil Remediation Areas 9 Initial Soil and Surface Flux Sampling Locations 10 Sample Depth Rules Schematic 11 Final Soil and Suface Flux Sampling Locations
2 Redevelopment Grading Plan 3 Site Plan with Historical Soil Sample Locations and Monitoring Wells 4 Western Hook-Development Sub-Area Cross-Section A-A' 5 Western Hook-Development Sub-Area Cross-Section B-B' 6 Current Development Plan 7 Conceptual Site Model Diagram for Potential Human Exposures 8 Western Hook-Development Sub-Area Soil Remediation Areas 9 Initial Soil and Surface Flux Sampling Locations 10 Sample Depth Rules Schematic 11 Final Soil and Suface Flux Sampling Locations
Site Plan with Historical Soil Sample Locations and Monitoring Wells Western Hook-Development Sub-Area Cross-Section A-A' Western Hook-Development Sub-Area Cross-Section B-B' Current Development Plan Conceptual Site Model Diagram for Potential Human Exposures Western Hook-Development Sub-Area Soil Remediation Areas Initial Soil and Surface Flux Sampling Locations Sample Depth Rules Schematic Final Soil and Surface Flux Sampling Locations
 Western Hook-Development Sub-Area Cross-Section A-A' Western Hook-Development Sub-Area Cross-Section B-B' Current Development Plan Conceptual Site Model Diagram for Potential Human Exposures Western Hook-Development Sub-Area Soil Remediation Areas Initial Soil and Surface Flux Sampling Locations Sample Depth Rules Schematic Final Soil and Surface Flux Sampling Locations
Western Hook-Development Sub-Area Cross-Section B-B' Current Development Plan Conceptual Site Model Diagram for Potential Human Exposures Western Hook-Development Sub-Area Soil Remediation Areas Initial Soil and Surface Flux Sampling Locations Sample Depth Rules Schematic Final Soil and Surface Flux Sampling Locations
Current Development Plan Conceptual Site Model Diagram for Potential Human Exposures Western Hook-Development Sub-Area Soil Remediation Areas Initial Soil and Surface Flux Sampling Locations Sample Depth Rules Schematic Final Soil and Surface Flux Sampling Locations
Conceptual Site Model Diagram for Potential Human Exposures Western Hook-Development Sub-Area Soil Remediation Areas Initial Soil and Surface Flux Sampling Locations Sample Depth Rules Schematic Final Soil and Surface Flux Sampling Locations
 Western Hook-Development Sub-Area Soil Remediation Areas Initial Soil and Surface Flux Sampling Locations Sample Depth Rules Schematic Final Soil and Surface Flux Sampling Locations
 Initial Soil and Surface Flux Sampling Locations Sample Depth Rules Schematic Final Soil and Surface Flux Sampling Locations
10 Sample Depth Rules Schematic 11 Final Soil and Suface Flux Sampling Locations
Final Soil and Suface Flux Sampling Locations
1 6
TABLES
ES-1 Summary of Human Health Risk Assessment Results
3-1 Sample-Specific Collection Depths
3-2 Site-Related Chemicals and Initial Sample Analyses and Depths
3-3 Final Confirmation Soil Sample Locations and Analyses
3-4 Final Human Health Risk Assessment Soil Dataset Results Summary
3-5 Arsenic BCL/LBCL Exceedances Greater than Background
3-6 beta-BHC Detections Greater than LBCL _{DAF1}
3-7 Dichloromethane Detections Greater than LBCL _{DAF1}
3-8 Thorium-228 BCL/LBCL Exceedances Greater than Background
3-9 Uranium-235/236 BCL Exceedances Greater than Background
3-10 Surface Flux Sample Analyses
3-11 Surface Flux Sample Results Summary
4-1 Hexavalent Chromium Samples Rejected Due to Holding Time Exceedances
4-2 Total Cyanide Samples Qualified Due to Holding Time Exceedances
4-3 Chromium (VI) Samples Qualified Due to Holding Time Exceedances
4-4 SVOC Samples Qualified Due to Holding Time Exceedances 4-5 Most Engagently Consored During Plank Sample Evaluation
4-5 Metals Most Frequently Censored During Blank Sample Evaluation Orthophosphete Samples Estimated Due to Matrix Spike Recovery Evacadeness
4-6 Orthophosphate Samples Estimated Due to Matrix Spike Recovery Exceedances A 7 Parablerate Samples Estimated Due to Matrix Spike Recovery Exceedances
 4-7 Perchlorate Samples Estimated Due to Matrix Spike Recovery Exceedances 4-8 Total Kjeldahl Nitrogen Samples Estimated Due to Matrix Spike Recovery
4-8 Total Kjeldahl Nitrogen Samples Estimated Due to Matrix Spike Recovery Exceedances
4-9 Thorium-232 Samples Estimated Due to Matrix Spike Recovery Exceedances

TABLES

- 4-10 Metals Samples Qualified Due to Recoveries Outside Acceptance Criteria
- 4-11 2,4-Dimethylphenol Samples Estimated Due to LCS/LCSD Recovery Exceedances
- 4-12 Copper Samples Estimated Due to LCS/LCSD Recovery Exceedances
- 4-13 Molybdenum Samples Estimated Due to LCS/LCSD Recovery Exceedances
- 4-14 Soil Results Qualified Due to Duplicate Differences Outside Acceptance Criteria
- 4-15 PCB Soil Sample Results Qualified Due to Internal Standards Outside Acceptance Criteria
- 4-16 VOC Soil Sample Results Qualified Due to Internal Standards Outside Acceptance Criteria
- 4-17 Dioxins/Furans Soil Sample Results Qualified Due to Internal Standards Outside Acceptance Criteria
- 4-18 Metals Soil Sample Results Qualified Due to Internal Standards Outside Acceptance Criteria
- 4-19 VOC Surface Flux Sample Results Qualified Due to Internal Standards Outside Acceptance Criteria
- 4-20 Results Qualified Due to Surrogate Recoveries Outside Laboratory Control Limit
- 4-21 Summary of Metal Results Qualified Due to Calibrations Outside Laboratory Control Limit
- 4-22 Summary of SVOC Results Qualified Due to Calibrations Outside Laboratory Control Limit
- 4-23 Summary of Organochlorine Pesticide Results Qualified Due to Calibrations Outside Laboratory Control Limit
- 4-24 Summary of VOC Soil Results Qualified Due to Calibrations Outside Laboratory Control Limit
- 4-25 Summary of Dioxins/Furans Soil Results Qualified Due to Calibrations Outside Laboratory Control Limit
- 4-26 Summary of VOC (TO-15) Surface Flux Sample Results Qualified Due to Calibrations Outside Laboratory Control Limit
- 4-27 Summary of VOC (TO-15 SIM) Surface Flux Sample Results Qualified Due to Calibrations Outside Laboratory Control Limit
- 4-28 Summary of Soil Analytes Censored During Blank Sample Evaluation
- 4-29 Summary of Surface Flux Analytes Censored During Blank Sample Evaluation
- 4-30 Summary of Chemical Results Censored At Values Above 1/10th The Residential BCL
- 4-31 Low Detection Analytes Exhibiting SQL Differences Between Background and Site Samples
- 5-1 Background Comparison Summary
- 5-2 Summary of Statistical Background Comparison Evaluation
- 5-3 Example Differences in Site and Background Median Concentrations for Chemicals Statistically Greater than Background
- 5-4 Equivalence Test for Secular Equilibrium
- 5-5 Results of Comparison to Residential Soil BCLs
- 5-6 Selection of Chemicals of Potential Concern (COPCs)
- 6-1 Exposure Point Concentrations in Soil

TABLES

6-2	Asbestos Results and Analytical Sensitivities
6-2A	Soil Properties Results for Site and Comparison Study Area
6-3	Exposure Point Concentrations from Surface Flux
6-4	Particulate Emission Factor (PEF) for On-Site Residential Scenario
6-5	Particulate Emission Factor (PEF) for Construction Scenario
6-6	Outdoor Air Exposure Point Concentrations from Soil
6-7	Plant Uptake Factors
6-8	Residential Exposure Factors
6-9	Workers Exposure Factors
6-10	Toxicity Criteria for Surface Flux
6-11	Non-Cancer Toxicity Criteria for Soil
6-12	Cancer Toxicity Criteria for Soil
6-13	Target Organs for Non-Carcinogens
6-14	Chemical Risk Summary for Residential Receptors
6-15	Background Risk Summary for Residential Receptors
6-16	Chemical Risk Summary for Construction Worker Receptors
6-17	Chemical Risk Summary for Commercial (Indoor) Worker Receptors
6-18	Chemical Risk Summary for Maintenance (Outdoor) Worker Receptors
6-19	Asbestos Risk Summary
7-1	Uncertainty Analysis
9-1	Data Quality Assessment

APPENDICES

- A NDEP Comments and BRC's Response to Comments [placeholder]
- B Western Hook-Development Sub-Area Investigation Data Tables (Note that all report files, including the database, are on the report CD included in this appendix)
- C GES Field Reports (on the report CD in Appendix B)
- D Surface Flux Chamber Testing Investigator's Report (on the report CD in Appendix B)
- E Data Usability Tables (on the report CD in Appendix B)
- F Data Validation Summary Reports (provided electronically on separate discs)
- G Cumulative Probability Plots and Boxplots for Metals and Radionuclides, and Scatterplots for Metals
- H Human Health Risk Assessment Calculation Spreadsheets (on the report CD in Appendix B)
- I Metals Distribution Plots, and Metals and Chemicals of Potential Concern Intensity Plots
- J Vapor Intrusion Tier 2 Assessment and Comparison Study Area Results (model files on the report CD in Appendix B)
- K Legal Description of the Western Hook-Development Sub-Area

ACRONYMS AND ABBREVIATIONS

μg/L microgram per liter

μg/m²,min⁻¹ micrograms per square meter per minute

μg/m³ microgram per cubic meter

μm micrometerAa alluvial aquiferADD average daily dose

AOC3 Settlement Agreement and Administrative Order on Consent, Phase 3

ARR asbestos-related risk

ASTM American Society for Testing and Materials

ATSDR Agency for Toxic Substances and Disease Registry

BCL Basic Comparison Level bgs below ground surface BMI Basic Management, Inc.

BRC Basic Remediation Company LLC
CAMU Corrective Action Management Unit

CAP Corrective Action Plan

CD compact disc cm centimeter

COPC chemical of potential concern

CSF cancer slope factor
CSM conceptual site model
DAF dilution attenuation factor

DBS&A Daniel B. Stephens & Associates, Inc.

DOE U.S. Department of Energy

DQI data quality indicator
DQO data quality objective

DVSR Data Validation Summary Report

EC exposure concentration

ERM Environmental Resources Management

FSSOP Field Sampling and Standard Operating Procedures

GC/MS gas chromatograph/mass spectrometry
GES Geotechnical and Environmental Services
GiSdT® Guided Interactive Statistical Decision Tools

ACRONYMS AND ABBREVIATIONS (Continued)

HHRA Human Health Risk Assessment

HI hazard index HQ hazard quotient

ILCR incremental lifetime cancer risk
IRIS Integrated Risk Information System

IRM interim remedial measure

IUR inhalation unit risk

kg/m³ kilogram per cubic meter
LADD lifetime average daily dose

LBCL BCLs for protection of groundwater

LCS/LCSD laboratory control sample/laboratory control sample duplicate

LMS linearized multi-stage

LOAEL lowest-observed-adverse-effect-level

LR laboratory replicate

MCL maximum contaminant level MDA minimum detectable activity m³/kg cubic meter per kilogram mg/kg milligrams per kilogram

mg/kg-d milligram per kilogram per day mg/m³ milligram per cubic meter

MS/MSD matrix spike/matrix spike duplicate

NDEP Nevada Division of Environmental Protection

NFAD No Further Action Determination
NOAEL no-observable-adverse-effect-level
ORNL Oak Ridge National Laboratory
PAH polynuclear aromatic hydrocarbon

PARCC precision, accuracy, representativeness, comparability, and completeness

PCB polychlorinated biphenyl

pCi/g picoCurie per gram

PEF particulate emission factor

ppt parts per trillion

PQL practical quantitation limit

QA/QC quality assurance/quality control

ACRONYMS AND ABBREVIATIONS (Continued)

Qal Quaternary alluvium

QAPP Quality Assurance Project Plan

RAGS Risk Assessment Guidance for Superfund

RAS Remedial Alternatives Study

RfC reference concentration

RfD reference dose

RIBs Rapid Infiltration Basins

ROD Record of Decision

RPD relative percent difference SAP Sampling and Analysis Plan

sec second

SIM selective ion mode

SOP Standard Operating Procedure

SPLP synthetic precipitation leaching procedure

SQL sample quantitation limit SRC Site-related chemical

SVOC semi-volatile organic compound tcdd tetrachlorodibenzo-p-dioxin TEF toxicity equivalency factor

TEQ toxicity equivalency

TIC tentatively identified compound
TIMET Titanium Metals Corporation
TMCf Tertiary Muddy Creek Formation
TPH total petroleum hydrocarbon

UCL upper confidence limit

USEPA U.S. Environmental Protection Agency

VOC volatile organic compound WRF Water Reclamation Facility

EXECUTIVE SUMMARY

Basic Remediation Company LLC (BRC) has prepared this Human Health Risk Assessment (HHRA) and Closure Report for the Western Hook-Development Sub-Area (Site) of the Basic Management, Inc. (BMI) Common Areas (Eastside) in Clark County, Nevada. The eastern Site boundary has been modified slightly and incorporates a few sample locations from the Western Hook-Open Space sub-area, but the Site is otherwise the same as originally defined within the Eastside property. The purpose of this report is to support a request for a No Further Action Determination (NFAD) by the Nevada Division of Environmental Protection (NDEP) for the Site.

The HHRA evaluates the potential for adverse human health impacts that may occur as a result of potential exposures to residual concentrations of chemicals in soil, groundwater, and air following remediation of the Site. If the residual risks do not pose an unacceptable risk to human health and the environment, then an NFAD will be requested from the NDEP. Upon issuance of an NFAD by the NDEP, redevelopment of the Site is expected to proceed in a manner consistent with the Environmental Covenant (Instrument 201102030002818 Clark County Recorders Office) that is attached to the property. This report also describes the various remediation actions that were performed and presents the subsequent confirmation data collected from 2008 through 2014 at the Site.

BACKGROUND

Initial confirmation sampling investigations were conducted at the Site in 2008 in accordance with BRC's Sampling and Analysis Plan (SAP, approved by the NDEP), with follow-up sampling conducted from 2009 through 2014. The SAP addressed sampling procedures such that remaining contaminants and their potential impacts to future Site uses (as discussed in Section 1.1 of the BRC Closure Plan for the BMI Common Areas [BRC, Environmental Resources Management (ERM), and Daniel B. Stephens & Associates, Inc. (DBS&A) 2007¹]) can be determined. The Site investigation involved collection of soil matrix and surface flux samples from throughout the Site. The sampling performed for this purpose, as described in Section 4 of the SAP (BRC 2008), was consistent with the approach presented in Section 2 of the Statistical Methodology Report (NewFields 2006). The Statistical Methodology Report describes

¹ The *BRC Closure Plan* was finalized and approved by NDEP in 2007. Subsequent to this date, revisions were made to Section 9 of the *BRC Closure Plan* (Risk Assessment Methodology–Human Health). The latest revision to Section 9 is March 2010. No other sections of the *BRC Closure Plan* have been revised since 2007.

_

the statistical methods that are used to confirm the final soils closure at each of the Eastside subareas of the BMI Common Areas. Several subsequent rounds of soil remediation and confirmation sampling were performed. The final number of samples collected was determined to be adequate for the completion of a statistically robust dataset upon which to perform an HHRA.

CONCEPTUAL SITE MODEL

The conceptual site model for the Site considers current and potential future land-use conditions. Currently, the Site is undeveloped. Current receptors that may be exposed to Site chemicals of potential concern (COPCs) include on-site trespassers, occasional on-site workers, and off-site residents. Future receptors identified as "on-site receptors" are defined as receptors located within the current Site boundaries (Figure 1), while future "off-site receptors" are those located outside the current Site boundaries. Under the prospective redevelopment plan, the Site is proposed for use by residential redevelopment (low and medium density), parks and trails, and associated roads and parking areas. In addition, current development plans include the construction of a storm water conveyance channel through the property. Therefore, the HHRA for the Site assumes unrestricted land use.

Future receptors may include on-Site residents, indoor commercial workers, outdoor maintenance workers, and construction workers. Due to the requirement for use of default reasonable maximum exposure parameters for future receptors, exposures to future receptors are greater than current exposures. Accordingly, only future receptors were quantitatively assessed in the HHRA. Potential exposures to off-Site residents were qualitatively evaluated.

The entire Site will be enhanced by restoration and redevelopment once remediation is complete. Therefore, there is no exposure to ecological receptors, because the Site will be prepared for human use in residential, commercial, or park setting. The HHRA conforms to the methodology included in Section 9 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010).

CLEAN FILL FROM NFAD SUB-AREAS PLACEMENT

As discussed in Section 3, after remediation efforts were completed at the Site, confirmation sample results indicated that arsenic was broadly present across the lower former pond portion of the Site where, in addition to the presence of generally clay soils, the depth to groundwater is very low. Ultimately, instead of continuing to excavate arsenic-containing soils—which tends to

increase in concentration with depth, indicative of a non-soil (e.g., groundwater) contamination source for arsenic across the Site—BRC, with NDEP's concurrence, elected to place a 10-foot layer of "clean fill from NFAD sub-areas" over that portion of the Site with elevated arsenic levels.

The "clean fill from NFAD sub-areas" was obtained from the shallow soils at Parcel 4A, Parcel 4B, and Mohawk sub-areas, all of which have NDEP-approved NFADs for residential land use for the requisite depth intervals. As noted in the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), "Imported soil data will not be included in risk assessment calculations. However, the chemical data for fill material from the Site may be useful for evaluating sub-areas to receive this fill (that is, imported fill that may be used at the Site will have been included in risk assessments for sub-areas where the fill was obtained)." That is, because the "clean fill from NFAD sub-areas" was already included in the HHRAs for the sub-areas from which it was obtained, the soil is acceptable as-is for use as fill material in other sub-areas, and does not need to be included in the HHRA for the sub-area in which it is placed. The NFAD's for the Parcel 4A, Parcel 4B, and Mohawk sub-areas are for unrestricted, residential, land use requirements.

The 10-foot layer of "clean fill from NFAD sub-areas" restricts access to Site soils beneath this depth and is an effective institutional control; therefore, samples collected from below this clean fill from NFAD sub-areas pad (i.e., those with elevated arsenic, as discussed above) are not included in the HHRA for the Site. Eventually clean fill will be placed over the entire Site to provide a post-grade development surface. The reason why there will be two different fill placement events is because the initial "clean fill from NFAD sub-areas" placed from late 2012 through March 2014 was for Site remedial actions alone, and therefore, is covered under BRC's Soils Insurance Policy. The additional costs associated with development of the Site, beyond simply remediating it, are not covered under BRC's Soils Insurance Policy. Thus, post-remediation, development-driven grading and any associated fill placement which will occur after remediation activities are complete are accounted for separately. Based on this, samples collected from within the Site, but outside the "clean fill from NFAD sub-areas" pads are included in the HHRA for the Site, following the rules presented in Section 3.1 and consistent with all previous closure reports for the Eastside property.

DATA REVIEW AND USABILITY EVALUATION

A data review and usability evaluation was performed to identify appropriate data for use in the HHRA. The results of the data usability evaluation indicate that the data collected from 2008 through 2014 are adequate in terms of quality for use in a risk assessment.

HUMAN HEALTH RISK ASSESSMENT

An HHRA was conducted to determine if chemical concentrations in Site soils are either: (1) representative of background conditions; or (2) do not pose an unacceptable risk to human health and the environment under current and potential future use conditions. The HHRA followed the procedures outlined in U.S. Environmental Protection Agency (USEPA) and the NDEP guidance documents. As noted above, the HHRA also conforms to the methodology presented in Section 9 of the NDEP-approved *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010) and includes all COPCs for the Site. Radionuclides were not included as COPCs because they were consistent with background conditions. Results of the HHRA are summarized below.

TABLE ES-1: SUMMARY OF HUMAN HEALTH RISK ASSESSMENT RESULTS

	Future On-Site Resident	Construc- tion Worker	Commercial (Indoor) Worker	Maintenance (Outdoor) Worker
Site Non-Cancer HI ¹	0.5	0.1	0.02	0.03
Background Non-Cancer HI ²	0.3			
Site Cancer Risk ^{3,4}	2×10^{-5}	2×10^{-7}	7×10^{-7}	1×10^{-6}
Background Cancer Risk ^{2,3}	9 × 10 ⁻⁶			
Asbestos Risk ^{4,5}	1×10^{-7}	1 × 10 ⁻⁷	2×10^{-8}	5 × 10 ⁻⁸

Note that risks were calculated for the entire Site and not evaluated for separate exposure areas.

- 1 HI = hazard index; the value presented is the total cumulative non-cancer HI.
- 2 Background risks were calculated for future on-Site residents only.
- 3 Cancer risk is the maximum theoretical upper-bound incremental lifetime cancer risk.
- 4 Consistent with the NDEP-approved BRC Closure Plan (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), chemical and asbestos risks are calculated separately.
- 5 Asbestos risk refers to the sum of cancer risks for mesothelioma and lung cancer. Asbestos risks represent the cumulative chrysotile and cumulative amphibole asbestos risks for chrysotile and amphibole fibers, respectively. Risks shown are the higher of the risks for chrysotile or amphibole fibers, which in this case are those for amphibole fibers even though no long amphibole fibers were detected at the Site. Asbestos risks are not included in Site Cancer Risk (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010).

Indoor air exposures were evaluated on a sample-by-sample basis, per NDEP requirements, using surface flux data measurements. Because of this, the minimum and maximum surface flux risks and hazard index estimates are summed with those for soil to provide a range of cumulative risks and hazard indices. The maximum cumulative risks and hazard indices are shown above. Primary risk contributors are discussed in the main body of the report.

In addition, BRC has performed a more detailed Site-specific evaluation of vapor intrusion potential at a comparison study area within the Eastside property. Given the results of this study, and based on the results of the tiered approach followed from USEPA's (2002d) Vapor Intrusion Guidance, it has been demonstrated that there is no likelihood of adverse vapor intrusion into any indoor spaces that may be constructed in the Western Hook-Development Sub-Area.

The NDEP has recently determined that risk assessments for Eastside property sub-areas do not need to evaluate the pathway of radon migration from groundwater to indoor air for sub-areas with a separation distance of at least 15 feet between any current or future building structure base and the high water table (letter dated November 9, 2010, from Greg Lovato, NDEP, to Mark Paris, BRC). Therefore, given the depth to groundwater across the Site will be greater than 15 feet below ground surface (bgs) following placement of fill material, the intrusion of radon into indoor air is not evaluated in the HHRA. In addition, groundwater elevations are locally controlled through a line of extraction wells located on the southern edge of the Site. These extraction wells will maintain groundwater elevations beneath the site for decades.

EVALUATION OF UNCERTAINTIES

Risk estimates are values that have uncertainties associated with them. These uncertainties, which arise at every step of a risk assessment, are evaluated in the report to provide an indication of the uncertainty associated with a risk estimate. Uncertainties from different sources are compounded in the HHRA. Because the uncertainties are compounded and because the exposure assumptions and toxicity criteria used are considered conservative, the risk estimates calculated in this HHRA are likely to overestimate rather than underestimate potential risks. A detailed discussion of these uncertainties is provided in the Uncertainty Analysis (Section 7) of the report.

POTENTIAL IMPACTS TO GROUNDWATER

As noted in a letter dated September 17, 2012, from Greg Lovato, NDEP, to Mark Paris, BRC (2012b), HHRA reports for the project no longer evaluate the potential leaching impacts to groundwater for any sub-area. This issue will be addressed in the Eastside groundwater remedial alternatives study. As provided for in Section XVII of the Phase III Administrative Order on Consent, NFADs issued for sub-areas are subject to continuing Work to address Water Pollution Conditions, Operation and Maintenance, maintenance of existing Institutional Controls, and/or Efficacy Review.

SUMMARY

Based on the results of the various investigations, the HHRA, and the conclusions presented in this report, exposures to residual levels of chemicals in soil at the Western Hook-Development Sub-Area should not result in adverse health effects to any of the future receptors evaluated. As a result, an NFAD for the Western Hook-Development Sub-Area is warranted, given the following provisos:

- 1. The NFAD does not pertain to groundwater. BRC retains the responsibility to address any environmental impacts to groundwater beneath the Site, pursuant to the *Settlement Agreement and Administrative Order on Consent, BMI Common Areas, Phase 3* (NDEP 2006). As such, additional investigation may be necessary on the Site as it relates to BRC's responsibilities for groundwater. BRC must be granted access to the Site for activities such as well or soil boring installations or other investigative or remedial efforts.
- 2. The soils beneath 10 feet bgs of the Recorded Environmental Covenant (Instrument 201102030002818 Clark County Recorders Office) redevelopment grading plan for the Site have not been evaluated to date. Accordingly, the NFAD does not pertain to soil below the top 10 feet of the redevelopment grading plan for the Site (prior to placement of the "clean fill from NFAD sub-areas"). The property owner should note that these soils should not be disturbed without additional investigation or evaluation. BRC understands that this provision will be reflected in an Environmental Covenant for the Site.
- 3. The property owner should ensure that activities at the Site do not exacerbate existing, subsurface, environmental conditions. The redevelopment grading plan (Figure 2) that has been prepared for redevelopment of the Site (note that the grading plan will be revised following final placement of fill across the Site) has been incorporated as an Environmental Covenant for the Site to control subsurface excavation.
- 4. Site use is otherwise suitable for purposes of residential, recreational, civic, commercial, or industrial use.

1.0 INTRODUCTION

Basic Remediation Company LLC (BRC) has prepared this Human Health Risk Assessment (HHRA) and Closure Report for the Western Hook-Development Sub-Area (Site; Figure 1) of the Basic Management, Inc. (BMI) Common Areas (Eastside) in Clark County, Nevada. The eastern Site boundary has been modified slightly and incorporates a few sample locations from the Western Hook-Open Space sub-area, but the Site is otherwise the same as originally defined within the Eastside property. The purpose of this report is to support a request for a No Further Action Determination (NFAD) by the Nevada Division of Environmental Protection (NDEP) for the Site.

As presented in Section XVII.1.a. of the Settlement Agreement and Administrative Order on Consent: BMI Common Areas, BMI Common Areas, Phase 3 (AOC3; NDEP 2006), the NDEP acknowledges that discrete Eastside areas may be issued an NFAD as remedial actions are completed for selected environmental media. Any such NFAD request shall identify the remedial actions and other work completed at the property in question, the results of such remedial actions and other work, the proposed land use(s), and the reasons supporting the eligibility of the property for an NFAD. This report provides this information for the Site.

BRC recognizes that the following conditions will be included in a Recorded Environmental Covenant (Instrument 201102030002818 Clark County Recorders Office) as a condition to receiving an NFAD from the NDEP:

- 1. The NFAD does not pertain to groundwater. BRC retains the responsibility to address any environmental impacts to groundwater beneath the Site, pursuant to the AOC3. As such, additional investigation may be necessary on the Site as it relates to BRC's responsibilities for groundwater. BRC must be granted access to the Site for activities such as well or soil boring installations or other investigative or remedial efforts.
- 2. The soils beneath 10 feet below ground surface (bgs) of the redevelopment grading plan for the Site have not been evaluated to date. Accordingly, the NFAD does not pertain to soil below the top 10 feet of the redevelopment grading plan for the Site (prior to placement of the "clean fill from NFAD sub-areas"). The property owner should note that these soils should not be disturbed without additional investigation or evaluation.
- 3. The property owner should ensure that activities at the Site do not exacerbate existing, subsurface, environmental conditions. The grading plan (Figure 2), which has been prepared

for redevelopment of the Site (note that the grading plan will be revised following final placement of fill across the Site), has been incorporated as an Environmental Covenant for the Site to control subsurface excavation.

4. Site use is otherwise suitable for purposes of residential, recreational, civic, commercial, or industrial use.

As stated in Section VI of the NDEP's *Record of Decision, Remediation of Soils and Sediments in the Upper and Lower Ponds at the BMI Complex* (ROD; NDEP 2001), cleanup of the Site proceeded under Alternative 4B (soils transferred from the Site to a dedicated Corrective Action Management Unit [CAMU] within the BMI Complex),² as identified and described in Section 9 of the *Remedial Alternatives Study for Soils and Sediments in the Upper and Lower Ponds at the BMI Complex* (RAS; Environmental Resources Management [ERM] 2000a) for the Eastside. The RAS was submitted to the NDEP in March 2000. The RAS is documented via issuance of the ROD, dated November 2, 2001, by the NDEP.

This report is consistent in format with prior closure reports for other study areas, and incorporates comments received from the NDEP on those reports. This revision of the report, Revision 1, incorporates comments received from the NDEP on July 17, 2015 on Revision 0 of the report (dated December 2014). The NDEP comments and BRC's response to comments are included in Appendix A. Also included in Appendix A is a redline/strikeout version of the text showing the revisions from the December 2014 versions of the report. An electronic version of the entire report, as well as original format files (MS Word and MS Excel) of all text, tables, modeling, and risk calculations are included on the report compact disc (CD) in Appendix B.

1.1 PURPOSE OF THE RISK ASSESSMENT

The purpose of the HHRA is to evaluate the potential for adverse human health impacts that may occur as a result of potential exposures to residual concentrations of chemicals in soil, groundwater, and air following remediation, and to assess whether any additional remedial actions are necessary in order to request an NFAD from the NDEP to allow redevelopment of the Site to proceed. The results of the risk assessment provide risk managers an understanding of the potential human health risks associated with background conditions and additional risks

² Under this alternative, the Site could be developed in accordance with the current development plan and the recorded Environmental Covenant for the Site that assures appropriate management of soils beneath 10 feet bgs (post-graded), should they need to be disturbed in the future.

associated with past Site activities.³ Pending issuance of an NFAD by the NDEP, redevelopment of the Site is expected to proceed in a manner consistent with the Recorded Environmental Covenant attached to the property.

Initial post-remediation soil, leachate, and flux chamber sampling was conducted at the Site in accordance with the *Sampling and Analysis Plan for the Western Hook Development Sub-Area* (SAP; BRC 2008; approved by the NDEP on November 19, 2009). When the sampling conducted in accordance with the SAP was performed, additional areas within the Site that warranted remediation were identified, as discussed in Section 3.3. These areas have been addressed.

The overall goal of the risk assessment presented in this report, therefore, is to confirm that residual chemical concentrations are either: (1) representative of background conditions; or (2) do not pose an unacceptable risk to human health and the environment under current and potential future land use conditions. Findings of the HHRA are intended to support the Site closure process.

For human health protection, BRC's goal is to remediate Site soils such that they are suitable for residential uses, assuring health-protective conditions at one-eighth acre exposure areas. The one-eighth acre area corresponds to the size of a typical residential lot size, as presented in the U.S. Environmental Protection Agency (USEPA) guidance (1989) and is applicable to future Site conditions. It should be noted that sampling has not occurred on every one-eighth acre exposure area. Rather, the statistical protocol presented in the NDEP-approved *BRC Closure Plan* (BRC, ERM, and Daniel B. Stephens & Associates, Inc. [DBS&A] 2007) and *Statistical Methodology Report* (NewFields 2006) was followed, which allows estimates to be applied to one-eighth acre exposure areas based on similar populations across the Site. The decision can hence be made simultaneously for many one-eighth acre exposure areas based on the data and documentation that the exposure areas can be aggregated. This can result in aggregation across the entire Site if

³ The HHRA presents total Site-related risk. Background risk is the risk to which a population is normally exposed, and does not include risks from Site contamination. Total Site-related risk includes both incremental (Site only) and background risks. Because naturally occurring constituents are typically included in a risk assessment (i.e., metals and radionuclides), the total Site-related risk will have some element of total risk included. However, because risks are only calculated for a subset of metal and radionuclides, a 'total' risk is not calculated. In instances where the total Site-related risk is calculated to exceed a cancer risk of 10⁻⁵ (typically when radionuclides and/or arsenic are included in the risk assessment calculations) or a non-cancer hazard index greater than 1.0, then a background risk, only including those naturally occurring constituents included in the risk assessment, will also be calculated to provide context to the risk assessment results.

_

concentration distributions appear to be relatively homogeneous and representative of a single population, or within separate sub-areas of the Site if those sub-areas exhibit different distributions. This assumption was evaluated prior to performing the risk assessment, and was found to be valid for the Site (Section 6.1.1).

Project-specific risk level and remediation goals consistent with USEPA precedents and guidelines for residential uses have been established, as summarized below. It should be noted that: (1) all comparisons to risk or chemical-specific goals are made on an exposure area basis consistent with likely exposure assumptions; and (2) these comparisons are demonstrated through the use of spatial statistical analysis to apply to each one-eighth acre exposure area.

Human health risks are represented by estimated theoretical upper-bound cancer risks and non-cancer hazards derived in accordance with standard USEPA and NDEP methods. If the carcinogenic risks or non-cancer hazards exceed USEPA acceptable levels or NDEP risk goals, then remedial action alternatives must be considered. The acceptable risk levels defined by USEPA for the protection of human health, as identified in Section 9.1.1 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), are:

- Post-NFAD chemical and radionuclide concentrations in Site soils are targeted to have an associated residual, cumulative theoretical upper-bound incremental lifetime cancer risk (ILCR) level point of departure of 10⁻⁶. This is the target risk goal for the project. For cases where the NDEP identifies this goal to be unfeasible, it is BRC's understanding that the NDEP will re-evaluate the goal in accordance with USEPA (1991a) guidance. In no case will the residual, cumulative theoretical upper-bound carcinogenic risk levels exceed those allowed per USEPA guidance.
- Post-NFAD chemical concentrations in Site soils are targeted to have an associated cumulative, non-carcinogenic hazard index (HI) of 1.0 or less. If the screening HI is determined to be greater than 1.0, target organ-specific HIs will be calculated for primary and secondary organs. The final risk goal will be to achieve target organ-specific noncarcinogenic HIs of 1.0 or less.
- Where background levels exceed risk level goals or chemical-specific remediation goals, metal concentrations and radionuclide activities in Site soils are targeted to have risks no greater than those associated with background conditions.

In addition to the risk goals discussed above, chemical-specific remediation goals have been established for lead and dioxins/furans. The target goal for lead is 400 milligrams per kilogram (mg/kg) for residential land use, which is a residential soil concentration identified by USEPA (based on the Integrated Exposure Uptake Biokinetic [IEUBK] model) as protective of any exposure scenario (USEPA 2004a).

For dioxins/furans and polychlorinated biphenyl (PCB) congeners, the USEPA toxicity equivalency (TEQ) procedure, developed to describe the cumulative toxicity of these compounds, is used. This procedure involves assigning individual toxicity equivalency factors (TEFs) to the 2,3,7,8 substituted dioxin/furan and PCB congeners. TEFs are estimates of the toxicity of dioxin-like compounds relative to the toxicity of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD), which is assigned a TEF of 1.0. Calculating the TEQ of a mixture involves multiplying the concentration of individual congeners by their respective TEF. One-half the detection limit is used for calculating the TEQ for individual congeners that are non-detect in a particular sample. The sum of the TEQ concentrations for the individual congeners is the TCDD TEQ concentration for the mixture. TEFs from USEPA (2010a) are used.⁴ The calculation of the TCDD TEQs are included in the data file on the report CD in Appendix B. Consistent with the Agency for Toxic Substances and Disease Registry (ATSDR) *Update to the ATSDR Policy Guideline for Dioxins and Dioxin-Like Compounds in Residential Soil* (2008a), the target goal for residential land use is the ATSDR screening value and the NDEP residential Basic Comparison Level (BCL; NDEP 2013) of 50 parts per trillion (ppt) TCDD TEQ.

1.2 METHODOLOGY AND REGULATORY GUIDANCE

This risk assessment follows procedures outlined in USEPA *Risk Assessment Guidance for Superfund: Volume I—Human Health Evaluation Manual* (RAGS; USEPA 1989), and conforms to Section 9 (Risk Assessment Methodology–Human Health) of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010) which was approved by the NDEP on July 16, 2007. Various NDEP guidance documents are also relied on for the risk assessment (as referenced throughout this report). In addition, the NDEP's BCLs (NDEP 2013) are used for comparison of Site characterization data to provide for an initial screening evaluation, assist in the evaluation of data usability, and aid in determination of extent of contamination. A full list of

_

⁴ Consistent with the letter dated November 9, 2010, from Greg Lovato, NDEP, to Mark Paris, BRC. BRC will revise the *BRC Closure Plan* accordingly.

guidance documents consulted is provided in Section 6 and the References section at the end of this document.

This report also relies upon methodology and information provided in the NDEP-approved *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010). The main text of the *BRC Closure Plan* provides discussions of the following elements relative to the BMI Common Areas project as a whole:

- The project history, including cleanup goals and project objective (Closure Plan Sections 1 and 2);
- The list of Site-related chemicals (SRCs; Closure Plan Section 3);
- The conceptual site model (CSM) addressing potential contaminant sources, the nature and extent of chemical of potential concern (COPC) occurrence, and potential exposure pathways (Closure Plan Section 4; a CSM discussion specific to the Site is provided in Section 5 of this report);
- Data verification and validation procedures (Closure Plan Section 5);
- The procedures used to evaluate the usability and adequacy of data for use in the risk assessment (Closure Plan Sections 6 and 9 [2010 revision]);
- The data quality objectives (DQOs; Closure Plan Section 7⁵);
- The RAS process for the Site (Closure Plan Section 8);
- Risk assessment procedures that will be used for Site closure (Closure Plan Section 9 for human health [2010 revision] and Section 10 for ecological); and
- Data quality assessment (Closure Plan Section 5).

As discussed in this report, the risk assessment for the Site is conducted primarily using the data collected during implementation of the Site-specific SAP and subsequent confirmation sampling

⁵ As noted in the *BRC Closure Plan*, per discussions with the NDEP, the DQO process is addressed, on an Eastside sub-area by sub-area basis (for soils), in the respective sub-area SAPs developed for each sub-area relating to the soils cleanup. Therefore, the DQO process for the Site is presented in the SAP and is not repeated here. This DQO process was incorporated in the data usability/data adequacy evaluation for the Site data used in the risk assessment.

events, which have been designed to produce data representative of the conditions to which current (non-remediation workers) and future users would be exposed.

1.3 REPORT ORGANIZATION

The closure report is composed of 11 sections, as outlined below:

- This section (Section 1) presents the purpose of the risk assessment and the methods used in this assessment.
- Section 2 presents Site background, the environmental setting for the Site, and a summary of
 previous investigations. Section 2 also presents the CSM for the risk assessment. This
 includes identification of potentially exposed populations, and the potential pathways of
 human exposure.
- Section 3 presents the confirmation data collected from 2008 through 2014, as well as discussions on the various remedial actions conducted at the Site.
- Section 4 presents data evaluation procedures, including statistical analysis of background concentrations, and data usability and quality.
- Section 5 presents the selection of COPCs recommended for further assessment, including comparisons of Site metals and radionuclides to background conditions.
- Section 6 presents the HHRA. This includes relevant statistical analyses, determination of representative exposure point concentrations, applicable fate and transport modeling, exposure assessment, toxicity assessment, and risk characterization.
- In Section 7, the uncertainties associated with the risk assessment are discussed.
- A summary of the risk assessment results is provided in Section 8.
- The data quality assessment for the risk assessment is presented in Section 9.
- A summary of the HHRA and Closure Report is provided in Section 10; and
- A list of references is provided in Section 11.

Smaller tables with supporting information are inserted in the text at the place of reference. The text is followed by the figures, the larger tables, and appendices.

1.4 CLEAN FILL FROM NFAD SUB-AREAS PLACEMENT

As discussed in Section 3, after remediation efforts were completed at the Site, confirmation sample results indicated that arsenic was broadly present across the lower former pond portion of the Site where, in addition to the presence of generally clay soils, the depth to groundwater is very low. Ultimately, instead of continuing to excavate arsenic-containing soils—which tends to increase in concentration with depth, indicative of a non-soil (e.g., groundwater) contamination source for arsenic across the Site—BRC, with NDEP's concurrence, elected to place a 10-foot layer of "clean fill from NFAD sub-areas" over that portion of the Site with elevated arsenic levels.

The "clean fill from NFAD sub-areas" was obtained from the shallow soils at Parcel 4A, Parcel 4B, and Mohawk sub-areas, all of which have NDEP-approved NFADs for residential land use for the requisite depth intervals. As noted in the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), "Imported soil data will not be included in risk assessment calculations. However, the chemical data for fill material from the Site may be useful for evaluating sub-areas to receive this fill (that is, imported fill that may be used at the Site will have been included in risk assessments for sub-areas where the fill was obtained)." That is, because the "clean fill from NFAD sub-areas" was already included in the HHRAs for the sub-areas from which it was obtained, the soil is acceptable as-is for use as fill material in other sub-areas, and does not need to be included in the HHRA for the sub-area in which it is placed. The NFAD's for the Parcel 4A, Parcel 4B, and Mohawk sub-areas are for unrestricted, residential, land use requirements.

The 10-foot layer of "clean fill from NFAD sub-areas" restricts access to Site soils beneath this depth and is an effective institutional control; therefore, samples collected from below this clean fill from NFAD sub-areas pad (i.e., those with elevated arsenic, as discussed above) are not included in the HHRA for the Site. Eventually clean fill will be placed over the entire Site to provide a post-grade development surface. The reason why there will be two different fill placement events is because the initial "clean fill from NFAD sub-areas" placed from late 2012 through March 2014 was for Site remedial actions alone, and therefore, is covered under BRC's Soils Insurance Policy. The additional costs associated with development of the Site, beyond simply remediating it, are not covered under BRC's Soils Insurance Policy. Thus, post-remediation, development-driven grading and any associated fill placement which will occur after remediation activities are complete are accounted for separately. Based on this, samples collected from within the Site, but outside the "clean fill from NFAD sub-areas" pads are included in the HHRA for the Site, following the rules presented in Section 3.1 and consistent with all previous closure reports for the Eastside property.

2.0 SITE DESCRIPTION

This section presents a description of the Site, including Site background and history, the environmental setting, and a summary of previous investigations. The area known as the "BMI Common Areas," of which the Western Hook-Development Sub-Area is a part, is delineated in Appendix A of the AOC3. The subject Site is near the BMI Industrial Complex, in Clark County, Nevada, approximately 13 miles southeast of Las Vegas, within the City of Henderson corporate limits, northeast of the City Hall (Figure 1). The eastern Site boundary has been modified slightly, but the Site is otherwise the same as originally defined within the Eastside property in Section 1 and Figure 1-2 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010).

The Site is an L-shaped parcel bounded by Pabco Road to the west, and is surrounded on all sides, but one (the east), by lands outside the BMI Common Areas boundaries, as follows:

North: From west to east: Silver Bowl Park (baseball fields) and Clark County Wetlands Park;

South: From west to east, an industrial park and the City of Henderson Bird Viewing Preserve;

East: From north to south, the Western Hook-Open Space sub-area and the City of Henderson Bird Viewing Preserve; and

West The Sam Boyd Stadium (formerly known as the Silver Bowl) located approximately 750 feet away to the northwest, and a residential community immediately adjacent to the southwest.

The closure process for the Western Hook-Open Space sub-area is ongoing. The Site (Figure 1) is approximately 242 acres in size, and is gently sloping to the northeast. The Site historically contained wastewater effluent evaporation/infiltration ponds and associated conveyance ditches⁶ that were once associated with historical conveyance and/or disposal of operations effluent and

2-1

⁶ The Closure Plan and historical documents associated with the BMI Common Areas distinguish two primary sets of ponds in the Common Areas that are associated with historical conveyance and/or disposal operations: the "Upper Ponds" and the "Lower Ponds". The pond row labels shown on Figure 1 distinguish between the two; the 10 rows of Lower Ponds are labeled with an "L" followed by a letter (A through J). The Lower Ponds are located further north on the BMI Common Areas, within the Western Hook-Development and Western Hook-Open Space sub-areas, and were previously located within the footprint of the City of Henderson Water Reclamation Facility (WRF) prior to its construction.

cooling water by companies operating at the BMI Complex. Portions of two conveyance ditches (the Western Ditch and the Northwestern Ditch; Figure 1) traverse the southernmost portion of Site. In addition, a portion of the former Alpha Ditch (a third conveyance ditch) transects the site.

The former evaporation/infiltration ponds were located across most of the eastern portion of the Site (approximately 63 acres, representing approximately 26 percent of the Site). The original wastewater effluent evaporation/infiltration ponds were unlined. Until 2010, the individual ponds (varying in size from approximately 3 to 13 acres) were distinct and defined by 4- to 6-feet tall berms along the north, east, and west sides. In 2010, certain berms and surficial materials were removed during remediation activities from the former pond areas (see Section 3.3). From late 2012 through March 2014, "clean fill from NFAD sub-areas" excavated from the Mohawk, Parcel 4A, and Parcel 4B sub-areas was placed on a 10-foot layer over portions of the Site, including many of the former pond locations. As a result, several of the ponds are no longer discernable (see Section 3.3.3 for further discussion on this fill material). The pad of "clean fill from NFAD sub-areas" covers an area of approximately 33.8 acres (Figure 2). BRC plans to cover an additional 22.4 acres with a pad of clean fill to eliminate higher level concentrations of certain substances (in particular, arsenic and radionuclides) found at depth. Ultimately the entire Site will be filled with clean fill to a constant elevation.

In addition to the historical effluent conveyance and discharge features noted above, the following features were also present on the Site:

- A storm water conveyance channel traverses the western portion of the Site (Figure 2). This feature is an engineered concrete channel except at the discharge point furthest to the north; prior to the 1990's this channel appears to have been a natural, unlined channel. Note that although this area is included in the Site dataset, it will not be developed for residential land use, wherever its final placement will be across the Site.
- A remediation system has been constructed by American Pacific Corporation to address nearby, off-site groundwater, and has been in operation for more than 8 years (see Figure 3).
 This system involves extraction of groundwater flowing onto the Site from the south and west, *ex situ* treatment, and reinjection north of the Site. These extraction wells are scheduled to operate for decades.

Approximately 179 acres of the Site that did not contain ponds is vacant land, for which there are no known historical uses other than the storm water control and remediation activities noted

above. The Site was undeveloped desert land until the construction of the Lower Ponds and conveyance ditches, into which various plant wastewaters were discharged from 1942 through 1976. Since 1976, the former pond and ditch areas have been vacant and unused.

2.1 SITE HISTORY

Approximately 1,200 of the more than 2,200 acres comprising the BMI Common Areas contained a network of ditches, canals, flumes, and unlined ponds that were used for the disposal of aqueous waste from the original magnesium plant and, later, other industrial plants and the adjacent municipality. Effluent wastes discharged to the ponds of the BMI Common Areas from the war-time Basic Magnesium operations can be characterized as salts from the production process (chloride salts of a variety of metals and radionuclides), organic solids, and inorganic solids and dissolved components of various types. Chlorinated organic chemicals were included in the effluent. Notable processes that contributed to the waste stream from the plants that succeeded Basic Magnesium included effluents from the manufacture of the following types of products: chlorine and sodium hydroxide (caustic soda); a variety of chlorate and perchlorate compounds, and halogenated boron compounds; manganese dioxide; titanium and related compounds; and a variety of pesticides. Among these wastes were salts, organic and inorganic chemicals, and metals. A more detailed description of these processes and their effluents is found in Sections 2.2 and 2.3 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010).

2.2 ENVIRONMENTAL SETTING

The BMI Common Areas and Complex are located in Clark County, Nevada, and are situated approximately 2 miles west of the River Mountains and 1 mile north of the McCullough Range. The local surface topography slopes in a westerly to northwesterly direction from the River Mountains and in a northerly to northeasterly direction from the McCullough Range. Near the BMI Common Areas and Complex, the surface topography slopes north toward the Las Vegas Wash. The River Mountains and McCullough Range consist of volcanic rocks: dacite in the River Mountains and andesite in the McCullough Range (Umhoefer et al. 2010).

The Site (Figure 3) comprises 179 acres of undeveloped land with little surface relief that is gently sloping to the northeast, and 63 acres of land previously used for the former effluent ponds (a total of 242 acres). The Site is currently undeveloped, except for the former conveyance ditch segments, storm water channel, and remediation features noted above. The native soils are

compacted, poorly sorted, non-plastic, light brown to red silty sand, with varying amounts of gravel.

2.2.1 Site Location, Climate, and Physical Attributes

The Site is in the northeastern quarter of Section 5, Township 22 South, Range 63 East Mount Diablo Base and Meridian. The Site is in the Las Vegas Valley, a broad alluvial valley that occupies a structural basin in the Basin and Range Physiographic Province. The valley is about 1,550 square miles in size, and the structural and topographical axis is aligned approximately northwest to southeast. The eastern edge of the valley is about 5 miles west of Lake Mead, a major multipurpose artificial reservoir on the Colorado River. The Las Vegas Valley is surrounded mostly by mountains, ranging from 2,000 to 10,000 feet higher than the valley floor. The valley floor ranges in elevation from about 3,000 feet above mean sea level, in the west at the mountain front, to 1,500 feet above mean sea level, in the east at the Wash (Clark County GIS Management Office 2003). The surrounding mountain ranges are:

- Sheep Range to the north;
- Frenchman and Sunrise Mountains to the northeast;
- River Range to the east;
- McCullough Range to the south; and
- Spring Mountains and Sierra Nevada mountain range of California to the west.

The Site is within the City of Henderson corporate limits, northeast of City Hall, and approximately 13 miles southeast of the city of Las Vegas (Figure 1). A residential development is present immediately to the west of the Site. Two recreational features are present in the immediate Site vicinity: the Sam Boyd Stadium is located approximately 750 feet away to the northwest; and two baseball/softball fields are adjacent to the northwest corner. An industrial area is located immediately adjacent to the south of the Site. Open space (Wetlands Park) is located immediately adjacent to the north of the Site, followed by the Las Vegas Wash, which is within 1,200 feet of the Site. The City of Henderson Bird Viewing Preserve, a wetlands area comprising 83 acres of individual ponds, is located immediately adjacent to the Site, to the south and east.

The Site is situated in a natural desert area, where evaporation/evapotranspiration rates are high, due to high temperatures, high winds, and low humidity. Precipitation in this area averages

approximately 0.4 inch per month or 4.8 inches per year (Western Regional Climate Center 2008). As discussed in the *Revised Technical Memorandum: Sources/Sinks and Input Parameters for Groundwater Flow Model* (DBS&A 2009), in arid settings, recharge from precipitation is typically a small percentage of annual precipitation. Based on values from Scanlon et al. (2006), recharge as a percentage of annual precipitation for the Site area was estimated to be between 0.1 and 5 percent. Recharge is thus estimated to be between 0.0048 and 0.24 inch per year.

According to the Southern Nevada Water Authority's document entitled *Extent and Potential Use of the Shallow Aquifer and Wash Flow in Las Vegas Valley, Nevada* (1996), annual potential evapotranspiration exceeds 86 inches. Pan evaporation data measured from 1985 through 1988 were as high as 17 inches per month; the months with the highest evaporation (May through September) coincide with those months with the highest intensity of rainfall (Law Engineering 1993). However, evaporation and evapotranspiration are functions of vegetation type and density and other Site-specific conditions (especially anthropogenic conditions). Therefore, Site-specific evaporation/evapotranspiration may vary from these regional conditions. These climatic parameters may be appreciably influenced by future redevelopment (e.g., vegetation removal, pavement extent, and construction).

Wind flow patterns are fairly consistent from one month to another, but vary slightly between measurement stations (McCarran International Airport and a station within the BMI Complex adjacent to the employee parking lot at the Titanium Metals Corporation [TIMET] plant entrance) adjacent to the BRC haul road. For the McCarran station, the prevailing wind direction is from the southwest. The TIMET station also showed a predominant wind direction from the southwest, with southeasterly components. Wind velocity at both locations tends to be the highest in the spring and early summer months (April through July).

2.2.2 Geology/Hydrology

As is common throughout the Las Vegas Valley, Site soils are primarily sand and gravel, with occasional cobbles. This is consistent with the depositional environment of an alluvial fan. The Site is located on alluvial fan sediments, with a surface that slopes to the north-northeast at a gradient of approximately 0.02 foot per foot towards the Las Vegas Wash. Regional drainage is generally to the east.

The uppermost strata beneath the Site consist primarily of alluvial sands and gravels derived from the volcanic source rocks in the McCullough Range, located southwest of the Site. These

uppermost alluvial sediments were deposited within the last 2 million years and are of Quaternary Age, and are thus mapped and referred to as the Quaternary alluvium (Qal; Carlsen et al. 1991). The Qal is typically on the order of 50-feet thick at the Site with variations due, in part, to the non-uniform contact between the Qal and the underlying Tertiary Muddy Creek Formation (TMCf).

The TMCf underlies the Qal. The Muddy Creek formation, of which the TMCf is the uppermost part, is a lacustrine deposition from the Tertiary Age, and it underlies much of the Las Vegas Valley. It is more than 2,000-feet thick in places. The lithology of the TMCf underlying the Site is typically fine-grained (sandy silt and clayey silt), although layers with increased sand content are sporadically encountered. These TMCf materials have typically low permeability, with hydraulic conductivities on the order of 10⁻⁶ to10⁻⁸ centimeters per second (Weston 1993). The TMCf in the vicinity of the Site was encountered to the maximum explored depth of 430 feet bgs. Lithologic cross sections are shown on Figures 4 and 5.

Two distinct, laterally continuous water-bearing zones are present within the upper 400 feet of the Site subsurface: (1) an upper, unconfined water-bearing zone primarily within the Qal referred to herein as the alluvial aquifer (Aa); and (2) a deep, confined water-bearing zone that occurs in a sandier depth interval within the silts of the deeper TMCf. Both of these water-bearing zones contain high concentrations of total dissolved solids. Between these two distinct water-bearing zones, a series of saturated sand stringers was sporadically and unpredictably encountered during drilling.

The Aa is an unconfined, shallower, water-bearing zone that occurs across the Site. For the most part, water in the Aa occurs in the Qal. The water surface in the Aa generally follows topography, with the water surface sloping towards the Las Vegas Wash. The depth from the surface to first groundwater at the Site will be greater than 15 feet bgs following placement of fill material (Figure 3). In addition, groundwater elevations are locally controlled through a line of extraction wells located on the southern edge of the Site. These extraction wells will maintain groundwater elevations beneath the site for decades. Wells completed in the Aa are not highly productive, with sustainable flows typically less than 5 gallons per minute.

2.2.3 Surface Water

Surface water flow occurs for brief periods of time during periodic precipitation events. The Las Vegas Wash collects storm water, shallow groundwater, urban runoff, and treated municipal wastewater. It is the receiving water body for all major Las Vegas area discharges. In dry

weather, flow in the Wash comprises mainly treated effluent from the Clark County Water Reclamation District City of North Las Vegas, City of Las Vegas Water Pollution Control Facility, and the City of Henderson WRF. The City of Henderson contributes smaller amounts. Aggregate flow is in excess of 160 million gallons per day (Las Vegas Wash Coordination Committee 2000). Discharge from these sources is sufficient to maintain surface flows in the Wash throughout the year. In winter, low-intensity rains fall over broad areas; in the spring and fall, thunderstorms provide short periods of high-intensity rainfall. The latter creates high run-off conditions. Run-off is also affected by human development, which tends to (1) create conduits for surface water flow, and (2) decrease infiltration into native soils by covering them with manmade structures or materials (e.g., pavement).

Under current conditions, it is possible that ephemeral surface waters generated within the Site could migrate via overland transport to the Las Vegas Wash from the Site, particularly by means of the engineered storm water channel and the former Alpha Ditch. After redevelopment, when the ditches have been removed, there will be a lower likelihood that ephemeral surface waters generated within the Site could migrate via overland transport to the Las Vegas Wash from the Site because of the proposed design of the future storm water facilities and the regional requirement that nuisance flows not be discharged directly into the Las Vegas Wash unless they do so under existing conditions. (Flows from future development do not meet this criterion.)

Groundwater seeps currently exist at various locations north of the BMI Common Areas near the Las Vegas Wash. Although no seeps currently exist within the Site, they may have occurred in the past. However, an evaluation of historical aerial photos taken between 1964 and 1970 indicates that seeps have historically appeared in other portions of the BMI Common Areas (in the Western Hook-Open Space, Galleria North, and Sunset North Commercial sub-areas), and at nearby off-site locations, but not in the Site itself. Evidence of seeps was not observed in aerial photographs after 1972, and there is no chemical or hydrological evidence that seeps have existed on the Site.

2.3 SUMMARY OF HISTORICAL INVESTIGATIONS

Several historical field investigations were conducted at the Site to characterize the nature and extent of chemical occurrence in Site soils and groundwater. Based on these sampling events, BRC identified portions of the Site that warranted remediation for protection of human health

and the environment,⁷ and subsequently performed remediation in those areas. The SAP presents a detailed analysis of data collected during the historical field investigations conducted at the Western Hook-Development Sub-Area. Of those investigations, the following sampling events included sampling within the Site boundaries:

- The BMI Common Areas Environmental Conditions Investigation conducted during March and April 1996 (dataset 1a). The soil investigation activities were performed in accordance with a work plan approved by the NDEP in February 1996 (ERM 1996a). The soil sampling results for the investigation activities were presented in the *Environmental Conditions Investigation Report* (ERM 1996b), which was approved by the NDEP in March 1997. Data validation results are presented in the *Data Validation Summary Report* (DVSR) for dataset 1a (ERM 2006a), which was approved by the NDEP on September 12, 2006.
- Additional soil sampling conducted in May 1999 to establish the extent of antimony, manganese, and thallium occurrence in site soils (dataset 6c). These data were not collected under a formal NDEP-approved work plan. The results were summarized in the *Interim Remedial Measure (IRM) Completion Report* (ERM 2000b), which has not been approved by NDEP. Data validation results are presented in the DVSR for dataset 6c (ERM 2006b), which was approved by NDEP on October 10, 2006.
- Additional soil sampling conducted in February 2000 to assess the extent of various compound classes in soils in the Lower Ponds (dataset 7b). These data were not collected under a formal NDEP-approved work plan. The results were previously summarized in the IRM Completion Report (ERM 2000b), which has not been approved by NDEP. Data validation results are presented in the DVSR for dataset 7b (ERM 2006c), which was approved by NDEP on September 13, 2006.
- Additional sampling conducted in December 1999 for fill in pond PLF-05 (dataset 7e).⁸ These data were not collected under a formal NDEP-approved work plan. The results were summarized in the IRM Completion Report (ERM 2000b), which has not been approved by NDEP. Data validation results are presented in the DVSR for dataset 7e (ERM 2006d), which was approved by NDEP on November 3, 2006.

⁸ Although these data were collected after the start of the IRM, they have been included in this section of the report because they are considered characterization samples rather than samples associated with IRM activities.

⁷ It should be noted that this determination was based on comparison of chemical detections to then-applicable human-health risk-based screening levels.

- Discrete/composite soil investigation conducted in July 2000 (dataset 8a). The soil investigation activities were performed in accordance with ERM's work plan submitted in July 2000 and approved by the NDEP on July 18, 2000. The soil sampling results for the investigation activities were presented in letters to the NDEP dated August 11, 2000 (soil sampling results) and August 28, 2000 (statistical analysis of results); these letters have not been approved by the NDEP. Data validation results are presented in the DVSR for dataset 8a (ERM 2006e), which was approved by the NDEP on October 10, 2006.
- Additional soil sampling conducted in February and March 2000 within the northernmost Upper and Lower ponds (dataset 8b). These data were not collected under a formal NDEPapproved work plan. The results were previously summarized in the IRM Completion Report (ERM 2000b), which has not been approved by NDEP. Data validation results are presented in the DVSR for dataset 8b (ERM 2006f), which was approved by NDEP on September 14, 2006.
- Supplemental soil investigation conducted in October 2000 (dataset 8c) in the Northwestern Ditch, Western Ditch and Pond PLE-09. These data were not collected under a formal NDEP-approved work plan. Data validation results are presented in the DVSR for dataset 8c (ERM 2006g), which was approved by NDEP on October 26, 2006.
- Supplemental soil investigation conducted in May/June 2001 (datasets 20b and 20c). These data were not collected under a formal NDEP-approved work plan. Data validation results are presented in the DVSRs for datasets 20b (ERM 2006h) and 20c (ERM 2007), which were approved by the NDEP on October 20, 2006 and February 5, 2007, respectively.
- Deep soil characterization conducted in June/July 2004 during monitoring well installation at one on-Site location (SB-16-B) as part of the overall Eastside 2004 Hydrologic Characterization Investigation (dataset 27). The soil investigation activities were performed in accordance with a work plan submitted in December 2003 (MWH 2003) and approved by the NDEP in January 2004. The sampling results for the investigation activities were presented in the 2004 version of the *BRC Closure Plan*, which was not approved by the NDEP. Data validation results are presented in the DVSR for dataset 27 (MWH 2006a), which was approved by the NDEP on August 31, 2006.
- Waste characterization conducted in July and August 2006 (dataset 39). The soil investigation activities were performed in accordance with BRC's SAP submitted on June 29, 2006, and approved by the NDEP in July 2006. The soil sampling results for the

investigation activities were previously presented in the *Remedial Action Plan* (BRC 2007), which was approved by the NDEP on September 24, 2007. Data validation results are presented in the DVSR for dataset 39 (MWH 2006b), which was approved by the NDEP on November 3, 2006.

The Site-related data from the above investigations were also presented in Appendix B of the SAP. During these investigations, soil samples at various depths were collected and analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), organochlorine pesticides, organophosphorus pesticides, PCBs, chlorinated herbicides, dioxins/furans, metals, perchlorate, radionuclides, and/or asbestos. The data from these investigations have been validated, as noted above. Data validations are presented in the respective DVSRs for each of the datasets, and all have been approved by the NDEP.

Several of the samples collected during these historical investigations were composite samples and were collected more than 15 years ago; few of the previous samples were analyzed for all of the major chemicals or chemical families now mandated; several analyses used different analytical methods than established in the current analytical program for the BMI Common Areas; and spatial coverage of the Site was incomplete. In addition, many of these sample locations were excavated during the 2009 mass remediation. Therefore, because of these various factors, the data collected as part of the SAP (as discussed in Section 3) are considered more representative of current Site conditions⁹ than data collected from previous investigations, and these recent 2009 through 2014 data are therefore relied upon for risk assessment purposes as described in this report.

2.4 HISTORICAL REMEDIAL ACTIVITIES

To expedite restoration of the Site, BRC elected to perform an IRM for former ponds PLD-10 and PLE-09, which contained elevated levels of lead and organochlorine pesticides. This IRM was performed following the procedures specified in the NDEP-approved *Sunset North Area IRM Workplan* (ERM 1999). The IRM work plan was approved by NDEP on August 27, 1999. IRM activities consisted of excavation of the impacted shallow soils, transportation to a secured location within the Upper Ponds, and treatment to prevent generation of wind-blown dusts and runoff.

⁹ This determination is also based on the data usability evaluation summarized in Section 4.2.

_

The scope of the IRM was later expanded to address the following conditions encountered in the field:

- Fill material in PLD-10, after it was determined to contain elevated chemical concentrations; and
- Soils containing asbestos at levels greater than 1 percent in PLE-08 (as well as in PLE-09 and PLD-10).

The soil excavation was performed between October 1999 and May 2000, including two additional ponds in another portion of the BMI Common Areas (*i.e.*, ponds PUP-08 and PUO-07 in the Sunset North Commercial and Upper Ponds sub-areas; for the IRM excavation areas, see Figure 3). The excavation covered approximately 27.5 acres. A total estimated 130,000 cubic yards of soil (including those additional two ponds) were excavated and removed from the Site. Results of the IRM for the Site were presented in the IRM Completion Report (ERM 2000b); this report has not been approved by NDEP.

Subsequently, after completion of this initial IRM phase, based on sampling results that indicated the presence of elevated concentrations of arsenic and asbestos in the soils (dataset 20c), additional surface soil excavation was performed in ponds PLG-05 and PLG-06. This excavation work followed the procedures specified in the IRM work plan, but was not performed in accordance with an NDEP-approved work plan specific to those two ponds. This IRM phase addressed an approximately 14.5-acre area. Both areas of soil removal are shown on Figure 3.

In addition, in 2007, BRC conducted a broad-scale removal of tamarisk plants in the Site; the affected area is depicted on Figure 3. These tamarisk removal efforts covered an area of approximately 25 acres and involved the removal of minimal amounts of site soil incorporated in the plant roots.

2.5 CORRECTIVE ACTION PLAN REMEDIATION WITHIN THE SITE

By definition, IRMs are "interim" remedial activities conducted at a given site, performed in advance of: (1) longer-term evaluations of applicable remedial options, (2) selection of a final remedy to address conditions at that site, and (3) implementation of that remedy. As previously noted, a final remedy for the Site was selected and the *Corrective Action Plan* (CAP; BRC 2006) approved by the NDEP on September 25, 2006. Based on existing historical data showing the presence of elevated chemical concentrations in Site soils, BRC completed mass-scale remediation at the Site in accordance with the CAP. Remedial activities included excavation of

impacted materials from the Site and off-site transport of these materials to the CAMU. Subsequent rounds of remediation were conducted following the mass-scale remediation. Details regarding these activities are provided in Section 3.3.

2.6 CONCEPTUAL SITE MODEL

The CSM is a tool used in risk assessment to describe relationships between chemicals and potentially exposed human receptor populations, thereby delineating the relationships between the suspected sources of chemicals identified at the Site, the mechanisms by which the chemicals might be released and transported in the environment, and the means by which the receptors could come in contact with the chemicals. The CSM provides a basis for defining DQOs, guiding Site characterization, and developing exposure scenarios. The Site history; land uses; climate; physical attributes, including geology and hydrogeology; and various field investigations are described in Sections 2.1 through 2.4 of this HHRA. The history and environmental conditions of the BMI Common Areas are described in Sections 2 and 4 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), and in the Site-wide CSM (in preparation).

The HHRA evaluates current and potential future land-use conditions. The Site is currently undeveloped. The potential on- and off-site receptors are currently trespassers, occasional on-site workers, and off-site residents. Exposures to current receptors are being managed through Site access control. Under the prospective redevelopment plan, the Site will primarily have a residential land use (low and medium density), with parks and trails, and associated roads and parking areas. In addition, current development plans include the construction of a storm water conveyance channel through the property.

The entire Site will be enhanced by restoration and redevelopment once remediation is complete. Therefore, exposures to ecological receptors will be mitigated or removed. Future receptors identified as "on-site receptors" are defined as receptors located within current Site boundaries (Figure 1), while future "off-site receptors" are those located outside current Site boundaries. Many potential human receptors are possible at the Site in the period during and after redevelopment. The potentially exposed populations and their potential routes of exposure are discussed in Section 2.6.3.

The current development plan for the Site is shown on Figure 6. This is an example and actual features may change in the future. To construct residences, parks, and roads, the land will be cut and/or filled, paved with roads or foundations, and nurtured with imported top soils¹⁰ as needed. Figure 2 shows the redevelopment grading plan for the Site (Environmental Covenant Grading Plan), indicating which areas will be filled and which areas will be cut. Since development of that plan, as part of the remediation activities to achieve remedial goals, BRC elected to proceed with placement of 10 feet of "clean fill from NFAD sub-areas" across the Lower Pond portion of the site (Figure 2). The post-"clean fill from NFAD sub-areas" ground surface will be the minimum elevation upon which development will occur in the area, and no cuts will be performed where "clean fill from NFAD sub-areas" was placed. In addition, as noted in Section 1.4, the grading plan will be revised following final placement of additional fill across the Site).

The CSM includes the planned redevelopment of the Site. All potential transfer pathways are included in the CSM. The human health aspects of the CSM for the Site are presented on Figure 7.

Numerous release mechanisms influence chemical behavior in environmental media. Under both current and future land use conditions at the Site, the principal release mechanisms involved are:

- Vertical migration in the vadose zone;
- Storm/surface water runoff into surface water and sediments;
- Fugitive dust generation and transport; and
- Vapor emission and transport.

Although these release mechanisms are identified here, no quantitative modeling is presented in this section. Instead, those primary release mechanisms identified for particular receptors are presented in this section, and are quantitatively evaluated in Section 6.

2.6.1 Impacted Environmental Media

Environmental media at the Site consist of five categories: surface soil, subsurface soil, groundwater, indoor air, and ambient outdoor air. Samples relative to Site baseline conditions

¹⁰ Imported soil data are not included in risk assessment calculations. However, the chemical data for fill material from a given site within the Eastside property may be useful for evaluating sub-areas to receive fill from that site.

have been collected at the Site for soil. Generally, impacted soil is the source of chemical exposures for other media at the Site.

Because the background water quality of groundwater beneath the Site and in the surrounding area is generally poor (viz., high total dissolved solids concentration) and because BRC has placed Environmental Covenants in the form of a deed restriction to prevent future users from utilizing groundwater beneath the Site, the use of private water wells by residents or parks for drinking water, irrigation water, or other non-potable uses (e.g., washing cars, filling swimming pools) will not occur in the post-redevelopment phase. Furthermore, there is no anticipated groundwater uses associated with the proposed residential land use. Therefore, exposure pathways relating to this type of use are incomplete, as defined by USEPA (1989).

Although direct exposures to groundwater will not occur; indirect exposures are possible. The primary indirect exposure pathway from groundwater is the infiltration of VOCs from soil and groundwater to indoor air. In addition, residual levels of chemicals in soil may leach and impact groundwater quality beneath the Site.

2.6.2 Inter-Media Transfers

Exposure to Site chemicals may be direct, as in the case of impacted surface soil, or indirect following inter-media transfers. Impacted soil is the initial source for inter-media transfers at the Site, which can be primary or secondary. For example, upward migration of VOCs from impacted subsurface soil into ambient air thereby reaching a point of human inhalation represents a secondary inter-media transfer.

These inter-media transfers represent the potential migration pathways that may transport one or more chemicals to an area away from the Site where a human receptor could be exposed. Discussions of each of the identified potential transfer pathways are presented below. Figure 7 presents a conceptualized diagram of the inter-media transfers and fate and transport modeling for the Site.

Five initial transfer pathways for which chemicals can migrate from impacted soil to other media have been identified. The first of these pathways is volatilization from soil and upward migration from soil into ambient air. Ambient air can be both indoor and outdoor air. The pathway of volatilization from both soil and groundwater and upward migration into ambient air was evaluated using the surface flux measurements collected. The secondary transfer pathway is downward migration of chemicals from soil to groundwater. The third transfer pathway is

migration of chemicals in surface soil via surface runoff to sediments or surface water bodies. However, the portion of the Site with impacted soils (i.e., within the former pond areas) has been or will be covered with "clean fill from NFAD sub-areas", and storm water controls will be put in place as part of redevelopment; thus it is unlikely that surface waters (which are ephemeral) will come into contact with impacted sediments, entrain them, and carry them to the Las Vegas Wash from the Site. Therefore, the surface water pathway was not evaluated in this risk assessment. The fourth transfer pathway is on-site fugitive dust generation. Finally, chemicals in soil can be transferred to plants grown on the Site via uptake through the roots. The plant uptake pathway is evaluated for residential receptors only.

2.6.3 Potential Human Exposure Scenarios

The following subsections summarize land use and the human exposure scenarios that are assessed herein.

2.6.3.1 Current and Future Land Use

Current receptors that may use the Site include trespassers, occasional on-site workers, and off-site residents. Current exposures to native soils at the Site are minimal, but exposures to future receptors will be much greater. For example, future receptors evaluated in the HHRA include on-site residents who are assumed to be exposed to soil at the Site for 350 days per year for 30 years, which is much greater than any current exposure scenario. In addition, as discussed above, exposures to current receptors are limited through Site access control. Therefore, a current land use scenario is not quantitatively evaluated in this risk assessment.

USEPA risk assessment guidance (1989) states that potential future land use should be considered in addition to current land use when evaluating the potential for human exposure at a site. As indicated above, under the prospective redevelopment plan, the Site will be used for residential redevelopment (low and medium density), parks and trails, and associated roads and parking areas. The entire Eastside property will be redeveloped in several phases. Throughout the redevelopment process, the sub-areas of the Site will be redeveloped sequentially. Future receptors identified as "on-site receptors" are defined as receptors located within the current Site boundaries (Figure 1), while future "off-site receptors" are those located outside the current Site boundaries. "On-site receptors" are those future receptors that will be located within the Site under evaluation. "Off-site receptors" are those future receptors that will be located outside the Site under evaluation that may have complete exposure pathways associated with sources within

the Site. As noted above, remediation of the Site is to on-site residential standards. Consequently, risks to off-site receptors are addressed qualitatively in this risk assessment.

2.6.3.2 Identification of Potentially Exposed Populations and Pathways

Many potential human receptors are possible at the Site in the period during and after redevelopment. The potentially exposed populations and their potential routes of exposure are presented on Figure 7 and summarized below. For a complete exposure pathway to exist, each of the following elements must be present (USEPA 1989):

- A source and mechanism for chemical release;
- An environmental transport medium (i.e., air, water, soil);
- A point of potential human contact with the medium; and
- A route of exposure (e.g., inhalation, ingestion, dermal contact).

As presented in Section 9 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), the following are the primary exposure pathways for each of the potential receptors following remediation and redevelopment at the Site.

- Adult and child residents
 - Incidental soil ingestion*
 - External exposure from soil[†]
 - Dermal contact with soil
 - Consumption of homegrown produce*
 - Outdoor inhalation of dust*[‡]
 - Indoor inhalation of dust*[‡]
 - Outdoor and indoor inhalation of VOCs from soil and groundwater
- Indoor commercial workers
 - Incidental soil ingestion*
 - External exposure from soil[†]
 - Indoor inhalation of VOCs from soil and groundwater
- Outdoor maintenance workers
 - Incidental soil ingestion*
 - External exposure from soil[†]
 - Dermal contact with soil
 - Outdoor inhalation of dust*[‡]
 - Outdoor inhalation of VOCs from soil and groundwater

Construction workers

- Incidental soil ingestion*
- External exposure from soil[†]
- Dermal contact with soil
- Outdoor inhalation of dust*[‡]
- Outdoor inhalation of VOCs from soil and groundwater

Although trespassers/recreational users and downwind off-site residents are another potential receptor identified in the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), exposures for these receptors are less than those evaluated above. As noted in Sections 9.1.1 and 9.7.1 of the *Closure Plan*, potential exposures for trespassers/recreational users will only be evaluated in areas of the BMI Common Areas that are designated as recreational end use (specifically the Western Hook-Open Space sub-area shown on Figure 1). Also, as noted in Section 9.5.4 of the *Closure Plan*, off-site dust levels based on USEPA's model are much lower than those generated for on-site, construction-related activities. Therefore, risks evaluated for an on-site construction worker, as performed in this HHRA, are considered protective of off-site residents.

^{*}Includes radionuclide exposures

[†]Only radionuclide exposures

[‡]Includes asbestos exposures

3.0 CONFIRMATION DATA PROCESS AND SUMMARY

Based on the historical data for the Site, as noted in Section 2.5 an initial mass remediation was conducted prior to implementing the sampling prescribed in the SAP. This remediation, which consisted of soil excavation and transportation to the CAMU, was performed in accordance with the NDEP-approved CAP (BRC 2006). The extent of this initial mass remediation is depicted on Figure 8. The sampling identified in the SAP was performed when BRC determined that obviously impacted soils had been removed during the initial mass remediation activities.

Decisions for additional excavation were based on the initial data collected in accordance with the SAP (discussed below) in accordance with the Risk Assessment Methodology provided in the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010). The following is the initial scope of work for investigating the Site and meeting the SAP objectives. Much of the discussion below regarding confirmation soil sampling is taken from the NDEP-approved *Statistical Methodology Report* (NewFields 2006).

3.1 INITIAL CONFIRMATION SOIL SAMPLING

As per Section 2 of the *Statistical Methodology Report*, the initial confirmation sampling at the Site was conducted on the basis of combined random and biased (judgmental) sampling, as follows:

- Stratified Random Locations: For this purpose, the Site was covered by a 3-acre cell grid network. Within each 3-acre cell, a sampling location was randomly selected. Sampling locations were randomly selected within both full and partial grid cells if they were greater than 50 percent of the total grid cell area (based on the project-wide grid cell network and the Site boundaries; those partial grid cells that contain less than 50 percent of their area within the Site were included in the adjacent sub-area SAP). The main objective of this stratified random sampling was to provide uniform coverage of each Site within the Eastside property.
- **Biased Locations:** Additional sampling locations were selected within or near small-scale contamination points of interests, including but not limited to previous debris locations, ponds, and berms. For this purpose, the randomly selected location within a corresponding 3-acre cell was adjusted to cover a nearby point of interest. In the event that currently unknown impacted areas were identified during remediation, the presence of these areas were drawn to the NDEP's attention, the need for additional biased sampling points to address those areas was evaluated, and the sampling program modified as needed.

A Site reconnaissance was performed in 2008 to check for environmentally significant features such as debris piles or stained soil. Sixty debris piles were observed during the site reconnaissance. Nine of these had minor stained soil areas. Eighteen biased sampling locations were located based on observed debris piles/soil staining, and 12 random sampling locations were shifted slightly to be positioned within observed debris piles/soil staining. A final reconnaissance was performed prior to sampling to check for any additional environmentally significant features since the initial reconnaissance; if found, these additional features would also have been sampled. No such features were found.

Biased sampling was also conducted along the length of the Alpha, Western, and Northwestern ditches, at approximately 200-foot linear spacing. Figure 9 and accompanying Table 3-1 (see Tables section) show the initial SAP sampling locations within the Site. Rationale for each of the biased sampling locations is presented below:

- WHC1-P01 through P18 (excluding P14) were included to provide coverage within selected debris areas observed at the Site.
- WHC1-P14 was included to evaluate conditions in the terminus of the drainage channel.
- OSC1-JP06, -07, and -08 were included to assess conditions within the former effluent ponds.
- WHC1-D01 through D11 were included to provide coverage within the Western Ditch.
- WHC1-D12 through D17 were included to provide coverage within the Northwestern Ditch.
- WHC1-D18 through D29 were included to provide coverage within the Alpha Ditch.

BRC conducted five rounds of remediation at the Site in response to detections of elevated concentrations of various chemicals at various locations within the Site. The scope of these remediation activities is discussed in Section 3.3.

The following discusses the multi-depth soil samples that were collected and analyzed for the SRC list at each selected location. Samples were collected at:

1. Existing surface (0 foot bgs) and 10 feet bgs for sample locations in relatively flat (ungraded) locations:

- 2. Existing surface (0 foot bgs), post-grading surface (post-redevelopment as shown on Figure 2), and post-grade 10 feet bgs for sample locations with substantial grading (that is, cut depths greater than 2 feet¹¹) and the uppermost sampled soil is expected to be used as surface fill;
- 3. Existing surface (0 foot bgs) and 10 feet bgs for sample locations with minimal grading (that is, cut depths less than 2 feet) and the uppermost sampled soil is expected to be used as surface fill (at any Eastside location); and
- 4. Existing surface (0 foot bgs) and 10 feet bgs for sampling locations in an area expected to be covered by fill material.

Additionally, at four sampling locations (Figure 9), soil physical parameter data were collected at 10 feet and every subsequent 10-foot interval until groundwater was reached.

The analytical sample results were then divided into surface (0- to 2-foot depth), subsurface (2- to 10-foot depth), and deep (>10-foot depth) layers, according to the following rules:

- **Rule 1: IF** the sample was collected in a relatively flat (ungraded) part of the Site (i.e., an area not targeted for substantial grading), **THEN** the depth of the collected soil sample is used to designate its soil layer grouping.
- Rule 2: IF the sample was collected in a part of the Site targeted for substantial grading, AND the sampled soil is located in an area expected to be covered by fill material (e.g., exposed excavated surfaces of ponds), THEN the current surface soil sample is classified as a surface (0- to 2-foot depth) sample, and the soil layer grouping of the remaining deeper sampled soil is determined based on the difference between its elevation and the final (post-graded) surface elevation in that part of the Site.
- Rule 3: IF the sample is collected in a part of the Site targeted for substantial grading, AND the cut depth is expected to be greater than 2 feet, AND the sampled soil is expected to be used as surface fill (e.g., soil within a berm), THEN the current surface soil sample is classified as a fill material sample, a final (post-graded) surface sample is classified as a surface (0- to 2-foot depth) sample, and the soil layer grouping of the remaining deeper

¹¹ Because sample collection was over a 2- to 3-foot depth interval, locations with an anticipated cut depth less than 3 feet were only sampled at the surface and one post-grade subsurface depth. The sample depth designation (e.g., 10 feet bgs) is based on the center depth of the sample collection interval.

_

sampled soil is determined based on the difference between its elevation and the final (post-development, graded) surface elevation in that part of the Site.

• Rule 4: IF the sample is collected in a part of the Site targeted for substantial grading, AND the cut depth is expected to be less than 2 feet, AND the sampled soil is expected to be used as surface fill (e.g., soil within a berm), THEN the current surface soil sample is classified as both a fill material sample and as a surface (0- to 2-foot depth) sample, and the soil layer grouping of the remaining deeper sampled soil is determined based on the difference between its elevation and the final (post-graded) surface elevation in that part of the Site.

A schematic example of these rules is shown on Figure 10. The Redevelopment Grading Plan for the Site is shown on Figure 2.¹² The sample-specific collection depths are presented in Table 3-1 (Tables section).

As noted above, soil samples were generally collected over a 2- to 3-foot depth interval. This was because of volume of soil required for completion of all analyses. The 10 feet bgs (and deeper) samples were collected in 2- to 3-foot intervals centered on 10 feet (or centered on the deeper sampling depth as indicated in Table 3-1). Confirmation samples, which usually have a shortened analyte list, were collected over a smaller sampling interval. Contamination by the historical manufacturing processes upgradient is usually found predominantly in surface soils. The objective of remedial actions at the Site was to remove surface soils that were impacted by surface releases of off-site chemicals. Therefore, higher concentrations are expected—and have been generally observed—in surface samples. However, to adequately characterize the vertical extent of possible contamination, one or more deeper samples were also collected at each sampling location, as described above.

As discussed in Section 6.1.1, given the potential for change to the prospective grading plan, samples were classified into four different exposure depths. These different soil exposure depth classifications are considered to represent all possible exposure potential for all receptors, and thus a reasonable worst case scenario has been assessed. The four different exposure depth classifications evaluated are the following:

¹² Note that the grading plan is reflected in an Environmental Covenant for the Site as a condition to receiving an NFAD from the NDEP.

- All data: includes surface, subsurface and fill sample depths/locations, representative of
 potential exposures to all soil depths to a maximum post-grading depth of 10 feet bgs
 (representative of Site exposures if fill material remains on Site);
- Data classified as fill material only: that is, sample locations with substantial grading (cut depths greater than 2 feet) and the uppermost sampled soil is expected to be used as surface fill, including off Site;
- Data classified as fill material and/or surface soil: includes surface sample locations where no
 grading will occur, or sample locations where fill material will be placed, with a subsurface
 sample (those samples collected less than 10 feet bgs) collected at the post-grading surface;
 and
- All data excluding data classified as fill material: representative of exposure to all post-grading soil to a maximum post-grading depth of 10 feet bgs.

These different soil exposure classifications are considered to represent all possible exposure potentials for all receptors, including use of soil as fill material elsewhere in the Eastside property, based on the future grade and use of Site soils. See Section 6.1.1 regarding how these different exposure depths are considered in the HHRA.

Initial sampling for the Site was conducted in November and December 2008. In addition to this initial sampling event for the Site, supplemental/confirmation samples were collected at various locations from September 2009 through May 2014. These supplemental/ confirmation samples are identified in Table 3-1.

All soil samples were tagged in the database with numeric designations of their corresponding assigned soil layer grouping based on the rules presented above. The number of soil samples collected varies for different analytes and analytical suites. For example, for arsenic, initially 308 soil samples (including field duplicates) were collected from 135 soil boring locations. This included 86 random and 49 biased sample locations. At these 135 locations, BRC initially collected 159 surface samples (including field duplicates at 27 locations) and 149 subsurface soil samples (13 subsurface sampling intervals at multiple soil boring locations). As presented in Table 3-1 (Tables section), these 308 samples represent 58 fill material (including field

duplicates), 159 surface (including field duplicates), and 136 subsurface soil samples. ^{13,14} An additional 263 supplemental samples (including 24 field duplicates) and 47 confirmation samples (including 4 field duplicates) were subsequently collected (Section 3.3), bringing the total number of arsenic samples for the Site to 618 (308 initial samples and 310 supplemental and confirmation samples). Of the 618 arsenic samples, 226 were in remediated/filled areas and removed from the risk assessment dataset; thus, there are 392 arsenic samples included in the HHRA dataset. ¹⁵ All sampling results, from which the total number of samples can be found for each analyte, are presented electronically on the report CD in Appendix B, and in Tables B-1 through B-12.

3.2 CHEMICALS SELECTED FOR ANALYSIS

The analyte list for soil samples collected during the initial SAP sampling comprised the BRC project SRC list, and was consistent with the analytical program presented in Section 3 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010)¹⁶ and Table 3-2 (Tables section), with the following exceptions for this Site:

- Asbestos and dioxins/furans were only analyzed for in surface soil samples.¹⁷
- USEPA Method 8141A for organophosphorus pesticides was not conducted. There have been only 47 detections of these compounds in over 10,000 soil sample records (<0.5 percent) from throughout the Eastside property, and no detections in any soil sample records associated with prior sampling within the Site. The few detections are well below the NDEP BCLs.

¹⁷ Note that all samples collected at the Site were discrete samples, with the exception of asbestos samples, which were composite samples collected as per the NDEP-approved Standard Operating Procedure [SOP]-12 as provided in the *Field Sampling and Standard Operating Procedures* [FSSOP; BRC, ERM and MWH 2009]).

¹³ Note that in some cases, a soil sample may be considered both a fill sample and a surface sample (as indicated in Table 3-1). Therefore, the sum of the number of samples indicated for each post-grade sample type does not necessarily equal the total number of samples collected.

¹⁴ As discussed with the NDEP, once a particular sub-area receives an NFAD from the NDEP, the cut material that is slated to be used as fill material elsewhere would not require additional testing. However, the chemical data for this fill material may be useful for evaluating sub-areas to receive fill (for example, if there is deeper contamination).

¹⁵ Note that in Table 3-4, which summarizes the post-remediation HHRA samples, the number of samples reported in that table for a given analysis does not always equal 392. This is due to 1) exclusion of data that were removed during remediation activities; 2) inclusion in the final dataset of confirmation samples collected to assess the extent of chemical impacts in certain areas following remediation; 3) certain analytes were not included in the subsurface samples, as noted in the following section; and 4) rejected data are excluded.

¹⁶ Specific analytes and analyte-specific reporting limits for each analysis are listed in Table 4 of the Quality Assurance Project Plan (QAPP).

- USEPA Method 8151A for chlorinated herbicides was not conducted. There have been no detections of these compounds in over 1,400 soil sample records from throughout the Eastside property. Detection limits are below the NDEP BCLs.
- HPLC Method for organic acids was not conducted. There have been only three detections of these compounds in 567 soil sample records (<0.5 percent) from throughout the Eastside property. Moreover, the NDEP has not established BCLs for these compounds.
- USEPA Method 8015B for non-halogenated organics (e.g., methanol and glycols) was not conducted. There have been only five detections of these compounds in 420 soil sample records (1 percent) from throughout the Eastside property. The few detections have been well below the NDEP BCLs.
- USEPA Method 8015 for total petroleum hydrocarbons (TPH) was not conducted. There have been only three detections of these compounds in over 299 soil sample records (1 percent) from throughout the Eastside property. The few detections have been below 100 mg/kg, which is the typical low-end aesthetic threshold used for these compounds. There are no indications of possible TPH source areas (e.g., abandoned vehicles, dumping of oils/hydraulic fluids) at the Site. While TPH was not analyzed for, its components were via other methods. In addition, TPH cannot be included in a risk assessment while its components can.
- Consistent with the current project analyte list, the following radionuclides were analyzed for: radium-226, radium-228, thorium-230, thorium-232, uranium-233/234, uranium-235/236, and uranium-238.

The soil analyte list consisted of 293 of the 418 compounds (including water-only parameters) on the project SRC list. The analytical and preparatory methods (Table 3-2, Tables section) used in accordance with the SAP adhered to the most recent version of the BRC Quality Assurance Project Plan (QAPP; BRC and ERM 2009a; see Section B4, Table 4 of that document). As noted in Section 3.6, the analyte list for surface flux samples was composed of the list specified in the NDEP-approved SOP-16, as provided in the FSSOP (BRC, ERM and MWH 2009). Surface flux samples were analyzed for VOCs by USEPA Method TO-15 full scan, plus selective ion mode (SIM) analyses for a subset of the analytes.

3.3 INTERMEDIATE SAMPLING AND CLEANUP

3.3.1 Initial Mass Removal Action

No initial mass removal activities were conducted at the Site. All initial SAP and supplemental data were reviewed and a determination made, in consultation with the NDEP, as to whether localized soil removals were warranted. As indicated on Figure 8, BRC conducted five rounds of remediation (excavation) at the Site in response to detections of elevated concentrations in the initial dataset of various chemicals; asbestos, aldehydes, dioxins/furans, metals, organochlorine pesticides, polynuclear aromatic hydrocarbons (PAHs), PCBs, radionuclides, and/or SVOCs.

3.3.2 Subsequent Removal Actions

Remediation areas for the removal events subsequent to the initial and supplemental sampling events were generally developed based on a Thiessen map overlaid across the Site. Thiessen maps are constructed from a series of polygons formed around each sampling location. Thiessen polygons are created so that every location within a polygon is closer to the sampling location in that polygon than any other sampling location. These polygons do not take into account the respective concentrations at each location. These polygons were used as the basis for the areal extent of remediation for each of the locations with elevated chemical levels. As depicted on Figure 8, 16 polygons associated with elevated chemical levels following the mass removal action were further remediated at the Site. For the areas adjacent to the Alpha, Western, and Northwestern Ditches, this approach was not used, and soils were removed based on visual evidence in the field during remediation activities along these ditches (Figure 8).

Following remediation, confirmation surface soil samples were collected at each of the original sample locations associated with the remediation area polygons. The naming convention for confirmation samples uses the same sample identification as the initial (pre-remediation) sample, with an updated numerical prefix. For example, confirmation samples associated with WHC1-BN10 are named WHC2-BN10 (after one round of confirmation sampling); however, this naming convention was not strictly adhered to and subsequent confirmation sampling events may not be in proper sequence. All sampling locations are shown on Figure 11. The analyte list for the second round sampling at a given location was composed of those chemicals that triggered the additional remediation at that sampling location.

Following the review of data collected from each round of remedial action, continued exceedances of particular chemicals triggered further rounds of remedial action. These additional remediation areas are shown on Figure 8.

3.3.3 Clean Fill from NFAD Sub-Areas Placement

After the 2012 remediation event was completed, the confirmation sample results indicated that arsenic was broadly present across the Site. To evaluate the extent of elevated arsenic in Site soils, BRC collected supplemental samples for arsenic analysis (i.e., samples with "WH-AS" nomenclature) on a 1-acre grid basis. These samples confirmed the pervasive nature of arsenic above previously determined Site background concentrations, and triggered a reevaluation of the remediation strategy. Ultimately, instead of continuing to excavate arsenic-containing soils—which tends to increase in concentration with depth, indicative of a non-soil (e.g., groundwater) contamination source for arsenic across the site—BRC elected to place a 10-foot layer of "clean fill from NFAD sub-areas" over that portion of the Site with elevated arsenic levels. The 10-foot layer of "clean fill from NFAD sub-areas" was placed following leveling of the existing grade (including berms), and restricts access to Site soils beneath 10 feet and is an effective institutional control. Therefore, samples collected from below this "clean fill from NFAD sub-areas" pad are not included in the HHRA for the Site.

The "clean fill from NFAD sub-areas" was obtained from the shallow soils at Parcel 4A, Parcel 4B, and Mohawk sub-areas, all of which have NDEP-approved NFADs for residential land use for the requisite depth intervals. As noted in the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), "Imported soil data will not be included in risk assessment calculations. However, the chemical data for fill material from the Site may be useful for evaluating sub-areas to receive this fill (that is, imported fill that may be used at the Site will have been included in risk assessments for sub-areas where the fill was obtained)." That is, because the "clean fill from NFAD sub-areas" was already included in the HHRAs for the sub-areas from which it was obtained, the soil is acceptable for use as fill material in other sub-areas, and does not need to be included in the HHRA for the sub-area in which it is placed. The NFAD's for the Parcel 4A, Parcel 4B, and Mohawk sub-areas are to unrestricted, residential, land use requirements.

3.4 FINAL CONFIRMATION DATASET

Post-scrape analyses associated with follow-up rounds of remediation focused on the constituents triggering that additional remediation and, therefore, did not include the full suite

analyses of the original analytical program. Analytical results from the original SAP dataset were retained for all constituents except those that were re-analyzed after additional scraping. The final confirmation dataset included the following sampling results:

- SAP sampling data, retaining the results that 1) were not superseded by subsequent sampling, and 2) were not associated with locations subsequently covered with the 10-foot "clean fill from NFAD sub-areas" pad;
- Data generated after intermediate sampling and excavation (retaining the results that 1) were not superseded by subsequent sampling, and 2) were not associated with locations subsequently covered with the 10-foot "clean fill from NFAD sub-areas" pad); and
- Additional samples collected for confirmation after completion of remediation activities on areas outside the 10-foot "clean fill from NFAD sub-areas" pad.

The soil dataset was subjected to a series of statistical analyses to determine representative exposure concentrations for the sub-area, as described in Sections 4 and 5 of the NDEP-approved *Statistical Methodology Report* (NewFields 2006). Consistent with the project *Statistical Methodology Report*, kriging or geostatistical analysis was not performed on the data because each measurement was assumed to be equally representative for that chemical at any point in each sub-area of the Eastside property. Hence, calculation of the 95 percent upper confidence limit (UCL) by exposure area directly from the data is considered reasonable.

As discussed in Section 4, all data have been validated. Results of all confirmation sampling and analysis are presented in Appendix B, and electronically on the report CD in Appendix B, as is the dataset used in the HHRA for the Site. All confirmation sampling locations for the Site are shown on Figure 11. Table 3-3 (Tables section) provides a matrix of which analytical suite was analyzed for in each of the samples collected from the Site. Geotechnical and Environmental Services (GES) conducted all fieldwork at the Site. The GES field reports, including boring logs, for each investigation are provided electronically in Appendix C (included on the report CD in Appendix B).

3.5 FINAL CONFIRMATION DATA SUMMARY

Using the compound-specific information presented in Table 2 of the QAPP (BRC and ERM 2009a), the comparison levels for each chemical included in the investigation were compiled for comparison to Site data. Specific soil comparison levels used for this effort were as follows:

- NDEP BCLs for residential soil (NDEP 2013);
- NDEP BCLs for protection of groundwater (LBCL), assuming dilution attenuation factors (DAF) of 1 and 20 (NDEP 2013); and
- The maximum background concentration (for metals and radionuclides only), derived from the shallow Qal McCullough background soil dataset presented in Section 5.¹⁸

A DAF of 1 is used when little or no dilution or attenuation of soil leachate concentrations is expected, and a DAF of 20 may be used when significant attenuation of the leachate is expected due to Site-specific conditions. For the Site, the LBCLs based on a DAF of 1 were used for discussion purposes. Data for the Site, including the number of instances in which chemical concentrations exceed each of the comparison levels, are listed in Table 3-4 (Tables section), and summarized below, for chemicals that had exceedances of their respective BCLs/LBCLs. It is important to note that these comparisons are used to provide for an initial screening evaluation, assist in the evaluation of data usability, and determine the extent of contamination. They are not used for decision-making purposes or as an indication of the risks associated with the Site.

Aluminum

Aluminum was detected in all 243 of the soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). All of the detections were lower than the 77,200 mg/kg BCL, but were higher than the 75 mg/kg LBCL_{DAF1}. None of these detections exceeded the maximum background concentration of 15,300 mg/kg.

Antimony

Antimony was detected in 2 of the 243 soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of the detections were above the 31.3 mg/kg BCL, but both detections exceeded the 0.3 mg/kg LBCL_{DAF1}. These two detections (0.87 mg/kg at subsurface sample WHC2-P11C from 10 feet bgs and 1.2 J- mg/kg at surface sample WHC3-D11C) also exceeded the maximum soil background concentration of 0.5 mg/kg.

¹⁹ Pre-scrape data for the target constituents are not included in Table 3-4. That is, these have been replaced by post-scrape data; however, pre-scrape data for the non-target constituents are included in Table 3-4. Because of this, the total number of analyses does not always coincide with the total number of analyses reported in the tables in Appendix B, which include all data, regardless of status.

¹⁸ This value, for the Qal McCullough/Mixed background dataset, is used for comparison only; as discussed in Section 5.1, background comparisons were performed for the Site dataset using statistical tests.

The standard analytical reporting limits were generally lower than the LBCL_{DAF1} for the non-detect samples, such that additional exceedances would have been reported if present.

Arsenic

Arsenic was detected in all but two (~99.5 percent) of the 392 soil samples in which it was analyzed for (281 surface and 111 subsurface samples; Table B-4). All of the detections were higher than the 0.39 mg/kg BCL and the 1 mg/kg LBCL_{DAF1}. Of these, 14 of the detections exceeded the maximum soil background concentration of 13.1 mg/kg. These 14 arsenic exceedances higher than background are identified in Table 3-5.

TABLE 3-5: ARSENIC BCL/LBCL EXCEEDANCES GREATER THAN BACKGROUND

Sample ID	Depth (ft bgs)	Reported Value (mg/kg)
WH-AS_J0	0	13.2
WH-AS_N8	0	13.4
WHC3-P11C	0	13.4
WHC2-P07C	0	13.9 J+
WHC1-BI03	11	14
WHC1-BF01	12	14.1 J+
WHC1-BL07	10	14.2

	Depth	Reported Value
Sample ID	(ft bgs)	(mg/kg)
WHC2-BL07	0	14.3
WHC1-BP05	10	14.5
WHC1-BO01	14	14.6
WHC1-BP02	11	14.6
WHC1-BN06	10	15.1
WHC3-D11C	0	16.2
WHC2-D16C	0	17.6 J+

Barium

Barium was detected in all of the 243 soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 15,300 mg/kg BCL; all but nine of the barium detections exceeded the 82 mg/kg LBCL_{DAF1}. None of these LBCL exceedances were greater than the maximum soil background concentration of 836 mg/kg.

Boron

Boron was detected in 16 of the 243 soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 15,600 mg/kg BCL; however, 10 of the detections were higher than the 23.4 mg/kg LBCL_{DAF1}. These 10 soil samples, which were also higher than the maximum soil background concentration (11.6 mg/kg), are as follows:

• WHC1-BP09 at 0 foot bgs: 23.7 J mg/kg

• WHC1-BO02 at 0 foot bgs: 23.9 J+ mg/kg

• WHC1-P15 at 0 foot bgs: 29.2 J mg/kg

• WHC1-BF04 at 0 foot bgs: 29.6 J+mg/kg

• WHC7-D12 at 0 foot bgs: 32 J mg/kg

• WHC1-BG05 at 0 foot bgs: 36.5 J+ mg/kg

• WHC1-D15 at 0 foot bgs: 39.5 J mg/kg

• WHC1-BH06 at 0 foot bgs: 66.5 J mg/kg

• WHC1-P10 at 0 foot bgs: 109 J+ mg/kg

• WHC1-BH06 at 0 foot bgs: 197 J mg/kg

The standard analytical reporting limits were generally lower than the LBCL_{DAF1} for the non-detect samples, such that additional exceedances would have been reported if present.

Cadmium

Cadmium was detected in 164 (~68 percent) of the 243 soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). Of these, no detections were higher than the 77.7 mg/kg BCL; five exceeded the 0.4 mg/kg LBCL_{DAF1}. These five cadmium exceedances above LBCL_{DAF1}, which also exceed the maximum background concentration of 0.13 mg/kg, are as follows:

• WHC1-D20 at 0 foot bgs: 0.42 J+ mg/kg

• WCH1-D22 at 0 foot bgs: 0.46 J+ mg/kg

• WHC1-BL06 at 11 feet bgs: 0.46 J+ mg/kg

• WHC1-BN07 at 0 foot bgs: 0.54 J+ mg/kg

• WHC3-D11C at 0 foot bgs: 0.82 mg/kg

The analytical reporting limits were lower than the LBCL_{DAF1} for the non-detect samples, such that additional exceedances would have been reported if present.

Chromium (VI)

Chromium VI was detected in 91 (~39 percent) of the 233 soil samples in which it was analyzed (130 surface and 103 subsurface samples; Table B-4). None of these detections were higher than the 234 mg/kg BCL. However, one detection exceeded the 2.0 mg/kg LBCL_{DAF1}. This exceedance (3.9 mg/kg in the surface soil sample collected at WHC1-BL02) was also above the 1.6 mg/kg maximum background concentration. The analytical reporting limits were lower than the LBCL_{DAF1} for the non-detect samples, such that additional exceedances would have been reported if present.

Cobalt

Cobalt was detected in all 243 of the soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of these detections were higher than the 23.4 mg/kg BCL, and all 243 cobalt detections were higher than the 0.495 mg/kg LBCL_{DAF1}. All of the detections were lower than the 16.3 mg/kg maximum background concentration.

Iron

Iron was detected in all 243 of the soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 54,800 mg/kg BCL, but all detections were higher than the 7.56 mg/kg LBCL_{DAF1}. Of these, only one detection was higher than the 22,500 mg/kg maximum soil background detection, surface sample WHC2-BL07 (25,300 mg/kg).

Lithium

Lithium was detected in all 243 of the soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 156 mg/kg BCL, but 12 of the lithium detections were higher than the 21.9 mg/kg LBCL_{DAF1}. No detections were higher than the 124 mg/kg maximum soil background detection.

Magnesium

Magnesium was detected in all 243 of the soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 100,000 mg/kg BCL. All detections were higher than the 973 mg/kg LBCL_{DAF1}, of which two were higher than the 17,500 mg/kg maximum soil background detection (surface samples collected at WHC1-P14 and WHC1-BF06, 18,500 J+ mg/kg and 25,900 mg/kg, respectively).

Manganese

Manganese was detected in all 243 of the soil samples in which it was analyzed (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 1,820 mg/kg BCL; however, all of the detections were higher than the 1.3 mg/kg LBCL_{DAF1}. Of these, one detection, 1,710 mg/kg at surface sample WHC3-D11C, was higher than the 1,090 mg/kg maximum soil background concentration.

Mercury

Mercury was detected in 58 (~24 percent) of the 243 soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 23.5 mg/kg BCL, but two detections were higher than the 0.104 mg/kg LBCL_{DAF1}. These two samples, which also exceeded the 0.11 mg/kg maximum soil background concentration, were a surface sample collected at WHC3-D11C (0.118 J+ mg/kg) and a 10 feet bgs sample at WHC2-P11C (0.151 mg/kg). The analytical reporting limits were lower than the LBCL_{DAF1} for the non-detect samples, such that additional exceedances would have been reported if present.

Molybdenum

Molybdenum was detected in 195 (~80 percent) of the 243 soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 391 mg/kg BCL. One detection was higher than the 3.69 mg/kg LBCL_{DAF1}. This single exceedance, which also was above the 2 mg/kg maximum soil background concentration, occurred in a surface soil sample collected at WHC3-D11C (3.8 mg/kg). The analytical reporting limits were lower than the LBCL_{DAF1} for the non-detect samples, such that additional exceedances would have been reported if present.

Nickel

Nickel was detected in all 243 of the soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of these detections exceeded the 1,540 mg/kg BCL. All but two were higher than the 7 mg/kg LBCL_{DAF1}. Of these exceedances, only one was also above the 30 mg/kg maximum background concentration, a concentration of 37.2 J mg/kg in the surface sample collected at WHC1-D19.

Selenium

Selenium was detected in 10 (~4 percent) of the 243 soil samples in which it was analyzed (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 391 mg/kg BCL. Nine of the detections were higher than the 0.3 mg/kg LBCL_{DAF1}. These nine detections, which were also higher than the 0.6 mg/kg maximum soil background concentration, are as follows:

WHC1-BK02 at 0 foot bgs: 0.83 J mg/kg
 WHC

• WHC1-D10 at 10 feet bgs: 0.96 J mg/kg

• WHC1-BI04 at 10 feet bgs: 0.91 J mg/kg

• WHC1-P12 at 11 feet bgs: 0.94 J mg/kg

• WHC7-D12 at 0 foot bgs: 0.95 J mg/kg

• WHC2-BL07 at 0 foot bgs: 0.95 J mg/kg

• WHC1-BH05 at 0 foot bgs: 1.1 J mg/kg

• WHC3-D11C at 0 foot bgs: 1.2 J mg/kg

• WHC7-WA11 at 0 foot bgs: 1.4 J mg/kg

The analytical reporting limits were lower than background for the non-detect samples, such that additional exceedances would have been reported if present.

Thallium

Thallium was detected in five (~2 percent) of the 243 soil samples in which it was analyzed (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 5.16 mg/kg BCL, but five of the detections were higher than the 0.4 mg/kg LBCL_{DAF1}. However, none of these five LBCL_{DAF1} exceedances were higher than the 1.8 mg/kg maximum soil background concentration. The analytical reporting limits were lower than background for the non-detect samples, such that additional exceedances would have been reported if present.

Other Inorganics

As seen in Table 3-4 (Tables section) and Tables B-3 and B-4 in Appendix B, several inorganic constituents in addition to those listed above were routinely detected in soil samples. None of these additional inorganic constituents were detected at concentrations in excess of either the BCL or the LBCL_{DAF1}, with the exception of the following:

- Chlorate detections exceeded the 1.13 mg/kg LBCL_{DAF1} in 25 samples;
- Nitrate detections exceeded the 7.0 mg/kg LBCL_{DAF1} in 102 samples; and
- Perchlorate detections exceeded the 0.0185 mg/kg LBCL_{DAF1} in 217 samples (for all but 10 of the detections).

The analytical reporting limits for these additional inorganic constituents were lower than their respective BCL and LBCL_{DAF1}.

Dioxins and Furans

For dioxins/furans, as discussed in Section 1.1, the USEPA TEQ procedure, developed to describe the cumulative toxicity of these compounds, is used. Dioxins and furans were analyzed for in 189 surface soil samples²⁰ (Table B-2). All of the individual dioxins and furans congeners analyzed were reported as detections in at least one sample. None of the samples had a calculated TCDD TEQ concentration in excess of the 50 ppt NDEP BCL. LBCL_{DAF1} values have not been established for dioxin/furans, thus the potential for impacts to groundwater quality due to their presence could not be assessed by comparisons to the LBCL_{DAF1}.

Organochlorine Pesticides

Organochlorine pesticides were analyzed for in 251 soil samples²¹ (142 surface and 109 subsurface samples; Table B-5). Most of the analytes were detected in at least one sample. The organochlorine pesticides beta-BHC, 4,4-DDT, 2,4-DDE and 4,4-DDE were detected the most frequently, in approximately 42 to 59 percent of the samples. No organochlorine pesticide was detected above its established BCL. Detections of alpha-BHC, beta-BHC, chlordane, dieldrin, and gamma-BHC (Lindane) had at least one detection above their respective LBCL_{DAF1} levels as discussed below.

alpha-BHC

Alpha-BHC was detected in 12 (~5 percent) of the 251 samples for which it was analyzed (142 surface and 109 subsurface samples; Table B-5). None of the detections were above the 21.1 mg/kg BCL, but one detection exceeded the 0.0291 mg/kg LBCL_{DAF1}. The one exceedance was in the surface sample collected at WHC6-P11 (0.25 J+ mg/kg).

beta-BHC

Beta-BHC was detected in 147 (~59 percent) of the 251 samples for which it was analyzed (142 surface and 109 subsurface samples; Table B-5). While none of the detections were above the 4.22 mg/kg BCL, 71 detections were above the 0.00596 mg/kg LBCL_{DAF1}, as listed in Table 3-6.

As noted in Footnote 15, the number of records in the Site dataset for a given analyte may differ from those for other analytes.

_

²⁰ As noted in Footnote 15, the number of records in the Site dataset for a given analyte may differ from those for other analytes.

TABLE 3-6: BETA-BHC DETECTIONS GREATER THAN LBCLDAF1

		Reported
	Depth	Value
Sample ID	(ft bgs)	(mg/kg)
WHC1-D26	0	0.006 J+
WHC1-BF04	0	0.0061
WHC1-D10	10	0.0063
WHC1-BI04	0	0.0066
WHC1-BM09	12	0.0066 J+
WHC1-P17	0	0.0068
WHC1-BO04	0	0.0069
WHC1-BM07	0	0.0069 J+
WHC1-D20	0	0.0071 J+
WHC1-D22	10	0.0072
WHC1-D01	10	0.0072 J+
WHC1-D06	0	0.0073
WHC1-D22	0	0.0073
WHC1-P09	0	0.0077 J
WHC1-BH03	0	0.0079
WHC1-BH05	0	0.008 J
WHC1-BL08	0	0.0083 J+
WHC1-BK05	0	0.0084
WHC1-BI01	0	0.0085
WHC1-D03	0	0.0086 J+
WHC1-BN05	10	0.0088
WHC1-D02	10	0.009 J+
WHC1-BG06	0	0.0091 J+
WHC1-P01	0	0.0092
WHC1-D10	0	0.0096 J+
WHC1-BK04	0	0.0097
WHC1-D23	0	0.0099
WHC1-D03	0	0.0099 J+
WHC1-BL03	10	0.01
WHC1-D09	0	0.01
WHC1-BM06	0	0.01 J
WHC1-D19	0	0.01 J
WHC1-BI03	0	0.011
WHC1-BN07	3	0.011
WHC1-D21	10	0.011
WHC1-BH05	0	0.011 J

Sample ID WHC1-BJ03 WHC1-D28	Depth (ft bgs)	Reported Value (mg/kg)
WHC1-BJ03		(mg/kg)
	Λ	(****8/**8/
WHC1-D28	0	0.012
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	0.012 J+
WHC1-BG01	0	0.013
WHC1-BJ03	0	0.013
WHC1-BG02	0	0.014 J+
WHC1-D28	10	0.014 J+
WHC1-D27	0	0.014 J
WHC1-BH02	0	0.015
WHC1-BH04	0	0.015
WHC1-BP05	0	0.015
WHC1-BG02	0	0.016
WHC1-BN07	0	0.016
WHC1-D18	10	0.016
WHC1-BI05	0	0.017
WHC1-D07	10	0.017
WHC1-P14	0	0.017
WHC1-BP06	0	0.019
WHC1-BG03	0	0.02
WHC1-D21	0	0.02 J+
WHC1-D18	0	0.021 J+
WHC1-P12	11	0.021 J+
WHC1-D27	10	0.022 J+
WHC1-D12	0	0.023 J+
WHC1-D16	0	0.023 J+
WHC2-D01	0	0.023 J+
WHC1-D02	0	0.024 J+
WHC1-D19	0	0.031 J
WHC1-BJ05	0	0.031 J+
WHC1-D04	10	0.036
WHC1-P12	0	0.036 J+
WHC1-D27	0	0.045
WHC2-D04C	0	0.064
WHC6-P11	0	0.089
WHC1-D13	0	0.1
WHC1-D17	0	0.26 J

<u>Chlordane</u>

Chlordane was detected in one (0.4 percent) of the 251 samples in which it was analyzed (142 surface and 109 subsurface samples; Table B-5). The one detection, at surface sample WHC1-BG04 (0.77 J mg/kg) was lower than the 1.62 mg/kg BCL, but higher than the 0.5 mg/kg LBCL_{DAF1}.

Dieldrin

Dieldrin was detected in three (1.2 percent) of the 251 samples in which it was analyzed (142 surface and 109 subsurface samples; Table B-5), as follows:

WHC1-BJ02 at 0 foot bgs: 0.0019 J mg/kg

WHC1-P12 at 0 foot bgs: 0.0021 J mg/kg

• WHC1-BG01 at 0 foot bgs: 0.0022 mg/kg

None of the three detections exceeded the 0.0304 mg/kg BCL; however, all three detections exceeded the 0.0002 mg/kg LBCL_{DAF1}. The standard analytical reporting limits for organochlorine pesticides were generally lower than the comparison levels for all but dieldrin.

gamma-BHC (Lindane)

Gamma-BHC (Lindane) was detected in two (0.8 percent) of the 251 samples in which it was analyzed (142 surface and 109 subsurface samples; Table B-5). Neither of the two detections exceeded the 0.703 mg/kg BCL. However, both detections exceeded the 0.0005 mg/kg LBCL_{DAF1}. The detections were associated with surface samples WHC6-P11 (0.007 mg/kg) and WHC1-P12 (0.014 J+ mg/kg).

Polynuclear Aromatic Hydrocarbons

Analysis for PAHs was performed on 252 soil samples (145 surface, 107 subsurface; Table B-6). With the exception of dibenzo(a,h)anthracene, each PAH constituent was detected in at least one soil sample. Pyrene, benzo(b)fluoranthene, and benzo(a)pyrene were detected the most frequently, in 29 percent, 25.4 percent, and 19 percent of the samples, respectively. The detections did not exceed either the BCL or the LBCL_{DAF1} for any PAH for which they are established. The standard PAH analytical reporting limits were lower than the BCL and the LBCL_{DAF1}, thus concentrations in excess of these comparison levels, if present, would have been reported.

Polychlorinated Biphenyls

PCBs (individual PCB congeners) were analyzed in 189 surface soil samples (Table B-7). All of the PCB congeners were detected in at least one sample. BCL values have not been established for individual congeners. PCB congeners are included in the calculation of the TCDD TEQ, and are evaluated in this manner, not on an individual congener basis. LBCL_{DAF1} values have not been established for individual PCB congeners.

Aldehydes

Aldehydes were analyzed in 250 soil samples²² (141 surface and 109 subsurface samples; Table B-9). Acetaldehyde was detected in three (1.2 percent) soil samples in which it was analyzed (Table B-9). None of these detections were higher than the 13.9 mg/kg BCL for this compound. Formaldehyde was detected in 192 (~79 percent) soil samples in which it was analyzed (Table B-9). No detections were higher than the 12,200 mg/kg BCL for formaldehyde. LBCL_{DAF1} values have not been established for these constituents. The analytical reporting limits for both acetaldehyde and formaldehyde were all lower than the BCL.

Semi-Volatile Organic Compounds

SVOCs were analyzed in 253 soil samples, (151 surface and 102 subsurface samples; Table B-9). As seen in Table 3-4 (Tables section) and Table B-9, 14 of the 68 SVOCs were detected in one or more samples. bis(p-Chlorophenyl)sulfone was detected most frequently, in 5.2 percent of the samples. Fluoranthene was also detected more frequently than the rest of the SVOCs, in 3.2 percent of the samples. The other 12 detected SVOCs were detected in 2 percent or fewer of the samples; nine of the SVOCs had two or fewer detections. There were no BCL exceedances for any of the SVOCs. Hexachlorobenzene was the only SVOC that exceeded its LCBL_{DAF1}. Of the five detections, two were in exceedance of the 0.1 mg/kg LCBL_{DAF1}. These exceedances occurred at surface samples WHC2-D17C and WHC6-P11, at 0.115 J and 0.129 J mg/kg, respectively.

For SVOC non-detects, the standard reporting limits were lower than the BCL, except for dichloromethyl ether and n-nitrosodi-n-propylamine, which consistently had analytical reporting

²² As noted in Footnote 15, the number of records in the Site dataset for a given analyte may differ from those for other analytes.

2

limits higher than the BCL. For the following SVOC non-detections, the analytical reporting limits were higher than the $LBCL_{DAF1}$:

- 2,2'-Dichlorobenzil
- 2,4-Dichlorophenol
- 2,4-Dinitrophenol
- 2,4-Dinitrotoluene
- 2,6-Dinitrotoluene
- 3,3'-Dichlorobenzidine
- 2,4,6-Trichlorophenol

- bis(2-Chloroethyl)ether
- Hexachloroethane
- Isophorone
- Nitrobenzene
- N-Nitrosodi-n-propylamine
- p-Chloroaniline
- Pentachlorophenol

Volatile Organic Compounds

VOCs were analyzed in 251 soil samples²³ (142 surface and 109 subsurface samples; Table B-10). As seen in Table 3-4 and Table B-10, the following 25 VOCs were detected in at least one sample:

- 1.2.3-Trichlorobenzene
- 1,2,4-Trichlorobenzene
- 1,2,4-Trimethylbenzene
- 1,2-Dichlorobenzene
- 1,3,5-Trichlorobenzene
- 1,3,5-Trimethylbenzene
- 1,3-Dichlorobenzene
- 1,4-Dichlorobenzene
- 2-Chlorotoluene
- 2-Hexanone
- 2-Nitropropane

- Dichloromethane (Methylene chloride)
- Ethanol
- Ethylbenzene
- m,p-Xylene
- Methyl ethyl ketone (2-Butanone)
- n-Butylbenzene
- n-Propylbenzene
- o-Xylene
- Styrene
- tert-Butylbenzene
- Toluene

²³ As noted in Footnote 15, the number of records in the Site dataset for a given analyte may differ from those for other analytes. VOC analysis was only performed for initial SAP samples (i.e., it was not included in the analyses for confirmation samples), thus the tally of VOC analyses is lower than for some of the other analytical suites, such as metals, which were often run for supplemental and confirmation samples.

4-Chlorotoluene

• Xylenes (total)

Acetone

1,2,4-Trimethylbenzene was detected most frequently in approximately 17 percent of the samples. Dichloromethane and acetone were detected more frequently than other VOCs in approximately 10 and 9 percent of the samples, respectively.

2-Nitropropane was the only VOC detected above its BCL. One sample exceeded the 0.0109 mg/kg BCL; surface sample WHC1-BI03 had a concentration of 0.012 mg/kg. With the exception of dichloromethane, the VOC detections were also lower than the LBCL_{DAF1}. Dichloromethane was detected in the 26 soil samples listed in Table 3-7 at concentrations in excess of the 0.001 mg/kg LBCL_{DAF1}.

TABLE 3-7: DICHLOROMETHANE DETECTIONS GREATER THAN LBCL_{DAF1}

	Depth	Reported Value
Sample ID	(ft bgs)	(mg/kg)
WHC1-P03	13	0.0012 J
WHC1-D26	0	0.0018 J
WHC1-BN03	10	0.0019 J
WHC1-BP06	10	0.0022 J
WHC1-P11	0	0.0023 J
WHC1-D28	0	0.0027 J
WHC1-D27	0	0.0027 J
WHC1-D27	0	0.003 J
WHC1-BP06	0	0.003 J
WHC1-D20	10	0.0031 J
WHC1-BK05	0	0.0032 J
WHC1-D29	0	0.0035 J
WHC1-BK05	11	0.0037 J

		Reported
	Depth	Value
Sample ID	(ft bgs)	(mg/kg)
WHC1-D20	0	0.0038 J
WHC1-D27	10	0.0042 J
WHC1-P01	12	0.0043 J
WHC1-BO03	12	0.0043 J
WHC1-D29	10	0.0045 J
WHC1-D26	10	0.0045 J
WHC1-BP04	12	0.0047 J
WHC1-BK03	12	0.0053
WHC1-P03	3	0.0057
WHC1-P03	3	0.0087
WHC1-P05	10	0.011
WHC1-BK02	11	0.011
WHC1-P16	0	0.017 J

The analytical reporting limits for VOCs were generally lower than the screening levels, with the exception of those for dichloromethane, which were often higher than the LBCL_{DAF1}.

Radionuclides

Radionuclides were detected in all 243 of the soil samples in which they were analyzed (136 surface and 107 subsurface soil samples; Table B-8). Exceedances of comparison levels for radionuclides are shown in Table 3-4 for the eight radionuclides currently included in the project analyte list (radium-226, radium-228, thorium-230, thorium-232, uranium-233/234,

uranium-235/236, and uranium-238). Of those activities greater than comparison levels, most were lower than the maximum soil background activity, as shown in Table 3-4.

Radium-226 activities in 201 of the 243 samples were higher than the 0.0071 picoCurie per gram (pCi/g) BCL and the 0.016 pCi/g LBCL_{DAF1}. Of these, the following two detections were higher than the 2.36 pCi/g maximum soil background activity: the 10 feet bgs sample at WHC1-BM06 (2.43 pCi/g) and the 11 feet bgs sample at WHC1-BJ04 (2.56 J pCi/g).

Radium-228 activities in 171 of the 243 samples were higher than the 0.013 pCi/g BCL and the 0.016 pCi/g LBCL_{DAF1}. Of these, the following three samples were higher than the 2.94 pCi/g maximum soil background activity:

- WHC1-BM05 at 0 foot bgs (3.17 J pCi/g)
- WHC1-BJ02 at 0 foot bgs (3.7 J pCi/g)
- WHC1-D06 at 10 feet bgs (3.33 J pCi/g)

Thorium-228 activities in all 243 samples were higher than the 0.0078 pCi/g BCL and the 0.0023 pCi/g LBCL_{DAF1}. Of these, the 30 detections listed in Table 3-8 were higher than the 2.30 pCi/g maximum soil background activity.

TABLE 3-8: THORIUM-228 BCL/LBCL EXCEEDANCES GREATER THAN BACKGROUND

UKEATEK III		
	Depth	Reported Value
Sample ID	(ft bgs)	(pCi/g)
WHC1-D02	0	2.31
WHC1-BI02	0	2.33
WHC1-BO05	0	2.33
WHC1-D25	0	2.35
WHC1-P08	0	2.35
WHC1-BN04	7	2.37
WHC1-BH02	0	2.38
WHC1-P05	0	2.39
WHC1-D22	10	2.39
WHC1-BN05	0	2.42
WHC1-BJ03	0	2.44
WHC1-BH01	11	2.45
WHC1-BJ03	0	2.47
WHC1-P17	12	2.49
WHC1-BH01	0	2.52

		Reported
	Depth	Value
Sample ID	(ft bgs)	(pCi/g)
WHC1-D01	10	2.53
WHC1-P03	13	2.58
WHC1-P12	0	2.6
WHC1-D03	10	2.64
WHC1-D24	0	2.69
WHC1-BJ04	0	2.7
WHC1-D25	10	2.7
WHC1-P03	3	2.72
WHC1-BK04	10	2.77
WHC1-P17	12	2.78
WHC1-D21	0	2.88
WHC1-BL04	0	2.98
WHC1-BN05	0	3.02
WHC2-BL07	0	3.02
WHC1-D22	0	3.19

Thorium-230 was detected in 226 of the 243 samples for which it was analyzed. Detections in two samples were above the 3.2 pCi/g BCL; however, all of the activities were above the 0.00084 pCi/g LBCL_{DAF1}. Of these, the following two detections were above the 3.01 pCi/g soil background level: surface sample WHC1-P09 (3.28 J pCi/g) and the 10 feet bgs sample WHC1-D08 (3.43 pCi/g).

Thorium-232 was detected in all 243 of the samples for which it was analyzed. None of the reported thorium-232 activities were above the 2.8 pCi/g BCL. All detections were higher than the 0.0029 pCi/g LBCL_{DAF1}. The five detections higher than the 2.23 pCi/g maximum soil background activity are as follows:

- WHC1-BH01 at 0 foot bgs (2.24 J- pCi/g)
- WHC1-BK04 at 0 foot bgs (2.54 pCi/g)
- WHC1-BN04 at 7 feet bgs (2.27 pCi/g)
- WHC1-BN05 at 0 foot bgs (2.6 J pCi/g)
- WHC1-D25 at 0 foot bgs (2.38 J pCi/g)

Uranium-235/236 was detected much less frequently than the other radionuclides; it was detected in 37 (~15 percent) of the 243 samples for which it was analyzed. All but four of the detections were higher than the 0.11 pCi/g BCL; an LBCL_{DAF1} has not been established for this constituent. Of the detections above the BCL, the 17 detections listed in Table 3-9 were also above the 0.21 pCi/g maximum soil background activity.

TABLE 3-9: URANIUM-235/236 BCL EXCEEDANCES GREATER THAN BACKGROUND

		Reported
	Depth	Value
Sample ID	(ft bgs)	(pCi/g)
WHC1-BJ02	12	0.218
WHC1-P02	10	0.236
WHC1-BF02	0	0.241
WHC1-BI02	3	0.261
WHC1-BO02	0	0.278
WHC1-D06	10	0.285
WHC1-BK03	0	0.293
WHC1-BO06	0	0.312
WHC1-D19	0	0.321

		Reported
	Depth	Value
Sample ID	(ft bgs)	(pCi/g)
WHC1-BF03	10	0.337
WHC1-P18	12	0.337
WHC1-P11	0	0.347
WHC1-BH02	0	0.386
WHC1-BJ01	13	0.393
WHC1-BP09	10	0.409
WHC1-BP03	0	0.428
WHC1-P11	10	0.846

Uranium-238 was detected in 241 of the 243 samples for which it was analyzed. In all but one of the samples, reported activities were higher than the 0.46 pCi/g BCL; an LBCL_{DAF1} has not been established for this constituent. Of the detections in exceedance of the BCL, the following three were also higher than the 2.79 pCi/g maximum soil background activity:

- WHC2-BM08C at 0 foot bgs (2.8 pCi/g)
- WHC2-BM08C at 0 foot bgs (3.19 pCi/g)
- WHC1-BM06 at 10 feet bgs (3.18 pCi/g)

As presented in NDEP guidance (NDEP 2009a), as part of the process used to evaluate radionuclide data for the BMI Common Areas, BRC assessed whether radionuclides are in secular equilibrium. As discussed in Section 5.1, secular equilibrium is an indication of background conditions.

The data indicate that radionuclides are in secular equilibrium at the Site. Specifically, the mean radioactivities for the thorium-232 decay chain (i.e., thorium-232, radium-228, and thorium-228) are comparable (1.4, 1.3, and 1.7 pCi/g, respectively). Similarly, the mean values for the uranium-238 decay chain (uranium-238, uranium-233/234, thorium-230, and radium-226) are also comparable, ranging from 1.0 to 1.4 pCi/g. All of the mean values are lower than their respective maximum soil background activity levels. A quantitative evaluation of secular equilibrium is presented in Section 5.1.

Summary of Soil Exceedances

As summarized above and in the associated data tables (Table 3-4 and Appendix B), some BCL and LBCL_{DAF1} exceedances are currently observed in Site soils. The following constituents were reported at concentrations higher than the residential BCL and the maximum soil background concentration (where applicable):

- 2-Nitropropane (1 sample)
- Arsenic (14 samples)
- Radium-226 (2 samples)
- Radium-228 (3 samples)

- Thorium-228 (30 samples)
- Thorium-230 (2 samples)
- Uranium-235/236 (17 samples)
- Uranium-238 (3 samples)

The following constituents were reported at concentrations higher than the LBCL_{DAF1} and the maximum soil background concentration (where applicable):

- Arsenic (14 samples)
- Antimony (2 samples)
- Boron (10 samples)
- Cadmium (5 samples)

- Dieldrin (3 samples)
- Thorium-228 (30 samples)
- Thorium-230 (2 samples)
- Thorium-232 (5 samples)

- Chromium (VI) (1 sample)
- Iron (1 sample)
- Magnesium (2 samples)
- Manganese (1 sample)
- Mercury (2 samples)
- Molybdenum (1 sample)
- Nickel (1 samples)
- Selenium (9 samples)
- Chlorate (25 samples)
- Nitrate (102 samples)

- Radium-226 (2 samples)
- Radium-228 (3 samples)
- Hexachlorobenzene (2 samples)
- Perchlorate (217 samples)
- Dichloromethane (26 samples)
- alpha-BHC (1 sample)
- beta-BHC (71 samples)
- gamma-BHC (2 samples)
- Chlordane (1 sample)

As seen above, BCL and LBCL_{DAF1} exceedances generally represent a small percentage of the samples in the final confirmation dataset. Therefore, there is a low likelihood of adverse impacts to human health and the environment due to residual chemical concentrations in Site soils. Consistent with the methodology in the BRC Closure Plan (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), an HHRA was conducted to further evaluate this possibility, as discussed in subsequent sections of this report.

3.6 EVALUATION OF POTENTIAL 'HOT SPOTS'

BRC has identified and evaluated several potential 'hot spots' at the Site. These include the following (along with rationale for why further remediation was not considered necessary and why these areas are not considered hot spots or evaluated separately in the HHRA):

• Elevated levels of several metals—notably lead, as well as antimony, barium, cadmium, chromium, copper, thallium, tin, and tungsten—have their highest concentrations within the Western and Alpha ditches, especially the central segments of these ditches and their confluence. The highest levels of 4,4-DDE (and other organochlorine pesticides) are also within these ditch segments. These ditches have undergone repeated soil removals such that levels for all constituents are below risk-based and/or background levels. For example, all concentrations for lead are below its target goal of 400 mg/kg. Of the other constituents, only thallium and 4,4-DDE have detectable concentrations greater than one-tenth their BCL levels. In addition, other constituents of concern, for example, arsenic, dioxins/furans, and

radionuclides do not appear to follow the same higher concentrations along these ditch segments as these other constituents. In addition, classification of a linear feature as a separate exposure area is not appropriate for many of the receptors of concern (i.e., residents).

Beyond these observations, due to repeated cleanups throughout the Site, there do not appear to be any other areas that might be considered potential hot spots. That is, there are not areas with multiple co-located chemicals with elevated levels, nor are there areas with clusters of adjacent sample locations with elevated levels. For example, although arsenic has numerous sample results with concentrations greater than background concentrations (see Section 5), these sample results are scattered throughout the Site and are not clustered in any particular area. Therefore, because of this, separate exposure areas were not evaluated in the HHRA; that is, the Site was evaluated as a single exposure area, consistent with the project *Statistical Methodology Report* (NewFields 2006), and as discussed further in Section 6.1.1.

3.7 SURFACE FLUX SAMPLING

Concurrent with the confirmation soil sampling, BRC implemented surface flux sampling across the Site. This sampling conformed to the most recent NDEP-approved version of SOP-16 (BRC, ERM, and MWH 2009). The sampling procedure for the effort included the USEPA surface emission isolation flux chamber (flux chamber) sampling to support an air pathway analysis for the Site.

It should be noted that while radon samples were collected, they are not included in this HHRA for the following reason: BRC previously submitted a technical memorandum to the NDEP (BRC 2010), in which the results of recent radon testing performed in groundwater and indoor air samples were presented. Based on the findings of this memorandum, the NDEP concluded that HHRAs for Eastside property sub-areas do not need to evaluate the pathway of radon migration from groundwater to indoor air for sub-areas with a separation distance of at least 15 feet between any current or future building structure base and the high water table (letter dated November 9, 2010, from Greg Lovato, NDEP, to Mark Paris, BRC [NDEP 2010]). Based on this conclusion and given the depth to groundwater at the Site and fill material placed or to be placed across the Site, the intrusion of radon into indoor air is not evaluated in the HHRA. Furthermore, as discussed in Section 5.1, other radionuclides are consistent with background levels, which indicate that radon should also be consistent with background, naturally occurring levels in soil.

The flux chamber sample collection rationale was based on the project goal of obtaining a representative dataset of air emissions per sub-area. Flux chamber samples were collected from 80 locations (Figure 11) with 44 random and 31 biased locations (and five field duplicates). This density of sample collection is considered adequate for Site characterization given the biased nature of the sample locations, the size of the sub-area, and the number of sample locations suggested by the USEPA (1986) in the flux chamber User's Guide for assessing zones of homogeneous sites.

The analyte list for surface flux samples is composed of the list provided in the most recent NDEP-approved version of SOP-16 (BRC, ERM, and MWH 2009). This analyte list is provided in Table 3-10, and consists of the USEPA Method TO-15 full scan, with SIM analyses for a subset of the analytes. The analytical results are summarized in Table B-11 (Appendix B), and the principal investigator Reports of Findings (which include descriptions of sampling procedures) are provided in Appendix D (included on the report CD in Appendix B).²⁴ A data summary for the surface flux sample results is provided in Table 3-11.

As seen in Tables 3-11 and B-11, the majority (44 of 67) of the organic constituents included in the TO-15 scan were detected in at least one surface flux sample. The most commonly detected constituents were as follows:

- Chloroform was detected in ~94 percent of the samples;
- Carbon tetrachloride was detected in ~89 percent of the samples;
- Toluene was detected in 75 percent of samples;
- 1,2-Dichloroethane was detected in ~66 percent of the samples; and
- Acetone was detected in ~65 percent of the samples.

The highest reported concentrations were as follows:

- Ethanol (4.42 J micrograms per square meter per minute [μg/m²,min⁻¹] at WHC1-P04);
- Tetrachloroethene (4.1 μ g/m²,min⁻¹ at WHC1-D15);
- Acetone (1.91 J μ g/m²,min⁻¹ at WHC1-BP02); and
- Toluene $(1.79 \,\mu \text{g/m}^2, \text{min}^{-1} \text{ at WHC1-D15}).$

²⁴ Note that these reports were prepared prior to data validation; therefore, data qualifiers may differ from those in the remainder of this report.

_

As discussed in Section 4, all data have been validated. The HHRA surface flux dataset for the Site is included on the report CD in Appendix B. Surface flux sample locations are shown on Figure 11.

3.8 LEACHATE DATA

As specified in the SAP, samples were collected from three locations (Figure 11) within the Site during the initial sampling event for synthetic precipitation leaching procedure (SPLP) analysis. SPLP samples were analyzed for aldehydes, general chemistry, perchlorate, metals, organochlorine pesticides, PAHs, radionuclides, and SVOCs. As noted in the SAP, these constituents are considered those of greatest concern for potential migration and impacts to groundwater. Data associated with these SPLP samples are summarized in Appendix B, Table B-12. For reference, Table B-12 includes constituent-specific comparison levels (viz., NDEP's residential water BCLs and USEPA Maximum Contaminant Levels [MCLs]). Detections relative to these screening levels are summarized below.

- Perchlorate was detected in all three of the samples analyzed. None of these detections were higher than the BCL or MCL.
- Approximately two-thirds (21 of 32) of the metals analyzed were detected in at least one leachate sample. Of these, arsenic was detected at all three locations at concentrations above the BCL and the MCL. In addition, at WHC1-BN06, aluminum, iron, and manganese were detected at concentrations above their respective BCLs.
- Radionuclides were detected in the samples collected from WHC1-BM09 and WHC1-BO10.
 Of these, BCLs have only been established for thorium-230 and -232. The thorium-230 detection at WHC1-BM09 and the thorium-232 detection at WHC1- BO10 exceeded the BCLs.
- Aldehydes, PAHs, SVOCs, and organochlorine pesticides were not detected in any of the three SPLP samples in which they were analyzed.

The potential leaching impacts to groundwater will be addressed in the Eastside groundwater remedial alternatives study.

 $^{^{25}}$ SPLP analysis was prepped per USEPA Method 1312 - West solution pH 4.95 with 60/40 weight sulfuric/nitric acid.

2

4.0 DATA EVALUATION

This section describes the procedures used to evaluate the acceptability of data for use in the risk assessment. Overall quality of sample results is a function of proper sample management. Management of samples began at the time of collection and continued throughout the analytical process. SOPs were followed to ensure that samples were collected and managed properly and consistently and to optimize the likelihood that the resultant data are valid and representative.

The primary objective of the data review and usability evaluation was to identify appropriate data for use in the HHRA. The analytical data were reviewed for applicability and usability following procedures in USEPA's *Guidance for Data Usability in Risk Assessment (Part A)* (1992a) and *Risk Assessment Guidance for Superfund: Volume I* (1989) and the NDEP's *Supplemental Guidance for Assessing Data Usability for Environmental Investigations at the BMI Complex and Common Areas* (2008a). A quality assurance/quality control (QA/QC) review of the analytical results was conducted during the sampling events. According to the USEPA Data Usability Guidance, there are six principal evaluation criteria by which data are judged for usability in risk assessment. The six criteria are:

- Reports to risk assessor (availability of information associated with Site data);
- Documentation;
- Data sources;
- Analytical methods and detection limits;
- Data review; and
- Data quality indicators (DQIs), including precision, accuracy, representativeness, comparability, and completeness (PARCC).

A summary of these six criteria for determining data usability is provided below. In addition to the six principal evaluation criteria, the NDEP's Data Usability Guidance includes a step for data usability analysis, which is discussed after these six USEPA evaluation criteria. Data usability evaluation tables are provided electronically in Appendix E (included on the report CD in Appendix B).

4.1 CRITERION I – REPORTS TO RISK ASSESSOR (AVAILABILITY OF INFORMATION ASSOCIATED WITH SITE DATA)

The usability analysis of the Site characterization data requires the availability of sufficient data for review. The required information is available from documentation associated with the Site data and data collection efforts. Data have been validated as described in the following DVSRs, which are provided electronically in Appendix F:

- Data Validation Summary Report, Southern Ribs and Western Hook Sub-Area Soil Flux, Revised Data October 2008 (Dataset 53c) (BRC and ERM 2010b), approved by the NDEP on November 24, 2010;
- Data Validation Summary Report, Western Hook Development Sub-Area Soil Investigations, October-December 2008; February 2009; August-September 2009; November-December 2009; February 2010 (Dataset 54) (BRC and ERM 2010c), approved by the NDEP on June 25, 2010;
- Data Validation Summary Report, Western Hook-Open Space Sub-Area Soil Investigations September-October 2009; January 2010 (Dataset 62) (BRC and ERM 2010d), approved by the NDEP on June 25, 2010;
- Data Validation Summary Report, Eastside North Surface Flux Investigations (Remaining Sub-Areas), July through August 2010 (Dataset 71) (BRC and ERM 2011a), approved by the NDEP on July 25, 2011;
- Data Validation Summary Report, Eastside North Confirmation Soil Investigations, December 2008 through October 2010 Part II (Dataset 72b) (BRC and ERM 2011b), approved by the NDEP on May 9, 2011;
- Data Validation Summary Report, Western Hook/Eastside Main Supplemental Sampling Events December 2011 through January 2012 (Dataset 72e) (BRC and ERM 2012), approved by the NDEP on September 17, 2012;
- Data Validation Summary Report, Eastside North Confirmation/Supplemental Sampling Events (Dataset 72f) (BRC and ERM 2014a [pending approval by the NDEP]); and

• Data Validation Summary Report, Eastside Confirmation/Supplemental Sampling Events – March 2014 through August 2014 (Dataset 72g) (BRC and ERM 2014b [pending approval by the NDEP]).

The information sources and the availability of such information for the data usability process are as follows:

- A Site description provided in this report and the NDEP-approved SAP identifies the location and features of the Site, the characteristics of the vicinity, and contaminant transport mechanisms.
- A Site map with sampling locations is provided on Figure 11.
- Sampling design and procedures were provided in the NDEP-approved SAP.
- Analytical methods and sample quantitation limits (SQLs) are provided in the dataset file included on the report CD in Appendix B.
- A complete dataset is provided in the dataset file included on the report CD in Appendix B.
- A narrative of qualified data is provided with each analytical data package; the laboratory provided a narrative of QA/QC procedures and results. These narratives are included as part of the DVSRs.
- QC results are provided by the laboratory, including blanks, replicates, and spikes. The laboratory QC results are included as part of the DVSRs.
- Data flags used by the laboratory were defined adequately.
- Electronic files containing the raw data made available by the laboratory are included as part of the DVSRs.

4.2 CRITERION II – DOCUMENTATION REVIEW

The objective of the documentation review is to confirm that the analytical results provided are associated with a specific sampling location and collection procedure, using available documentation. For the purposes of this data usability analysis, the chain-of-custody forms prepared in the field were reviewed and compared to the analytical data results provided by the laboratory to ensure completeness of the dataset as discussed in the DVSRs. Based on the

documentation review, all samples analyzed by the laboratory were correlated to the correct geographic location at the Site, as shown on Figure 11. The samples were collected in accordance with the SAPs, and the SOPs developed for the BMI Common Areas as provided in the FSSOP (BRC, ERM, and MWH 2009). Field procedures included documentation of sample times, dates, and locations; other sample-specific information such as sample depth was also recorded. Information from field forms generated during sample collection activities was imported into the project database.

The analytical data were reported in a format that provides adequate information for evaluation, including appropriate QC measures and acceptance criteria. Each laboratory report describes the analytical method used, provides results on a sample-by-sample basis along with sample-specific SQLs, and provides the results of appropriate QC samples such as laboratory control spike samples, sample surrogates and internal standards, and matrix spike samples. All laboratory reports, except for asbestos, were prepared as provided by the documentation required by USEPA's Contract Laboratory Program (USEPA 2003a, 2004b,c) which includes chain-of-custody records; calibration data; QC results for blanks, duplicates, and spike samples from the field and laboratory; and all supporting raw data generated during sample analysis were also included. Reported analytical results were imported into the project database.

Measurement of asbestos was conducted consistent with the NDEP's *Technical Guidance for the Calculation of Asbestos-Related Risk in Soils* (2011a). The recommended method for providing asbestos data that are useful for risk assessment purposes was performed by EMSL Analytical, Inc., in Westmont, New Jersey. Although this laboratory is not currently certified in Nevada, it does have State of California and U.S. accreditation for asbestos analysis. Because many of the QC procedures associated with other analyses do not apply to asbestos analysis (e.g., laboratory blanks, duplicates and spikes), data validation of the asbestos laboratory reports involved a somewhat lesser level of effort than for other analyses (consistent with the NDEP's 2012 *Guidance on Data Validation for Asbestos Data in Soils* [2012a]). Asbestos data were validated in a separate DVSR prepared by Neptune and Company (2014). This DVSR is provided electronically in Appendix F.

4.3 CRITERION III – DATA SOURCES

The review of data sources is performed to determine whether the analytical techniques used in the Site characterization process (i.e., SAP sampling) are appropriate for risk assessment purposes. The data collection activities specified in the SAPs were developed to characterize a

broad spectrum of chemicals potentially present on the Site, including asbestos, aldehydes, general chemistry and ions, VOCs, SVOCs, metals, dioxins/furans, PAHs, organochlorine pesticides, radionuclides, and PCBs (SRCs and analyses performed under SAP implementation are listed in Table 3-2, and Table 3-10 for surface flux samples). Because of the soil removals that have occurred on the Site, data collected prior to SAP implementation had significant gaps and inconsistencies in analytical methodology, and as discussed in Section 2, those historical data are not evaluated further in the data usability process, or the HHRA. Only post-remediation data collected under the SAPs (and subsequent supplemental and confirmation sampling events) are being used in the HHRA, and these were subjected to the formal data usability evaluation described in this section. Figure 11 demonstrates that samples collected in accordance with the SAP are situated across the entire Site; analyses associated with these samples are summarized in Tables 3-2 (soil) and 3-10 (surface flux).

The State of Nevada is in the process of certifying the laboratories used to generate the analytical data. As such, standards of practice in these laboratories follow the quality program developed by the Nevada Revised Statutes and are within the guidelines of the analytical methodologies established by the USEPA. Based on the review of the available information, the data sources for chemical and physical parameter measurements are adequate for use in a risk assessment.

4.4 CRITERION IV – ANALYTICAL METHODS AND DETECTION LIMITS

In addition to the appropriateness of the analytical techniques evaluated as part of Criterion III, it is necessary to evaluate if the detection limits are low enough to allow adequate characterization of risks. At a minimum, this data usability criterion can be met through the determination that routine USEPA and U.S. Department of Energy (DOE) reference analytical methods were used in analyzing samples collected from the Site. The USEPA and DOE methods that were used in conducting the laboratory analysis of soil and surface flux samples are identified in the dataset file included on the report CD in Appendix B. Each of the identified methods is considered the most appropriate method for the respective constituent class and each was approved by the NDEP as part of the SAPs. As recommended by the NDEP's guidance on *Detection Limits and Data Reporting* (NDEP 2008b), the laboratory reported SQL was used in evaluating detection limits.

Laboratory practical quantitation limits (PQLs) were based on those outlined in the reference method, the SAPs, and the project QAPP. In accordance with respective laboratory SOPs, the

analytical processes included performing instrument calibration, laboratory method blanks, and other verification standards used to ensure QC during the analyses of collected samples.

The range of SQLs achieved in soil field samples was compared to the NDEP residential soil BCLs (NDEP 2013). As seen in the summary of the Site soil dataset provided in Table 3-4, of the standard analytes, only the constituents identified below had SQLs that exceeded their respective residential soil BCLs.

- The SQL for arsenic was higher than the BCL in all non-detects (2 of 392 samples). All exceedances of the BCL are due to results qualified due to blank contamination, and are below maximum background levels. Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for toxaphene was higher than the BCL in a single sample (1 of 251 samples). Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for 1,2-diphenylhydrazine was higher than the BCL in a single sample (1 of 253 samples). Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for 3,3-diphenylhydrazine was higher than the BCL in a single sample (1 of 253 samples). Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for bis(2-Chloroethyl) ether was higher than the BCL in a single sample (1 of 253 samples). Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for dichloromethyl ether was higher than the BCL in all 253 samples analyzed. This compound was not detected in any samples. The dichloromethyl ether SQL is greater than 100 times the BCL and a reduction in the SQL is not likely to be achieved by the laboratory. Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for hexachlorobenzene was higher than the BCL in a single sample (1 of 253 samples). Therefore, the analytical SQLs are considered adequate for risk assessment purposes.

- The SQL for nitrobenzene was higher than the BCL in a single sample (1 of 253 samples). Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for N-nitroso-di-n-propylamine in 129 of 253 soil samples exceeded the residential BCL. N-nitroso-di-n-propylamine was not detected in any soil sample. The SQL for most samples was at or below the BCL; therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for p-Chloroaniline was higher than the BCL in a single sample (1 of 253 samples). Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for pentachlorophenol was higher than the BCL in a single sample (1 of 253 samples). Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The radium-226, radium-228, and thorium-228 minimum detectable activity (MDA) in all sample analyses were higher than the BCL; the uranium-235/236 MDA in most sample analyses and the uranium-238 MDA in 11 sample analyses were higher than the BCL. However, all radionuclides were statistically similar to background.

SPLP SQLs were compared to residential water BCLs (see Appendix B, Table B-12).

- The following analytes have SPLP SQLs higher than their residential water BCL: formaldehyde; aldrin; benzo(a)anthracene; benzo(a)pyrene; benzo(b)fluoranthene; benzo(k)fluoranthene; dibenzo(a,h)anthracene; indeno(1,2,3-cd)pyrene; 1,2-diphenylhydrazine; 1,4-dioxane; 2,2'-dichlorobenzil; 2,4,6-trichlorophenol; 2,4-dinitrotoluene; 3,3-dichlorobenzidine; acetaldehyde; aniline; bis(2-chloroethyl) ether; bis(2-chloroisopropyl) ether; bis(2-ethylhexyl)phthalate; hexachlorobenzene; hexachlorobutadiene; hexachloroethane; naphthalene; nitrobenzene; N-nistrosodi-n-propylamine; and pentachlorophenol.
- Only formaldehyde; aldrin; benzo(a)anthracene; benzo(a)pyrene; benzo(b)fluoranthene; benzo(k)fluoranthene; indeno(1,2,3-cd)pyrene; acetaldehyde; bis(2-ethylhexyl)phthalate; and hexachlorobenzene were detected in soils, and with one exception, the soil concentrations were all below the LBCL_{DAF1}. Hexachlorobenzene had two detections above the LBCL_{DAF1}.
- Because the remaining non-detect SPLP constituents were also not detected in soils, they are not anticipated to be of concern with respect to potential impacts to groundwater.

As discussed in the 2008 Supplemental Shallow Soil Background Report (BRC and ERM 2009b), there are differences in SQLs among datasets that may affect data comparability for datasets comprised primarily of non-detect values. For these datasets, left-censored data can result in difficulties in differentiating whether datasets are actually different or merely an artifact of detection limits.

4.5 CRITERION V – DATA REVIEW

The data review portion of the data usability process focuses primarily on the quality of the analytical data received from the laboratory. Soil and surface flux sample data were subject to data validation. DVSRs were prepared as separate deliverables (Appendix F). The analytical data were validated according to the internal procedures using the principles of USEPA National Functional Guidelines (USEPA 1999, 2004d, 2005a, 2008) and were designed to ensure completeness and adequacy of the dataset. Additionally, the DVSRs were issued utilizing the NDEP's two *Supplemental Guidance on Data Validation* documents (NDEP 2009b,c). Any analytical errors and/or limitations in the data have been addressed and an explanation for data qualification provided in the respective data tables. The results of ERM's data review for these issues are presented in the DVSRs and are summarized below. Data qualifications are discussed in the subsections that follow.

4.5.1 Holding Time Exceedances / Sample Condition Qualifications

Holding time refers to the period of time between sample collection and the preparation and/or analysis of the sample. The accuracy of analytical results may depend upon analysis within specified holding times and sample temperature. In general, a longer holding time is assumed to result in a less accurate measurement due to the potential for loss or degradation of the analyte over time. Sample temperature is of greatest concern for VOCs that may volatilize from the sample at higher temperatures. As described in the DVSRs, sample results were reviewed for compliance with the method-prescribed preparation and analysis holding times.

USEPA guidance for validation allows professional judgment to be used in evaluating qualification due to holding time exceedances. Sample results that were generated after the required holding time, but less than two times after the holding time, were qualified as estimated (J- or UJ flagged). If the samples were prepared after two times the holding time was exceeded, non-detect results were qualified as rejected (R) and detections were qualified as estimated (J-). Qualifications to 981 (of which 19 were rejected (R)) samples were made on the basis of

exceeded holding times (see Table 2-2 of the DVSRs; Appendix F; included on the report CD in Appendix B), as follows:

• Hexavalent chromium results for 19 soil samples were rejected (R) due to holding time exceedances greater than two times the holding time. The samples rejected are listed in Table 4-1.

TABLE 4-1: HEXAVALENT CHROMIUM SAMPLES REJECTED DUE TO HOLDING TIME EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BM07-11	F8K210227012	WHC1-BN06-0	F8K210227009
WHC1-BO08-0	F8K210227003	WHC1-BO09-0-FD	F8K200234002
WHC1-BO09-16	F8K200234004	WHC1-BO09-6	F8K200234003
WHC1-BO10-0	F8K200234007	WHC1-BO10-10	F8K200234008
WHC1-BP08-0	F8K200234005	WHC1-BP08-14	F8K200234013
WHC1-BP08-4	F8K200234006	WHC1-BP09-0	F8K200234011
WHC1-BP09-10	F8K200234012	WHC1-BP10-0	F8K200234009
WHC1-BP10-10	F8K200234010	WHC1-D21-0	F8L170249003
WHC1-D21-10	F8L170249004	WHC1-D22-10	F8L170249002
WHC1-D25-10	F8L170249006		

• Cyanide results for 12 soil samples were qualified as estimated (J-/UJ) due to holding time exceedances. The length of time between sample preparation and analysis for this batch was 15 days (1 day beyond the method-prescribed 14-day period, respectively). Results associated with holding time exceedances more than twice the holding time were detected and qualified as estimated. The samples qualified are listed in Table 4-2.

TABLE 4-2: TOTAL CYANIDE SAMPLES QUALIFIED DUE TO HOLDING TIME EXCEEDANCES

Del to holding that entellinged				
Sample ID	Lab ID	Sample ID	Lab ID	
WHC1-D13-0	F8L110242009	WHC1-D21-0 ^U	F8L170249003	
WHC1-D21-10 ^U	F8L170249004	WHC1-D22-0 ^U	F8L170249001	
WHC1-D22-10 ^U	F8L170249002	WHC1-D23-0	F8L170249010	
WHC1-D23-10	F8L170249011	WHC1-D24-0	F8L170249007	
WHC1-D24-0-FD	F8L170249008	WHC1-D24-10 ^U	F8L170249009	
WHC1-D25-0 ^U	F8L170249005	WHC1-D25-10 ^U	F8L170249006	

U = Was qualified J-, but the final qualifier was UJ due to blank contamination.

• Chromium (VI) results for 68 soil samples were qualified as estimated (J-/UJ) due to holding time exceedance. The length of time between sample preparation and analysis was 5, 7, 8, 9, 12, and 13 days (1, 3, 4, 5, 8, and 9 days beyond the method-prescribed 4-day period,

respectively). Results associated with holding time exceedances more than twice the holding time were detected and qualified as estimated. The samples qualified are listed in Table 4-3.

TABLE 4-3: CHROMIUM (VI) SAMPLES QUALIFIED DUE TO HOLDING TIME EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BF06-0	F8L110242012	WHC1-BH02-0	F8L050133001
WHC1-BH02-10	F8L050133002	WHC1-BH03-0	F8L100188010
WHC1-BH03-10	F8L100188011	WHC1-BH05-0	F8L100188007
WHC1-BH05-0-FD	F8L100188008	WHC1-BI02-0	F8L050133006
WHC1-BI02-13	F8L050133008	WHC1-BI02-3	F8L050133007
WHC1-BI03-0	F8L050133009	WHC1-BI03-11	F8L050133010
WHC1-BI04-10	F8L100188013	WHC1-BI05-10	F8L100188006
WHC1-BJ03-0	F8L050133011	WHC1-BJ03-0-FD	F8L050133012
WHC1-BJ03-12	F8L050133013	WHC1-BJ04-0	F8L050133014
WHC1-BJ04-11	F8L050133015	WHC1-BK03-0	F8L160178009
WHC1-BK04-0	F8L050133016	WHC1-BK04-10	F8L050133017
WHC1-BL04-12	F8L230161004	WHC1-BM04-10	F8L230161003
WHC1-BM07-0	F8K210227011	WHC1-BN04-17	F8L230161002
WHC1-BN04-7	F8L230161001	WHC1-BN05-10	F8K210227008
WHC1-BN06-10	F8K210227010	WHC1-BO03-0	F8L160178010
WHC1-BO03-12	F8L200127003	WHC1-BO04-0	F8L160178012
WHC1-BO04-12	F8L200127007	WHC1-BO06-0	F8K210227014
WHC1-BO07-0	F8K200234014	WHC1-BO07-10	F8K200234015
WHC1-BP03-0	F8L160178003	WHC1-BP03-0-FD	F8L160178004
WHC1-BP04-0	F8L160178002	WHC1-BP04-12	F8L200127002
WHC1-BP05-0	F8L160178006	WHC1-BP05-10	F8L200127010
WHC1-D08-10	F8L100188012	WHC1-D09-11	F8L100188014
WHC1-D10-10	F8L100188015	WHC1-D11-10	F8L100188016
WHC1-D17-10	F8L110242007	WHC1-D22-0	F8L170249001
WHC1-D23-0	F8L170249010	WHC1-D23-10	F8L170249011
WHC1-D24-0	F8L170249007	WHC1-D24-0-FD	F8L170249008
WHC1-D24-10	F8L170249009	WHC1-D25-0	F8L170249005
WHC1-P01-0	F8L160178005	WHC1-P01-12	F8L200127006
WHC1-P03-0	F8L160178008	WHC1-P04-0	F8L160178007
WHC1-P09-0	F8L050133003	WHC1-P09-0-FD	F8L050133004
WHC1-P09-10	F8L050133005	WHC1-P17-0	F8L160178011
WHC1-P17-12	F8L200127008	WHC1-P17-12-FD	F8L200127009
WHC2-BL07-0	F0H100484005	WHC3-D11C-0	F0H100484002
WHC3-P11C-0	F0H100484003	WHC3-P11C-0-DUP	F0H100484004

- PAH results for four soil samples (WHC1-BH05-0-FD, WHC1-D03-0-FD, WHC1-D21-10, and WHC1-D25-10) were qualified as estimated (J-/UJ) due to holding time exceedance. The length of time between sample collection and extraction was 22, 28, and 31 days (8, 14, and 17 days beyond the method-prescribed 14-day period, respectively).
- SVOC results for 16 soil samples were qualified as estimated (J-/UJ) due to holding time exceedance. The length of time between sample collection and extraction was 16, 22, 26, and

28 days (8, 12, or 14 days beyond the method-prescribed 14-day period, respectively). The samples qualified are listed in Table 4-4.

TABLE 4-4: SVOC SAMPLES QUALIFIED DUE TO HOLDING TIME EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BG06-0	221033003	WHC1-BH01-0	220742019
WHC1-BP08-0	219865011	WHC1-D01-10	220742004
WHC1-D02-10	220742006	WHC1-D03-0	220742007
WHC1-D03-0-FD	220742008	WHC1-D03-10	220742009
WHC1-D04-10	220742011	WHC1-D05-10	220742013
WHC1-D06-10	220742015	WHC1-D07-0	220742016
WHC1-D09-11	220917005	WHC1-P08-0	220742018
WHC1-P12-0	220742001	WHC1-P12-11	220742002

• Soil flux results for two flux samples (WHC1-P03 and WHC1-P10) were qualified as estimated (J-/UJ) due to holding time exceedance. The length of time between sample collection and analysis was 32 and 34 days (2 and 4 days beyond the method-prescribed 30-day period, respectively).

As noted in the DVSRs, all samples were received at the laboratory within the required temperatures range of $4^{\circ}\pm2^{\circ}$ Celsius with limited exceptions. Five sample results were qualified based on sample temperatures. Results for two dioxins/furans and PCB samples (WHC1-BO05-0 and WHC1-BO06-0) and four organochlorine samples (WHC1-BN05-0, WHC1-BN05-0-FD, WHC1-BO06-0, and WHC1-BO06-10) were qualified as estimated (J-/UJ) due to an exceedance of sample temperature at the time of receipt.

In addition, sample preparation issues resulted in the qualification of several samples. Three radionuclide SPLP samples (WHC1-BM09-12, WHC1-BN06-10, and WHC1-BO10-10) were qualified as estimated (J-/UJ) because unpreserved samples were used for analysis. One SPLP sample (WHC1-BN06-10) was qualified as estimated (J/UJ) since the samples was filtered several days after the SPLP extraction ended instead of immediately. This involved the following analyses: anions, ammonia, total kjeldahl nitrogen, total organic carbon, metals, organochlorine pesticides, and aldehydes.

4.5.2 Blank Contamination

Blanks are artificial samples designed to evaluate the nature and extent of contamination of environmental samples that may be introduced by field or laboratory procedures. Field and laboratory blanks for soil samples, consisting of contaminant-free water, were prepared and

analyzed as part of standard QA/QC procedures to monitor for potential contamination of field equipment, laboratory process reagents, and sample containers. As presented in the DVSRs, 1,392 results were qualified as undetected (U or UJ) or estimated (J or J+) due to laboratory or field blank contamination, as discussed below. Most of the results (1,355) were qualified as undetected. Detections of constituents qualified due to comparable detections in laboratory or field blanks, and are presented in Table 2-2 of DVSR 53c, Tables 2-6 and 2-7 of DVSR 54, Tables 2-4 and 2-5 of DVSR 62, Tables 2-3 and 2-4 of DVSR 71, Tables 2-6 and 2-7 of DVSR 72b, Tables 2-5 of DVSR 72e, Tables 2-4 and 2-5 of DVSR 72f, and Table 2-3 of DVSR 72g (Appendix F). Data qualified as non-detections are known as "censored" data and censoring of data was included in DVSRs 53c, 54, 62, 71, and 72b. In these cases, non-detections are represented in the database as "< [the PQL]" in the case of inorganics detected below the POL. or as "<[result value]" for all others. 26 However, for the DVSR 54 dataset it was determined there was an inconsistency in the value used for organics. The majority of the data followed the rule of <[result value], however, for 82 results: one PAH, dibenz(a,h)anthracene (4 results); and seven VOCs, 1,2,4-trimethylbenzene (24 results); 1,2-dichlorobenzene (4 results); acetone (12 results); dichloromethane (24 results); ethylbenzene (8 results); m,p-xylene (4 results); and o-xylene (2 results), the value shown is the PQL. Of these, only dibenz(a,h)anthracene was selected as a COPC and only because other carcinogenic PAHs were detected above screening levels. Therefore, there is no effect on the HHRA results. Censoring of data was not performed in DVSRs 72e, 72f, and 72g.

These censored data are summarized in Appendix E, Table E-14 (included on the report CD in Appendix B) by compound class. As seen in that table, analytes were initially reported as detections in samples, but were later qualified as non-detections based on the presence of comparable concentrations of that analyte in blank samples. As seen in Appendix E, compounds most often censored for soil results included the following:

- Cyanide, Total (136 samples)
 - Orthophosphate (as P) (46 samples)
- Ethylbenzene (52 samples)

- Formaldehyde (29 samples)
- Acetone (64 samples)
- Dichloromethane (93 samples)

²⁶ Although NDEP has issued recent guidance regarding qualifying data due to blank contamination (NDEP 2012b); BRC has addressed this issue in the *Technical Memorandum – BRC Comments on NDEP Blank Contamination Guidance* (BRC 2011) and, consistent with this Technical Memorandum, no changes were made to the Site dataset.

4-12

• Mercury (68 samples)

- Radium-226 (32 samples)
- Total Organic Carbon (134 samples)
- 1,2,4-Trimethylbenzene (80 samples)

In addition, 295 of the sample results qualified due to laboratory or field blank contamination were surface flux samples. Benzene (71 results) was the most frequently censored in surface flux samples.

Table 4-5 presents the metals most likely to be affected by this issue.

TABLE 4-5: METALS MOST FREQUENTLY CENSORED DURING BLANK SAMPLE EVALUATION

	Number of	Number of	Number of	Max Non Detect	NDEP Residential
Metal	Number of Detect	Number of Samples	Censored Results	Non-Detect (mg/kg)	BCL (mg/kg)
Cadmium	164	243	27	0.29	77.7
Mercury	58	243	68	0.0439	23.5
Molybdenum	195	243	23	2.8	391

What this table demonstrates is that while the number of censored results is numerous for some metals compared to the number of detections, censored values are still much lower than BCLs.

4.5.2.1 Sample/Duplicate Differences Outside Permissible Range or Greater than Permissible Values

During the data validation process, sample/duplicate results are evaluated to determine whether differences in those results suggest potential issues with data quality. Specifically, the analyst evaluates the following:

- Matrix spike/matrix spike duplicate (MS/MSD) percent recoveries, to determine if the recoveries are outside acceptance limits;
- Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) percent recoveries, to determine if the recoveries are outside acceptance limits;
- Sample/field duplicate results, to determine if differences are greater than the permissible value; and
- Sample/laboratory duplicate results, to determine if differences are greater than the permissible value.

4.5.2.2 Qualifications Due to MS/MSD Recoveries Outside Acceptance Criteria

As discussed in the DVSRs, 1,873 inorganic sample results were qualified as estimated based on MS/MSD recoveries (either UJ for non-detections or J for detections; "+" or " – " added to denote potential high or low bias, respectively). Three results were rejected due to MS/MSD recoveries less than 30 percent.

The results rejected include the following:

- Vinyl acetate results for two soil samples (WHC1-BK05-0 and WHC1-P11-0) were rejected (R) due to 0 percent recoveries.
- A single 2,4-dimethylphenol result (WHC1-BL06-0) was rejected (R) due to 0 percent recoveries.

The qualifications applied on the basis of MS/MSD recoveries were as follows:

- The ammonia (as N) result for one soil sample (WHC1-BO01-0) was qualified as estimated (J+) due to a recovery greater than the acceptance criteria (75 to 125 percent). The final qualifier was UJ due to an additional qualification for blank contamination.
- The chloride result for one soil sample (WHC1-D29-10) was qualified as estimated (J+) due to a recovery greater than the acceptance criteria (75 to 125 percent).
- The cyanide results for two soil samples (WHC1-BJ01-0 and WHC1-P16-11) were qualified as estimated (J-/UJ) due to recoveries below the acceptance criteria (75 to 125 percent). The final qualifier for the detected result was UJ due to an additional qualification for blank contamination.
- The fluoride results for two soil samples (WHC1-D29-10 and WHC1-P12-11) were qualified as estimated (J+) due to recoveries above the acceptance criteria (75 to 125 percent).
- The nitrate results for three soil samples (WHC1-D03-10, WHC1-D29-10, and WHC1-P18-0) was qualified as estimated (J+) due to recoveries greater than the acceptance criteria (75 to 125 percent).
- The orthophosphate results for three soil samples were qualified as estimated (J+) due to recoveries greater than the acceptance criteria (75 to 125 percent; note that the final qualifier for one sample (WHC1-D29-10) was UJ due to an additional qualification for blank

contamination) and 15 soil samples were qualified as estimated (J-/UJ) due to recoveries below the acceptance criteria (75 to 125 percent). The affected samples are listed in Table 4-6.

TABLE 4-6: ORTHOPHOSPHATE SAMPLES ESTIMATED DUE TO MATRIX SPIKE RECOVERY EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BN01-0	F8L020153005	WHC1-BN02-0 ^U	F8L020153015
WHC1-BN02-0-FD ^U	F8L020153016	WHC1-BN02-11	F8L020153017
WHC1-BO02-0 ^U	F8L020153011	WHC1-BO02-12	F8L020153012
WHC1-BP01-0	F8L020153007	WHC1-BP02-0	F8L020153009
WHC1-BP02-11	F8L020153010	WHC1-D03-10	F8L060161013
WHC1-D29-10 ^U	F8L130169011	WHC1-P02-0 ^U	F8L020153003
WHC1-P02-10 ^U	F8L020153004	WHC1-P16-0 ^U	F8L020153018
WHC1-P16-11	F8L020153002	WHC1-P18-0	F8L020153013
WHC1-P18-12	F8L020153014	WHC1-D16-0	F8L110242008
II			*** 1 1111 1

^U = Was qualified J+ or J- due to matrix spike recoveries, but the final qualifier was UJ due to additional qualification.

• The perchlorate results for 20 soil samples were qualified as estimated (J-/UJ) due to recoveries less than the acceptance criteria (75 to 125 percent) and two soil samples were qualified as estimated (J+) due to recoveries greater than the acceptance criteria. The affected samples are listed in Table 4-7.

TABLE 4-7: PERCHLORATE SAMPLES ESTIMATED DUE TO MATRIX SPIKE RECOVERY EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BF01-0	220076001	WHC1-BF01-12	220076002
WHC1-BF02-0	220184001	WHC1-BG01-0	220076003
WHC1-BG01-11	220076004	WHC1-BG02-0	220076005
WHC1-BG02-0-FD	220076006	WHC1-BG02-10	220076007
WHC1-BM01-0	220507001	WHC1-BM07-0	219938018
WHC1-BM07-11	219938019	WHC1-BN05-0	219938013
WHC1-BN05-0-FD	219938014	WHC1-BN05-10	219938015
WHC1-BN06-0	219938016	WHC1-BO05-0	219938011
WHC1-BO05-10	219938012	WHC1-BO06-0	219938009
WHC1-BO06-10	219938010	WHC1-BP07-0	219938006
WHC1-P15-0	220809001	WHC1-D16-0	221033007

- The sulfate results for three soil samples (WHC1-BJ05-0, WHC1-D03-10, and WHC1-D29-10) were qualified as estimated (J+) due to recoveries greater than the acceptance criteria (75 to 125 percent).
- The total Kjeldahl nitrogen results for 10 soil samples were qualified as estimated (J-/UJ) due to recoveries less than the acceptance criteria (75 to 125 percent) and 10 soil samples were

qualified as estimated (J+) due to recoveries greater than the acceptance criteria. The affected samples are listed in Table 4-8.

TABLE 4-8: TOTAL KJELDAHL NITROGEN SAMPLES ESTIMATED DUE TO MATRIX SPIKE RECOVERY EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BF02-0	F8K260286001	WHC1-BF02-11	F8K260286002
WHC1-BF03-0	F8K260286003	WHC1-BF03-10	F8K260286004
WHC1-BF04-0	F8K260286005	WHC1-BF04-0-FD	F8K260286006
WHC1-BF05-0	F8L110242014	WHC1-BF06-0	F8L110242012
WHC1-BG02-0-FD	F8K250122006	WHC1-BG02-10	F8K250122007
WHC1-D10-0	F8L090162011	WHC1-D11-0	F8L090162012
WHC1-D13-0	F8L110242009	WHC1-D17-0 ^U	F8L110242006
WHC1-D17-10	F8L110242007	WHC1-P10-0	F8K260286010
WHC1-P11-0	F8L090162013	WHC1-P11-0-FD	F8L090162014
WHC1-BG05-0	F8K260286008	WHC1-D16-0	F8L110242008

U = Was qualified J+ or J- due to matrix spike recoveries, but the final qualifier was UJ due to additional qualification.

- The radium-228 results for five soil samples (WHC1-BH04-0-FD, WHC1-BL08-0, WHC1-BL08-10, WHC1-BM08-11, and WHC1-BM09-0) were qualified as estimated (J-) due to recoveries less than the acceptance criteria (75 to 125 percent).
- The thorium-232 results for 19 soil samples were qualified as estimated (J-/UJ) due to recoveries less than the acceptance criteria (75 to 125 percent). The affected samples are listed in Table 4-9.

TABLE 4-9: THORIUM-232 SAMPLES ESTIMATED DUE TO MATRIX SPIKE RECOVERY EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BH01-0	220742019	WHC1-D01-0	220742003
WHC1-D01-10	220742004	WHC1-D02-0	220742005
WHC1-D02-10	220742006	WHC1-D03-0	220742007
WHC1-D03-0-FD	220742008	WHC1-D03-10	220742009
WHC1-D04-0	220742010	WHC1-D04-10	220742011
WHC1-D05-0	220742012	WHC1-D05-10	220742013
WHC1-D06-0	220742014	WHC1-D06-10	220742015
WHC1-D07-0	220742016	WHC1-D07-10	220742017
WHC1-P08-0	220742018	WHC1-P12-0	220742001
WHC1-P12-11	220742002		

• The benzyl alcohol result for one SPLP sample (WHC1-BM09-12) was qualified as estimated (UJ) due to recoveries below the acceptance criteria (26 to 98 percent).

- The total organic carbon results for five samples (OSC1-BO11-0, OSC1-BO11-0-DUP, OSC1-BO11-5, OSC1-BP11-0, and OSC1-BP11-5) were qualified as estimated (J-) due to recoveries below the acceptance criteria (75 to 125 percent).
- Metals results for soil samples in various laboratory data packages were qualified as estimated (J+ for high recoveries/J- or UJ for low recoveries) due to recoveries outside the acceptance criteria (75 to 125 percent), as summarized in Table 4-10 (Tables section).

Appendix E, Table E-11 (included on the report CD in Appendix B) lists the samples and associated analytes exhibiting MS/MSD percent recoveries below the laboratory control limits. In cases in which the recoveries were higher than the acceptance criteria, the results have the potential of being similarly biased high, and using these data in the HHRA could result in risks being calculated that are higher than would be associated with actual Site conditions. Of more concern for the HHRA is underestimation of risk, which could be associated with the use of data that are biased low.

As indicated in that table, reported detections and non-detects for soil data were flagged as estimated ("J-" or "UJ," respectively) due to low MS/MSD recoveries (*i.e.*, from 30 to 74 percent for metals).²⁷ Non-detects associated with "very low" MS/MSD recoveries (i.e., less than 30 percent for metals) are generally rejected as unusable. Two results were rejected due to MS/MSD recoveries. The data flagged as estimated based on low MS/MSD recoveries were subjected to further review in terms of data usability for the Site, as discussed in Section 4.6.2.3.

4.5.2.3 Qualifications Due to LCS/LCSD Recoveries Outside Acceptance Criteria

Organic and inorganic constituent results for 115 samples were qualified as estimated (either UJ for non-detections or J for detections; "+" or "-" added to denote potential high or low bias, respectively) based on LCS/LCSD recoveries. No data were rejected due to very low LCS recoveries.

• The 1,2,3,4,6,7,8-HpCDD results for two soil samples (WHC7-P11_5 and WHC7-BH06NE_5) were qualified as estimated (J+) due to recoveries above the acceptance criteria (75 to 125 percent).

²⁷ If additional validation criteria (aside from the MS/MSD recoveries) did not suggest a low bias for a given result, the sample result was flagged with "J" (no bias inferred).

_

- The 1,2,3,4,7,8,9-HpCDF results for two soil samples (WHC4-D27N and WHC4-D27S) were qualified as estimated (J+) due to recoveries above the acceptance criteria (75 to 125 percent).
- The 1,2,3,7,8-PCDD results for two soil samples (WHC7-BG02SW_5 and WHC7-D10_5) were qualified as estimated (J+) due to recoveries above the acceptance criteria (75 to 125 percent).
- The 1,2-diphenylhydrazine results for seven soil samples (WHC1-BO03-12, WHC1-BO04-12, WHC1-BP04-12, WHC1-BP05-10, WHC1-P01-12, WHC1-P17-12, and WHC1-P17-12-FD) were qualified as estimated (UJ) due to recoveries below the acceptance criteria (58 to 102 percent).
- The 2,4-dichlorophenol results for seven soil samples (WHC1-BO03-12, WHC1-BO04-12, WHC1-BP04-12, WHC1-BP05-10, WHC1-P01-12, WHC1-P17-12, and WHC1-P17-12-FD) were qualified as estimated (UJ) due to recoveries below the acceptance criteria (57 to 105 percent).
- The 2,4-dimethylphenol results for 13 soil samples were qualified as estimated (UJ) due to recoveries below the acceptance criteria (47 to 105 percent). The affected samples are listed in Table 4-11.

TABLE 4-11: 2,4-DIMETHYLPHENOL SAMPLES ESTIMATED DUE TO LCS/LCSD RECOVERY EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BL05-0	220022011	WHC1-BL05-10	220022012
WHC1-BL06-11	220022010	WHC1-BL07-0	220022013
WHC1-BL07-10	220022014	WHC1-BM05-0	220022004
WHC1-BM05-10	220022005	WHC1-BM06-0	220022006
WHC1-BM06-0-FD	220022007	WHC1-BM06-10	220022008
WHC1-BN07-0	220022001	WHC1-BN07-13	220022003
WHC1-BN07-3	220022002		

- The boron results for three soil samples (WHC1-BL01-10, WHC1-BN01-0, and WHC1-BO02-0) were qualified as estimated (J+) due to recoveries above the acceptance criteria (80 to 120 percent).
- The cis-1,2-dichloroethene result for one soil sample (WHC1-BG01-11) was qualified as estimated (UJ) due to recoveries below the acceptance criteria (84 to 118 percent).

• The copper results for 19 soil samples were qualified as estimated (J+) due to recoveries above the acceptance criteria (80 to 120 percent). The affected samples are listed in Table 4-12.

TABLE 4-12: COPPER SAMPLES ESTIMATED DUE TO LCS/LCSD RECOVERY EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BK02-11	F8L190190008	WHC1-BK03-12	F8L190190009
WHC1-BL03-10	F8L190190007	WHC1-BL04-0	F8L190153001
WHC1-BM03-10	F8L190190005	WHC1-BM04-0	F8L190153002
WHC1-BM04-0-FD	F8L190153003	WHC1-BN03-0	F8L190153005
WHC1-BN03-10	F8L190190004	WHC1-BN04-0	F8L190153004
WHC1-D23-0	F8L170249010	WHC1-D23-10	F8L170249011
WHC1-P03-13	F8L190190001	WHC1-P03-3	F8L190190010
WHC1-P03-3-FD	F8L190190011	WHC1-P04-10	F8L190190002
WHC1-P05-10	F8L190190006	WHC1-P14-0	F8L190153006
WHC1-P15-10	F8L190190003		

- The hexachlorobutadiene results for six soil samples (WHC1-BH01-0, WHC1-D01-0, WHC1-D02-10, WHC1-D06-0, WHC1-D07-10, and WHC1-P12-0) were qualified as estimated (UJ) due to recoveries below the acceptance criteria (50 to 105 percent).
- The molybdenum results for 33 soil samples were qualified as estimated (J+) due to recoveries above the acceptance criteria (78 to 122 or 80 to 119 percent). The affected samples are listed in Table 4-13.

TABLE 4-13: MOLYBDENUM SAMPLES ESTIMATED DUE TO LCS/LCSD RECOVERY EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BK02-11	F8L190190008	WHC1-BK05-0	F8L130169001
WHC1-BK05-11	F8L130169002	WHC1-BL03-10	F8L190190007
WHC1-BL04-0	F8L190153001	WHC1-BM03-10	F8L190190005
WHC1-BM04-0	F8L190153002	WHC1-BM04-0-FD	F8L190153003
WHC1-BN03-0	F8L190153005	WHC1-BN03-10	F8L190190004
WHC1-BN04-0	F8L190153004	WHC1-BP06-0	F8L130169008
WHC1-BP06-10	F8L130169009	WHC1-D20-0	F8L130169003
WHC1-D20-10	F8L130169004	WHC1-D23-0	F8L170249010
WHC1-D23-10	F8L170249011	WHC1-D26-0	F8L130169005
WHC1-D26-10	F8L130169006	WHC1-D27-0	F8L130169013
WHC1-D27-0-FD	F8L130169014	WHC1-D27-10	F8L130169015
WHC1-D28-0	F8L130169007	WHC1-D28-10	F8L130169012
WHC1-D29-0	F8L130169010	WHC1-D29-10	F8L130169011
WHC1-P03-13	F8L190190001	WHC1-P03-3	F8L190190010
WHC1-P03-3-FD	F8L190190011	WHC1-P04-10	F8L190190002
WHC1-P05-10	F8L190190006	WHC1-P14-0	F8L190153006
WHC1-P15-10	F8L190190003		

- The silver results for four soil samples (WHC1-BL04-12, WHC1-BM04-10, WHC1-BN04-17, and WHC1-BN04-7) were qualified as estimated (J+) due to recoveries above the acceptance criteria (80 to 120 percent).
- The tungsten results for two soil samples (WHC2-BM06C-0 and WHC2-D16C-0) were qualified as estimated (J+) due to recoveries above the acceptance criteria (80 to 120 percent). The results were later qualified as UJ due to blank contamination.
- The benzyl alcohol result for one SPLP sample (WHC1-BM09-12) was qualified as estimated (UJ) due to a recovery below the acceptance criteria (37 to 88 percent).

In addition, five flux samples (1,1-dichloroethene, 1,1-dichloroethane, and vinyl chloride in samples WHC1-BM08, WHC1-BM09, WHC1-BM10, and WHC1-BN10R and tetrachloroethene in WHC1-P10) were qualified as estimated (UJ) based on LCS/LCSD recoveries below the acceptance limit (70 to 130 percent; note that the final qualifier for tetrachloroethene in WHC1-P10 was J, due to an additional qualification for holding time and surrogate recoveries).

As noted above, recoveries below the lower laboratory limits are of the most concern in terms of data usability. Appendix E, Table E-11 (included on the report CD in Appendix B) lists the samples and associated analytes exhibiting LCS/LCSD percent recoveries below the lower laboratory control limit. The data flagged as estimated based on low LCS/LCSD recoveries were subjected to further review in terms of data usability for the Site, as discussed in Section 4.6.2.3.

4.5.2.4 Qualifications Due to Sample/Field Duplicate Differences Outside Acceptance Criteria

The following 48 soil field duplicates were collected during the sampling activities:

- WH-AS_A0D
- WH-AS D7D
- WH-AS_J3D
- WH-AS L6D
- WH-AS_Q11D
- WH-AS R15D
- WHC1-BF04-0-FD
- WHC1-BH05-0-FD
- WHC1-BJ01SE-0-DUP
- WHC1-BJ03-0-FD
- WHC1-BM04-0-FD

- WH-AS_A6D
- WH-AS G1D
- WH-AS_J6D
- WH-AS POD
- WH-AS_Q8D
- WH-AS T10D
- WHC1-BG02-0-FD
- WHC1-BH06-0-FD
- WHC1-BK01-0-FD

WHC1-BJ02-0-FD

• WHC1-BM06-0-FD

- WHC1-BM08-0-FD
- WHC1-BN05-0-FD
- WHC1-BO01-0-FD
- WHC1-D03-0-FD
- WHC1-D24-0-FD
- WHC1-P01SW-0-DUP
- WHC1-P05-0-FD
- WHC1-P11-0-FD
- WHC1-P17-12-FD
- WHC2-BG03C-0 DUP
- WHC2-BM08C-0 DUP
- WHC2-D18C-0 DUP
- WHC6-BM06-DUP

- WHC1-BN02-0-FD
- WHC1-BN07SE-0-DUP
- WHC1-BP03-0-FD
- WHC1-D19-0-FD
- WHC1-D27-0-FD
- WHC1-P03-3-FD
- WHC1-P09-0-FD
- WHC1-P15NE-0-DUP
- WHC2-BF02C-0 DUP
- WHC2-BH06C-0 DUP
- WHC2-D03C-0 DUP
- WHC3-P11C-0-DUP
- WHD-AS-BL03-0-FD

In addition, five surface flux field duplicates were collected during the sampling activities: WHC1-BN01R, WHC1-BN10R, WHC1-BP03R, WHC1-BP06R, and WHC1-D23R.

Twenty-three field duplicates were collected for asbestos during the sampling activities:

- WHC1-A02-FD
- WHC1-BF04-FD
- WHC1-BH05-FD
- WHC1-BJ03-FD
- WHC1-BM09-FD
- WHC1-BO04-FD
- WHC1-BO09-FD
- WHC1-D01-FD
- WHC1-D20-FD
- WHC2-BM07-0-DUP
- WHC2-D18C-D-DUP
- WHC3-BP06SE-DUP

- WHC1-A09-FD
- WHC1-BG03-FD
- WHC1-BI02-FD
- WHC1-BK05-FD
- WHC1-BN08-FD
- WHC1-BO05-FD
- WHC1-BP01-FD
- WHC1-D10-FD
- WHC1-D27-FD
- WHC2-BM07C-0-DUP
- WHC2-D23-0-DUP

Field duplicate differences in excess of acceptance limits were noted in 28 of the 48 field duplicate pairs of soil samples, in three of five pairs of duplicate flux samples, and in eight of the 23 duplicate pairs for asbestos samples. The differences are presented in Appendix E, Table E-12 (included on the report CD in Appendix B). All associated data were flagged as estimated (J/UJ). No data were rejected on the basis of sample/field duplicate differences.

4.5.2.5 Qualifications Due to Sample/Laboratory Duplicate Differences Outside Acceptance Criteria

At least one duplicate analysis (LCSD, MSD, or laboratory replicate [LR]) was performed with each batch of environmental samples processed in the laboratory. The laboratory calculated the relative percent difference (RPD) between the two detected values for MSD and LR analyses. RPD values within the acceptable limits indicate both laboratory precision and minimal matrix heterogeneity of compounds detected in the samples.

RPDs for MS/MSD pairs, LCS/LCSD pairs, and LR pairs calculated by the laboratory were generally within the laboratory's acceptance criteria. No results were qualified due to MS/MSD RPDs or LCS/LCSD RPDs. Data qualified due to laboratory duplicate sample imprecision are presented in Table 2-11 of DVSR 54.

Of the samples representing post-remediation conditions (i.e., not including those data points associated with samples from soil intervals subsequently removed from the Site), results for the 95 soil samples (95 data points) identified in Table 4-14 (Tables section) had sample/laboratory duplicate differences greater than permissible values for radionuclides (i.e., absolute difference greater than 1 pCi/g) or for cation exchange capacity (i.e., RPD greater than 20 percent or absolute differences greater than the SQL). No other chemical analytes had sample/laboratory duplicate differences greater than permissible values.

The data flagged in Table 4-14 as estimated (J for detects; UJ for non-detects) based on sample/laboratory duplicate differences were subjected to further review in terms of data usability for the Site, as discussed in Section 4.6.2.3.

4.5.3 Internal Standards Outside Acceptance Criteria

Internal standards are prepared for certain organic gas chromatograph/mass spectrometry (GC/MS) and inductively coupled plasma/mass spectrometry analyses by adding compounds similar to target compounds of interest to sample aliquots. Internal standards are used in the quantitation of target compounds in the sample or sample extract. The evaluation of internal standards involved comparing the instrument response and retention time from the target compounds in the sample with the response and retention time of specific internal standards added to the sample extract prior to analysis.

Results for three VOC soil samples (WHC1-BG02-10, WHC1-D15-0, and WHC1-P11-0) were rejected (R) due to very low internal standard recovery.

As presented in the DVSRs, the following results were qualified as estimated (J/UJ) due to internal standard exceedances:

• PCB results for 11 soil samples were qualified as estimated (J/UJ) due to low or high internal standard recoveries if the percent recovery was below 25 percent or above 150 percent. Qualified samples are presented in Table 4-15.

TABLE 4-15: PCB SOIL SAMPLE RESULTS QUALIFIED DUE TO INTERNAL STANDARDS OUTSIDE ACCEPTANCE CRITERIA

Laboratory Data Package #	Sample ID
F8L020153	WHC1-BP02-0
F8K250122	WHC1-BG01-0
F8K220190	WHC1-BM05-0
F8K220190	WHC1-BN07-0
F8K220190	WHC1-BM05-0
F8L030154	WHC1-P06-0
F8L050133	WHC1-P09-0-FD
F8L090162	WHC1-BL03-0
F8L160178	WHC1-P04-0
F9L030474	WHC2-D01C-0
F9L050438	WHC2-BF04SW-0

• VOC results for 60 soil samples were qualified as estimated (J/UJ) because of internal standard recoveries below the area limit (below 50 percent). Qualified samples are presented in Table 4-16.

TABLE 4-16: VOC SOIL SAMPLE RESULTS QUALIFIED DUE TO INTERNAL STANDARDS OUTSIDE ACCEPTANCE CRITERIA

Laboratory Data Package #	Sample ID
F8K190190	WHC1-BL08-10
	WHC1-BM08-0
	WHC1-BM08-11
	WHC1-BM09-0
	WHC1-BM09-12
F8L200127	WHC1-BO03-12
	WHC1-BP04-12
	WHC1-P01-12

TABLE 4-16: VOC SOIL SAMPLE RESULTS QUALIFIED DUE TO INTERNAL STANDARDS OUTSIDE ACCEPTANCE CRITERIA

Laboratory Data Package #	Sample ID
F8K200234	WHC1-BO07-0
	WHC1-BO07-10
	WHC1-BP08-0
	WHC1-BP09-0
	WHC1-BP09-10
	WHC1-BP10-0
	WHC1-BP10-10
F8K250122	WHC1-BF01-0
	WHC1-BF01-12
	WHC1-BG01-11
	WHC1-BG02-10
F8L090162	WHC1-BM03-0
	WHC1-D11-0
	WHC1-P05-0-FD
	WHC1-P11-0
	WHC1-P11-0-FD
	WHC1-P15-0
F8L120182	WHC1-BH04-0
	WHC1-BH06-0
	WHC1-D15-0
	WHC1-D18-0
	WHC1-D19-0
F8L160178	WHC1-BK03-0
	WHC1-BO03-0
	WHC1-BO04-0
	WHC1-BP03-0
	WHC1-BP04-0
	WHC1-P17-0
F8L170249	WHC1-D21-0
	WHC1-D21-10
	WHC1-D22-0
	WHC1-D23-0
	WHC1-D24-0
	WHC1-D24-0-FD
	WHC1-D25-0
	WHC1-D25-10
F8L030154	WHC1-BJ02-0
	WHC1-BJ02-0-FD

TABLE 4-16: VOC SOIL SAMPLE RESULTS QUALIFIED DUE TO INTERNAL STANDARDS OUTSIDE ACCEPTANCE CRITERIA

Laboratory Data Package #	Sample ID
F8L060161	WHC1-D04-0
	WHC1-D06-0
F8L190153	WHC1-BM04-0
	WHC1-BM04-0-FD
	WHC1-BN03-0
	WHC1-BN04-0
	WHC1-P14-0
F8L190190	WHC1-BK03-12
	WHC1-BN03-10
	WHC1-P03-13
	WHC1-P03-3
	WHC1-P03-3-FD
	WHC1-P04-10
F8L110242	WHC1-D13-0

• Dioxins/furans results for 67 soil samples were qualified as estimated (J/UJ) due to low internal standard recoveries (below 40 percent). Qualified samples are presented in Table 4-17.

TABLE 4-17: DIOXINS/FURANS SOIL SAMPLE RESULTS QUALIFIED DUE TO INTERNAL STANDARDS OUTSIDE ACCEPTANCE CRITERIA

Laboratory Data Package #	Sample ID
160-373-1	WHC6-D15
	WHC6-D16
	WHC6-P10
160-396-1	WHC6-BM06
	WHC6-BM06-DUP
	WHC6-JE01
F2A070405	WHC4-D27S
F8K200234	WHC1-BP09-0
	WHC1-BP10-0
F8K210227	WHC1-BN06-0
	WHC1-BO05-0
	WHC1-BP07-0
F8K220190	WHC1-BL06-0
	WHC1-BN07-0
F8K250122	WHC1-BF01-0
	WHC1-BG01-0

TABLE 4-17: DIOXINS/FURANS SOIL SAMPLE RESULTS QUALIFIED DUE TO INTERNAL STANDARDS OUTSIDE ACCEPTANCE CRITERIA

Laboratory Data Package #	Sample ID
F8K260286	WHC1-BF03-0
	WHC1-BG05-0
F8L020153	WHC1-BN01-0
	WHC1-BN02-0
	WHC1-BN02-0-FD
	WHC1-BO02-0
	WHC1-BP01-0
	WHC1-BP02-0
	WHC1-P16-0
	WHC1-P18-0
F8L030154	WHC1-BL02-0
	WHC1-BO01-0
	WHC1-BO01-0-FD
	WHC1-P07-0
F8K190190	WHC1-BL08-0
	WHC1-BM09-0
F8L050133	WHC1-BJ03-0
	WHC1-BK04-0
	WHC1-P09-0-FD
F8L090162	WHC1-BL03-0
F9L020470	WHC2-BJ05C-0
	WHC2-BK05NE-0
	WHC2-BK05SC-0
	WHC2-BK05SW-0
F9L030474	WHC2-BG02NE-0
	WHC2-BG02SE-0
	WHC2-BP05NE-0
	WHC2-BP05NW-0
	WHC2-D01C-0
	WHC2-P12C-0
F9L040526	WHC2-BG06NE-0
	WHC2-BH06C-0
	WHC2-BH06C-0 DUP
	WHC2-BH06NW-0
	WHC2-D13SE-0
F8L040142	WHC1-BJ01-0
	WHC1-BK01-0-FD
	WHC1-P08-0

TABLE 4-17: DIOXINS/FURANS SOIL SAMPLE RESULTS QUALIFIED DUE TO INTERNAL STANDARDS OUTSIDE ACCEPTANCE CRITERIA

Laboratory Data Package #	Sample ID
F9L050438	WHC2-BF02C-0 DUP
	WHC2-BF04NE-0
	WHC2-BF04NW-0
	WHC2-BF04SE-0
	WHC2-BF04SW-0
	WHC2-BG03C-0
	WHC2-BG03C-0 DUP
	WHC2-BG03NE-0
	WHC2-BG03NW-0
	WHC2-BG03SE-0
	WHC2-BH05NW-0
	WHC2-P13C-0
	WHC2-P13SW-0

- PAH results in one soil sample (WHC1-BL01-0) as estimated (J/UJ) due to low internal standard recoveries (below 50 percent).
- Metals results for six soil samples were qualified as estimated (J/UJ) due to high internal standard recoveries (above 120 percent). Qualified samples and associated metals are presented in Table 4-18.

TABLE 4-18: METALS SOIL SAMPLE RESULTS QUALIFIED DUE TO INTERNAL STANDARDS OUTSIDE ACCEPTANCE CRITERIA

Laboratory		
Data Package #	Sample ID	Qualified Metals
F8L100188	WHC1-BH05-0	Lithium and Titanium
	WHC1-BH05-0-FD	
	WHC1-BI05-10	
	WHC1-D08-10	
	WHC1-D10-10	
F8K250122	WHC1-BG02-10	Manganese

• VOC results for 33 flux samples were qualified as estimated (J/UJ) due to low internal standard recoveries (below 60 percent). Qualified samples are presented in Table 4-19.

TABLE 4-19: VOC SURFACE FLUX SAMPLE RESULTS QUALIFIED DUE TO INTERNAL STANDARDS OUTSIDE ACCEPTANCE CRITERIA

Laboratory Data Package #	Sample ID
208610	WHC1-BL06
	WHC1-BM07
210327	OSC1-BO11
	OSC1-JP08
208601	WHC1-BJ01
	WHC1-BJ03
	WHC1-BK01
	WHC1-BM01
	WHC1-BM03
	WHC1-BN09
	WHC1-BN10
	WHC1-BO06
	WHC1-BO07
	WHC1-BO08
	WHC1-BO10
	WHC1-BP02
	WHC1-BP03R
	WHC1-BP04
	WHC1-BP09
	WHC1-BP10
	WHC1-D04
	WHC1-D08
	WHC1-D15
	WHC1-D17
	WHC1-D23
	WHC1-D27
	WHC1-P04
	WHC1-P06
	WHC1-P08
	WHC1-P09
	WHC1-P10
	WHC1-P13
	WHC1-P18

4.5.4 Surrogate Percent Recoveries Outside Laboratory Control Limit

As discussed in the DVSRs, surrogate spikes were added to each of the samples submitted for organic analysis to monitor potential interferences from the matrix. Results associated with

unacceptable surrogate recoveries were qualified as estimated (J+, J- or UJ). Generally, when surrogate recoveries are less than 10 percent, associated non-detect results are qualified as rejected (R) because false negatives are a possibility. No sample results were rejected due to surrogate recoveries. The soil samples listed in Table 4-20 were qualified due to surrogate recovery exceedances.

TABLE 4-20: RESULTS QUALIFIED DUE TO SURROGATE RECOVERIES OUTSIDE LABORATORY CONTROL LIMIT

	F8K260286001			Acceptable Range
1	011200200001	Organochlorine Pesticides	142	61-137
WHC1-BG02-0 F	F8K250122005	Organochlorine Pesticides	139	68-133
				72-140,
WHC1-BG02-0 F	F8K250122005	VOCs	61,132	80-125
				72-140,
				81-124,
	F8K250122005	VOCs	70,72	80-125
WHC1-BG04-0 F	F8L120182006	VOCs	144	80-125
WHC1-BG06-0 F	F8L110242004	Organochlorine Pesticides	556	61-137
WHC1-BH04-0 F	F8L120182010	VOCs	182	80-125
WHC1-BH05-0-FD F	F8L100188008	Organochlorine Pesticides	208	61-137
WHC1-BH06-0 F	F8L120182003	Organochlorine Pesticides	514	61-137
WHC1-BH06-0 F	F8L120182003	VOCs	128	81-124
WHC1-BH06-0-FD F	F8L120182004	Organochlorine Pesticides	389	61-137
WHC1-BJ02-0-FD F	F8L030154015	Organochlorine Pesticides	28	70-124
WHC1-BJ05-0 F	F8L120182012	Organochlorine Pesticides	166	61-137
WHC1-BJ05-0 F	F8L120182012	VOCs	59	81-124
WHC1-BJ05-10 F	F8L120182015	VOCs	172	80-125
WHC1-BL05-0 F	F8K220190004	Organochlorine Pesticides	193	61-137
WHC1-BL06-0 F	F8K220190002	Organochlorine Pesticides	155	61-137
	F8K220190003	Organochlorine Pesticides	139	61-137
				61-137,
WHC1-BL08-0 F	F8K190190013	Organochlorine Pesticides	172,1020	70-124
WHC1-BL08-10 F	F8K190190014	Organochlorine Pesticides	158	61-137
				70-124,
WHC1-BM06-0 F	F8K220190013	Organochlorine Pesticides	134,365	61-137
WHC1-BM06-10 F	F8K220190001	Organochlorine Pesticides	142	61-137
				70-124,
WHC1-BM07-0 F	F8K210227011	Organochlorine Pesticides	142,235	61-137
				61-137,
WHC1-BM08-0-FD F	F8K190190011	Organochlorine Pesticides	329,131	70-124
				61-137,
	F8K190190012	Organochlorine Pesticides	156,161	70-124
WHC1-BM09-0 F	F8K190190008	Organochlorine Pesticides	229	61-137
WHC1-BM09-12 F	F8K190190009	Organochlorine Pesticides	154	61-137
WHC1-BN05-0-FD F	F8K210227019	Organochlorine Pesticides	126	70-124
	F8K220190009	VOCs	70	81-124
WHC1-BO06-10 F	F8K210227015	Organochlorine Pesticides	143	61-137
WHC1-D01-10 F	F8L060161008	Organochlorine Pesticides	141	61-137
WHC1-D02-0 F	F8L060161009	Organochlorine Pesticides	578	61-137
WHC1-D02-10 F	F8L060161010	Organochlorine Pesticides	161	70-124

TABLE 4-20: RESULTS QUALIFIED DUE TO SURROGATE RECOVERIES OUTSIDE LABORATORY CONTROL LIMIT

RECOVERIES OUTSIDE LABORATORY CONTROL LIMIT				
Sample ID	Lab ID	Analysis	Recovery ¹	Acceptable Range
WHC1-D03-0	F8L060161011	Organochlorine Pesticides	127	70-124
WHC1-D03-0-FD	220743008	PAHs	45	50-150
WHC1-D03-0-FD	F8L060161012	Organochlorine Pesticides	136,213	70-24, 61-137
WHC1-D03-10	F8L060161013	Organochlorine Pesticides	151	70-124
WHC1-D06-10	F8L060161002	Organochlorine Pesticides	139	70-124
			128,	70-124,
WHC1-D10-0	F8L090162011	Organochlorine Pesticides	139	61-137
WHC1-D11-10	F8L100188016	Organochlorine Pesticides	206	61-137
WHC1-D12-0	F8L110242002	Organochlorine Pesticides	236	61-137
WHC1-D13-0	F8L110242009	Organochlorine Pesticides	902	61-137
WHC1-D15-0	F8L120182001	VOCs	186	80-125
WHC1-D16-0	F8L110242008	Organochlorine Pesticides	503	61-137
				70-124,
WHC1-D17-0	F8L110242006	Organochlorine Pesticides	144, 19372	61-137
WHC1-D17-10	F8L110242007	Organochlorine Pesticides	218	61-137
				70-124,
WHC1-D18-0	F8L120182013	Organochlorine Pesticides	207,212	61-137
WHC1-D18-10	F8L120182014	VOCs	179	80-125
				70-124,
WHC1-D19-0	F8L120182016	Organochlorine Pesticides	148,230	61-137
				81-124,
WHC1-D19-0	F8L120182016	VOCs	156,126	80-125
				70-124,
WHC1-D20-0	F8L130169003	Organochlorine Pesticides	138, 141	61-137
WHC1-D21-0	F8L170249003	Organochlorine Pesticides	137	72-130
WHC1-D22-10	221414009	PAHs	43	50-150
WHC1-D23-10	221414007	PAHs	43	50-150
WHC1-D24-0	F8L170249007	Organochlorine Pesticides	179	61-150
WHC1-D25-0	F8L170249005	VOCs	151	79-115
WHC1-D27-0	F8L130169013	Organochlorine Pesticides	1730	61-137
WHC1-D27-0-FD	F8L130169014	Organochlorine Pesticides	230	61-137
WHC1-D27-10	F8L130169015	Organochlorine Pesticides	140	61-137
WHC1-D28-0	F8L130169007	Organochlorine Pesticides	167	61-137
				70-124,
WHC1-D28-10	F8L130169012	Organochlorine Pesticides	167, 206	61-137
WHC1-D29-0	F8L130169010	Organochlorine Pesticides	229	61-137
			163, 138,	72-140, 81-124,
WHC1-P11-0	F8L090162013	VOCs	139, 215	80-125, 47-150
WHC1-P12-0	F8L060161005	Organochlorine Pesticides	125,244	70-124, 61-137
WHC1-P12-11	F8L060161006	Organochlorine Pesticides	150	61-137
WHC2-D01-0	F0H100484001	Organochlorine Pesticides	892, 197	56-116, 49-150
WHC6-D05	160-373-4	Organochlorine Pesticides	152	52-127
WHC6-P11	160-373-11	Organochlorine Pesticides	369, 281	46-150; 52-127
	1		, -	,

^{1 –} Recoveries above the control limit resulted in data to be qualified as estimated "J+". Recoveries below the control limit resulted in data to be qualified as estimated "J-/UJ".

In addition, five flux samples (WHC1-BK01, WHC1-D21, WHC1-D25, WHC1-P10, and WHC1-P11) were qualified as estimated and biased high (J+) and one flux sample (WHC1-D23)

was qualified as estimated and biased low (J-/UJ) due to surrogate recovery exceedances, all below the acceptable range.

Several surrogate recoveries outside the acceptance criteria were lower than the lower laboratory control limit. Further review of surrogate recoveries resulting in a low bias is necessary in terms of data usability for the Site, as discussed in Section 4.6.2.3.

4.5.5 Calibrations Outside Laboratory Control Limits

Requirements for instrument calibration ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run. Continuing calibration checks document satisfactory maintenance and adjustment of the instrument on a day-to-day basis. As presented in the DVSRs, certain data were qualified due to initial or continuing calibration issues. Of specific concern, are analytes with a final qualifier indicating a low bias due to calibration. In the following tables, the percentage of analyte recovered is the percent of the actual continuing calibration concentration recovered. As the percentage decreases, the potential for false negatives increases.

Sulfate soil results in 11 samples (WHC1-BI02-13, WHC1-BI02-3, WCH1-BI03-0, WHC1-BI03-11, WHC1-BJ03-0, WHC1-BJ03-0-FD, WHC1-BJ03-12, WHC1-BJ04-0, WHC1-BJ04-11, WHC1-BK04-0, and WHC1-BK04-10) were qualified as estimated (J+) due to continuing calibration recoveries above the upper control limit (90 to 110 percent). All results were detects.

Table 4-21 summarizes the metal results that were qualified during the evaluation of the calibrations.

TABLE 4-21: SUMMARY OF METAL RESULTS QUALIFIED DUE TO CALIBRATIONS OUTSIDE LABORATORY CONTROL LIMIT

Analyte	# of Samples Qualified	Percent of Qualified Non-Detect	Percentage of Analyte Recovered during ICV or CCV
Beryllium	3	0	111.5%
Boron	1	0	118%

Note: The control limits are 90-110%. Detected results associated with calibration recoveries above the upper control limit were qualified as estimated (J+). Boron results were further qualified as non-detect (UJ).

Table 4-22 summarizes the SVOC results that were qualified as estimated (J/UJ) during the evaluation of the continuing calibrations.

TABLE 4-22: SUMMARY OF SVOC RESULTS QUALIFIED DUE TO CALIBRATIONS OUTSIDE LABORATORY CONTROL LIMIT

	# of Samples	Percent of Qualified	Percentage of Analyte
Analyte	Qualified	Non-Detect	Recovered during CCV
1,4-Dioxane	47	100%	57-72%
2,4-Dinitrophenol	33	100%	72-74%
2-Nitroaniline	54	100%	52-74.9%
4-Nitroaniline	32	100%	54-74%
4-Nitrophenol	30	100%	61-74%
Acetophenone	11	100%	74%
Benzenethiol	3	100%	74%
Benzoic acid	19	100%	65-74%
Benzyl alcohol	170	100%	42-74%
Carbazole	97	100%	52-74%
Dichloromethyl ether	16	100%	68-70%
Hexachlorocyclopentadiene	12	100%	48-72%
Hydroxymethyl phthalimide	46	100%	49-74%
Isophorone	13	100%	74%
Naphthalene	14	100%	74.98%
p-Chloroaniline	27	100%	60-71%
p-Chlorobenzenethiol	3	100%	72%
Phthalic Acid	76	82%	60-74.7%
Pyridine	77	100%	60-74%

Note: The control limits are 75-125% (%D \leq 25%). Detected and non-detect results associated with calibration recoveries below the lower control limit were qualified as estimated (J-/UJ).

Table 4-23 summarizes the organochlorine pesticide results that were qualified as estimated (J/UJ) due to continuing calibrations.

TABLE 4-23: SUMMARY OF ORGANOCHLORINE PESTICIDE RESULTS QUALIFIED DUE TO CALIBRATIONS OUTSIDE LABORATORY CONTROL LIMIT

Analyte	# of Samples Qualified	Percent of Qualified Non-Detect	Percentage of Analyte Recovered during CCV
2,4-DDD	9	0%	116-121%
2,4-DDE	18	0%	115.1-119%
4,4-DDD	8	0%	116-119%
4,4-DDE	25	0%	116-120%
4,4'-DDT	3	0%	116-126%
Alpha-BHC	2	0%	116-119%
Beta-BHC	13	0%	115.1-120%
Endrin aldehyde	2	0%	115.2-126%
Endrin ketone	1	0%	115%
Methoxychlor	3	0%	117-119%
Toxaphene	7	100%	84%

Note: The control limits are 85-115% (%D \leq 15%). Detected and non-detect results associated with calibration recoveries below the lower control limit were qualified as estimated (J-/UJ). Detected results associated with calibration recoveries above the upper control limit were qualified as estimated (J+).

Table 4-24 summarizes the VOC results that were qualified in soil samples due to continuing calibrations.

TABLE 4-24: SUMMARY OF VOC SOIL RESULTS QUALIFIED DUE TO CALIBRATIONS OUTSIDE LABORATORY CONTROL LIMIT

Analyte	# of Samples Qualified	Percent of Qualified Non-Detect	Percentage of Analyte Recovered during CCV
1,3,5-Trichlorobenzene	1	100%	69%
1-Nonanal	1	100%	69%
2,2,3-Trimethylbutane	6	100%	59%
2,2-Dimethylpentane	11	100%	72-74%
2,4-Dimethylpentane	8	100%	65%
3,3-Dimethylpentane	7	100%	58-73%
3-Methylhexane	6	100%	66-70%
Acetone	4	0%	126-131%
Bromomethane	7	100%	72%
Ethanol	34	100%	44-71%
Methyl iodide	7	100%	74%
Vinyl acetate	3	100%	66%

Note: The control limits are 75-125% (%D \leq 25%). Detected and non-detect results associated with calibration recoveries below the lower control limit were qualified as estimated (J-/UJ). Detected results associated with calibration recoveries above the upper control limit were qualified as estimated (J+).

In addition, low instrument response was noted for acetonitrile, ethanol, and methyl ethyl ketone as indicated by the relative response factor. The relative response factor did not meet the minimum response of 0.05. Associated results were qualified as estimated (J/UJ).

Table 4-25 summarizes the dioxins/furans results that were qualified in soil samples due to continuing calibrations.

TABLE 4-25: SUMMARY OF DIOXINS/FURANS SOIL RESULTS QUALIFIED DUE TO CALIBRATIONS OUTSIDE LABORATORY CONTROL LIMIT

Analyte	# of Samples Qualified	Percent of Qualified Non-Detect	Percentage of Analyte Recovered during CCV
Octachlorodibenzofuran	3	0%	138%
Octachlorodibenzodioxin	3	0%	138%
1,2,3,4,6,7,8- Heptachlorodibenzofuran	4	0%	144%
1,2,3,4,7,8,9- Heptachlorodibenzofuran	3	0%	144%
1,2,3,4,7,8- Hexachlorodibenzofuran	4	100%	79.6%
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	3	100%	79.9%
2,3,7,8-Tetrachlorodibenzofuran	4	0%	66%

Note: The control limits are 70-130% (%D \leq 30%) or 80-120% (%D <20%). Detected and non-detect results associated with calibration recoveries below the lower control limit were qualified as estimated (J-/UJ). Detected results associated with calibration recoveries above the upper control limit were qualified as estimated (J+).

Table 4-26 summarizes the VOC (TO-15) results that were qualified in surface flux samples due to continuing calibrations.

TABLE 4-26: SUMMARY OF VOC (TO-15) SURFACE FLUX SAMPLE RESULTS QUALIFIED DUE TO CALIBRATIONS OUTSIDE LABORATORY CONTROL LIMIT

	# of Samples	Percent of Qualified	Percentage of Analyte
Analyte	Qualified	Non-Detect	Recovered during CCV
1,2,3-Trichloropropane	6	83%	61-69%
1,2,4-Trichlorobenzene	3	100%	58-61%
1,2,4-Trimethylbenzene	4	25%	65-68%
1,2-Dichlorobenzene	15	87%	52-69%
1,3,5-Trimethylbenzene	4	25%	65-68%
1,3-Dichlorobenzene	6	100%	59-68%
1,4-Dioxane	3	100%	60-65%
2-Hexanone	29	93%	47-65%
4-Methyl-2-pentanone	27	81%	52-68%
Acetone	5	0%	40%
Acetonitrile	1	100%	65%
Bromoform	1	100%	65%
Carbon disulfide	13	85%	68%
Cymene	3	100%	63-67%
Ethanol	30	23%	51-69%
Freon 11	6	0%	130-155%
Freon 12	1	0%	138%
Isopropylbenzene	4	25%	66-67%
m&p-Xylene	29	76%	65-69%
Naphthalene	4	100%	33-55%
n-Butylbenzene	35	100%	52-69.6%
n-Propylbenzene	4	25%	67-68%
sec-Butylbenzene	1	100%	69%
Styrene	1	100%	69%
tert-Butylbenzene	76	89%	55-68%
trans-1,3-Dichloropropene	2	100%	65-69%
Vinyl acetate	18	61%	62-69.8%

Note: The control limits are 70-130% (%D \leq 30%). Detected and non-detect results associated with calibration recoveries below the lower control limit were qualified as estimated (J-/UJ). Detected results associated with calibration recoveries above the upper control limit were qualified as estimated (J+).

Twenty-four results for TO-15 SIM were rejected due to calibration. Table 4-27 summarizes the VOC (TO-15 SIM) results that were qualified in surface flux samples due to continuing calibrations.

TABLE 4-27: SUMMARY OF VOC (TO-15 SIM) SURFACE FLUX SAMPLE RESULTS QUALIFIED DUE TO CALIBRATIONS OUTSIDE LABORATORY CONTROL LIMIT

Analyte	# of Samples Qualified	Percent of Qualified Non-Detect	Percentage of Analyte Recovered during CCV
1,1,2,2-Tetrachloroethane	17	76%	57-68%
1,2,4-Trichlorobenzene	63	100%	32-50%
Dibromochloropropane	73	97%	26-64%
1,2-Dichloroethane	48	25%	56-63%
1,4-Dichlorobenzene	70	16%	40-67%
Carbon tetrachloride	21	5%	56-153%
Chlorodibromomethane	10	100%	49-141%
Chloroform	24	8%	61-138%
Hexachlorobutadiene	66	94%	21-57%
Naphthalene	67	64%	24-61%

Note: The control limits are 70-130% (%D < 30%). Detected and non-detect results associated with calibration recoveries below the lower control limit were qualified as estimated (J-/UJ). Detected results associated with calibration recoveries above the upper control limit were qualified as estimated (J+).

Tentatively Identified Compounds

For the GC/MS methods, a list and estimated concentrations for tentatively identified compounds (TICs) were provided by the laboratory if detected. Most of the reported TICs were identified as "unknown" or "unknown aldol condensate." Others were as follows:

- (1R,2S,8R,8Ar)-8-acetoxy-1-(2-hydroxyeth
- .beta.-Sitosterol
- .gamma.-Tocopherol
- .psi.,.psi.-Carotene, 7,7',8,8',11,11',1
- 1,1,2,2-Tetrachloroethane
- 1,1-Difluoroethane
- 1,2,3,4-Tetrachlorobenzene
- 1,4-Bis(3-phthalimidopropyl)piperazine
- 1,4-Dichlorobenzene-d4
- 11,13-Dimethyl-12-tetradecen-1-ol acetat
- 13-Docosenamide, (Z)-
- 17-(1,5-Dimethylhexyl)-10,13-dimethyl-4-
- 18-Hydroxyprogesterone
- 1-Chloroeicosane
- 1H-Indene, 5-butyl-6-hexyloctahydro-
- 1-Nonadecene
- 1-Octadecene
- 1-Phenanthrenecarboxylic acid, 1,2,3,4,4
- 2,2-Bis(p-chlorophenyl)ethanol
- 2,2'-Dichlorostilbene

- Dinaphtho(1,2-b:1',2'-d)furan
- Dinaphtho(2,1-b:1',2'-d)furan
- D-Limonene
- Docosane
- Docosane, 11-butyl-
- Docosane, 9-butyl-
- Dodecane, 1-bromo-
- Dodecane, 2,6,10-trimethyl-
- Dodecane, 2,6,11-trimethyl-
- Dodecane, 5,8-diethyl-
- Eicosane
- Eicosane, 10-methyl-
- Erucylamide
- Ethanol, 2-(dodecyloxy)-
- Ethanone, 1-(3-ethylcyclobutyl)-
- Eucalyptol
- Furan, 2-(1,1-dimethylethyl)-4-methyl-
- Heneicosane
- Heneicosane, 11-decyl-
- Hentriacontane

___NDEP Reviewer(s)

- 2,4-DDD
- 2,4-DDE
- 2,4'-DDT
- 2,5-Furandione, 3-dodecyl-
- 2,6,10,14,18,22-Tetracosahexaene, 2,6,10
- 2,6,10,14-Tetramethylpentadecane
- 28-Nor-17.alpha.(H)-hopane
- 2-Acetylpyridine 4-(2-thiazolyl)-3-thios
- 2-Aminobenzoic acid, N-((2-nitrophenylox
- 2-Dodecen-1-yl(-)succinic anhydride
- 2-Hexene, 3,4,4-trimethyl-
- 2-Octanone
- 2-Pentanol
- 2-Pentene, 2,4,4-trimethyl-
- 2-Piperidinone, N-(4-bromo-n-butyl)-
- 3-(2,4-Dichlorophenyl)-2'-acrylonaphthon
- 3,5,6-Trimethyl-p-quinone, 2-(2,5-dioxot
- 4-(4-Chlorophenyl)-2,6-diphenylpyridine
- 4,4-DDD
- 4,4-DDE
- 4,4-DDT
- 4,4'-Dichlorobenzophenone
- 4,4'-Dichlorodiphenylsulphide
- 4,8,12,16-Tetramethylheptadecan-4-olide
- 4-Chlorophenyl methyl sulfone
- 4H-Imidazol-4-one, 2-amino-1,5-dihydro-
- 4-Pyrimidinamine, 2,6-dimethyl-
- 5,9-Dimethyl-2-(1-methylethylidene)-1-cy
- 5-alpha-Androstane
- 5-Benzyl-2-trityl-2H-tetrazole
- 5-Methyl-2-thiophenecarboxaldehyde thios
- 6-Isopropenyl-4,8a-dimethyl-4a,5,6,7,8,8
- 9,12-Octadecadienoic acid (Z,Z)-
- 9-Hexacosene
- 9-Octadecenamide, (Z)-
- 9-Tricosene, (Z)-
- Acetophenone, 2,2,2-triphenyl-
- alpha-BHC
- Androst-4-en-3-one, 17-hydroxy-, (17.bet
- Androstane
- Androstane, (5.beta.)-

- Heptacosane
- Heptacosane, 1-chloro-
- Heptadecane
- Heptadecane, 2,6,10,15-tetramethyl-
- Heptadecane, 9-octyl
- Hexacosane
- Hexadecanamide
- Hexadecane, 1-iodo-
- Hexadecane, 2,6,10,14-tetramethyl-
- Hexadecanoic acid
- Hexadecenoic acid, Z-11-
- Hexasiloxane, tetradecamethyl-
- Lanosterol
- Methane, oxybis(dichloro-
- Methanone, bis(2-chlorophenyl)-
- Methyl n-amyl ketone
- Naphthalene, 1,6-dimethyl-4-(1-methyleth
- Naphthalene, 2,3,6-trimethyl-
- Naphthalene-D8
- n-Decane
- n-Dodecane
- n-Hexadecane
- Nonacosane
- Nonadecane
- n-Tetradecane
- n-Tridecane
- Octacosane
- Octadec-9-enoic acid
- Octadecanamide
- Octadecane
- Octadecane, 1-chloro-
- Octadecane, 1-iodo-
- Octadecane, 2-methyl-
- Octadecanoic acid
- Octamethylcyclotetrasiloxane
- Octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,
- Oleic acid
- o-Terphenyl
- Oxirane, hexadecyl-
- PCB 11
- PCB 15

- Anthracene, 9,10-dichloro-
- Anthracene, 9-chloro-
- Azulene, 1,4-dimethyl-7-(1-methylethyl)-
- Azulene, 4,6,8-trimethyl-
- Behenic amide
- Behenyl chloride
- Benz(e)azulene-3,8-dione, 5-((acetyloxy)
- Benzamide, 3-chloro-N-(4-cyano-5-methyl-
- Benzene, 1,1'-(dichloroethenyliden
- Benzene, pentachloromethyl-
- Benzo(a)cyclopropa(cd)pentalene-1-carbox
- Benzo(c)phenanthrene
- bis(p-Chlorophenyl) sulfone
- Butane, 2-chloro-2-methyl-
- C(14a)-Homo-27-nor-14.beta.-gammaceran-3
- Caprolactam
- Chloroform
- Chloropropylate
- Clotrimazole
- Cycloheptasiloxane, tetradecamethyl-
- Cyclohexadecane
- Cyclohexasiloxane, dodecamethyl-
- Cyclohexene, 4-(4-ethylcyclohexyl)-1-pen
- Cyclononasiloxane, octadecamethyl-
- Cyclopentane, 1,1'-(3-(2-cyclopentylethy
- Cyclopentasiloxane, decamethyl
- Cyclopentene, 1,2,3,3,4-pentamethyl-
- Cyclopentene, 1,2,3,4,5-pentamethyl-
- Cyclotetradecane, 1,7,11-trimethyl-4-(1-
- Decanamide-
- D-Homoandrostane, (5.alpha.,13.alpha.)-
- Dibenzo(b,E)(1,4)dioxin, 2,7-dichloro-
- Z-14-Nonacosane
- Unknown aldol condensate

- PCB 28
- PCB 4
- p-Chlorobenzoylacrylic acid
- Pentacosane
- Pentadecane
- Pentadecane, 2,6,10-trimethyl-
- Phenol, 4-(3-methyl-2-butenyl)
- Phthalic acid, decyl isobutyl ester
- Phthalic acid, isobutyl nonyl ester
- Pregn-1,4,6-triene-3,20-dione,
- Propylene glycol
- p-Terphenyl, 2,5-dichloro-
- Pyridine-3-carboxamide, oxime, N-(2-trif
- Pyrrolidine
- Quebrachamine
- Silane, trichlorooctadecyl-
- Spiro(4.5)decan-7-one, 1,8-dimethyl-8,9-
- Stigmast-4-en-3-one
- Stigmastane
- TETRACOSANE
- Tetradecanamide
- Tetrapentacontane, 1,54-dibromo-
- Thiazole, 4,5-dimethyl-2-(4-methylphenyl
- Toluene
- Tributyl phosphate
- Tricosane
- Tridecane, 1-iodo-
- Tridecane, 7-propyl-
- Tridecanoic acid
- Trispiro(4.2.4.2.4.2.)heneicosane
- Undecane
- Undecane, 2,6-dimethyl-
- Z,E-2,13-Octadecadien-1-ol

Several are target analytes or substituted target analytes (generally substituted PAHs). In addition to the above, an unknown aldol condensate was also reported by the laboratory as being present in 280 samples; the reported concentrations were flagged "U" due to blank contamination. With the exception of beta-sitosterol, d-limonene, eucalyptol, hydroxylprogesterone, lanosterol, p-chlorobenzoylacrylic acid, and androstane, the above named compounds are indicative of

column breakdown and are not likely Site related. Beta-sitosterol is a plant sterol. D-Limonene is the major component of the oil extracted from a citrus rind. Eucalyptol is present in eucalyptus oil and other natural plant oils. Hydroxylprogesterone, lanosterol, and androstane are steroids. These constituents could be present due to some organic matter collected along with the soil sample.

4.5.7 Data Review Summary

For 10,735 of the 74,690 analytical results in the final HHRA dataset, quality criteria were not met and various data qualifiers were added to indicate limitations and/or bias in the data. The definitions for the data qualifiers, or data validation flags, used during validation are those defined in SOP-40 (BRC, ERM and MWH 2009) and the project QAPP (BRC and ERM 2009a). Sample results are rejected based on findings of significant deficiencies in the ability to properly collect or analyze the sample and meet QC criteria. Only rejected data are considered unusable for decision-making purposes, and rejected analytical results are not used in the HHRA.

As noted above, 119 soil sample and 24 flux sample results were rejected in the Site dataset and excluded from the HHRA for the reasons previously noted. Other data points were excluded from the risk assessment not due to data quality issues, but for one of the following reasons: (1) the sample was reanalyzed by the laboratory, or (2) the sample location was removed during a remedial action.

4.6 CRITERION VI – DATA QUALITY INDICATORS

DQIs are used to verify that sampling and analytical systems used in support of project activities are in control and the quality of the data generated for this project is appropriate for making decisions affecting future activities. The DQIs address the field and analytical data quality aspects as they affect uncertainties in the data collected for Site characterization and risk assessment. The DQIs include PARCC. The project QAPP provides the definitions and specific criteria for assessing DQIs using field and laboratory QC samples and is the basis for determining the overall quality of the dataset. Data validation activities included the evaluation of PARCC parameters, and all data not meeting the established PARCC criteria were qualified during the validation process using the guidelines presented in the National Functional Guidelines for Laboratory Data Review for Organics, Inorganics, and Dioxin/Furans (USEPA 1999, 2004d, 2005a, 2008).

4.6.1 Evaluation of Data Precision

Precision is a measure of the degree of agreement between replicate measurements of the same source or sample. Precision is expressed by RPD between replicate measurements. Replicate measurements can be made on the same sample or on two samples from the same source. Precision is generally assessed using a subset of the measurements made. The precision of the data was evaluated using several laboratory QA/QC procedures. Based on BRC's review of the results of these procedures, the overall level of precision for the Site data and the background data (BRC and ERM 2009b) does not limit the usability of a particular analyte, sample, method, or dataset as a whole.

4.6.2 Evaluation of Data Accuracy

Accuracy measures the level of bias that an analytical method or measurement exhibits. To measure accuracy, a standard or reference material containing a known concentration is analyzed or measured and the result is compared to the known value. Several QC parameters are used to evaluate the accuracy of reported analytical results, including:

- Holding times and sample temperatures;
- Calibration limits;
- LCS percent recovery;
- MS/MSD percent recovery;
- Spike sample recovery (inorganics);
- Surrogate spike recovery (organics); and
- Blank sample results.

Detailed discussions of specific exceedances to precision and accuracy (with tables) are provided in the DVSRs and data qualified as a result of this evaluation are presented with qualifiers in the data usability tables in Appendix E (included on the report CD in Appendix B). As presented in Section 4.5, 119 soil sample results and 24 flux sample results were rejected in the Site dataset and excluded from the HHRA. The remaining results were considered sufficiently accurate for risk assessment purposes, as discussed below.

4.6.2.1 Holding Time Exceedances/Sample Condition

There is a potential for analyte loss if the holding time for a sample is exceeded. As discussed in Section 4.5.1, holding times were exceeded in 12 soil samples for cyanide (less than 5 percent of the samples analyzed for that constituent), 68 soil samples for chromium (VI) analysis (29 percent of the samples analyzed), PAHs for four soil samples (less than 2 percent), SVOCs for 16 soil samples (6 percent of the samples), and two soil flux samples (1 percent of the samples). All of the samples were qualified as estimated.

As presented in the DVSRs, all but one Site samples with temperature requirements were received at the laboratory within the required range of 4°± 2° Celsius. Two samples for dioxins/furans, two for PCBs and four for organochlorine pesticides were qualified in less than 2 percent of Site samples due to temperature exceedances. Three radionuclide SPLP samples were qualified due to improper preservation (100 percent of SPLP samples). In addition, one sample was qualified in many analyses since it was not filtered immediately after SPLP extraction (33 percent of samples). No other sample results were qualified based on sample temperatures or due to lack of proper preservation.

4.6.2.2 Calibration Violations Indicating a Low Bias

The instrument calibration checks that resulted in a low bias are summarized in the tables presented in Section 4.5.6. Benzyl alcohol, hexachlorocyclopentadiene, hydroxymethyl phthalimide, and ethanol had recoveries below 50 percent in some samples. All analytes were non-detect in all qualified samples and most have never or seldom been detected at the Eastside property. Hydroxymethyl phthalimide was detected in one sample and ethanol was detected in two samples. Neither was selected as a COPC due to low concentrations relative to the BCLs and both are infrequently detected across the Eastside property. For the non-detect analytes with BCLs, the maximum SQLs were compared to the soil BCL. It is unlikely, even with a potential for a false negative, that the bias could affect the result to such a degree that the analyte is present at the Site in excess of the BCL.

There were three TO-15 surface flux analytes (acetone, 2-hexanone, and naphthalene) that had recoveries below 50 percent in some samples. 2-Hexanone was qualified in 36 percent of samples due to calibration violations. However, recoveries were not below 50 percent in all samples. There were six TO-15 SIM surface flux analytes (1,2,4-trichlorobenzene, dibromochloropropane, 1,4-dichlorobenzene, chlorodibromomethane, hexachlorobutadiene, and naphthalene) that had recoveries below 50 percent in some samples. Recoveries were not below

50 percent in all samples with the exception of 1,2,4-trichlorobenzene. 1,2,4-Trichlorobenzene was not detected in any samples. Dibromochloropropane was detected in 1 of 80 samples. 1,4-Dichlorobenzene was qualified in most samples, but was detected in 5 percent of all samples. Chlorodibromomethane was qualified in 12 percent of samples and was detected in two samples. Hexachlorobutadiene was qualified in most samples and was not detected in any samples. Naphthalene was qualified in most samples, but was detected in over 30 percent of samples. 1,2,4-Trichlorobenzene is discussed further in the uncertainty section.

4.6.2.3 MS/MSD or LCS/LCSD Recoveries below Acceptance Criteria

During the data usability review, results associated with MS/MSD and/or LCS/LCSD recoveries that were only slightly lower than the lower acceptance limit (i.e., 50 to 75 percent recoveries for inorganics) were accepted as usable without further evaluation. Samples with lower percent recoveries (i.e., recoveries lower than 50 percent for inorganics and one-half the lower limit or 30 percent, whichever is greater, for organics) were reviewed more closely to assess if it was appropriate to use them in the HHRA. Inorganic results with MS/MSD recoveries less than 50 percent²⁸ were as follows:

- Antimony results for 21 soil samples in TestAmerica data packages F8L020153 and F8K200234 (all results were non-detections);
- Chromium results for seven soil samples in TestAmerica data package F8L200127 (all results were detected);
- Mercury results for five soil samples in TestAmerica data packages F9L010465 and F9L020487 (most results were non-detections and one result was a detect); and
- Orthophosphate as P results for 15 soil samples in TestAmerica data package F8L020153 (most results were non-detections, those that were detected were further qualified as nondetect).

All results were qualified in 10 percent or fewer of the total number of samples. Given the limited number of samples qualified for the other inorganics, these data points are not likely to have a significant effect on the risk assessment.

Only samples associated with MS/MSD results in which both recoveries were below 50 percent are listed.

As noted in Section 4.5.3, LCS/LCSD recoveries lower than the lower laboratory control limit were observed for the following:

- 1,2-Diphenylhydrazine in seven samples in GEL data package 221654 (all results were non-detected);
- 2,4-Dichlorophenol in seven samples in GEL data package 221654 (all results were non-detected);
- 2,4-Dimethylphenol in 13 samples in GEL data package 220022 (all results were nondetected);
- cis-1,2-Dichloroethene in one sample in TestAmerica data package F8K250122 (the result was non-detected); and
- Hexachlorobutadiene in six soil samples in GEL data package 220742 (all results were nondetected).

None of the analytes were detected in any samples. All of the recoveries were only slightly lower than the lower laboratory control limit; therefore, no concerns were identified regarding their usability.

4.6.2.4 Surrogate Percent Recoveries below Laboratory Control Limit

As noted in Section 4.5.5, surrogate recoveries lower than the lower laboratory control limit were observed in three samples for VOCs, one sample for organochlorine pesticides, and three samples for PAHs. Because the recoveries affected 2 percent of samples or less, no concerns were identified regarding their usability.

4.6.2.5 Blank Contamination

As noted in Section 4.5.2, certain detections were flagged during the data review as being non-detections or estimated with a high bias due to laboratory or field blank contamination. If the associated constituent qualified as being non-detection was, in fact, present in the samples related to the affected blank sample, revising its status to non-detect could result in risk underestimation. In the dataset for the Site, 1,355 results were censored due to blank contamination. Affected soil analytes are listed in Table 4-28.

TABLE 4-28: SUMMARY OF SOIL ANALYTES CENSORED DURING BLANK SAMPLE EVALUATION

of
01 Censored
Results
29
10
3
136
4
46
21
13
6
2
5
6
27
11
68
23
1
4
2
1
7
5
1
6
5
6
3
4

LE EVALUATION Analyte	# of Censored Results
Indeno(1,2,3-c,d)pyrene	1
Phenanthrene	6
Pyrene	4
PCB 105	5
PCB 118	10
PCB 156	1
Radium-226	32
Radium-228	15
Thorium-230	17
Uranium-233/234	16
Uranium-235/236	1
Uranium-238	1
Phthalic acid	2
Total Organic Carbon	134
1,2,4-Trimethylbenzene	80
1,2-Dichlorobenzene	20
1,3,5-Trimethylbenzene	1
Acetone	64
Dichloromethane	93
Ethylbenzene	52
M,p-Xylene	14
o-Xylene	8
Toluene	20
Total Organic Carbon (SPLP)	2
Thorium-230 (SPLP)	2
Boron (SPLP)	2
Lithium (SPLP)	2

In addition, there were several TICs qualified due to blank contamination. See discussion of TICs in Section 4.5.7. Affected surface flux analytes are listed in Table 4-29.

TABLE 4-29: SUMMARY OF SURFACE FLUX ANALYTES CENSORED DURING BLANK SAMPLE EVALUATION

	# of
	Censored
Analyte	Results
1,2,4-Trimethylbenzene	10
1,3,5-Trimethylbenzene	9
4-Methyl-2-Pentanone	7
Acetone	26
Acetonitrile	2
Benzene	71
Carbon disulfide	7
o-Xylene	9
Tert-Butylbenzene	4
Trichloroethene	9
1,1,2,2-Tetrachloroethane	3
1,4-Dichlorobenzene	61
Chloroform	1
Dibromochloropropane	3

	# of
	Censored
Analyte	Results
Ethanol	1
Ethylbenzene	6
Freon-11	1
Freon-12	3
Heptane	12
Isopropylbenzene	6
n-Propylbenzene	6
Styrene	1
Toluene	13
Xylenes	8
1,2-Dichloroethane	6
Carbon tetrachloride	5
Dibromochloromethane	1
Hexachlorobutadiene	4

The constituents for which this potential concern has the most bearing in risk assessment are those in soil samples for which the detections are close to or exceed either (1) background conditions, or (2) relevant human health comparison levels (e.g., NDEP BCLs). As determined during that evaluation, qualification of detections as non-detections based on blank contamination are not likely to have an appreciable effect on the risk estimates, as discussed below.

Censored results that are less than the maximum background concentration and one-tenth the residential soil BCL have a negligible impact on risk assessment findings. If a portion of the result reflects an actual Site concentration, then the uncertainty related to the censored result is low. However, data censored at values at or above background or greater than one-tenth the residential soil BCLs may pose a potential underestimation of human health risks. Therefore, censored results at values in excess of one-tenth the residential soil BCL (or the maximum background concentration, if higher) were evaluated further. Although some soil data for certain radionuclides and thallium were censored due to blank contamination at concentrations in excess of the BCLs, none exceeded background. Table 4-30 identifies the analytes that were censored with results greater than the BCLs.

TABLE 4-30: SUMMARY OF CHEMICAL RESULTS CENSORED AT VALUES ABOVE 1/10TH THE RESIDENTIAL BCL

Analyte	1/10 th BCL	Number of Samples Censored Above 1/10 th BCL	Range of Reported Concentrations
Arsenic	0.039 mg/kg	2	4.9-5.2 mg/kg
Radium-226	0.00071 pCi/g	32	0.358-1 pCi/g
Radium-228	0.0013 pCi/g	15	0.623-0.981 pCi/g
Thorium-230	0.32 pCi/g	17	0.62-0.986 pCi/g
Thorium-232	0.28 pCi/g	2	0.804-0.85 pCi/g
Uranium-233/234	0.42 pCi/g	16	0.601-0.997 pCi/g
Uranium-235/236	0.011 pCi/g	1	0.34 pCi/g
Uranium-238	0.046 pCi/g	1	0.99 pCi/g

Sample results censored above one-tenth the BCL are limited to seven radionuclides and arsenic. Generally, few samples for each analyte were affected. Arsenic was selected as COPCs. Arsenic had only two samples censored, therefore it is unlikely to have had an effect on the risk assessment results. None of the other analytes were selected as COPCs, as described in Section 5. Therefore, the censored results in soil that exceed one-tenth the BCL do not affect the results of the risk assessment.

Surface flux data are not comparable with BCLs. The majority of the censored results are attributable to benzene (71 samples) and 1,4-dichlorobenzene (61 samples). Neither were detected in groundwater and were not selected as a COPC.

4.6.2.6 Data Usability Summary

As discussed above, because the qualifications with the potential for low bias were small in number, the data usability evaluation determined it was unlikely that they could lead to significant risk underestimation. Furthermore, the amount of rejected data points does not represent a significant data gap in terms of risk assessment.

4.6.3 Evaluation of Data Representativeness

Representativeness is the degree to which data accurately and precisely represent a characteristic of the population at a sampling point or an environmental condition (USEPA 2002a). There is no standard method or formula for evaluating representativeness, which is a qualitative term. Representativeness is achieved through selection of sampling locations that are appropriate relative to the objective of the specific sampling task, and by collection of an adequate number of samples from the relevant types of locations. The sampling locations at the Site were based on

both systematic sampling with random point placement within each grid cell, as well as focused samples collected from specific areas to further investigate potential areas of concern.

The samples were analyzed for a broad spectrum of chemical classes across the Site. Samples were delivered to the laboratory in coolers packed with ice to minimize the loss of analytes. In a few instances, such as samples being analyzed slightly beyond the holding time or two samples affected by temperature exceedances, the representativeness of the associated data is in question; however, there were few instances of this, as noted in Section 4.5.1. Sample-specific results are discussed in the DVSRs. A discussion of representativeness for the background dataset is provided in each of the background investigation reports.

4.6.4 Evaluation of Data Completeness

Completeness is commonly expressed as a percentage of measurements that are valid and usable relative to the total number of measurements made. Analytical completeness is a measure of the number of overall accepted analytical results, including estimated values, compared to the total number of analytical results requested on samples submitted for analysis after review of the analytical data. Some of the data were eliminated due to data usability concerns. The percent completeness for the Site is 99.9 percent and includes the surface flux chamber data. The percent completeness for the soil only dataset is 99.9 percent. The percent completeness for the background dataset used in the HHRA is 98.8 percent.

4.6.5 Evaluation of Data Comparability

Comparability is a qualitative characteristic expressing the confidence with which one dataset can be compared with another. The desire for comparability is the basis for specifying the analytical methods; these methods are generally consistent with those used in previous investigations of the Site. The comparability goal is achieved through using standard techniques to collect and analyze representative samples and reporting analytical results in appropriate units. The ranges of detected sample results from the current investigation are generally comparable to recent results at the Eastside property, as well as to the Site background datasets (Section 5).

One exception may be uranium-235/236, which has reported activities that are slightly elevated compared to background and other reported isotopes of uranium. The laboratory that performed the Site radionuclide analysis has indicated that the activities for uranium-235/236 hover around the noise level of the instrument and secular equilibrium is still achieved. Therefore, activities at the noise level of the instrument may vary between the instruments used.

There are differences in SQLs among datasets that may affect data comparability for datasets comprised primarily of non-detect values. Examples of the differences in SQLs at the Site and in background soil for several analytes with low detection frequency are provided in Table 4-31.

TABLE 4-31: LOW DETECTION ANALYTES EXHIBITING SQL DIFFERENCES BETWEEN BACKGROUND AND SITE SAMPLES

	Background Background Site		Site	Site
Analyte	Min SQL	Max SQL	Min SQL	Max SQL ²⁹
Antimony	0.1046	0.3298	0.225	2.7
Boron	2.284	3.2	16.5	56.5
Molybdenum	0.1046	0.1046	0.47	2.8
Selenium	0.1579	0.32	0.225	0.86
Silver	0.2609	0.2609	0.11	1.1
Thallium	0.2	0.5428	0.105	1.1
Tin	0.0526	0.187	0.75	1
Tungsten	0.0175	0.2	0.185	2.8

All results in units of mg/kg.

Cumulative probability plots and side-by-side boxplots for the background and Site datasets are included in Appendix G. For these datasets, left-censored data can result in difficulties in differentiating whether datasets are actually different or merely an artifact of detection limits. Note that for constituents with SQLs that meet project limit requirements, comparisons between Site and background may be less important as these left-censored data are likely to indicate conditions that pose an "acceptable" risk and further evaluation is not necessary.

4.7 DATA ANALYSIS

Data validation and usability evaluations tend to look at the data on a result by result basis. The data analysis step is intended to take a step back and look at the dataset as a whole. The intent of this is to identify any anomalies or unusual data trends that may indicate any potential laboratory issues. This is performed by reviewing summary statistics, cumulative probability plots and side-by-side boxplots, or other visual aids. The soil dataset used for the HHRA is summarized in tabular format in Table 3-4. While it is not feasible to present all the detected analytes in a graphical format, cumulative probability plots and side-by-side boxplots are provided in

²⁹ The SQLs reported here may differ from the detection limits reported elsewhere (e.g., background comparisons). Detection limits may be raised due to blank contamination.

Appendix G for the analytes included in the background comparisons (that is, metals and radionuclides). No anomalies in the dataset were identified.

As discussed in Section 4.5, the data validation process resulted in numerous sample results being qualified as estimated, with few results being rejected. Sample results qualified as estimated are likely to be quantitatively biased to some degree; estimated analytical results are used in the HHRA. Data qualified as anomalous, as defined in the DVSRs, refers to data that were qualified ("U") due to blank contamination, and are used in the HHRA. These data usability decisions follow the guidelines provided in the *Guidance for Data Usability in Risk Assessment (Part A)* (USEPA 1992a).

For the HHRA, all soil data associated with post-remediation conditions that were not rejected during data validation, replaced by reanalysis results, or removed during a soil remedial action were included. Some data were qualified as estimated due to recoveries being outside the acceptance criteria. In cases where the recoveries were higher than the acceptance criteria, the results have the potential of being similarly biased high, and using these data in the risk assessment could result in risks being calculated that are higher than would be associated with actual Site conditions. Of more concern for the HHRA is underestimation of risk, which could be associated with the use of data that are biased low. Results associated with the following QA/QC issues could lead to results that are biased low, and were subjected to further scrutiny during the data usability evaluation:

- Results associated with holding time exceedances;
- Detections qualified during the data review as being non-detections due to laboratory or field blank contamination:
- Results associated with calibration violations indicating a low bias;
- Results associated with MS/MSD or LCS/LCSD recoveries below acceptance criteria; and/or
- Results associated with surrogate percent recoveries below laboratory control limits.

Such data, which are listed above in Section 4.5, were evaluated during the data usability process to determine whether it was appropriate to use them in the risk assessment. The data usability evaluation determined that the estimated results listed in Section 4.5 were appropriate for use in the risk assessment and that the rejected data did not constitute significant data gaps and/or were not otherwise likely to lead to an underestimation of risk, as discussed in Section 4.6.2.

5.0 SELECTION OF CHEMICALS OF POTENTIAL CONCERN

The broad suite of analytes sampled for was the initial list of potential COPCs at the Site. However, to ensure that a risk assessment focuses on those substances that contribute the greatest to the overall risk (USEPA 1989); the following procedures were used to eliminate analytes as COPCs for quantitative evaluation in the risk assessment:³⁰

- Identification of chemicals with detected levels similar to background concentrations (where applicable) (Section 5.1);
- Chemicals that are considered essential nutrients (Section 5.2); and
- Chemicals with maximum concentrations below risk-based comparison levels (i.e., below one-tenth of the residential soil BCLs) (Section 5.3).

Following USEPA guidance (1989), compounds reliably associated with Site activities based on historical information were not eliminated from the risk assessment, even if the results of the procedures given in this section indicate that such elimination is possible. The procedures for evaluating COPCs relative to background conditions and further selection of COPCs based on the other procedures are presented below.

5.1 EVALUATION OF CONCENTRATIONS/ACTIVITES RELATIVE TO BACKGROUND CONDITIONS

Some chemicals at the Site, particularly metals and radionuclides, are known to be naturally occurring constituents of soils and groundwater. A risk assessment should consider the contribution of background concentrations to overall Site risks, as differentiated from those concentrations associated with historical Site operations or regional anthropogenic conditions. Therefore, it is necessary to establish Site-specific background conditions to support the risk assessment.

³⁰ Note that these procedures for selection of COPCs deviate somewhat from those presented in the *BRC Closure Plan*, but are consistent with discussions between BRC and NDEP and their consultants in a December 9, 2010, meeting. BRC will use these procedures for all subsequent risk assessments. BRC intends to revise the *BRC Closure Plan* accordingly to make it consistent with these procedures.

As indicated in the *Background Soil Compilation Report* (BRC and ERM 2010a), the Site is in an area of both McCullough and Mixed lithology (see Figure 12, Qh₁ label).³¹ Also, because background samples were collected well to the south of the Eastside property, and the Site is at the northern boundary of the Eastside property in proximity to the Las Vegas Wash, the alluvium lithologies pinch out at the Site as compared to where the background samples were collected. Therefore, both the shallow and deeper Qal McCullough and Mixed background dataset are considered most representative of background conditions for the Site. Thus, comparison of Site-related soil concentrations to background levels was conducted using both the shallow and deeper Qal McCullough and Mixed background dataset presented in the *Background Soil Compilation Report* (BRC and ERM 2010a). The background dataset used is included in the dataset file on the enclosed report CD in Appendix B.

Background comparisons were performed using the Quantile test, Slippage test, the *t*-test, and the Wilcoxon Rank Sum test with Gehan modification. The Guided Interactive Statistical Decision Tools (GiSdT®) library (Neptune and Company 2009) run from within the R statistical computer software program was used to perform all background comparison statistics. A weight-of-evidence approach is utilized to interpret the results of these analyses. If the detection frequency in both Site and background datasets is greater than 40 percent, then the following rationale is used for evaluation: (1) where one or two results fail one or more of the statistical tests, the remaining testing and statistical information (boxplots, summary statistics) are reviewed to support decision-making regarding whether or not the chemical should be considered consistent with background (as described by the rationale in the table below); and (2) where three or more statistical tests fail, the constituent is considered inconsistent with background. If the detection frequency is less than 40 percent in either the background or Site datasets, then the constituent is evaluated based on boxplots and summary statistics.

For samples with primary and field duplicate results, the Site sample and field duplicate³² are treated as independent samples and both are included in all subsequent data analyses, regardless of whether one or both are non-detect. This is considered appropriate because field duplicate samples represent a discrete and unique measurement of soil chemical conditions proximal to the primary sample (unlike split samples). The field duplicates were compared to the primary

³² Field duplicates are shown in Appendix B and indicated with the "FD" qualifier under the column entitled "Sample Type."

_

³¹ As noted in a letter dated September 17, 2012, from Greg Lovato, NDEP, to Mark Paris, BRC (NDEP 2012b), the 2003 soil background dataset collected by Environ for the City of Henderson is not used for background soil comparison purposes.

sample during the course of data validation. The variances were not out of the line with the variance in results across the Site. Therefore, as distinct soil chemical measurements, they are treated as unique samples in the analyses.

The Qal McCullough and Mixed background dataset was compared to the Site HHRA dataset as a whole. The results of the background comparison evaluation are presented in Table 5-1 (Tables section), and summarized in Table 5-2 below.

TABLE 5-2: SUMMARY OF STATISTICAL BACKGROUND COMPARISON EVALUATION

Chemical	Greater than Background?	Basis
Aluminum	NO	Multiple tests
Antimony	YES	WRS test
Arsenic	YES	Multiple tests
Barium	NO	Multiple tests
Beryllium	NO	Multiple tests
Boron	YES	Multiple tests
Cadmium	YES	Multiple tests
Calcium	YES	Multiple tests
Chromium	YES	Multiple tests
Chromium (VI)	YES	Quantile test
Cobalt	NO	Multiple tests
Copper	YES	Multiple tests
Iron	NO	Multiple tests
Lead	YES	Multiple tests
Lithium	NO	Multiple tests
Magnesium	NO	Multiple tests
Manganese	NO	Multiple tests
Mercury	YES	Multiple tests
Molybdenum	YES	Multiple tests
Nickel	YES	Multiple tests

TABLE 5-2: SUMMARY OF STATISTICAL BACKGROUND COMPARISON EVALUATION

Chemical	Greater than Background?	Basis
Potassium	YES	Multiple tests
Selenium	YES	Multiple tests
Silver	NO	Multiple tests
Sodium	YES	Multiple tests
Strontium	NO	Multiple tests
Thallium	YES	Multiple tests
Tin	YES	Multiple tests
Titanium	YES	Multiple tests
Tungsten	YES	Multiple tests
Uranium	NO	Multiple tests
Vanadium	YES	Multiple tests
Zinc	YES	Multiple tests
Radium-226	NO [*]	Multiple tests
Radium-228	NO [*]	Multiple tests
Thorium-228	NO [*]	Multiple tests
Thorium-230	NO*	Multiple tests
Thorium-232	NO [*]	Multiple tests
Uranium-233/234	NO [*]	Multiple tests
Uranium-235/236	NO [*]	All other radionuclides not greater than background; all results near noise level of instrument
Uranium-238	NO [*]	Multiple tests

^{*}Note that after finalization of the report it was found that certain radionuclides were determined to be above their respective background levels. However, it was also determined that Site risks are equivalent to background risks (that is, both the Site and background radionuclide risks are 5×10^{-4}). Therefore no changes were made to the report based on this omission.

Cumulative probability plots and side-by-side boxplots³³ were also prepared and are included in Appendix G. These plots give a visual indication of the similarities and differences between the

³³ Site and background boxplots were segregated by depth (and all data). This is different than how the data were segregated in the development of exposure point concentrations as presented in Section 6.1.

_

Site and background datasets. The results of this comparison indicate that a number of metals are statistically significant (greater than) with respect to background levels. Due to the large number of sample data in both the Site and background datasets, even small differences between the two are identified as statistically significant. For example, although there were small differences in median concentrations, cobalt, copper, and uranium were found to be statistically greater than background, as shown in Table 5-3.

TABLE 5-3: EXAMPLE DIFFERENCES IN SITE AND BACKGROUND MEDIAN CONCENTRATIONS FOR CHEMICALS STATISTICALLY GREATER THAN BACKGROUND

Metal	Site Median	Background Median	Difference ¹
Copper	18	17	1 mg/kg
Nickel	17	15	2 mg/kg
Zinc	35	33	2 mg/kg

¹ These differences in median concentrations were small relative to both background median concentrations and residential soil BCLs.

It should be noted that statistically significant differences may not represent scientifically and technically relevant differences.

Secular Equilibrium for Radionuclides. For radionuclides, secular equilibrium exists when the quantity of a radioactive isotope remains constant because its production rate (due to the decay of a parent isotope) is equal to its decay rate. In theory, if secular equilibrium exists, the parent isotope activity should be equivalent to the activity of all daughter radionuclides. Pure secular equilibrium is not expected in environmental samples because of the effect of natural chemical and physical processes. However, approximate secular equilibrium is expected under background conditions (NDEP 2009d). Both the thorium-232 and uranium-238 chains were determined to be in approximate secular equilibrium following equivalence testing outlined in the NDEP's *Guidance for Evaluating Secular Equilibrium at the BMI Complex and Common Areas* (NDEP 2009d). The results of the equivalence testing for secular equilibrium are provided in Table 5-4.

TABLE 5-4: EQUIVALENCE TEST FOR SECULAR EQUILIBRIUM

	Equiva	lence Test	Secular	Mean Proportion			
Chain	Delta	<i>p</i> -value	Equilibrium?	Ra-226	Th-230	U-233/234	U-238
U-238	0.1	< 0.0001	Yes	0.2112	0.2849	0.2805	0.2233
				Ra-228	Th-228	Th-232	
Th-232	0.1	< 0.0001	Yes	0.296	0.390	0.314	

Therefore, since no radionuclides failed any background tests and all are in secular equilibrium, all radionuclides are considered to be similar to background. Radionuclides are therefore not evaluated further in the HHRA.

5.2 ESSENTIAL NUTRIENTS

An essential nutrient is a chemical required for normal body functioning that either cannot be synthesized by the body at all, or cannot be synthesized in amounts adequate for good health, and thus must be obtained from a dietary source. USEPA (1989) states that "Chemicals that are (1) essential human nutrients, (2) present at low concentrations (i.e., only slightly elevated above naturally occurring levels), and (3) toxic only at very high doses (i.e., much higher than those that could be associated with contact at the Site) need not be considered further in the quantitative risk assessment. Examples of such chemicals are calcium, iron, magnesium, potassium, and sodium." As discussed with and approved by the NDEP³⁴ and consistent with guidance and standard practices, no further quantitative evaluations are required for these essential nutrients.

5.3 COMPARISON TO RESIDENTIAL SOILS BASIC COMPARISON LEVELS

BCLs for residential soils are chemical-specific, risk-based concentrations in soils that are protective of a residential land use scenario (NDEP 2013). As discussed with and approved by the NDEP (see footnote 30), if the maximum detected concentration for a constituent is less than one-tenth of the residential soil BCL, then no further quantitative evaluation is required for that constituent. For those constituents with 100 percent non-detect values, if the maximum non-detect concentration³⁵ for a constituent is less than one-tenth of the residential soil BCL, no further evaluation will be conducted. If the maximum non-detect concentration is greater than

The non-detect value is equal to the SQL.

³⁴ Meeting with NDEP on December 9, 2010.

one-tenth of the residential soil BCL, no further quantitative evaluation will be conducted; however, a discussion is provided in the Uncertainty Analysis (Section 7) for these constituents.

Consistent with the Closure Plan, if the TCDD TEQ concentrations do not exceed the NDEP worker BCL of 50 ppt for any sample within the Site, dioxins/furans are not retained as COPCs. Therefore, because this criterion is met for the Site, dioxins/furans are not considered COPCs, and are not evaluated further in the HHRA. Lead was also not evaluated further in the HHRA since all concentrations were below its target goal of 400 mg/kg for residential land use.

The results of comparisons to one-tenth of the residential soil BCL are presented in Table 5-5 (Tables section). Three organic compounds and seven inorganic/metals were found to exceed their respective one-tenth of the residential soil BCL (one inorganic chemical, asbestos, does not have BCLs, but does have relevant and available toxicity criteria).

5.4 SUMMARY OF SELECTION OF CHEMICALS OF POTENTIAL CONCERN

The procedures for COPC selection were discussed above. Results of the selection of COPCs, including the rationale for excluding chemicals as COPCs are presented in Table 5-6 (Tables section). The resulting COPCs for soil are summarized below.

- 4.4-DDE
- Ammonia
- Arsenic
- Asbestos
- Carcinogenic PAHs

- Cyanide
- Hexachlorobenzene
- Perchlorate
- Thallium
- Vanadium

These procedures apply to soil results. Ambient air exposures for VOCs are evaluated on a sample-by-sample basis, per NDEP requirements, using the surface flux data measurements. See Section 6.1.2 for selection of VOCs for further evaluation in the HHRA. Therefore, the maximum surface flux risk estimates are summed with the soil risk estimates to provide an upper-bound risk for each receptor.

6.0 HUMAN HEALTH RISK ASSESSMENT

This section presents the HHRA of all COPCs identified in Section 5 for all receptors of concern via all complete pathways. The methods used in the risk assessment follow standard USEPA guidance. Specifically, the methods used in the risk assessment followed basic procedures outlined in the USEPA's *Risk Assessment Guidance for Superfund: Volume I—Human Health Evaluation Manual* (USEPA 1989). Other guidance documents consulted include:

- Risk Assessment Guidance for Superfund: Volume I—Human Health Evaluation Manual. Supplemental Guidance: Standard Default Exposure Factors (USEPA 1991b).
- Guidelines for Exposure Assessment (USEPA 1992b).
- Soil Screening Guidance: Technical Background Document (USEPA 1996).
- Exposure Factors Handbook, Volumes I-III (USEPA 1997).
- Soil Screening Guidance for Radionuclides (USEPA 2000).
- Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (USEPA 2002b).
- Technical Support Document for a Protocol to Assess Asbestos-Related Risk. Final Draft (USEPA 2003b).
- Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) (USEPA 2004e).
- *Child-Specific Exposure Factors Handbook* (USEPA 2006).
- Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment) (USEPA 2009a).

Various NDEP guidance documents are also relied on for the HHRA. These include:

- Supplemental Guidance for Assessing Data Usability for Environmental Investigations at the BMI Complex and Common Areas in Henderson, Nevada (NDEP 2008a).
- Guidance for Evaluating Radionuclide Data for the BMI Plant Sites and Common Areas Projects (NDEP 2009a).

- Supplemental Guidance on Data Validation (NDEP 2009b,c).
- Guidance for Evaluating Secular Equilibrium at the BMI Complex and Common Areas (NDEP 2009d).
- Technical Guidance for the Calculation of Asbestos-Related Risk in Soils for the Basic Management Incorporated (BMI) Complex and Common Areas (NDEP 2011a).
- Workbook for the Calculation of Asbestos-Related Risk in Soils for the Basic Management Incorporated (BMI) Complex and Common Areas (NDEP 2011b).

The risk assessment is a deterministic risk assessment, meaning that single values based on conservative assumptions are used for all modeling, exposure parameters, and toxicity criteria. These conservative estimates compound each other so that the calculated risks likely exceed the true risks at the Site.

The method used in the risk assessment consists of several steps. The first step is the calculation of exposure point concentrations representative of the particular area, for each medium of concern. This step includes fate and transport modeling to predict concentrations that may be present when direct measurements are not available. The second step is the exposure assessment for the various receptors present in the particular areas. The next step is to define the toxicity values for each COPC. The final step is risk characterization where theoretical upper-bound cancer risks and non-cancer HIs are calculated.

6.1 DETERMINATION OF EXPOSURE POINT CONCENTRATIONS

A representative exposure concentration is a COPC-specific and media-specific concentration value. In risk assessment, these exposure concentrations are values incorporated into the exposure assessment equations from which potential baseline human exposures are calculated. As described below, the methods, rationale, and assumptions employed in deriving these concentration values follow USEPA guidance and reflect Site-specific conditions.

Chemical, physical, and biological processes may affect the fate and transport of chemicals in water, soil, and air. Chemical processes include solubilization, hydrolysis, oxidation-reduction, and photolysis. Physical processes include advection and hydrodynamic dispersion, volatilization, dispersion, and sorption/desorption to soil, sediment, and other solid surfaces. Biological processes include biodegradation, bioaccumulation, and bioconcentration. All of these processes are dependent upon the physical and chemical properties of the chemicals, the physical

and chemical properties of the soil and water, and other environmental factors such as temperature, humidity, and the conditions of water recharge and movement. The net effect of these environmental factors is a time-dependent reduction of chemical concentrations in water, soil, and air. The determination of exposure point concentrations for media other than soil take into account chemical-specific physical parameters and inter-media transfers as discussed below. All modeling input parameters, calculations, and results are presented in Appendix H (included on the report CD in Appendix B).

6.1.1 Soil

Due to the uncertainty associated with determining the true average concentration at a site, where direct measurements of the site average are infeasible and unavailable, the USEPA recommends using the lower of the maximum detected concentration or the 95 percent UCL as the concentration of a chemical to which an individual could be exposed over time (USEPA 1992b). For the 95 percent UCL concentration approach, the 95 percent UCL was computed to represent the area-wide exposure point concentrations. The 95 percent UCL is a statistic that quantifies the uncertainty associated with the sample mean. If randomly drawn subsets of Site data are collected and the UCL is computed for each subset, the UCL equals or exceeds the true mean roughly 95 percent of the time. The purpose for using the 95 percent UCL is to derive a conservative, upper-bound estimate of the mean concentration, which takes into account the different concentrations to which a person may be exposed at the Site. That is, an individual will be exposed to a range of concentrations that exist at an exposure area, from non-detect to the maximum concentration, over an entire exposure period.

A 95 percent UCL was calculated using the summary.stats() function in the GiSdT[®] package (Neptune and Company 2009) in R (R Core Team 2012). Section 5.1 outlines the treatment of sample locations with field duplicates prior to the 95 percent UCL statistical calculations described in this section. For these calculations, chemical non-detect results are assigned a value of one-half the SQL. The formulas for calculating the 95 percent UCL COPC concentration (as the representative exposure concentration) are presented in USEPA (1992c, 2002c) and GiSdT[®] (Neptune and Company 2009). Three UCL methods are employed in the GiSdT[®] library. They include the Student's t UCL, the bootstrap percentile UCL, and the bootstrap BCa UCL. The maximum UCL of these three methods was used as the exposure point concentration, unless the maximum UCL of the three methods was greater than the maximum detected concentration. In these cases, the maximum detected concentration was selected as the exposure point concentration.

The representativeness of the 95 percent UCLs for the exposure area, that is, a Site-wide mean concentration is valid for all receptors at the Site, is further supported by the intensity plot figures included in Appendix I. Figures for each of the COPCs are included in Appendix I (in addition to figures developed for all metals). A figure is also presented for TCDD TEQ. Although not COPCs for the Site, TCDD TEQ is a primary chemical of interest for the project.

Based on a review of the probability plots, boxplots, and distribution and intensity plot figures, data across the Site are assumed to be uncorrelated, that is, there is no discernible spatial correlation. There are several chemicals for which the plots indicate that soil concentrations may not be spatially representative of a single population. For example, lead concentrations in Western and Alpha ditches of the Site appear to differ slightly from those in the rest of the Site. However, future mixing of soil due to re-grading will likely lessen such spatial patterns. Thus, the assumption is made for statistical testing purposes that the data are not spatially correlated. This results in lower p-values and hence a greater number of statistical differences than would be the case if spatial correlation were accounted for. Ignoring correlation therefore causes conservatism, and the need to further evaluate spatial correlation is not warranted. Therefore consistent with the project *Statistical Methodology Report* (NewFields 2006), each measurement is assumed to be equally representative for that chemical at any point in the Site and calculation of the 95 percent UCL is appropriate. The data were also reviewed for the presence of hot spots, and as discussed in Section 3.6, no potential hot spots were identified at the Site; therefore, separate exposure areas were not evaluated in the HHRA.

Representative exposure concentrations for soil are based on the potential exposure depth for each of the receptors. For all receptors, five different exposure depths are considered, based on the sample depth rules schematic presented in Section 3: all data (surface, subsurface, and fill); data classified as fill material only; data classified as fill material and/or surface soil; data classified as surface soil; and all data excluding data classified as fill material.

These different soil exposure classifications are considered to represent all possible exposure potential for all receptors, based on the future grade and use of Site soils. Ninety-five percent

³⁷ Some variability of the data is expected, if there was perfect homogeneity, then only one sample would be needed to represent the Site. This natural variability is demonstrated by the background datasets for the project. As shown on the probability and boxplots in Appendix G, the data generally follow a normal distribution, and their variability are similar to the background data.

-

³⁶ Although the *Statistical Methodology Report* states that confirmation measurements of each chemical in a given soil layer will be used to compute variograms, as noted in the text above, this was not conducted for the Site, which is a deviation from the *BRC Closure Plan* methodology.

UCLs are calculated for each of these five different exposure depth scenarios. Although specific-receptors would not necessarily be exposed to all depth ranges (for example, residents and construction workers are considered to have potential exposures to 10 feet bgs, while commercial workers only to surface soils), to be conservative, the highest of the five values was used in the risk estimates for each COPC. The 95 percent UCL for each COPC is presented in Table 6-1 (Tables section). For indirect exposures, this concentration was used in fate and transport modeling.

The exposure point concentrations for asbestos (USEPA 2003b, NDEP 2011a) were based on the pooled analytical sensitivity of the dataset. The asbestos data and analytical sensitivities are presented in Table 6-2. Therefore, asbestos exposure point concentrations are determined differently than those for the other COPCs. The pooled analytical sensitivity is calculated as follows:

Pooled Analytical Sensitivity =
$$1/\left[\sum_{i}(1/analytical\ sensitivity\ for\ trial\ i)\right]$$

Two estimates of the asbestos concentration were evaluated, best estimate and upper bound, as defined in the draft methodology (USEPA 2003b). The best estimate concentration is similar to a central tendency estimate, while the upper bound concentration is comparable to a reasonable maximum exposure estimate. The pooled analytical sensitivity is multiplied by the number of chrysotile or amphibole structures to estimate concentration:

Estimated Bulk Concentration ($10^6 \text{ s/gPM}10$) = Long fiber count × Pooled analytical sensitivity

For the best estimate, the number of fibers measured across all samples is incorporated into the calculation above. The upper bound of the asbestos concentration was also evaluated. It is calculated as the 95 percent UCL of the Poisson distribution mean, where the Poisson mean was estimated as the total number of structures detected across all samples. In Microsoft Excel, the following equation may be employed to calculate this value:

95 percent UCL of Poisson Distribution Mean = CHIINV(1-upper confidence percentile, $2 \times (\text{Long fiber count} + 1))/2$

This value is then multiplied by the pooled analytical sensitivity to estimate the upper bound concentration. The intent of the risk assessment methodology is to predict the risk associated with airborne asbestos. In order to quantify the airborne asbestos concentration, the estimated dust levels or particulate emission factors (PEFs) were used:

Estimated Airborne Concentration (s/cm 3) = Estimated bulk concentration (10 6 s/gPM10) × Estimated dust level (ug/cm 3)

Further explanation of the asbestos risk calculations and estimates are provided in the NDEP's *Technical Guidance for the Calculation of Asbestos-Related Risk in Soils* (2011a) and *Workbook for the Calculation of Asbestos-Related Risk in Soils* (2011b).

6.1.2 Indoor Air

USEPA's 2002 Vapor Intrusion Guidance

BRC has reviewed USEPA's 2002 Vapor Intrusion Guidance (2002d), and believes that the approach used for the Site conforms to this guidance. The guidance recommends and BRC has followed a tiered approach to address vapor intrusion for each of the Eastside sub-areas, including the Western Hook-Development Sub-Area. First, in each of the sub-area SAPs, including that for the Site, BRC has identified each of the chemicals (VOCs and volatile SVOCs) to be evaluated further in each sub-area (that is, a Tier 1 assessment).

Second, BRC explicitly compared the existing groundwater data for wells that are located within (or adjacent to) that sub-area with the USEPA 2002 Tier 2 comparison values (provided in lookup tables in the guidance document). Thus, this Tier 2 assessment was done in the NDEP-approved SAPs for each of the sub-areas. The Tier 2 comparison table for the Site is provided in Appendix J (Table J-1; note that where possible, groundwater concentrations have been updated with the most recent groundwater monitoring event for VOCs in August 2012). As shown in this table, all VOCs and volatile SVOCs pass a Tier 2 assessment.

Third, BRC has conducted a site-specific HHRA for vapor intrusion using surface flux data on a sample-by-sample basis, per NDEP recommendations (that is, a Tier 3 assessment; see below). As noted in USEPA's 2002 guidance for a Tier 3 site-specific assessment: "If buildings are not available or not appropriate for sampling, for example in cases where future potential impacts need to be evaluated, other more direct measures of potential impacts, such as emission flux chambers or soil gas surveys, may need to be conducted in areas underlain by subsurface contamination." Thus flux measurements are allowed under USEPA's guidance.

Fourth, BRC has also evaluated the various factors pertaining to vapor intrusion, including depth to groundwater, the nature of the soil column from ground surface to groundwater (see Table 6-2A below), and, water quality (*i.e.*, the constituents likely to be present in groundwater

and which might pose any vapor intrusion concerns). BRC has performed a more detailed site-specific evaluation of vapor intrusion potential at a comparison study area within the Eastside property. Based on Site-specific conditions, including depth to groundwater, VOC concentrations in groundwater (which are generally less near the Site - for example, chloroform concentration in groundwater of 0.16 to 4.1 micrograms per liter [μ g/L] at the Site versus 180 to 1,200 μ g/L at the comparison study area), and expected similar soil physical property, the comparison study area presents a similar potential for vapor intrusion than the Site (and as shown below in Table 6-2A, in all cases, ILCRs and non-cancer HIs are at or below acceptable levels). See the table below for various parameters.

TABLE 6-2A: SOIL PROPERTIES RESULTS FOR SITE AND COMPARISON STUDY AREA

Parameter	Comparison Study Area	Western Hook- Development Sub-Area	Units
Particle Density ¹	2.7	2.7	g/cm ³
Gravimetric Soil Moisture ¹	4.46	6.29	percent
Porosity ¹	33.8	41.6	percent
Permeability ¹	0.0019	0.00079	cm/sec
Bulk Density ¹	1.8	1.6	g/cm ³
Organic Carbon Content ¹	1.1	6.0	percent
USCS Soil Types	SM/GM/GW/ML	SM/GM/GW/ML	
Depth to Groundwater	49 to 60	> 20	feet bgs
Chloroform in Groundwater	180 to 1,200	0.16 to 4.1	μg/L

¹Values presented are averages for each area. For example, the range of permeabilities for the Site are 0.00012 to 0.0015 cm/sec, while those for the comparison study area are 0.00029 to 0.0065 cm/sec.

g/cm³ = gram per cubic centimeter cm/sec = centimeter per second

BRC has performed a detailed evaluation of vapor intrusion risk assessments for chloroform at the comparison study area location, showing that risks were acceptable (residential indoor ILCRs ranged from 1×10^{-8} to 9×10^{-7} , and non-cancer HIs were well below 1.0).³⁹ The comparison

³⁹ For comparison, chloroform residential indoor ILCRs for the Site were 7×10^{-9} to 2×10^{-5} and non-cancer HIs were well below 1.0; and vapor intrusion ILCRs for the Mohawk sub-area were 4×10^{-8} to 9×10^{-7} and non-cancer HIs were well below 1.0.

3

³⁸ Note that the comparison study was done pursuant to a work plan approved by the NDEP (December 19, 2009); however, a final report on this study was not submitted to the NDEP for approval.

study area risk estimate calculations are provided electronically in Appendix J (included on the report CD in Appendix B). Input parameters and results for the indoor air calculations for the comparison study area location are also provided in Appendix J (Tables J-2 through J-6).

Finally, BRC is aware of USEPA's recent *Review of the Draft 2002 Subsurface Vapor Intrusion Guidance* (USEPA 2010b). Issues and recommendations identified in this document, as well as the USEPA Office of Inspector General's *Evaluation Report—Lack of Final Guidance on Vapor Intrusion Impedes Efforts to Address Indoor Air Risks* (USEPA 2009b), focus primarily on Tier 1 and Tier 2 assessments, and ultimately will not affect how indoor air exposures have been evaluated for the Site.

Site-Specific Tier 3 Assessment

Concentrations of volatile constituents (VOCs and certain SVOCs) in soil and groundwater that may infiltrate buildings to be constructed at the Site through cracks in the foundations are estimated using USEPA surface emission isolation flux chamber (flux chamber) measurements collected at the Site in accordance with USEPA (1986) guidance and the Flux Chamber SOP-16 (BRC, ERM, and MWH 2009). The flux chamber is used to measure the emission rates from surfaces emitting gas species. Use of the flux chamber reduces the need for modeling surface flux rates, which potentially reduces the uncertainty in the air representative exposure concentrations and the risk characterization. Because the flux chamber measurements were conducted outdoors on open soil, an "infiltration factor" is applied to the outdoor surface flux data to generate data supporting the inhalation of indoor air exposure pathway. The infiltration factor is based on the factors found in the American Society for Testing and Materials (ASTM) Standard Guide for Risk-Based Corrective Action (2000). The indoor air concentrations are determined from the surface flux measurements using the following mixing equation:

$$C_a = \frac{J \times \eta}{L \times ER}$$

where:

 C_a = indoor air concentration (milligram per cubic meter [mg/m³])

J = measured flux of chemical (milligram per square meter per minute)

 η = foundation crack fraction (unitless)

L = enclosed space volume/infiltration area ratio (meter)

ER = enclosed space air exchange rate (1/min)

Default parameter values from ASTM (2000) for residential and commercial buildings were used (as presented in Section 9 of the NDEP-approved *BRC Closure Plan* [BRC, ERM, and DBS&A 2007; Section 9 revised March 2010]). These default parameters are presented in the electronic indoor air calculation files in Appendix J (included on the report CD in Appendix B). As noted in Section 5.4, indoor air exposures are evaluated on a sample by sample basis, per NDEP requirements, using the surface flux data measurements.

Those VOCs and volatile SVOCs that did not pass the Tier 2 assessment (see above) are evaluated at each individual surface flux location. However, to be consistent with the selection of COPCs for soil; one-tenth of the groundwater Tier 2 comparison values were used. Based on this, only tetrachloroethene had groundwater concentrations greater than one-tenth Tier 2 comparison values. However, because chloroform is a VOC of particular concern in groundwater beneath the Eastside property, both tetrachloroethene and chloroform were evaluated further in the vapor intrusion Tier 3 assessment.

Indoor air concentrations based on the surface flux data measurements are shown in the electronic indoor air calculation files in Appendix H (included on the report CD in Appendix B) and are summarized in Table 6-3 (Tables section). In all cases, the maximum of the two flux chamber measurements (TO-15 full scan and TO-15 SIM) is used.

6.1.3 Outdoor Air

Long-term exposure to COPCs bound to dust particles is evaluated using the USEPA's PEF approach (USEPA 2002b). The PEF relates concentrations of a chemical in soil to the concentration of dust particles in the air. The Q/C (Site-Specific Dispersion Factor) values in this equation are for Las Vegas, Nevada (Appendix D of USEPA 2002b). The equation used is:

PEF = Q/C_{wind} x
$$\frac{3,600 \text{ sec/hr}}{0.036 \text{ x} (1 - \text{V}) \text{ x} (\text{U}_{\text{m}}/\text{U}_{\text{t}})^3 \text{ x} \text{ F(x)}}$$

where:

PEF = Particulate emission factor (cubic meter per kilogram $[m^3/kg]$)

 Q/C_{wind} = Inverse of the ratio of the geometric mean air concentration to the emission flux at the center of a square source (g/m^2 -s per kg/m^3)

V = Fraction of vegetative cover (unitless)

 U_m = Mean annual windspeed (m/s)

 U_t = Equivalent threshold value of windspeed at 7m (m/s)

F(x) = Function dependent on U_m/U_t derived using USEPA (1985) (unitless)

and

$$Q/C_{wind} = A \times exp \frac{(\ln A_{site} - B)^2}{C}$$

where

 A_{site} = Source Area (acre)

A, B, C = Air Dispersion Constants for LV (unitless)

The dust model and parameters utilized to generate the PEF are presented in Table 6-4.

The USEPA guidance for dust generated by construction activities (USEPA 2002b) was used for assessing short-term construction worker exposures:

$$PEF = \frac{1}{\left(\left(\frac{1}{PEF_{sc}}\right) + \left(\frac{1}{PEF_{sc_road}}\right)\right)}$$

where:

PEF_{sc} = Subchronic particulate emission factor for construction activities (m³/kg) PEF_{sc road} = Subchronic particulate emission factor for unpaved road traffic (m³/kg)

Input soil concentrations for the model are the exposure point concentrations as described above. The construction dust model and all relevant equations and parameters utilized to generate the construction worker PEF from this guidance are provided in Table 6-5. Site-specific surface soil moisture data were collected in January-April and June-September. The average of the surface soil data is 6.0 percent. This is considered an adequate representation of the annual average; therefore, this value is used for the percent moisture in dry road surface parameter instead of the NDEP model default value.

In addition, for receptors with indoor exposures (i.e., residents, indoor commercial workers), a dilution factor is applied to obtain an indoor air concentration of dust particles, based on USEPA (2000).

The flux chamber measurements as described in Section 6.1.2 above are used for exposures to VOCs and volatile SVOCs in outdoor air if the chemical was present in the TO-15 analyte list. If the VOC or volatile SVOC was measured in soil, but not on the TO-15 analyte list, then the exposure point concentration was estimated using USEPA's volatilization factor. Outdoor surface flux data are divided by the dispersion factor for volatiles (Q/C_{vol} for Las Vegas; from USEPA 2002b) for use in the outdoor air exposure pathway. The same dispersion factor is used for all scenarios. The dispersion factor for the construction worker is not adjusted to account for soil intrusion activities. Outdoor air concentrations based on soil data for all receptors are shown in Table 6-6. Outdoor air concentrations based on the surface flux data measurements are shown in the electronic indoor air calculation files in Appendix H (included on the report CD in Appendix B) and are summarized in Table 6-3.

6.1.4 Homegrown Produce

Consistent with the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010) and USEPA guidance, the consumption of homegrown produce is an applicable exposure pathway for residential receptors. Representative exposure concentrations in plants were obtained using the soil 95 percent UCL for each COPC, multiplied by plant uptake factors. As per the Closure Plan, plant uptake factors were obtained from USEPA (2005b) and Baes et al. (1984). Plant uptake factors for inorganics were obtained from empirical data, where available. Plant uptake factors for organics are calculated based on the following equations (from USEPA 2005b):

Aboveground plant uptake factor:

$$log Br_{above} = 1.588 - 0.578 log K_{ow}$$

Belowground plant uptake factor:

$$Br_{below} = \frac{RCF}{Kd_s} \times VG$$

where:

 $Br_{above} = above ground plant uptake factor (mg/kg plant DW/mg/kg soil)$

 $Br_{below} \quad = \quad below ground \ plant \ up take \ factor \ (mg/kg \ plant \ DW/mg/kg \ soil)$

 K_{ow} = octanol/water partitioning coefficient (unitless)

RCF = root concentration factor (mg/g plant DW/mg/mL soil water)

Kd_s = Soil-water partition coefficient (mL water/g soil)

VG = empirical correction factor for belowground produce (unitless) (0.01 for COPCs

with a log K_{ow} greater than 4 and 1.0 for COPCs with a log K_{ow} less than 4)

Plant uptake factors are presented in Table 6-7. See Section 7.2.3 regarding plant uptake of perchlorate.

6.2 EXPOSURE ASSESSMENT

In a risk assessment, the possible exposures of populations are examined to determine if the chemicals at a site could pose a threat to the health of identified receptors. The risks associated with exposure to chemicals depend not only on the concentration of the chemicals in the media, but also on the duration and frequency of exposure to those media. For example, the risks associated with exposure to chemicals for 1 hour a day are less than those associated with exposure to the same chemicals at the same concentrations for 2 hours a day. Potential health impacts from chemicals in a medium can occur via one or more exposure pathways. The exposure assessment step of a risk assessment combines information regarding impacted media at a site with assumptions about the people who could come into contact with these media. The result is an estimation of a person's potential rate of contact with impacted media from the Site. The intake rates are evaluated in the risk characterization step to estimate the risks they could pose.

In this section, assumptions regarding people's activities, such as the frequency with which a person could come into contact with impacted media, are discussed. Finally, the daily doses at the points of potential human contact were estimated using these assumptions, the models described in Section 6.1, and the chemical concentrations reported for soil and surface flux samples collected from the Site.

6.2.1 Exposure Parameters

In this section, the assumptions regarding the extent of exposure are presented for each of the exposure pathways for each medium of concern at the Site. Tables 6-8 and 6-9 present each of the exposure parameters used in the risk assessment for each receptor and each pathway. Many of the assumptions regarding the extent of exposure are default factors developed by USEPA's Superfund program. Default values were modified to reflect Site-specific conditions, where possible. The exposure parameters used in the risk assessment were those defined in Tables 9-2

through 9-5 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010).

6.2.2 Quantification of Exposure

In this section, the concentrations of COPCs at the points of potential human exposure are combined with assumptions about the behavior of the populations potentially at risk to estimate the dose of COPCs that may be taken in by the exposed individuals. Later, in the risk characterization step of the assessment, the doses are combined with toxicity parameters for COPCs to estimate whether the calculated intake levels pose a threat to human health.

The method used to estimate the average daily dose (ADD) for non-carcinogen COPCs via each of the complete exposure pathways is based on USEPA (1989, 1992b) guidance. For carcinogens, lifetime ADD (LADD) estimates are based on chronic lifetime exposure, extrapolated over the estimated average lifetime (assumed to be 70 years). This establishes consistency with cancer slope factors (CSFs), which are based on chronic lifetime exposures. For non-carcinogens, ADD estimates are averaged over the estimated exposure period. ADDs and LADDs were calculated for each exposure scenario using the following generic equation:

$$Dose = \frac{C \times IR \times ED \times EF}{BW \times AT \times 365 \, d/yr}$$

where:

Dose = ADD for non-carcinogens and LADD for carcinogens (in mg/kg-day)

C = chemical concentration in the contact medium (e.g., mg/kg soil)

 $IR \quad = \quad intake \ rate \ (e.g., \ mg/day \ soil \ ingestion \ and \ dermal \ contact \ [requires \ a \ conversion$

factor of 10⁻⁶ kilograms per milligram];

ED = exposure duration (years of exposure)

EF = exposure frequency (number of days per year)

BW = average body weight over the exposure period (kilograms)

BIO = relative bioavailability (unitless)

AF = absorption fraction (percent)

AT = averaging time; same as the exposure duration for non-carcinogens and 70 years

(average lifetime) for carcinogens

Risk estimates for inhalation exposures follow USEPA's Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment) (USEPA 2009a). That is, the concentration of a chemical in air is

used as the exposure metric (e.g., mg/m³), rather than inhalation intake of a chemical in air based on inhalation rate and body weight (e.g., mg/kg-day). The generic equation for calculating inhalation exposures is:

$$EC = \frac{C_{air} \times ET \times ED \times EF}{AT}$$

where:

EC = exposure concentration (in mg/m³)

 C_{air} = chemical concentration in air (in mg/m³)

ET = exposure time (hours per day)

ED = exposure duration (years of exposure)

EF = exposure frequency (number of days per year)

AT = averaging time; same as the exposure duration for non-carcinogens and 613,200 hours (i.e., 70 years; average lifetime) for carcinogens

Pathway-specific equations for calculating ADDs and LADDs are provided in Table 9-6 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010). For conservatism, the relative oral bioavailability of all COPCs was assumed to be 100 percent, except for arsenic. Consistent with the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), an arsenic oral bioavailability of 30 percent is used.

Chemical-specific dermal absorption values from USEPA guidance (USEPA 2004e [Part E RAGS]) were used in the risk assessment. USEPA does not recommend absorption factors for VOCs based on the rationale that VOCs from the soil are volatilized on skin and exposure is accounted for via inhalation routes. In addition, RAGS Part E (USEPA 2004e) states "For inorganics, the speciation of the compound is critical to the dermal absorption and there are too little data to extrapolate a reasonable default value." Therefore, dermal absorption factors are also not used for inorganics. The NDEP and its consultants have concurred with this decision.

Exposure levels of potentially carcinogenic and non-carcinogenic chemicals are calculated separately because different exposure assumptions apply (i.e., ADD for non-carcinogens and LADD for carcinogens). Exposure levels are estimated for each relevant exposure pathway (i.e., soil, air, and water), and for each exposure route (i.e., oral, inhalation, and dermal). Daily doses for the same route of exposure are summed. The total dose of each chemical is the sum of doses

across all applicable exposure routes. As noted previously, radionuclides are consistent with background concentrations and are not addressed in this HHRA.

6.2.3 Asbestos

Although final USEPA guidance is unavailable at this time, USEPA recommends that site-specific risk assessments be performed for asbestos (USEPA 2004f). Risks associated with asbestos in soil are evaluated using the NDEP's *Technical Guidance for the Calculation of Asbestos-Related Risk in Soils* (2011a) and *Workbook for the Calculation of Asbestos-Related Risk in Soils* (2011b), and the draft methodology proposed by USEPA (2003b). This methodology is an update of the method described in *Methodology for Conducting Risk Assessments at Asbestos Superfund Sites-Part 1: Protocol* and *Part 2: Technical Background Document* (Berman and Crump 1999a,b). Because the risk assessment methodology for asbestos is unlike that for other COPCs, asbestos risks are evaluated separately from other chemical risks.

The intent of the risk assessment methodology is to predict the amount of airborne asbestos, which causes an unacceptable risk to a human receptor. Asbestos concentrations are measured in soil, and are then used to predict airborne asbestos concentrations using a dust emissions model. Asbestos data are collected from the top 2 inches of soil. While asbestos might exist below the top 2 inches of soil due to soil turnover, the concentrations in the surface soil are likely to be greater than concentrations beneath the surface, and exposure to the top 2 inches of soil is the most likely point of contact for asbestos. Therefore, the "shallow" surface soils asbestos concentration estimate is used to represent the potential exposure to asbestos.

To interpret measurements of asbestos in soils, it is necessary to establish the relationship between the asbestos concentrations observed in soils and concentrations that will occur in air when such soil is disturbed by natural or anthropogenic forces. This is because asbestos is a hazard when inhaled (see, for example, Berman and Crump 2001; USEPA 2003b). Indeed, the Modified Elutriator Method (Berman and Kolk 2000), which was the method employed to perform the analyses presented in this report, was designed specifically to facilitate prediction of airborne asbestos exposures based on bulk measurements (see, for example, Berman and Chatfield 1990).

Briefly, the Modified Elutriator Method incorporates a procedure for isolating and concentrating asbestos structures as part of the respirable dust fraction of a sample, and analytical measurements are reported as the number of asbestos structures per mass of respirable dust in the sample. This turns out to be precisely the dimensions required to combine such measurements

with published dust emission and dispersion models to convert them to asbestos emission and dispersion models. These models can be combined with measurements from the Modified Elutriator Method to predict airborne exposures and assess the attendant risks.

6.3 TOXICITY ASSESSMENT

This section describes the toxicity of the COPCs at the Site. Numerical toxicity values were developed for use in the calculation of the hazard quotients (HQs; for non-carcinogens) and risks (for carcinogens).

6.3.1 Toxicity Values

Toxicity values, when available, are published by the USEPA in the on-line Integrated Risk Information System [IRIS]; USEPA 2015). CSFs (in units of milligrams per kilogram per day [mg/kg-d]⁻¹) are chemical-specific and experimentally derived potency values that are used to calculate the risk of cancer resulting from exposure to potentially carcinogenic chemicals. Inhalation unit risks (IURs) represent the upper-bound excess lifetime cancer risk from continuous exposure to a chemical at a concentration of 1 microgram per cubic meter (μg/m³). A higher value implies a more potent carcinogenic potential. Reference dosages (RfDs) are experimentally derived "no-effect" levels used to quantify the extent of toxic effects other than cancer due to exposure to chemicals (in units of mg/kg-d). Similarly, a reference concentration (RfC) is the derived "no-effect" concentration for a lifetime of continuous inhalation exposure (in units of mg/m³). With RfDs or RfCs, a lower value implies a more potent toxicant. These criteria are generally developed by USEPA risk assessment work groups and listed in the USEPA risk assessment guidance documents and databases. Available toxicity values for all Site COPCs used in the risk assessment were obtained using the following hierarchy for selecting toxicity criteria (based on USEPA 2003c):

- 1. IRIS;
- 2. USEPA's Provisional Peer Reviewed Toxicity Values (PPRTVs);
- 3. National Center for Environmental Assessment (or other current USEPA sources);
- 4. Health Effects Assessment Summary Tables (HEAST);

- 5. USEPA Criteria Documents (e.g., drinking water criteria documents, drinking water Health Advisory summaries, ambient water quality criteria documents, and air quality criteria documents);
- 6. ATSDR toxicological profiles;
- 7. USEPA's Environmental Criteria and Assessment Office; and
- 8. Peer-reviewed scientific literature.

In addition, toxicity criteria and toxicological surrogates recommended by the NDEP are used in the risk assessment. Toxicity criteria are consistent with those used in the development of the NDEP's BCLs (NDEP 2013), unless newer values are available from USEPA. Toxicity criteria have not been developed by BRC for elements or compounds that do not have criteria published in the above sources.

Although USEPA has developed toxicity criteria for the oral and inhalation routes of exposure, it has not developed toxicity criteria for the dermal route of exposure. USEPA has proposed a method for extrapolating oral toxicity criteria to the dermal route in the *Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment)* (USEPA 2004e). USEPA states that the adjustment of the oral toxicity factor for dermal exposures is necessary only when the oral-gastrointestinal absorption efficiency of the chemical of interest is less than 50 percent (due to the variability inherent in absorption studies). For COPCs to which dermal exposure might occur at the Site, the oral-gastrointestinal absorption efficiencies are greater than 50 percent, except for vanadium. Therefore, the USEPA-indicated adjustment of the oral toxicity criteria to generate dermal criteria was performed for this COPC.

6.3.2 Non-Carcinogenic Health Effects

For non-carcinogenic health effects, USEPA assumes that a dose threshold exists, below which adverse effects are not expected to occur. A chronic RfD or RfC of a chemical is an estimate of a lifetime daily dose to humans that is likely to be without appreciable deleterious non-carcinogenic health effects. To derive an RfD or RfC, a series of professional judgments is made to assess the quality and relevance of the human or animal data and to identify the critical study and the most critical toxic effect. Data typically used in developing the RfD or RfC are the highest no-observable-adverse-effect-levels (NOAELs) for the critical studies and effects of the non-carcinogen. For each factor representing a specific area of uncertainty inherent in the

extrapolation from the available data, an uncertainty factor is applied. Uncertainty factors generally consist of multiples of 10, although values less than 10 are sometimes used.

Four major types of uncertainty factors are typically applied to NOAELs in the derivation of RfDs or RfCs. Uncertainty factors of 10 are used to (1) account for the variability between humans; (2) extrapolate from animals to humans; (3) account for a NOAEL based on a subchronic study instead of a chronic study; and (4) extrapolate from a lowest-observed-adverse-effect-level (LOAEL) to a NOAEL, if necessary. In addition, a modifying factor can be used to account for adequacy of the database. Typically, the modifying factor is set equal to one.

To obtain the RfD or RfC, all uncertainty factors associated with the NOAEL are multiplied together, and the NOAEL is divided by the total uncertainty factor. Therefore, each uncertainty factor adds a degree of conservatism (usually one order of magnitude) to the RfD or RfC. An understanding of the uncertainties associated with RfDs or RfCs is important in evaluating the significance of the HIs calculated in the risk characterization portion of the risk assessment. When available, sub-chronic RfDs or RfCs were used to evaluate construction worker exposures. The COPCs in this assessment with USEPA-established oral/dermal and inhalation RfDs or RfCs are presented in Tables 6-10 and 6-11, for surface flux and soil COPCs, respectively.

6.3.3 Carcinogenic Health Effects

USEPA develops CSFs and IURs from chronic animal studies or, where possible, epidemiological data. Because animal studies use much higher doses over shorter periods of time than the exposures generally expected for humans, the data from these studies are adjusted, typically using a linearized multi-stage (LMS) mathematical model. To ensure protectiveness, CSFs/IURs are typically derived from the 95th percentile UCL of the slope, and thus the actual risks are unlikely to be higher than those predicted using the CSF/IUR, and may be considerably lower. The COPCs in this assessment with USEPA-established oral/dermal and inhalation CSFs/IURs are presented in Tables 6-10 and 6-12, for surface flux and soil COPCs, respectively.

6.3.4 Asbestos

Asbestos toxicity criteria were obtained from Table 8-1 of Berman and Crump's (2001) document and Tables 8-2 and 8-3 in the USEPA (2003b) guidance. The toxicity criteria vary based on fiber type, endpoint (lung cancer, mesothelioma, or combined) and percent of fibers longer than 10 micrometers (μ m) and less than 0.4 μ m in width. For this risk assessment, the toxicity criteria were based on a combined endpoint of lung cancer and mesothelioma averaged

over the smokers and non-smokers of the population, with the assumption that 50 percent of fibers are greater than 10 µm in length. The resulting unit risk factors (structures/cubic centimeter) are presented in Appendix H (included on the report CD in Appendix B). A complete discussion on issues associated with risk estimates for asbestos is presented in the NDEP's *Technical Guidance for the Calculation of Asbestos-Related Risk in Soils* (2011a).

6.4 RISK CHARACTERIZATION

In the last step of a risk assessment, the estimated rate at which a receptor intakes a chemical is compared with information about the toxicity of that COPC to estimate the potential risks posed by exposure to the COPC. This step is known as risk characterization. The methods used for assessing cancer risks and non-cancer adverse health effects are discussed below.

6.4.1 Methods for Assessing Cancer Risks

In the risk characterization, carcinogenic risk is estimated separately as the incremental probability of an individual developing cancer over a lifetime as a result of exposure to chemicals and asbestos. Carcinogenic risks for chemicals were evaluated by multiplying the estimated average exposure rate (i.e., LADD calculated in the exposure assessment) by the chemical's CSF or IUR. The CSF converts estimated daily doses averaged over a lifetime to incremental risk of an individual developing cancer. Because cancer risks are averaged over a person's lifetime, longer-term exposure to a carcinogen results in higher risks than shorter-term exposure to the same carcinogen, if all other exposure assumptions are constant. Theoretical risks associated with low levels of exposure in humans are assumed to be directly related to an observed cancer incidence in animals associated with high levels of exposure while the IUR converts estimated exposure concentrations averaged over a lifetime to incremental risk of an individual developing cancer. According to USEPA (1989), this approach is appropriate for theoretical upper-bound ILCRs of less than 1×10^{-2} . The following equations were used to calculate COPC-specific risks and total risks:

$$Risk = EC \times IUR \quad or \quad LADD \times CSF$$

where:

LADD = lifetime average daily dose (mg/kg-d)

EC = exposure concentration (mg/m³) IUR = inhalation unit risk (mg/m³)⁻¹ CSF = cancer slope factor (mg/kg-d)⁻¹

and:

Total Carcinogenic Risk = Σ *Individual Risk*

It is assumed that cancer risks for different chemicals and from multiple exposure routes are additive, which introduces a protective bias in the result of the cancer risk assessment. Carcinogenic risk estimates were compared to the USEPA acceptable, incremental risk range of 1 in $10,000 (10^{-4})$ and 1 in 1 million (10^{-6}) and the NDEP's acceptable, incremental level of 10^{-6} . If the estimated incremental risk falls within or below this risk range, the chemical is considered unlikely to pose an unacceptable carcinogenic risk to individuals under the given exposure conditions. A risk level of 1×10^{-5} (1 E-5) represents an incremental probability of one in 100,000 that an individual could develop cancer from exposure to the potential carcinogen under a defined set of exposure assumptions.

6.4.2 Methods for Assessing Non-Cancer Health Effects

Non-cancer adverse health effects are estimated by comparing the estimated average exposure rate (i.e., ADDs estimated in the exposure assessment) with an exposure level at which no adverse health effects are expected to occur for a long period of exposure (e.g., the RfDs or RfCs). ADDs (or exposure concentrations [ECs]) and RfDs (or RfCs) are compared by dividing the ADD by the RfD (or EC by the RfC) to obtain the ADD:RfD (EC:RfC) ratio, as follows:

$$HQ = \frac{EC}{RfC} or \frac{ADD}{RfD}$$

where:

HQ = hazard quotient

ADD = average daily dose (mg/kg-d)

EC = exposure concentration (mg/m^3)

RfD = reference dose (mg/kg-d)

RfC = reference concentration (mg/m^3)

The ADD-to-RfD (EC-to-RfC) ratio is known as an HQ. If a person's average exposure is less than the RfD or RfC (i.e., if the HQ is less than 1), the chemical is considered unlikely to pose a significant non-carcinogenic health hazard to individuals under the given exposure conditions. Unlike carcinogenic risk estimates, an HQ is not expressed as a probability. Therefore, while both cancer and non-cancer risk characterizations indicate a relative potential for adverse effects

to occur from exposure to a chemical, a non-cancer adverse health effect estimate is not directly comparable with a cancer risk estimate.

If more than one pathway is evaluated, the HQs for each pathway are summed to determine whether exposure to a combination of pathways poses a health concern. This sum of the HQs is known as an HI.

$$Hazard\ Index = \Sigma Hazard\ Quotients$$

Any HI less than 1.0 indicates the exposure is unlikely to be associated with a potential health concern. If the HI is greater than 1.0, then the HQs are summed by the specific target organs affected by a particular chemical or chemicals. This is also summed across pathways and chemicals. Target organs are identified primarily by the source of the toxicity criteria (e.g., IRIS). Since a chemical may affect more than one organ, in addition to the source of the toxicity criteria Oak Ridge National Laboratory's (ORNL) Risk Assessment Information System's toxicity profiles were also searched for target organ information (ORNL 2015). The target organs for the COPCs are shown in Table 6-13 (Tables section).

6.4.3 Methods for Assessing Asbestos Risks

For assessing asbestos risks, Table 8-2 (Based on Optimum Risk Coefficients) of USEPA (2003b) was used. Table 8-2 presents best estimate risks optimized based upon separation of fiber type, size and endpoint (mesothelioma/lung cancer), thereby reducing apparent variation between the studies utilized. The values in Table 8-2 are used because they are the authors' "best" estimates of potency based upon all the available data (whereas the "conservative values" presented in Table 8-3 present only the most conservative, and best "behaved" data). As described in USEPA (2003b), because the asbestos risks to male and female smokers/non-smokers are different, population averaged risks are evaluated based on Equation 8-1 of USEPA (2003b):

$$URF = 0.5 \times ((0.786 \times (NSM + NSF)) + ((0.214 \times (SM + SF)) \times CF)$$

where:

URF = Population Averaged Unit Risk Factor (risk per fibers/cubic centimeter [cm³])

NSM = risk for male non-smokers

NSF = risk for female non-smokers

SM = risk for male smokers SF = risk for female smokers

CF = factor to convert risk from risk per 100,000 to risk per 1,000,000

This equation considers male smokers, male non-smokers, female smokers, and female non-smokers. In addition, because both chrysotile and amphibole have been detected at the BMI Common Areas, both amphibole and chrysotile fibers are evaluated in the risk assessments, regardless of if either was detected within an exposure area (as calculated using the 95 percent UCL of the mean of the assumed underlying Poisson distribution).

The basic equation for assessing inhalation cancer risk for asbestos is analogous to that recommended by USEPA for other inhalation carcinogens. As shown in Equation 11 of *Risk Assessment Guidance for Superfund, Part F* (USEPA, 2009a), inhalation cancer risk is the product of an IUR factor and an exposure concentration. The exposure concentration is a function of the asbestos air concentration, the length of time an individual is exposed, and the averaging time for which carcinogenic effects are evaluated for the unit risk factor. This calculation of asbestos-related risk (ARR) is also consistent with application of Berman and Crump (2003) to risk calculations described in Berman (2003a,b; 2005). The risk equation used in performing an asbestos inhalation risk assessment is:

$$ARR = \frac{C_{air} \times URF \times ET \times EF \times ED}{AT}$$

where:

 C_{air} = air concentration of asbestos (f/cm³) (fibers per centimeter cubed)

ET = exposure time (hours/day)

EF = exposure frequency (days/year)

ED = exposure duration (years)

AT = averaging time (hours)

URF = unit risk factor (risk per f/cm^3)

Asbestos risk estimates are compared to the USEPA acceptable, incremental risk range for carcinogens of 1 in $10,000~(10^{-4})$ and 1 in 1 million (10^{-6}) and the NDEP's acceptable, incremental level of 10^{-6} , although the risk estimates represent the probability of death from mesothelioma or lung cancer rather than the probability of contracting cancer. If the estimated asbestos risk falls within or below this risk range, asbestos is considered unlikely to pose an unacceptable risk to individuals under the given exposure conditions. A risk level of $1 \times 10^{-5}~(1~\text{E-5})$ represents a probability of one in 100,000 that an individual could die from contracting mesothelioma or lung cancer from exposure to asbestos under a defined set of exposure assumptions.

6.4.4 Risk Assessment Results

The calculation of theoretical upper-bound ILCRs and non-cancer health effects are presented by receptor in Tables 6-14 through 6-18 (Tables section) and are discussed in Section 8. These tables present the theoretical upper-bound ILCRs and non-cancer health effects calculations for residential (including background), construction worker, commercial (indoor) worker, and maintenance (outdoor) worker receptors. The risk of death from lung cancer or mesothelioma as a consequence of exposure to asbestos on a Site-wide basis is presented in Table 6-19 (Tables section). All calculation spreadsheets are provided in Appendix H (included on the report CD in Appendix B). As discussed in Section 8, based on the results of the HHRA, exposures to residual levels of chemicals in soil at the Western Hook-Development Sub-Area should not result in adverse health effects to any of the future receptors evaluated.

7.0 UNCERTAINTY ANALYSIS

Risk estimates are values that have uncertainties associated with them. These uncertainties, which arise at every step of a risk assessment, are evaluated to provide an indication of the uncertainty associated with a risk estimate. Risk assessments are not intended to estimate the true risk to a receptor associated with exposure to chemicals in the environment. In fact, estimating the true risk is impossible because of the variability in the exposed or potentially exposed populations. There are always gaps in knowledge because a true exposure for every individual human being cannot be measured. Therefore, risk assessment is a means of estimating the probability that an adverse health effect (e.g., cancer, impaired reproduction) will occur in a receptor to assist in decision-making regarding the protection of human health. The use of conservative values for a majority of the assumptions in risk assessments helps guard against the underestimation of risks.

Risk estimates are calculated by combining Site data, assumptions about individual receptor's exposures to impacted media, and toxicity data. The uncertainties in this HHRA can be grouped into four main categories that correspond to these steps:

- Uncertainties in environmental sampling and analysis;
- Uncertainties in fate and transport modeling (discussed in Section 9);
- Uncertainties in assumptions concerning exposure scenarios; and
- Uncertainties in toxicity data and dose-response extrapolations.

General uncertainties associated with the HHRA for the Site are summarized in Table 7-1. In this table, "Low," "Moderate," and "High" are qualitative indicators as to whether the source of uncertainty will likely have a small, medium, or large effect on the risk calculations, respectively. In general, the scenarios and parameters evaluated and used in this HHRA are considered conservative based on how the Site will be developed. This is a large source of potential conservative bias in this HHRA. Additional discussion on the uncertainties associated with the HHRA is provided below.

7.1 ENVIRONMENTAL SAMPLING

The HHRA for the Site was based on the sampling results obtained from investigations conducted from 2008 through 2014. Errors in sampling results can arise from the field sampling, laboratory analyses, and data analyses.

The environmental sampling at the Site is one source of uncertainty in the evaluation. However, the number of sampling locations and events is large, widespread and spatially distributed, with consistent analytical results (i.e., no hot spots), and sampling was performed using approved procedures; therefore, the sampling and analytical data are sufficient to characterize the impacts and the associated potential risks.

Because of the surface soil removal undertaken for certain chemicals, the new surface layer of the Site could have different chemical concentrations than those measured prior to soil removal. Because only the trigger constituents were reanalyzed for in the post-scrape samples, the original measured surface soil data at the Site for all other chemicals was retained for further evaluation. However, it is reasonable to assume that the concentrations are now lower for some chemicals (e.g., metals, if due to contamination), because of the removal of some soil.

The laboratory data are another potential source of uncertainty. Maximum SQLs for dichloromethyl ether and N-nitrosodi-n-propylamine exceeded one-tenth their residential soil BCL. These chemicals were not evaluated quantitatively in the HHRA as they were not detected in any Site samples. This may result in an underestimation of risk. Additional SQL exceedances occurred for arsenic, toxaphene, 1,2-diphenylhydrazine, 3,3-diphenylhydrazine, bis(2-chloroethyl)ether, hexachlorobenzene, nitrobenzene, p-chloroaniline, and pentachlorophenol. However, these are limited to one to two samples and don't represent a significant underestimation of risk.

A significant low bias was noted for 1,2,4-trichlorobenzene in the surface flux dataset. Calibration recoveries were below 50 percent associated with all samples. 1,2,4-Trichlorobenzene was not detected in any samples and risks due to 1,2,4-trichlorobenzene may be underestimated.

The types of analyses were chosen based on historical knowledge of the Site and BMI Common Areas. The data validation and data usability evaluations provided documentation that the HHRA database is adequate to support HHRA conclusions (Section 4 and Appendix E). Based on the data validation and data usability, the risk estimates are likely to be overestimated rather than underestimated.

NDEP has issued recent guidance regarding qualifying data due to blank contamination (NDEP 2011c). As noted in the guidance, NDEP requires that data validated before June 2011 and impacted by blank contamination be discussed in any report that uses such data. In so doing, a semi-quantitative comparison of the potential differences between approaches taken previously and the requirements specified in the guidance will be described and explained. The discussion below provides this semi-quantitative comparison for data impacted by blank contamination for the Site.

A majority of sample results for the Site were collected and validated prior to June 2011; therefore, these data were qualified using prior USEPA and NDEP guidance. The issue of blank contamination is not one that affects the typical primary risk drivers for the project, including those for the Site. The primary risk drivers for the Site are arsenic, thallium, and vanadium. Of these, arsenic and thallium had blank contamination issues. For both arsenic and thallium, only two samples (out of 392 and 243, respectively) had blank contamination issues. Both samples, in each case, were collected prior to June 2011. Because of the limited number of samples affected, this issue has no material effect on the results of the HHRA for the Site.

The following other metals had samples qualified due to blank contamination: antimony (six samples), beryllium (five samples), boron (six samples), cadmium (27 samples), chromium (VI) (11 samples), mercury (68 samples), molybdenum (23 samples), silver (four samples), sodium (one sample), tin (one sample), and tungsten (seven samples). Given the number of samples qualified due to blank contamination for a few of these, this may have an impact on the background comparison statistics. However, in all cases, the maximum detected concentrations for these metals are less than one-tenth their respective BCLs (and their maximum non-detect concentrations are also less than one-tenth their BCLs). Therefore, this issue has no material effect on the selection of COPCs and the results of the HHRA for the Site.

Uncertainties are also introduced into the risk assessment by assumptions that are made regarding the grading plan. As described in Section 3.1, the grading plan affects the interpretation of the data in terms of assigning samples to the surface or the subsurface. This was done to avoid the situation in which current surface samples might not be included in the evaluation of exposures to future surface soils. The data were subdivided by depth intervals as described in Section 3.1, and the maximum of the UCLs for the subsets of data was used as the exposure point concentration. There is some uncertainty in the choice of subsetting on the concentrations of interest, and there is a potential small overestimation of risk by choosing the

maximum of the UCLs as the exposure point concentration. The effects are likely to be small given the data, since there is not much variation in the different UCLs.

7.2 ESTIMATES OF EXPOSURE

The selection of exposure pathways is a process, often based on best professional judgment, which attempts to identify the most probable potentially harmful exposure scenarios. In a risk assessment, it is possible that risks are not calculated for all of the exposure pathways that may occur, possibly causing some underestimation of risk.

7.2.1 Aggregation of Exposure Areas

For the residential scenario that is evaluated, default exposure areas are one-eighth acre in size. However, sampling has not been performed at the frequency of guaranteeing at least one sample per every one-eighth acre exposure area. Instead, sampling has been performed at the scale of approximately once every 3 acres. This is considered sufficient if the concentration distribution for COPCs appears similar across the Site. To the extent that this assumption is not valid, the risk assessment might underestimate risks. However, considering the sampling protocols employed and the physical remediation activities performed, the risk estimates are considered both reasonable from this perspective and unlikely to have resulted in an underestimation of risk at the Site.

7.2.2 Types of Exposures Examined

In an evaluation, risks are sometimes not calculated for all of the exposure pathways that may occur, possibly causing some underestimation of risk. However, in this case, all principal potential exposure pathways were evaluated. In this assessment, risks were estimated for future on-site residents, and indoor and outdoor worker receptors. Risks for the most likely routes of exposure to these receptors were estimated. For example, risks to residents were estimated for soil ingestion, skin contact with soil, inhalation of outdoor air (including dust generation), inhalation of indoor air, and ingestion of homegrown produce. Although it is possible that other exposure routes could exist (e.g., downwind off-site residents), these exposures are expected to be lower than the risks associated with the pathways considered.

7.2.3 Intake Assumptions Used

The risks calculated depend largely on the assumptions used to calculate the rate of COPC intake. For this assessment, standard default values developed by USEPA are used for reasonable

maximum exposures frequency and exposure duration for all receptors. These estimates are conservative values, and the possibility that they underestimate the risk is low. The uncertainties associated with particular parameters used in this risk assessment are described below.

The amount of COPCs the human body absorbs may be different from the amount of a COPC contacted, and the percentage absorbed may vary from one person to another. In this HHRA, absorption of ingested and inhaled COPCs, with the exception of arsenic, is conservatively assumed to be 100 percent.

Current USEPA guidance (USEPA 2004e) states that, "There are no default dermal absorption values presented for volatile organic compounds nor inorganic classes of compounds. The rationale for this is that in the considered soil exposure scenarios, volatile organic compounds would tend to be volatilized from the soil on skin and should be accounted for via inhalation routes in the combined exposure pathway analysis. For inorganics, the speciation of the compound is critical to the dermal absorption and there are too little data to extrapolate a reasonable default value." While USEPA guidance does not specifically state that this pathway should be dismissed, consistent with the approach utilized in current USEPA guidance, the risk estimates in this HHRA do not include a dermal absorption value for VOCs or inorganics (unless a specific value has been identified). Thus, the risks presented in this assessment could be underestimated as a result.

While there have been numerous studies in recent years detailing the presence of perchlorate in vegetable and fruit produce, the homegrown exposure pathway was not evaluated for perchlorate in the HHRA. BRC has not been able to identify an appropriate soil-to-plant uptake factor for this pathway. The studies predominantly focus on water-to-plant uptake. Dr. W. Andrew Jackson at Texas Tech University has been studying perchlorate plant uptake and does not believe that the soil-to-plant pathway for a garden scenario is realistic for perchlorate (Jackson 2010). Perchlorate is extremely soluble and in surface soil would rapidly be flushed away due to application of irrigation water (Jackson 2010). In addition, laboratory experiments have demonstrated that perchlorate may be reduced to chloride in some plants (ATSDR 2008b). Also, concentrations of perchlorate in soils at this Site are quite low relative to risk levels of concern, so the contribution of perchlorate to risk is quite small. Adding the soil-to-plant component is unlikely to contribute significantly to the risk. Consequently, the effect on the risk assessment of excluding perchlorate from the soil-to-plant pathway is likely to be small.

Soil preparation for a backyard garden is not accounted for in the HHRA and would result in reduced soil concentrations. Las Vegas area soils are "...alkaline, clayish, caliche or hard and salty. [In addition,]...soils are lacking organic matter and nutrients" (Mills 2000). Therefore, residential gardening cannot occur in Site soils in its existing condition. For non-native vegetation to grow, soil amendments must be added. Recommended soil preparations for the area include thoroughly blending equal amounts of organic matter with the soil, as well as the addition of other soil amendments (e.g., fertilizers).

The construction activity dust emissions did not take into account dust control measures that would reduce the amount of dust generated to below those levels used in the HHRA. The Clark County Department of Air Quality and Environmental Management has dust control permitting requirements, and an inhalable particulate matter action level of $50 \, \mu \text{g/m}^3$. The construction activity dust emissions predicted and used in the HHRA exceeded this level. Therefore, dust suppression activities would need to be implemented, thus reducing dust levels and exposures.

The dispersion factor for the construction worker is not adjusted to account for soil intrusion activities. Because these activities may cause increased air concentrations than that evaluated, risks to VOCs in soil may be underestimated for this receptor. However, VOCs are primarily associated with groundwater; this potential underestimation is considered low.

Using a process similar to the selection of COPCs for soil, only those VOCs and volatile SVOCs that did not pass the Tier 2 assessment in Section 6.1.2 were evaluated at each individual surface flux location. Based on this, only two of the 67 chemicals analyzed for in surface flux samples were included in the cumulative risks associated with the inhalation of VOCs. Therefore, the cumulative risks associated with the inhalation of VOCs for all exposure scenarios are underestimated in the HHRA; however, this underestimation is considered low.

7.3 TOXICITY ASSESSMENT

The availability and quality of toxicological data is another source of uncertainty in the risk assessment. Uncertainties associated with animal and human studies may have influenced the toxicity criteria. Carcinogenic criteria are classified according to the amount of evidence available that suggests human carcinogenicity. In the establishment of the non-carcinogenic criteria, conservative safety factors, known as uncertainty and modifying factors, are used.

7.3.1 Chemicals of Potential Concern Lacking Toxicological Data

Toxicity criteria have not been established for some of the chemicals detected at the Site. These chemicals were not quantitatively evaluated in the HHRA. For example, potassium is an analyte for which no USEPA toxicity criteria have been established, and non-cancer toxicity criteria for 4,4-DDE are lacking. The health effects and levels of concern for potassium (and non-cancer effects for 4,4-DDE) in soil are not known. While not including potassium (and non-cancer effects for 4,4-DDE) may have resulted in a low degree of underestimation of quantitative Site risk estimates, the available toxicological information suggests that this underestimation will not likely affect the decisions made relative to Site risks.

Because of the inconclusive nature of TICs as potentially SRCs, non-cancer surrogate toxicity criteria were not applied. Non-cancer surrogate toxicity criteria were not applied to the inorganic chemicals because of the complexity of ion and metal toxicity. A quantitative estimation of risk was not conducted for these COPCs. Thus, the risks presented in this assessment could be underestimated as a result.

7.3.2 Uncertainties in Animal and Human Studies

Extrapolation of toxicological data from animal tests is one of the largest sources of uncertainty in a risk assessment. There may be important, but unidentified, differences in uptake, metabolism, and distribution of chemicals in the body between the test species and humans. For the most part, these uncertainties are addressed through use of conservative assumptions in establishing values for RfDs, RfCs, CSFs, and IURs, which results in the likelihood that the risk is overstated.

Typically, test animals are administered high doses (e.g., maximum tolerated dose) of a chemical in a standard diet or in air. Humans are generally exposed to much lower doses in the environment, which may affect the toxicity of the chemical. In these studies, test animals, often laboratory rodents, are exposed daily to the chemical agent for various periods of time up to their 2-year lifetimes. Humans have an average 70-year lifetime and may be exposed either intermittently or regularly for an exposure period ranging from weeks to a full lifetime. Because of these differences, it is not surprising that extrapolation error is a large source of uncertainty in a risk assessment.

7.3.3 Non-Carcinogenic Toxicity Criteria

In the establishment of the non-carcinogenic criteria, conservative safety factors, known as uncertainty factors, are used. Most of the chronic non-carcinogenic toxicity criteria that were located in the IRIS database have uncertainty factors of 1,000. This means that the dose corresponding to a toxicological effect level (e.g., LOAEL) is divided by 1,000 to deem a safe, or "reference," dose. The purpose of the uncertainty factor is to account for the extrapolation of toxicity data from animals to humans and to ensure the protection of sensitive individuals.

7.3.4 Sub-Chronic Non-Carcinogenic Toxicity Criteria

Construction worker exposures are evaluated for an exposure duration of 1 year, which is more representative of a sub-chronic exposure rather than a chronic exposure. As such, where available, sub-chronic RfDs were used to characterize non-cancer effects for the construction worker. However, for many COPCs, a sub-chronic RfD was not available and the chronic RfD was used. This likely presented an overestimation of non-cancer health risks to the construction worker.

7.3.5 Carcinogenic Toxicity Criteria

Uncertainty due to extrapolation of toxicological data for potential carcinogens tested in animals to human response is commonly the case for potentially carcinogenic chemicals. USEPA frequently uses the LMS model, or other non-threshold low-dose extrapolation models, to extrapolate the toxicological data to estimate human response. These low-dose extrapolation models assume that there is no threshold for carcinogenic substances; that is, exposure to even one molecule, fiber, or picocurie of a carcinogen is sufficient to cause cancer. This is a highly conservative assumption, because the body has several mechanisms to protect against cancer.

The use of the LMS model to extrapolate is a well-recognized source of significant uncertainty in the development of carcinogenic toxicity criteria and, subsequently, theoretical carcinogenic risk estimates. At high levels of exposure, there may indeed be a risk of cancer regardless of whether or not the effect occurs via a threshold mechanism. An animal bioassay cannot determine what happens at low levels of exposure, however, which are generally typical of human exposure levels.

At low levels of exposure, the probability of cancer cannot be measured, but must be extrapolated from higher dosages. To do this, test animals are typically exposed to carcinogens at

levels that are orders of magnitude greater than those likely to be encountered by humans in the environment. It would be difficult, if not impossible, to perform animal experiments with a large enough number of animals to directly estimate the level of risk at the low exposure levels typically encountered by humans. Thus, to estimate the risk to humans exposed at low levels, dose-response data derived from animals given high dosages are extrapolated downward using mathematical models such as the LMS model, which assumes that there is no threshold of response. The dose-response curve generated by the model is known as the maximum likelihood estimate. The slope of the 95 percent lower confidence interval (i.e., upper-bound limit) curve, which is a function of the variability in the input animal data, is taken as the CSF. CSFs are then used directly in cancer risk assessment.

The U.S. federal government, including USEPA itself, has acknowledged the limitations of the high-to-low dose extrapolation models, particularly the LMS model (USEPA 1991c). In fact, this aspect of cancer risk assessment has been criticized by many scientists (including regulatory scientists) in recent years. USEPA has recently released revised cancer risk assessment guidelines (USEPA 2005b).

Even for genotoxic (i.e., non-threshold) substances, there are two major sources of bias embedded in the LMS model: (1) its inherent conservatism at low doses and (2) the routine use of the linearized form in which the 95 percent upper confidence interval is used instead of the unbiased maximum likelihood estimate. The inherent conservatism at low doses is due in part to the fact that the LMS model ignores all of the numerous biological factors that argue against a linear dose-response relationship for genotoxic effects (e.g., DNA repair, immunosurveillance, toxicokinetic factors).

Several other factors inherent in the LMS model result in overestimated carcinogenic potency: (1) any exaggerations in the extrapolation that can be produced by some high dose responses (if they occur) are generally neglected; (2) UCLs on the actual response observed in the animal study are used rather than the actual response, resulting in upper-bound low dose extrapolations, which can greatly overestimate risk; and (3) non-genotoxic chemicals (i.e., threshold carcinogens) are modeled in the same manner as highly genotoxic chemicals.

7.3.6 Uncertainties with the Asbestos Risk Assessment

For the risk assessment, asbestos concentrations were presented two ways, as a best estimate and upper bound based upon the UCL of the mean of the Poisson distribution. Asbestos risk estimates are highly dependent on the number of samples to increase or decrease the pooled

analytical sensitivity. That is, a larger number of non-detect samples with similar individual analytical sensitivity results in a lower pooled analytical sensitivity and subsequently a lower estimated ARR, whereas a smaller number of non-detect samples results in a higher ARR. Uncertainty is, thus, reduced as more samples are collected.

Also, it is notable that asbestos results for two samples: WHC6-BP06 (25 chrysotile fibers) and WHC6-BL05 (10 chrysotile fibers) are anomalous, as chrysotile detections in the remaining 131 samples ranged primarily between zero and 3 fibers with a single value as high as 5 fibers. The source of these chrysotile fibers is unknown, but may be residual from past Site activities. However, future mixing of soil due to re-grading will likely lessen such localized areas; as well as the ultimate placement of clean fill across the Site.

7.4 CUMULATIVE EFFECT OF UNCERTAINTIES

Uncertainties from different sources are compounded in the HHRA. For example, if a person's daily intake rate for a chemical is compared to an RfD to determine potential health risks, the uncertainties in the concentration measurements, exposure assumptions, and toxicities are all expressed in the result. Because the exposure assumptions and toxicity criteria are considered conservative, the risk estimates calculated in this HHRA are likely to overestimate rather than underestimate potential risks.

8.0 SUMMARY OF RESULTS

This HHRA has evaluated potential risks to human health associated with chemicals and asbestos detected in soil at the Western Hook-Development Sub-Area located within the BMI Common Areas in Clark County, Nevada. All calculation spreadsheets for this HHRA are presented in Appendix H (on the report CD in Appendix B), including calculations of chemical theoretical upper-bound ILCRs and non-cancer health effects and asbestos risk calculations.

The risk estimates are based on reasonable maximum exposure scenarios, which results in estimates of the potential reasonable maximum, or high-end, risks associated with the Site. The calculated chemical theoretical upper-bound ILCRs and HIs are presented in Tables 6-14 through 6-18 for residential (including background), construction worker, commercial (indoor) worker, and maintenance (outdoor) worker receptors, respectively. Asbestos estimated risk of death from lung cancer or mesothelioma on a Site-wide basis are presented in Table 6-19.

8.1 RESIDENTS

For chemical exposures, the total cumulative non-cancer HI for future residential receptors at the Site is 0.5 (including the surface flux air risk estimates⁴⁰) (Table 6-14), with metals (primarily arsenic, thallium, and vanadium) soil exposures via the oral ingestion and homegrown produce pathways being the primary contributors. The HI does not exceed the target HI of 1.0. Because the non-cancer HI does not exceed the target HI of 1.0, the potential for adverse health effects was not further evaluated by considering the target organs upon which each chemical could have an adverse effect.

The maximum theoretical upper-bound ILCR for future residential receptors at the Site is 2×10^{-5} (including the surface flux air risk estimates see Table 6-14). The theoretical upper-bound ILCR is above the risk goal of 1×10^{-6} , but within USEPA's acceptable risk range of 10^{-6} to 10^{-4} ; and is driven primarily by arsenic soil exposures). Because the theoretical upper-bound ILCR is above the risk goal of 1×10^{-6} and is driven primarily by metals, and as noted in USEPA guidance (1989), 'If background risk might be a concern, it should be calculated separately from site-related risk.' background risk estimates were also evaluated (Table 6-15). Background risk estimates are only evaluated for those metals selected as COPCs (arsenic, thallium, and vanadium) and evaluated in the HHRA. In addition, representative exposure concentrations for

⁴⁰ The minimum and maximum surface flux risk estimates are summed with the soil risk estimates to provide a range of cumulative risks. The minimum and maximum surface flux risk estimates are provided in Appendix H (included on the report CD in Appendix B) and the receptor-specific chemical risk summary tables. The risks shown are cumulative risks using the maximum surface flux risk estimate.

background are the 95 percent UCL concentrations based on the background dataset used in Section 5. The background theoretical upper-bound ILCR for future residential receptors at the Site for soil exposures only is 9×10^{-6} (Table 6-15).

The estimated risks for death from lung cancer or mesothelioma for asbestos exposures to future residential receptors were below 1×10^{-6} . For residential receptors, the best estimate and upper bound concentrations for chrysotile fibers are 3×10^{-8} and 4×10^{-8} ; and zero and 1×10^{-7} for amphibole fibers (Table 6-19). These estimated risks are below the low end of the risk goal of 1×10^{-6} . The upper-bound estimated risk of death from lung cancer or mesothelioma is estimated based on the 95 percent UCL of the count of the number of fibers detected, assuming a Poisson distribution for the count.

8.2 CONSTRUCTION WORKERS

For chemical exposures, the total cumulative non-cancer HI for construction worker receptors at the Site is 0.1 (including the surface flux air risk estimates) (Table 6-16), with metals soil exposures via the oral ingestion pathway being the primary contributors. The HI does not exceed the target HI of 1.0. As a result, BRC did not evaluate background or target organ non-cancer HI values.

The maximum theoretical upper-bound ILCR for construction worker receptors at the Site is 2×10^{-7} (including the surface flux air risk estimates see Table 6-16) with arsenic soil exposures via the oral ingestion and dermal contact pathways the primary contributor. The theoretical upper-bound ILCRs are all below the low end of the risk goal of 1×10^{-6} .

The estimated risks for death from lung cancer or mesothelioma for asbestos exposures to construction workers were below 1×10^{-6} . For construction worker receptors, the best estimate and upper-bound concentrations for chrysotile fibers are 4×10^{-8} and 5×10^{-9} , and zero and 1×10^{-7} for amphibole fibers (Table 6-19). These estimated risks are at or below the low end of the risk goal of 1×10^{-6} .

8.3 COMMERCIAL (INDOOR) WORKERS

For chemical exposures, the total cumulative non-cancer HI for commercial (indoor) worker receptors at the Site is 0.02 (including the surface flux air risk estimates) (Table 6-17), with metals soil exposures via the oral ingestion pathway being the primary contributors. The HI does not exceed the target HI of 1.0. As a result, BRC did not evaluate background or target organ non-cancer HI values.

The maximum theoretical upper-bound ILCR for commercial (indoor) worker receptors at the Site is 7×10^{-7} (including the surface flux air risk estimates see Table 6-17) with arsenic soil exposures via the oral ingestion and dermal contact pathways the primary contributor. The theoretical upper-bound ILCRs are all below the low end of the risk goal of 1×10^{-6} .

The estimated risks for death from lung cancer or mesothelioma for asbestos exposures to commercial (indoor) workers were below 1×10^{-6} . For commercial (indoor) worker receptors, the best estimate and upper-bound concentrations for chrysotile fibers are 7×10^{-9} and 8×10^{-9} , and zero and 2×10^{-8} for amphibole fibers (Table 6-19). These estimated risks are below the low end of the risk goal of 1×10^{-6} .

8.4 MAINTENANCE (OUTDOOR) WORKERS

For chemical exposures, the total cumulative non-cancer HI for maintenance (outdoor) worker receptors at the Site is 0.03 (including the surface flux air risk estimates) (Table 6-18), with metals soil exposures via the oral ingestion pathway being the primary contributors. The HI does not exceed the target HI of 1.0. As a result, BRC did not evaluate background or target organ non-cancer HI values.

The maximum theoretical upper-bound ILCR for maintenance (outdoor) worker receptors at the Site is 1×10^{-6} (including the surface flux air risk estimates see Table 6-18) with the soil theoretical upper-bound ILCRs for arsenic via the oral ingestion and dermal contact pathways the primary contributors. The theoretical upper-bound ILCRs are at the low end of the risk goal of 1×10^{-6} .

The estimated risks for death from lung cancer or mesothelioma for asbestos exposures to maintenance (outdoor) workers were below 1×10^{-6} . For maintenance (outdoor) workers receptors, the best estimate and upper-bound concentrations for chrysotile fibers are 1×10^{-8} and 2×10^{-8} , and zero and 5×10^{-8} for amphibole fibers (Table 6-19). These estimated risks are below the low end of the risk goal of 1×10^{-6} .

9.0 DATA QUALITY ASSESSMENT

Sample size calculations were conducted for the selected COPCs for the Site,⁴¹ as well as TCDD TEQ. TCDD TEQ was included because it is a chemical of primary concern for the overall project.

The formula used here for calculation of sample size is based on a non-parametric test (the Wilcoxon signed rank test), and on simulation studies performed by Pacific Northwest National Laboratories (2009) that formed the basis for an approximate formula that is based on the normal distribution. Essentially, the formula is the one that would be used if a normal-based test were being performed, but an adjustment is made (multiply by 1.16) to account for the intent to perform a non-parametric test. The formula is as follows:

$$n = 1.16 \left[\frac{s^2}{\Delta^2} (z_{1-\alpha} + z_{1-\beta(\mu)})^2 + 0.5 z_{1-\alpha}^2 \right]$$

where:

n = number of samples

s = estimated standard deviation of concentrations/fibers

 Δ = width of the gray region (the difference between the threshold value stated in the null hypothesis and the point at which β is specified)

 α = significance level or Type I error tolerance

 $\beta(\mu)$ = Type II error tolerance; and

z = quantile from the standard normal distribution

For each chemical, inputs for the calculations include an estimate of the variance from the measured data, a desired significance level, and desired power of the test that must be specified at a concentration of interest (which determines the tolerable difference from the threshold value). For arsenic, the Site mean concentration exceeds its BCL based on the target cancer risk level of 10^{-6} . It is not appropriate to apply this calculation where the threshold value is less than the mean concentration. Therefore, the maximum background concentration was used for its threshold value. The calculations provided here cover a range of Type I and Type II error

⁴¹ Note that benzo(a)pyrene was selected as a COPC based on exceeding the one-tenth BCL criteria. Other carcinogenic PAHs were also selected as COPCs because of benzo(a)pyrene. Therefore, sample size calculations were only performed for benzo(a)pyrene, as representative of PAHs.

_

tolerances, and the point at which the Type II error is specified. Results are presented in Table 9-1. In this table, various combinations of input values are used, including values of α of 5, 10, and 15 percent; values of β of 15, 20, and 25 percent; and a gray region of width 10, 20, and 30 percent of the threshold level. It is clear from Table 9-1 that the number of samples collected is adequate for the Site. That is, all calculated adequate sample numbers are less than those actually collected at the Site for use in the HHRA.

Note also that there are 133 samples collected for asbestos analysis. Because of the number of samples collected, the ARRs are all less than 1×10^{-6} . Consequently, sufficient samples have been collected to address ARRs.

10.0 SUMMARY

BRC has prepared this HHRA and Closure Report for the Site. The purpose of this report is to request an NFAD by the NDEP. The NDEP acknowledges that discrete portions of the Eastside may be issued an NFAD as remedial actions are completed for selected environmental media (NDEP 2006). The portion of the Eastside for which the NFAD is being requested based on this HHRA and Closure Report is shown in red on Figure 1. The legal description of the Site is provided in Appendix K.

The HHRA evaluated the potential for adverse human health impacts that may occur as a result of potential exposures to residual concentrations of chemicals in soil, groundwater, and air following remediation, and assessed whether any additional remedial actions are necessary in order to obtain an NFAD from the NDEP to allow redevelopment of the Site to proceed. The results of the risk assessment provide risk managers with an understanding of the potential human health risks associated with background conditions and additional risks associated with past Site activities.

Although the maximum theoretical upper-bound ILCR for future residential receptors at the Site exceeds the risk goal of 1×10^{-6} (but within USEPA's acceptable risk range of 10^{-6} to 10^{-4}), it is similar to the background ILCR for future residential receptors. Numerous removal actions were conducted at the Site. These removal actions were primarily driven by metals, asbestos, dioxins/furans/PCB congeners, radionuclides, organochlorine pesticides, and SVOCs. All removal actions have fully addressed the identifiable contamination at the Site.

Therefore, given the successful removal actions conducted at the Site, considering the concentrations of metals at the Site likely reflect naturally occurring levels, and the Site has been or will be covered with fill, further removal actions at the Site will not affect the risk estimates in this HHRA. Therefore, BRC requests that the incremental risk estimates be considered in any risk management decisions for the Site.

For human health protection, BRC's goal is to remediate the Site soils such that they are suitable for unrestricted residential uses. Human health risks are represented by estimated theoretical upper-bound cancer risks and non-cancer hazards derived in accordance with standard USEPA and NDEP methods. If the carcinogenic risks or non-cancer hazards exceed USEPA acceptable levels or NDEP risk goals, then remedial action alternatives must be considered. Findings of the HHRA are intended to support the Site closure process. The major findings of this report are the following:

- Data collected for use in the HHRA are adequate and usable for their intended purpose;
- All relevant and reasonable exposure scenarios and pathway have been evaluated; and
- Residential, construction worker, commercial (indoor) worker, and maintenance (outdoor) worker cancer and non-cancer risk estimates are within or below the risk goals for the project, and/or concentrations of metals are consistent with naturally occurring levels.

Following the Tiered approach from the USEPA 2002 Vapor Intrusion Guidance (2002d), BRC believes that it has demonstrated that there is no likelihood of adverse vapor intrusion into any indoor spaces that may be constructed in the Western Hook-Development Sub-Area. Therefore, based on the results of the HHRA, and the conclusions in this report, exposures to residual levels of chemicals in soil at the Western Hook-Development Sub-Area should not result in adverse health effects to all future receptors. Therefore, BRC concludes that an NFAD for the Western Hook-Development Sub-Area is warranted and requests that the NDEP issue the NFAD (see Appendix K for the legal description of the Site).

11.0 REFERENCES

- Agency for Toxic Substances and Disease Registry (ATSDR). 2008a. Update to the ATSDR Policy Guideline for Dioxins and Dioxin-Like Compounds in Residential Soil. U.S. Department of Health and Human Services, Public Health Service. November.
- ATSDR. 2008b. Toxicological Profile for Perchlorates. U.S. Department of Health and Human Services, Public Health Service. September.
- American Society for Testing and Materials (ASTM). 2000. Standard Guide for Risk-Based Corrective Action. E2081-00.
- Baes, C.F., III, R.D. Sharp, A.L. Sjoreen, and R.W. Shor. 1984. A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture, ORNL-5786, Health and Safety Research Division, Oak Ridge National Laboratory, Oak Ridge, TN.
- Basic Remediation Company (BRC). 2006. Corrective Action Plan for the Basic Remediation Company (BRC) Common Areas Remediation Project.
- BRC. 2007. Remedial Action Plan, BMI Common Areas (Eastside), Clark County, Nevada.
- BRC. 2008. Sampling and Analysis Plan for the Western Hook-Development Sub-Area, BMI Common Areas (Eastside), Clark County, Nevada.
- BRC. 2010. Technical Memorandum Correlation of Radon Activities in Indoor Air and Shallow Zone Groundwater, BMI Common Areas (Eastside) Site, Clark County, Nevada. August 30.
- BRC. 2011. BRC Comments on NDEP Blank Contamination Guidance. Technical Memorandum. Draft. August 15.
- BRC and Environmental Resources Management (ERM). 2009a. BRC Quality Assurance Project Plan. BMI Common Areas, Clark County, Nevada. May.
- BRC and ERM. 2009b. 2008 Supplemental Shallow Soil Background Report. BMI Common Areas (Eastside), Clark County, Nevada. September.

- BRC and ERM. 2010a. Background Soil Compilation Report, BMI Complex and Common Areas, Clark County, Nevada. April.
- BRC and ERM. 2010b. Data Validation Summary Report. Southern Ribs and Western Hook Sub-Area Soil Flux, Revised Data, October 2008 (Dataset 53c). BMI Common Areas (Eastside), Clark County, Nevada. October.
- BRC and ERM. 2010c. Data Validation Summary Report. Western Hook-Development Sub-Area Soil Investigations, October-December 2008; February 2009; August-September 2009; November-December 2009; February 2010 (Dataset 54). BMI Common Areas (Eastside), Clark County, Nevada. Revision 1. June.
- BRC and ERM. 2010d. Data Validation Summary Report. Western Hook-Open Space Sub-Area Soil Investigations, September-October 2009; January 2010 (Dataset 62). BMI Common Areas (Eastside), Clark County, Nevada. May.
- BRC and ERM. 2011a. Data Validation Summary Report. Eastside North Surface Flux Investigations (Remaining Sub-Areas), July through August 2010 (Dataset 71). BMI Common Areas (Eastside), Clark County, Nevada. Revision 1. July.
- BRC and ERM. 2011b. Data Validation Summary Report. Eastside North Confirmation Soil Investigations, December 2008 through October 2010 (Dataset 72b). BMI Common Areas (Eastside), Clark County, Nevada. May.
- BRC and ERM. 2012. Data Validation Summary Report. Western Hook/Eastside Main Supplemental Sampling Events, December 2011 through January 2012 (Dataset 72e). BMI Common Areas (Eastside), Clark County, Nevada. April.
- BRC and ERM. 2014a. Data Validation Summary Report. Eastside Confirmation/Supplemental Sampling Events July 2012 through February 2014 (Dataset 72f). BMI Common Areas (Eastside), Clark County, Nevada. Revision 1. June.
- BRC and ERM. 2014b. Data Validation Summary Report. Eastside Confirmation/Supplemental Sampling Events March 2014 through August 2014 (Dataset 72g). BMI Common Areas (Eastside), Clark County, Nevada. December.
- BRC, ERM, and Daniel B. Stephens & Associates, Inc. (DBS&A). 2007. BRC Closure Plan, BMI Common Areas, Clark County, Nevada. May. [Section 9 revised March 2010]

- BRC, ERM, and MWH. 2009. BRC Field Sampling and Standard Operating Procedures, BMI Common Areas, Clark County, Nevada. December.
- Berman D.W. 2003a. Analysis and Interpretation of Measurements for the Determination of Asbestos in Core Samples Collected at the Southdown Quarry in Sparta, New Jersey, November 12.
- Berman D.W. 2003b. Evaluation of Asbestos Measurements and Assessment of Risks Attendant to Excavation and Use of Soils Within the Proposed Borrow Area of the BRC Corrective Action Management Unit, Henderson, NV, November 25.
- Berman D.W. 2005. Draft Preliminary Evaluation of the Implications of Airborne Asbestos Exposure Concentrations Observed During Simulation of a Selected Set of Common, Outdoor Residential Activities Conducted at the North Ridge Estates Site, Klamath Falls, Oregon, February 18.
- Berman, D.W., and E.J. Chatfield. 1990. Interim Superfund Method for the Determination of Asbestos in Ambient Air. Part 2: Technical Background Document, Office of Solid Waste and Remedial Response, U.S. EPA, Washington, D.C., EPA/540/2-90/005b, May.
- Berman, D.W., and K. Crump. 1999a. Methodology for Conducting Risk Assessments at Asbestos Superfund Sites—Part 1: Protocol. Interim Version. Prepared for USEPA Region 9, February 15.
- Berman, D.W., and K. Crump. 1999b. Methodology for Conducting Risk Assessments at Asbestos Superfund Sites—Part 2: Technical Background Document. Interim Version. Prepared for USEPA Region 9, February 15.
- Berman, D.W., and K.S. Crump. 2001. Technical Support Document for a Protocol to Assess Asbestos-Related Risk. Prepared for Mark Raney, Volpe Center, U.S. Department of Transportation, 55 Broadway, Kendall Square, Cambridge, MA 02142. Under EPA Review.
- Berman D.W., and K.S. Crump. 2003. Final draft: Technical support document for a protocol to assess asbestos-related risk. Prepared for Mark Follensbee, Syracuse Research Corporation, Syracuse, NY, and the Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC. USEPA #9345.4-06. Limited revision draft.

- Berman, D.W., and A. Kolk. 2000. Modified Elutriator Method for the Determination of Asbestos in Soils and Bulk Material. May (Revision 1).
- California Office of Environmental Health Hazard Assessment (OEHHA). 2015. OEHHA Toxicity Criteria Database. http://www.oehha.ca.gov/risk/chemicalDB/index.asp.
- Carlsen, C.L., R.C. Lunnis, and D.E. Prudie. 1991. Changes in water levels and water quality in shallow groundwater, Pittman-Henderson Area, Clark County, Nevada, Resulting from diversion of industrial cooling water from ditch to pipeline in 1985. U.S. Geological Survey Water-Resources Investigation Report 89-4093. Carson City, Nevada.
- Clark County GIS Management Office. 2003. 5 Foot Contours for the Las Vegas Valley, Mesquite and Laughlin. Fall 2003 Flight of Clark County.
- Daniel B. Stephens & Associates, Inc. (DBS&A). 2009. Revised Technical Memorandum: Sources/Sinks and Input Parameters for Groundwater Flow Model, BMI Common Areas, Eastside Area.
- Environmental Resources Management (ERM). 1996a. Environmental Conditions Investigation Work Plan, BMI Common Areas, Henderson, Nevada. February.
- ERM. 1996b. Draft Environmental Conditions Investigation Report, BMI Common Areas, Henderson, Nevada. August.
- ERM. 1999. Sunset North Area IRM Work Plan. August
- ERM. 2000a. Remedial Alternatives Study for Soils and Sediments in the Upper and Lower Ponds at the BMI Complex. Henderson, Nevada. March 1.
- ERM. 2000b. Sunset North Area Interim Remedial Measure Completion Report, BMI Common Areas, Henderson, Nevada. August.
- ERM. 2006a. Data Validation Summary Report Common Areas Sampling Event #1a 1996 Environmental Conditions Investigation. August.
- ERM. 2006b. Data Validation Summary Report Common Areas Sampling Event #6c May/July 1996 Soil Sampling. July.

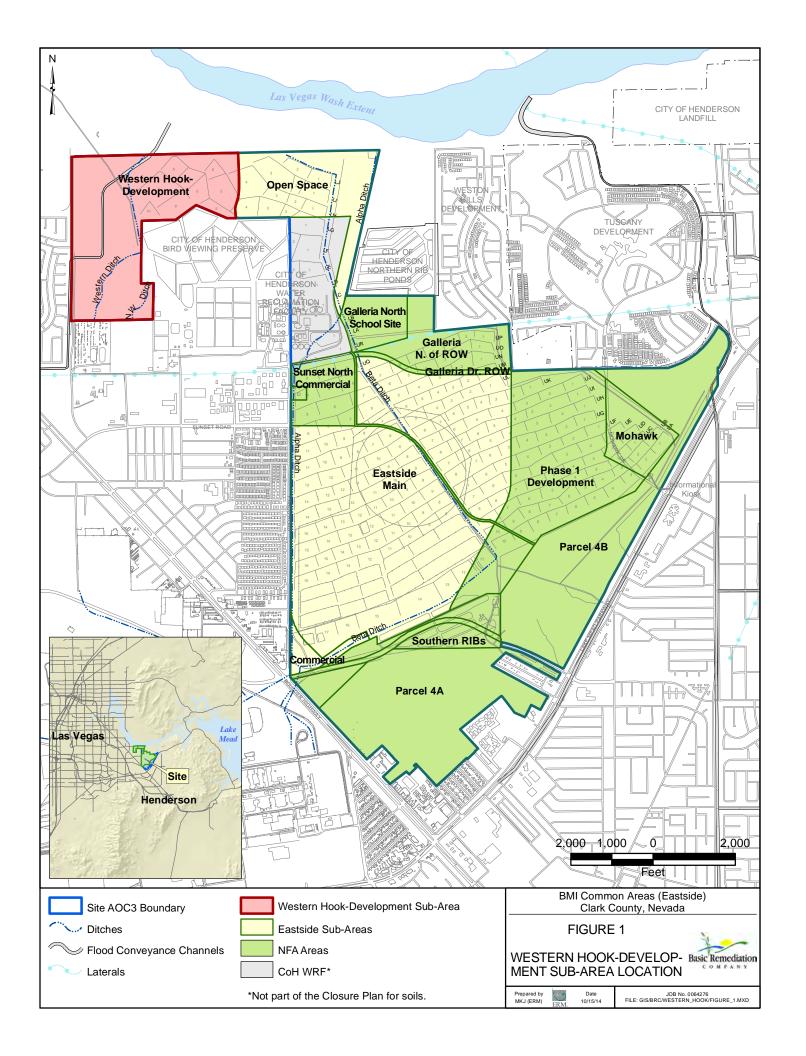
- ERM. 2006c. Data Validation Summary Report Common Areas Sampling Event #7b Miscellaneous November 1999 May 2000 Sunset Area Sampling Events. September.
- ERM. 2006d. Data Validation Summary Report Common Areas Sampling Event #7e December 1999 PLF-05 Fill Sampling. October.
- ERM. 2006e. Data Validation Summary Report Common Areas Sampling Event #8a July 2000 Discrete/Composite Sampling Event. October.
- ERM. 2006f. Data Validation Summary Report Common Areas Sampling Event #8b February/March 2000 Sunset North Area, Former Pond Sampling. September.
- ERM. 2006g. Data Validation Summary Report Common Areas Sampling Event #8c October 2000 Sunset North Area, Former Pond Sampling. October.
- ERM. 2006h. Data Validation Summary Report Common Areas Sampling Event #20b May 2001 Sunset North Soil Sampling Event. October.
- ERM. 2007. Data Validation Summary Report Common Areas Sampling Event #20c May/June 2001 Sunset North Supplemental Investigation. February.
- Dr. W. Andrew Jackson at Texas Tech University. 2010.
- Las Vegas Wash Coordination Committee. 2000. The Las Vegas Wash Comprehensive Adaptive Management Plan. http://www.lvwash.org/resources/docs/lvwcamp.html.
- Law Engineering Inc. 1993. Final Report of Phase I Environmental Condition Assessment, Titanium Metals Corporation (TIMET) Henderson, Nevada.
- Montrose Chemical Company. 1997. Phase II Environmental Conditions Assessment. August 11.
- MWH. 2003. Hydrogeologic Characterization Work Plan, BMI Site. Basic Remediation Company. Henderson, Nevada. December.
- MWH. 2006a. Data Validation Summary Report, 2004 Hydrogeologic Characterization (Dataset 27), BMI Common Areas (Eastside), Clark County, Nevada. May.
- MWH. 2006b. Data Validation Summary Report 2006 Waste Characterization Investigation (Dataset 39), BMI Common Areas (Eastside), Clark County, Nevada. October.

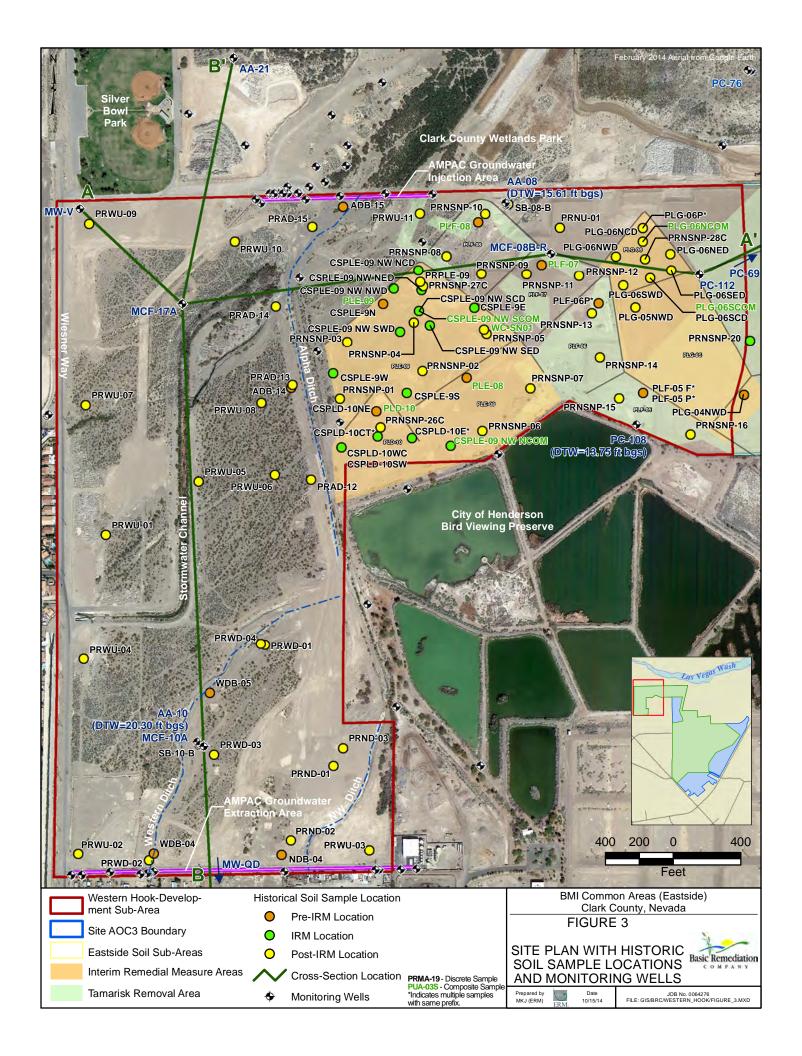
- Mills, L. 2000. Prepare your garden for cool-season vegetables now. Las Vegas Review-Journal, January 30.
- Neptune and Company. 2009. Guided Interactive Statistical Decision Tools (GiSdT). www.gisdt.org.
- Neptune and Company. 2014. Data Validation Summary Report for Asbestos Data Associated with the Eastside Main Area at the BMI Site, Basic Remediation Company (BRC). Prepared for Nevada Division of Environmental Protection. March 21.
- Nevada Division of Environmental Protection (NDEP). 2001. Record of Decision, Remediation of Soils and Sediments in the Upper and Lower Ponds at the BMI Complex. Henderson, Nevada, November 2.
- NDEP. 2006. Settlement Agreement and Administrative Order on Consent: BMI Common Areas, Phase 3 (AOC3).
- NDEP. 2008a. Supplemental Guidance for Assessing Data Usability for Environmental Investigations at the BMI Complex and Common Areas in Henderson, Nevada. Bureau of Corrective Actions, Special Projects Branch. October 22.
- NDEP. 2008b. Detection Limits and Data Reporting. Bureau of Corrective Actions, Special Projects Branch. December 3.
- NDEP. 2009a. Guidance for Evaluating Radionuclide Data for the BMI Plant Sites and Common Areas Projects. February 6.
- NDEP. 2009b. Supplemental Guidance on Data Validation. March 19.
- NDEP. 2009c. Supplemental Guidance on Data Validation. April 13.
- NDEP. 2009d. Guidance for Evaluating Secular Equilibrium at the BMI Complex and Common Areas. BMI Plant Sites and Common Areas Projects, Henderson, Nevada. February 6.
- NDEP. 2010. letter dated November 9, 2010, from Greg Lovato, NDEP, to Mark Paris, BRC
- NDEP. 2011a. Technical Guidance for the Calculation of Asbestos-Related Risk in Soils for the Basic Management Incorporated (BMI) Complex and Common Areas. February.

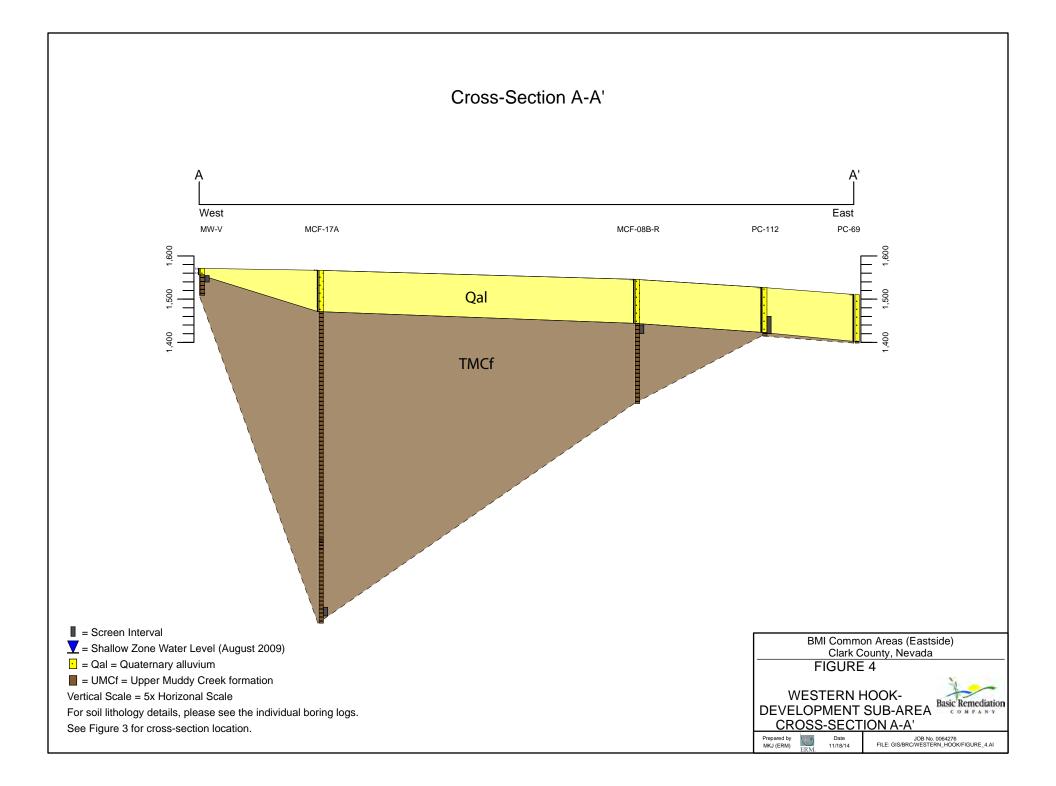
- NDEP. 2011b. Workbook for the Calculation of Asbestos-Related Risk in Soils for the Basic Management Incorporated (BMI) Complex and Common Areas.
- NDEP. 2011c. July 2011 Guidance on Qualifying Data due to Blank Contamination. BMI Plant Sites and Common Areas Projects, Henderson, Nevada.
- NDEP. 2012a. Guidance on Data Validation for Asbestos Data in Soils. BMI Plant Sites and Common Areas Projects, Henderson, Nevada. July.
- NDEP. 2012b. September 17, 2012, from Greg Lovato, NDEP, to Mark Paris, BRC
- NDEP. 2013. User's Guide and Background Technical Document for Nevada Division of Environmental Protection (NDEP) Basic Comparison Levels (BCLs) for Human Health for the BMI Complex and Common Areas. August.
- NewFields Companies, LLC (NewFields). 2006. Statistical Methodology Report, BMI Common Areas (Eastside), Henderson, Nevada. August.
- Oak Ridge National Laboratory (ORNL). 2015. Risk Assessment Information System (RAIS) Toxicity Profiles. http://rais.ornl.gov/tools/tox_profiles.html
- Pacific Northwest National Laboratory. 2009. Visual Sample Plan. http://vsp.pnl.gov.
- R Core Team. 2012. http://www.r-project.org.
- Scanlon, B.R., K.E. Keese, A.L. Flint, L.E. Flint, C.B. Gaye, W.M. Edmunds, and I. Simmers. 2006. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes Hydrol. Process. 20(15):3335–3370.
- Southern Nevada Water Authority. 1996. Extent and Potential Use of the Shallow Aquifer and Wash Flow in Las Vegas Valley, Nevada.
- Tetra Tech. 1998. Final Environmental Conditions Investigation Report. Prepared for TIMET. October 15.
- Umhoefer, P.J., L.S. Beard, and M.A. Lamb. eds. 2010. Miocene Tectonics of the Lake Mead Region, Central Basin and Range. Geological Society of America. Special Paper 463.

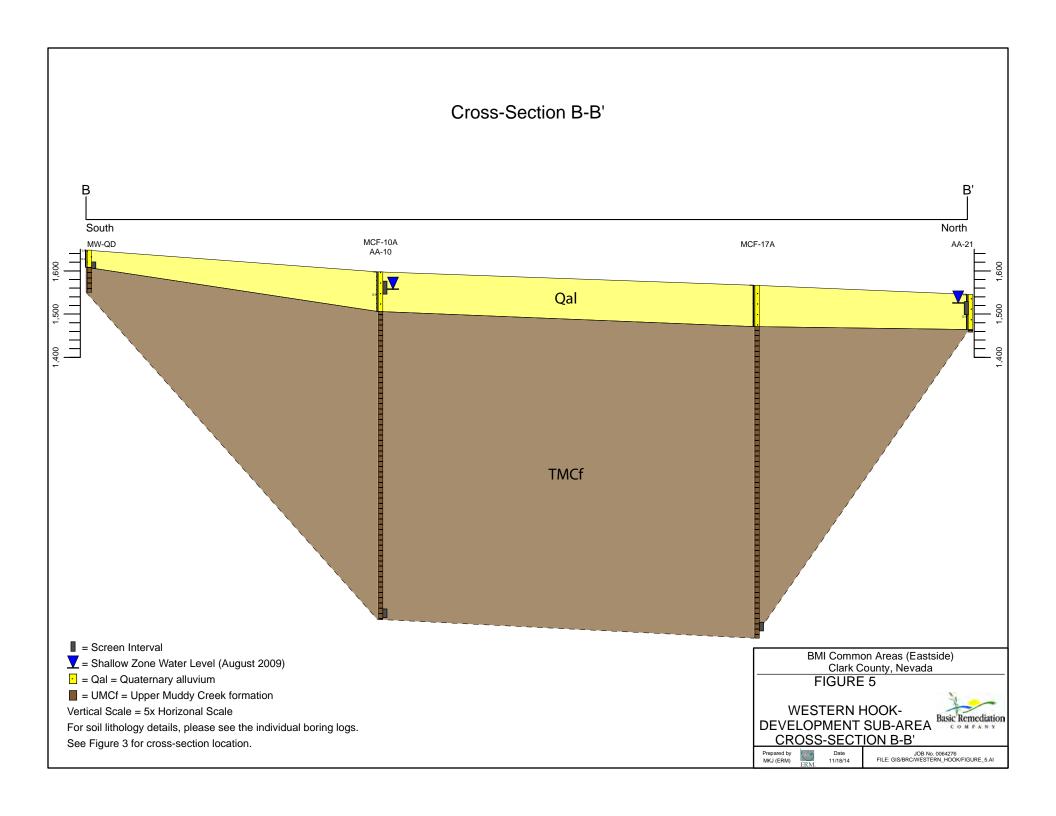
- U.S. Environmental Protection Agency (USEPA). 1985. Rapid Assessment of Exposure to Particulate Emissions From Surface Contamination Sites. EPA/600/8-85/002. Office of Health and Environmental Assessment. Washington, DC.
- USEPA. 1986. Measurement of Gaseous Emission Rates From Land Surfaces Using an Emission Isolation Flux Chamber, Users Guide. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, EPA Contract No. 68-02-3889, Radian Corporation, February.
- USEPA. 1989. Risk Assessment Guidance for Superfund: Volume I—Human Health Evaluation Manual (Part A). Interim Final. Office of Emergency and Remedial Response, Washington, DC. USEPA/540/1-89/002. December.
- USEPA. 1991a. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. Memorandum from D.R. Clay, Assistant Administrator, USEPA. OSWER Directive 9355.0-30, April.
- USEPA. 1991b. Risk Assessment Guidance for Superfund: Volume I—Human Health Evaluation Manual. Supplemental Guidance 'Standard Default Exposure Factors'. Office of Emergency and Remedial Response, Washington, DC. OSWER Directive 9285.3-03. March.
- USEPA. 1991c. Current Regulatory Issues in Risk Assessment and Risk Management. Executive Office of the President. Government Printing Office, Washington, DC. S/N 041 001 00354 1.
- USEPA. 1992a. Guidance for Data Usability in Risk Assessment. Part A. Office of Emergency and Remedial Response, Washington DC. Publication 9285.7-09A. PB92-963356. April.
- USEPA. 1992b. Guidelines for Exposure Assessment. Federal Register, 57(104):22888-22938. May 29.
- USEPA. 1992c. Supplemental Guidance to RAGS: Calculating the Concentration Term. Office of Emergency and Remedial Response, Washington, DC. Publication 9285.7-08I. May.
- USEPA. 1996. Soil Screening Guidance: Technical Background Document. Office of Emergency and Remedial Response, Washington, DC. USEPA/540/R-96/018. April.
- USEPA. 1997. Exposure Factors Handbook, Volumes I-III. Office of Research and Development, Washington DC. USEPA/600/P-95/002Fa-c. August.

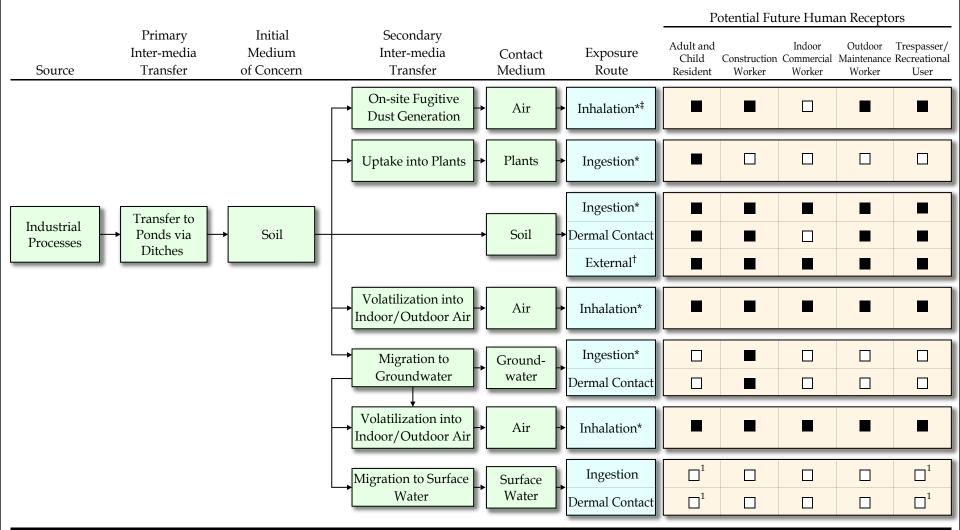
- USEPA. 1999. National Functional Guidelines for Organic Data Review. EPA 540/R-99-008. OSWER 9240.1-05A-P. October.
- USEPA. 2000. Soil Screening Guidance for Radionuclides. Office of Radiation and Indoor Air, Washington, DC. USEPA/540-R-00-007 and USEPA/540-R-00-006.
- USEPA. 2002a. Guidance for Quality Assurance Project Plans. EPA QA/G-5. Office of Environmental Information, Washington, DC. December.
- USEPA. 2002b. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Solid Waste and Emergency Response, Washington, DC. OSWER 9355.4-24. December.
- USEPA. 2002c. Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. Office of Emergency and Remedial Response, Washington, DC. OSWER 9285.6-10. December.
- USEPA. 2002d. Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance) EPA 530-f-02-052. November.
- USEPA. 2003a. Contract Laboratory Program Statement of Work for Organic Analysis: Multimedia, Multi-concentration. OLM04.3. Office of Emergency and Remedial Response. March.
- USEPA. 2003b. Technical Support Document for a Protocol to Assess Asbestos-Related Risk. Final Draft. Office of Solid Waste and Emergency Response, Washington, DC.
- USEPA. 2003c. Memorandum on Human Health Toxicity Values in Superfund Risk Assessments, from Michael B. Cook, Director, Office of Superfund Remediation and Technology Innovation to Superfund Remediation Policy Managers, Regions 1 10, dated December 5. OSWER Directive 9285.7-53.
- USEPA. 2004a. Integrated Exposure Uptake Biokinetic Model for Lead in Children (IEUBK). Office of Solid Waste and Emergency Response.


- USEPA. 2004b. Contract Laboratory Program Statement of Work for Organic Analysis: Multi-media, Multi-concentration. SOM01.0. Office of Emergency and Remedial Response. October.
- USEPA. 2004c. Contract Laboratory Program Statement of Work for Inorganic Analysis: Multimedia, Multi-concentration. ILM05.3. Office of Emergency and Remedial Response. March.
- USEPA. 2004d. National Functional Guidelines for Inorganic Data Review. EPA 540-R-04-004. OSWER 9240.1-45. October.
- USEPA. 2004e. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. Office of Emergency and Remedial Response, Washington, DC. EPA/540/R/99/005. July.
- USEPA. 2004f. Memorandum on Clarifying Cleanup Goals and Identification of New Assessment Tools for Evaluating Asbestos at Superfund Cleanups, from Michael B. Cook, Director, Office of Superfund Remediation and Technology Innovation to Superfund Remediation Policy Managers, Regions 1-10, August. OSWER Directive 9345.4-05.
- USEPA. 2005a. National Functional Guidelines for Chlorinated Dioxin/Furan Data Review. EPA 540-R-05-001. OSWER 9240.1-51. September.
- USEPA. 2005b. Guidelines for Carcinogen Risk Assessment. Risk Assessment Forum, Washington, DC. March.
- USEPA. 2006. Child-Specific Exposure Factors Handbook. Interim Report. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. EPA/600/R/06/096A. September.
- USEPA. 2008. National Functional Guidelines for Superfund Organic Methods Data Review. EPA 540-R-08-01. OSWER 9240.1-48. June.
- USEPA. 2009a. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). EPA-540-R-070-002. http://www.epa.gov/oswer/ riskassessment/ ragsf/.
- USEPA. 2009b. Evaluation Report—Lack of Final Guidance on Vapor Intrusion Impedes Efforts to Address Indoor Air Risks. Office of Inspector General. December 14.


- USEPA. 2010a. Recommended Toxicity Equivalence Factors (TEFs) for Human Health Risk Assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dioxin-Like Compounds. Risk Assessment Forum, Washington, DC. EPA/600/R-10/005.
- USEPA. 2010b. Review of the Draft 2002 Subsurface Vapor Intrusion Guidance. Office of Solid Waste and Emergency Response. August.
- USEPA. 2015. Integrated Risk Information System. USEPA on-line database: http://www.epa.gov/iris/index.html.
- Western Regional Climate Center. 2008. Monthly average precipitation for Las Vegas. Desert Research Institute. http://www.wrcc.dri.edu/summary/Climsmnv.html.
- Weston. 1993. Site Conceptual Model, Stauffer/Pioneer/Montrose Site, Henderson, Nevada, September.







- □ Incomplete or insignificant exposure pathway.
- - Complete or potentially complete exposure pathway.

Note: All potential exposure pathways are shown; however, a particular pathway shown as complete may be incomplete depending on the COPCs evaluated in the human health risk assessment.

¹Potentially complete exposure pathway following discharge to Las Vegas Wash and Lake Mead.

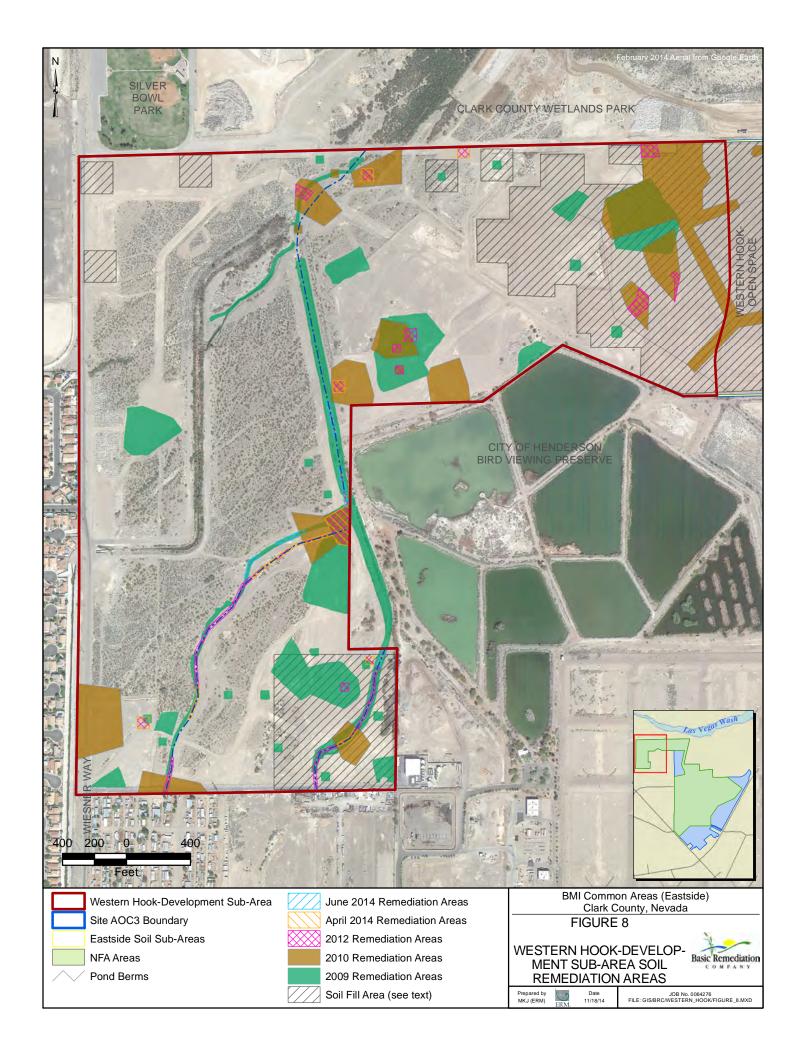
†Only radionuclide exposures.

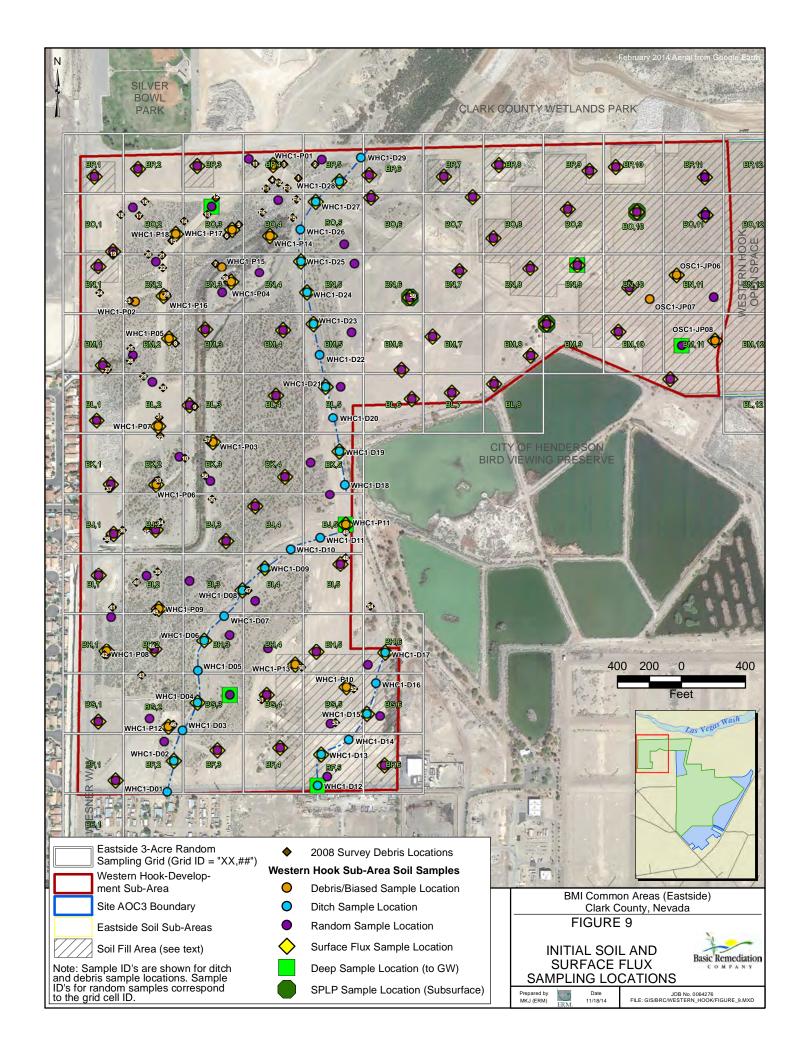
 ‡ Includes asbestos exposures.

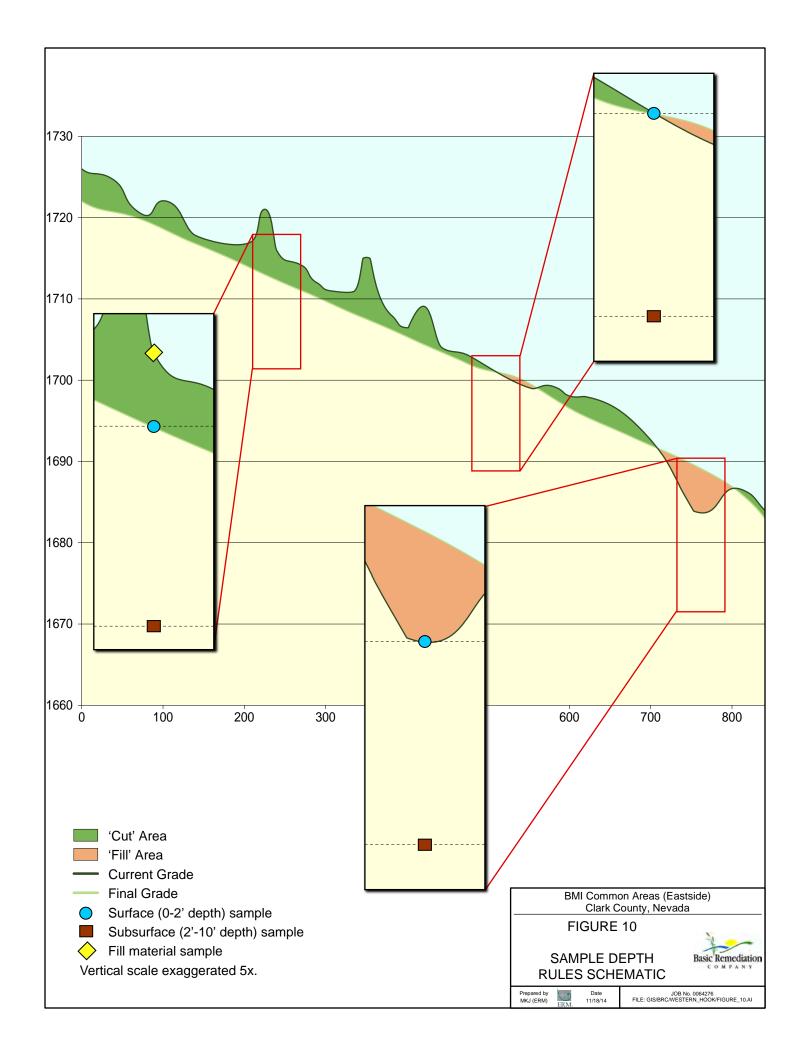
BMI Common Areas (Eastside) Clark County, Nevada

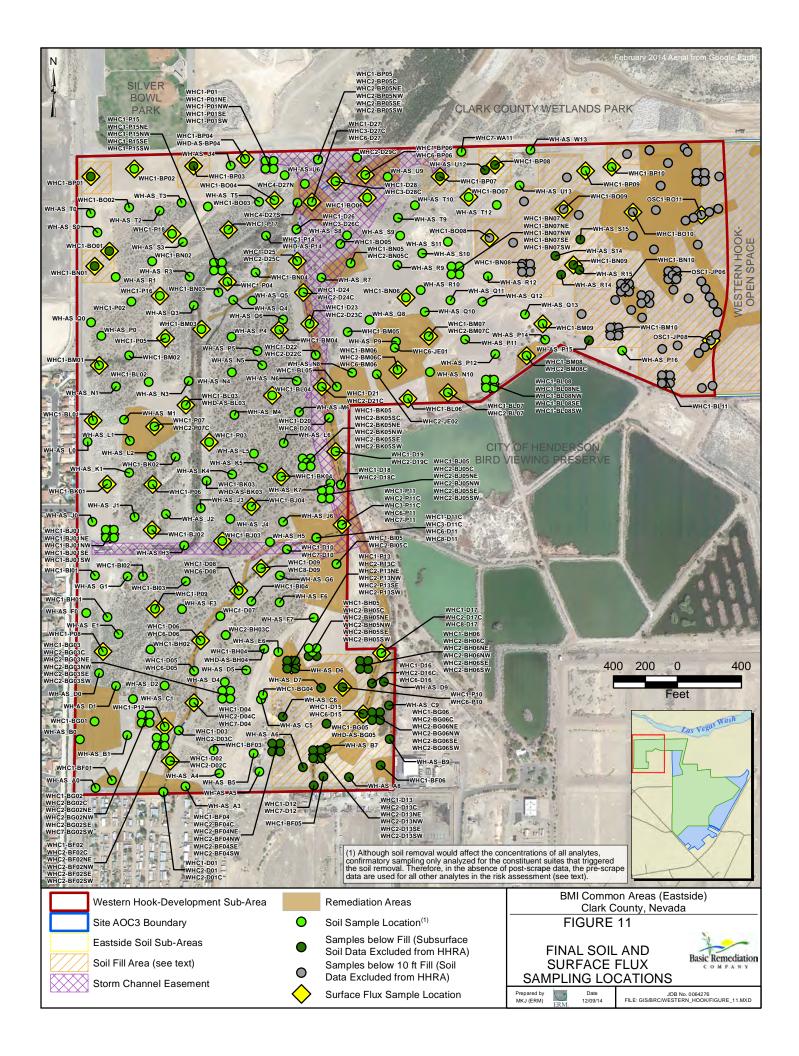
FIGURE 7

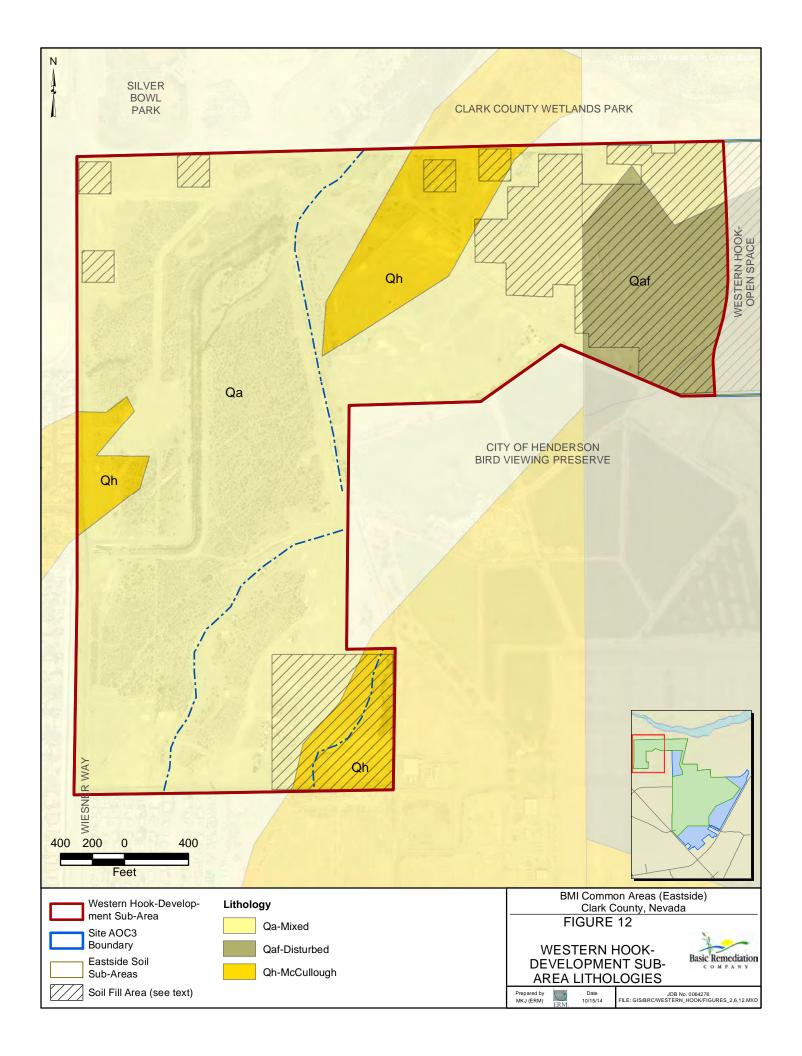
CONCEPTUAL SITE MODEL DIAGRAM FOR POTENTIAL HUMAN EXPOSURES




Prepared by MKJ (ERM)




Date 1/18/14 JOB No. 0064276 FILE: GIS/BRC/WESTERN_HOOK/FIGURE_7.AI


^{*}Includes radionuclide exposures.

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 18)

Sample	Sample	Grading	Sample	Sample	Sample				
Location	Type	Plan	Depth 1	Depth 2	Depth 3				
Initial Sampling Events									
OSC1-BM11	Random	Fill +5	0 (Surface)	10 (Subsurface)					
OSC1-BN11	Random	Fill +5	0 (Surface)	5 (Subsurface)					
OSC1-BO11	Random with Flux	0	0 (Surface)	5 (Subsurface)					
OSC1-BP11	Random with Flux	Fill +1	0 (Surface)	5 (Subsurface)					
OSC1-JP06	Biased with Flux	Fill +3	0 (Surface)	5 (Subsurface)					
OSC1-JP07	Biased	Fill +2	0 (Surface)	5 (Subsurface)					
OSC1-JP08	Biased with Flux	Fill +1	0 (Surface)	10 (Subsurface)					
WHC1-BF01	Random	Cut -2	0 (Fill/Surface)	12 (Subsurface)					
WHC1-BF02	Random	Cut -1	0 (Fill/Surface)	11 (Subsurface)					
WHC1-BF03	Random	0	0 (Surface)	10 (Subsurface)					
WHC1-BF04	Random	Fill +1	0 (Surface)	10 (Subsurface)					
WHC1-BF05	Random	Cut -2	0 (Fill/Surface)	12 (Subsurface)					
WHC1-BF06	Random	Fill +1	0 (Surface)	10 (Subsurface)					
WHC1-BG01	Random	Cut -1	0 (Fill/Surface)	11 (Subsurface)					
WHC1-BG02	Random	0	0 (Surface)	10 (Subsurface)					
WHC1-BG03	Random	Cut -1	0 (Fill/Surface)	11 (Subsurface)					
WHC1-BG04	Random	Fill +1	0 (Surface)	10 (Subsurface)					
WHC1-BG05	Random	0	0 (Surface)	10 (Subsurface)					
WHC1-BG06	Random	Fill +1	0 (Surface)	10 (Subsurface)					
WHC1-BH01	Random	Cut -1	0 (Fill/Surface)	11 (Subsurface)					
WHC1-BH02	Random	0	0 (Surface)	10 (Subsurface)					
WHC1-BH03	Random	0	0 (Surface)	10 (Subsurface)					
WHC1-BH04	Random	Fill +1	0 (Surface)	10 (Subsurface)					
WHC1-BH05	Random	0	0 (Surface)	10 (Subsurface)					
WHC1-BH06	Random	Fill +2	0 (Surface)	10 (Subsurface)					
WHC1-BI01	Random	Cut -1	0 (Fill/Surface)	11 (Subsurface)					
WHC1-BI02	Random	Cut -3	0 (Fill)	3 (Surface)	13 (Subsurface)				
WHC1-BI03	Random	Cut -1	0 (Fill/Surface)	11 (Subsurface)					
WHC1-BI04	Random	Fill +1	0 (Surface)	10 (Subsurface)					
WHC1-BI05	Random	Fill +1	0 (Surface)	10 (Subsurface)					
WHC1-BJ01	Random with Flux	Cut -3	0 (Fill)	3 (Surface)	13 (Subsurface)				
WHC1-BJ02	Random with Flux	Cut -2	0 (Fill/Surface)	12 (Subsurface)					
WHC1-BJ03	Random with Flux	Cut -2	0 (Fill/Surface)	12 (Subsurface)					
WHC1-BJ04	Random with Flux	Cut -1	0 (Fill/Surface)	11 (Subsurface)					

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
WHC1-BJ05	Random	0	0 (Surface)	10 (Subsurface)	
WHC1-BK01	Random with Flux	0	0 (Surface)	10 (Subsurface)	
WHC1-BK02	Random	Cut -1	0 (Fill/Surface)	11 (Subsurface)	
WHC1-BK03	Random	Cut -2	0 (Fill/Surface)	12 (Subsurface)	
WHC1-BK04	Random with Flux	0	0 (Surface)	10 (Subsurface)	
WHC1-BK05	Random	Cut -1	0 (Fill/Surface)	11 (Subsurface)	
WHC1-BL01	Random with Flux	0	0 (Surface)	10 (Subsurface)	
WHC1-BL02	Random	0	0 (Surface)	10 (Subsurface)	
WHC1-BL03	Random with Flux	0	0 (Surface)	10 (Subsurface)	
WHC1-BL04	Random with Flux	Cut -2	0 (Fill/Surface)	12 (Subsurface)	
WHC1-BL05	Random	0	0 (Surface)	10 (Subsurface)	
WHC1-BL06	Random with Flux	Cut -1	0 (Fill/Surface)	11 (Subsurface)	
WHC1-BL07	Random with Flux	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-BL08	Random with Flux	0	0 (Surface)	10 (Subsurface)	
WHC1-BL11	Random with Flux	Cut -2	0 (Fill/Surface)	12 (Subsurface)	
WHC1-BM01	Random with Flux	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-BM02	Random	Cut -2	0 (Fill/Surface)	12 (Subsurface)	
WHC1-BM03	Random with Flux	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-BM04	Random with Flux	0	0 (Surface)	10 (Subsurface)	
WHC1-BM05	Random	Fill +2	0 (Surface)	10 (Subsurface)	
WHC1-BM06	Random with Flux	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-BM07	Random with Flux	Cut -1	0 (Fill/Surface)	11 (Subsurface)	
WHC1-BM08	Random with Flux	Cut -1	0 (Fill/Surface)	11 (Subsurface)	
WHC1-BM09	Random with Flux	Cut -2	0 (Fill/Surface)	12 (Subsurface)	
WHC1-BM10	Random with Flux	Cut -3	0 (Fill)	3 (Surface)	13 (Subsurface)
WHC1-BN01	Random with Flux	Cut -2	0 (Fill/Surface)	12 (Subsurface)	
WHC1-BN02	Random	Cut -1	0 (Fill/Surface)	11 (Subsurface)	
WHC1-BN03	Random	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-BN04	Random	Cut -7	0 (Fill)	7 (Surface)	17 (Subsurface)
WHC1-BN05	Random	0	0 (Surface)	10 (Subsurface)	
WHC1-BN06	Random with Flux	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-BN07	Random	Cut -3	0 (Fill)	3 (Surface)	13 (Subsurface)
WHC1-BN08	Random with Flux	0	0 (Surface)	10 (Subsurface)	
WHC1-BN09	Random with Flux	Cut -1	0 (Fill/Surface)	11 (Subsurface)	
WHC1-BN10	Random with Flux	Fill +2	0 (Surface)	10 (Subsurface)	

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
WHC1-BO01	Random with Flux	Cut -4	0 (Fill)	4 (Surface)	14 (Subsurface)
WHC1-BO02	Random	Cut -2	0 (Fill/Surface)	12 (Subsurface)	
WHC1-BO03	Random	Cut -2	0 (Fill/Surface)	12 (Subsurface)	
WHC1-BO04	Random with Flux	Cut -2	0 (Fill/Surface)	12 (Subsurface)	
WHC1-BO05	Random	0	0 (Surface)	10 (Subsurface)	
WHC1-BO06	Random with Flux	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-BO07	Random with Flux	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-BO08	Random with Flux	Cut -1	0 (Fill/Surface)	11 (Subsurface)	
WHC1-BO09	Random with Flux	Cut -6	0 (Fill)	6 (Surface)	16 (Subsurface)
WHC1-BO10	Random with Flux	Fill +2	0 (Surface)	10 (Subsurface)	
WHC1-BP01	Random with Flux	0	0 (Surface)	10 (Subsurface)	
WHC1-BP02	Random with Flux	Cut -1	0 (Fill/Surface)	11 (Subsurface)	
WHC1-BP03	Random with Flux	Cut -1	0 (Fill/Surface)	11 (Subsurface)	==
WHC1-BP04	Random with Flux	Cut -2	0 (Fill/Surface)	12 (Subsurface)	
WHC1-BP05	Random	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-BP06	Random with Flux	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-BP07	Random with Flux	Cut -3	0 (Fill)	3 (Surface)	13 (Subsurface)
WHC1-BP08	Random with Flux	Cut -4	0 (Fill)	4 (Surface)	14 (Subsurface)
WHC1-BP09	Random with Flux	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-BP10	Random with Flux	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-D01	Biased	0	0 (Surface)	10 (Subsurface)	
WHC1-D02	Biased with Flux	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-D03	Biased	Fill +2	0 (Surface)	10 (Subsurface)	
WHC1-D04	Biased with Flux	Fill +2	0 (Surface)	10 (Subsurface)	
WHC1-D05	Biased	Fill +3	0 (Surface)	10 (Subsurface)	
WHC1-D06	Biased with Flux	Fill +3	0 (Surface)	10 (Subsurface)	
WHC1-D07	Biased	Fill +2	0 (Surface)	10 (Subsurface)	
WHC1-D08	Biased with Flux	Fill +2	0 (Surface)	10 (Subsurface)	
WHC1-D09	Biased with Flux	Cut -1	0 (Fill/Surface)	11 (Subsurface)	
WHC1-D10	Biased	Fill +2	0 (Surface)	10 (Subsurface)	
WHC1-D11	Biased	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-D12	Biased	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-D13	Biased with Flux	Fill +3	0 (Surface)	10 (Subsurface)	
WHC1-D14	Biased	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-D15	Biased with Flux	Fill +1	0 (Surface)	10 (Subsurface)	

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
WHC1-D16	Biased	Fill +3	0 (Surface)	10 (Subsurface)	
WHC1-D17	Biased with Flux	Fill +4	0 (Surface)	10 (Subsurface)	
WHC1-D18	Biased	Fill +4	0 (Surface)	10 (Subsurface)	
WHC1-D19	Biased with Flux	Fill +2	0 (Surface)	10 (Subsurface)	
WHC1-D20	Biased	Fill +2	0 (Surface)	10 (Subsurface)	
WHC1-D21	Biased with Flux	Fill +2	0 (Surface)	10 (Subsurface)	
WHC1-D22	Biased	Fill +2	0 (Surface)	10 (Subsurface)	
WHC1-D23	Biased with Flux	Fill +3	0 (Surface)	10 (Subsurface)	
WHC1-D24	Biased with Flux	Fill +2	0 (Surface)	10 (Subsurface)	
WHC1-D25	Biased with Flux	Fill +3	0 (Surface)	10 (Subsurface)	
WHC1-D26	Biased	Fill +3	0 (Surface)	10 (Subsurface)	
WHC1-D27	Biased with Flux	Fill +4	0 (Surface)	10 (Subsurface)	
WHC1-D28	Biased with Flux	Fill +3	0 (Surface)	10 (Subsurface)	
WHC1-D29	Biased	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-P01	Biased	Cut -2	0 (Fill/Surface)	12 (Subsurface)	
WHC1-P02	Biased	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-P03	Biased with Flux	Cut -3	0 (Fill)	3 (Surface)	13 (Subsurface)
WHC1-P04	Biased with Flux	0	0 (Surface)	10 (Subsurface)	
WHC1-P05	Biased with Flux	Fill +2	0 (Surface)	10 (Subsurface)	
WHC1-P06	Biased with Flux	Cut -2	0 (Fill/Surface)	12 (Subsurface)	
WHC1-P07	Biased with Flux	Cut -3	0 (Fill)	3 (Surface)	13 (Subsurface)
WHC1-P08	Biased with Flux	Cut -1	0 (Fill/Surface)	11 (Subsurface)	
WHC1-P09	Biased with Flux	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-P10	Biased with Flux	0	0 (Surface)	10 (Subsurface)	
WHC1-P11	Biased with Flux	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-P12	Biased with Flux	Cut -1	0 (Fill/Surface)	11 (Subsurface)	
WHC1-P13	Biased with Flux	0	0 (Surface)	10 (Subsurface)	
WHC1-P14	Biased	Fill +1	0 (Surface)	10 (Subsurface)	
WHC1-P15	Biased	Fill +3	0 (Surface)	10 (Subsurface)	
WHC1-P16	Biased with Flux	Cut -1	0 (Fill/Surface)	11 (Subsurface)	
WHC1-P17	Biased with Flux	Cut -2	0 (Fill/Surface)	12 (Subsurface)	
WHC1-P18	Biased with Flux	Cut -2	0 (Fill/Surface)	12 (Subsurface)	
		mental/Confir	mation Sampling Ever	nts	
OSC1-BN11N1	Supplemental		0 (Surface)		
OSC1-BN11N2	Supplemental		0 (Surface)		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
OSC1-BN11S1	Supplemental		0 (Surface)		
OSC1-BN11S2	Supplemental		0 (Surface)		
OSC1-BO11E1	Supplemental		0 (Surface)		
OSC1-BO11E2	Supplemental		0 (Surface)		
OSC1-BO11W1	Supplemental		0 (Surface)		
OSC1-BO11W2	Supplemental		0 (Surface)		
OSC1-BP11NE	Supplemental		0 (Surface)		
OSC1-BP11NW	Supplemental		0 (Surface)		
OSC1-BP11SE	Supplemental		0 (Surface)		
OSC1-BP11SW	Supplemental		0 (Surface)		
OSC1-JP06NE	Supplemental		0 (Surface)		
OSC1-JP06NW	Supplemental		0 (Surface)		
OSC1-JP06SE	Supplemental		0 (Surface)		
OSC1-JP06SW	Supplemental		0 (Surface)		
OSC1-JP07NE	Supplemental		0 (Surface)		
OSC1-JP07NW	Supplemental		0 (Surface)		
OSC1-JP07SE	Supplemental		0 (Surface)		
OSC1-JP07SW	Supplemental		0 (Surface)		
OSC1-JP08N1	Supplemental		0 (Surface)		
OSC1-JP08S1	Supplemental		0 (Surface)		
OSC1-JP08S2	Supplemental		0 (Surface)		
OSC1-JS10	Supplemental		0 (Surface)		
OSC2-BN11	Confirmation		0 (Surface)		
OSC2-BN11N1	Confirmation		0 (Surface)		
OSC2-BN11N2	Confirmation		0 (Surface)		
OSC2-BN11S1	Confirmation		0 (Surface)		
OSC2-BN11S2	Confirmation		0 (Surface)		
OSC2-BO11	Confirmation		0 (Surface)		
OSC2-BO11E1	Confirmation		0 (Surface)		
OSC2-BO11E2	Confirmation		0 (Surface)		
OSC2-BO11W1	Confirmation		0 (Surface)		
OSC2-BO11W2	Confirmation		0 (Surface)		
OSC2-BP11	Confirmation		0 (Surface)		
OSC2-BP11NE	Confirmation		0 (Surface)		
OSC2-BP11NW	Confirmation		0 (Surface)		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
OSC2-BP11SE	Confirmation		0 (Surface)		
OSC2-BP11SW	Confirmation		0 (Surface)		
OSC2-JE01	Confirmation		0 (Surface)		
OSC2-JE02	Confirmation		0 (Surface)		
OSC2-JE03	Confirmation		0 (Surface)		
OSC2-JP06	Confirmation		0 (Surface)		
OSC2-JP06NE	Confirmation		0 (Surface)		
OSC2-JP06NW	Confirmation		0 (Surface)		
OSC2-JP06SE	Confirmation		0 (Surface)		
OSC2-JP06SW	Confirmation		0 (Surface)		
OSC2-JP07	Confirmation		0 (Surface)		
OSC2-JP07NW	Confirmation		0 (Surface)		
OSC2-JP07SW	Confirmation		0 (Surface)		
OSC2-JP08	Confirmation		0 (Surface)		
OSC2-JP08N1	Confirmation		0 (Surface)		
OSC2-JP08S1	Confirmation		0 (Surface)		
OSC2-JP08S2	Confirmation		0 (Surface)		
OSC2-JS10	Confirmation		0 (Surface)		
OSC3-JE01	Confirmation		0 (Surface)		
OSC3-JE02	Confirmation		0 (Surface)		
OSC3-JP06SES	Confirmation		0 (Surface)		
OSC3-JP07SWS	Confirmation		0 (Surface)		
OSC3-JP07SWW	Confirmation		0 (Surface)		
OSC4-JE01N	Confirmation		0 (Surface)		
OSC4-JE01S	Confirmation		0 (Surface)		
OSC6-JE01	Confirmation		0 (Surface)		
OSC6-JP06	Confirmation		0 (Surface)		
OSC6-JP06SE	Confirmation		0 (Surface)		
OSC6-JP07	Confirmation		0 (Surface)		
OSC6-JP07NW	Confirmation		0 (Surface)		
OSC6-JP07SW	Confirmation		0 (Surface)		
WH-AS_A0	Supplemental		0 (Surface)		
WH-AS_A3	Supplemental		0 (Surface)		==
WH-AS_A4	Supplemental		0 (Surface)		
WH-AS_A5	Supplemental		0 (Surface)		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 7 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
WH-AS_A6	Supplemental		0 (Surface)		
WH-AS_A8	Supplemental		0 (Surface)		
WH-AS_B0	Supplemental		0 (Surface)		
WH-AS_B1	Supplemental		0 (Surface)		
WH-AS_B5	Supplemental		0 (Surface)		
WH-AS_B7	Supplemental		0 (Surface)		
WH-AS_B9	Supplemental		0 (Surface)		
WH-AS_C1	Supplemental		0 (Surface)		
WH-AS_C5	Supplemental		0 (Surface)		
WH-AS_C6	Supplemental		0 (Surface)		
WH-AS_C9	Supplemental		0 (Surface)		
WH-AS_D0	Supplemental		0 (Surface)		
WH-AS_D1	Supplemental		0 (Surface)		
WH-AS_D2	Supplemental		0 (Surface)		
WH-AS_D4	Supplemental		0 (Surface)		
WH-AS_D5	Supplemental		0 (Surface)		
WH-AS_D6	Supplemental		0 (Surface)		
WH-AS_D7	Supplemental		0 (Surface)		
WH-AS_D9	Supplemental		0 (Surface)		
WH-AS_E1	Supplemental		0 (Surface)		
WH-AS_E6	Supplemental		0 (Surface)		
WH-AS_F0	Supplemental		0 (Surface)		
WH-AS_F3	Supplemental		0 (Surface)		
WH-AS_F6	Supplemental		0 (Surface)		
WH-AS_F7	Supplemental		0 (Surface)		
WH-AS_G1	Supplemental		0 (Surface)		
WH-AS_G6	Supplemental		0 (Surface)		
WH-AS_H3	Supplemental		0 (Surface)		
WH-AS_H5	Supplemental		0 (Surface)		
WH-AS_J0	Supplemental		0 (Surface)		
WH-AS_J1	Supplemental		0 (Surface)		
WH-AS_J2	Supplemental		0 (Surface)		
WH-AS_J3	Supplemental		0 (Surface)		
WH-AS_J4	Supplemental		0 (Surface)		
WH-AS_J6	Supplemental		0 (Surface)		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 8 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
WH-AS_K1	Supplemental		0 (Surface)		
WH-AS_K4	Supplemental		0 (Surface)		
WH-AS_K5	Supplemental		0 (Surface)		
WH-AS_K7	Supplemental		0 (Surface)		
WH-AS_L0	Supplemental		0 (Surface)		
WH-AS_L1	Supplemental		0 (Surface)		
WH-AS_L2	Supplemental		0 (Surface)		
WH-AS_L5	Supplemental		0 (Surface)		
WH-AS_L6	Supplemental		0 (Surface)		
WH-AS_M1	Supplemental		0 (Surface)		
WH-AS_M4	Supplemental		0 (Surface)		
WH-AS_M6	Supplemental		0 (Surface)		
WH-AS_N1	Supplemental		0 (Surface)		
WH-AS_N10	Supplemental		0 (Surface)		
WH-AS_N18	Supplemental		0 (Surface)		
WH-AS_N19	Supplemental		0 (Surface)		
WH-AS_N3	Supplemental		0 (Surface)		
WH-AS_N4	Supplemental		0 (Surface)		
WH-AS_N5	Supplemental		0 (Surface)		
WH-AS_N6	Supplemental		0 (Surface)		
WH-AS_N8	Supplemental		0 (Surface)		
WH-AS_P0	Supplemental		0 (Surface)		
WH-AS_P11	Supplemental		0 (Surface)		
WH-AS_P12	Supplemental		0 (Surface)		
WH-AS_P14	Supplemental		0 (Surface)		
WH-AS_P15	Supplemental		0 (Surface)		
WH-AS_P16	Supplemental		0 (Surface)		
WH-AS_P17	Supplemental		0 (Surface)		
WH-AS_P4	Supplemental		0 (Surface)		
WH-AS_P5	Supplemental		0 (Surface)		
WH-AS_P9	Supplemental		0 (Surface)		
WH-AS_Q0	Supplemental		0 (Surface)		
WH-AS_Q10	Supplemental		0 (Surface)		
WH-AS_Q11	Supplemental		0 (Surface)		
WH-AS_Q12	Supplemental		0 (Surface)		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 9 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
WH-AS_Q13	Supplemental		0 (Surface)		
WH-AS_Q15	Supplemental		0 (Surface)		
WH-AS_Q16	Supplemental		0 (Surface)		
WH-AS_Q18	Supplemental		0 (Surface)		
WH-AS_Q3	Supplemental		0 (Surface)		
WH-AS_Q4	Supplemental		0 (Surface)		
WH-AS_Q5	Supplemental		0 (Surface)		
WH-AS_Q6	Supplemental		0 (Surface)		
WH-AS_Q8	Supplemental		0 (Surface)		
WH-AS_R1	Supplemental		0 (Surface)		
WH-AS_R10	Supplemental		0 (Surface)		
WH-AS_R12	Supplemental		0 (Surface)		
WH-AS_R14	Supplemental		0 (Surface)		
WH-AS_R15	Supplemental		0 (Surface)		
WH-AS_R3	Supplemental		0 (Surface)		
WH-AS_R7	Supplemental		0 (Surface)		
WH-AS_R9	Supplemental		0 (Surface)		
WH-AS_S0	Supplemental		0 (Surface)		
WH-AS_S10	Supplemental		0 (Surface)		
WH-AS_S11	Supplemental		0 (Surface)		
WH-AS_S13	Supplemental		0 (Surface)		
WH-AS_S14	Supplemental		0 (Surface)		
WH-AS_S15	Supplemental		0 (Surface)		
WH-AS_S16	Supplemental		0 (Surface)		
WH-AS_S17	Supplemental		0 (Surface)		
WH-AS_S18	Supplemental		0 (Surface)		
WH-AS_S3	Supplemental		0 (Surface)		
WH-AS_S8	Supplemental		0 (Surface)		
WH-AS_S9	Supplemental		0 (Surface)		==
WH-AS_T0	Supplemental		0 (Surface)		
WH-AS_T10	Supplemental		0 (Surface)		
WH-AS_T12	Supplemental		0 (Surface)		
WH-AS_T13	Supplemental		0 (Surface)		
WH-AS_T15	Supplemental		0 (Surface)		
WH-AS_T17	Supplemental		0 (Surface)		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 10 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
WH-AS_T2	Supplemental		0 (Surface)		
WH-AS_T3	Supplemental		0 (Surface)		
WH-AS_T5	Supplemental		0 (Surface)		
WH-AS_T9	Supplemental		0 (Surface)		
WH-AS_U12	Supplemental		0 (Surface)		
WH-AS_U13	Supplemental		0 (Surface)		
WH-AS_U14	Supplemental		0 (Surface)		
WH-AS_U19	Supplemental		0 (Surface)		
WH-AS_U4	Supplemental		0 (Surface)		
WH-AS_U6	Supplemental		0 (Surface)		
WH-AS_U9	Supplemental		0 (Surface)		
WH-AS_W11	Supplemental		0 (Surface)		
WH-AS_W13	Supplemental		0 (Surface)		
WH-AS_W16	Supplemental		0 (Surface)		
WH-AS_W18	Supplemental		0 (Surface)		
WHC1-A01	Supplemental		0 (Surface)		==
WHC1-A02	Supplemental		0 (Surface)		==
WHC1-A03	Supplemental		0 (Surface)		
WHC1-A04	Supplemental		0 (Surface)		
WHC1-A05	Supplemental		0 (Surface)		
WHC1-A06	Supplemental		0 (Surface)		
WHC1-A07	Supplemental		0 (Surface)		
WHC1-A08	Supplemental		0 (Surface)		
WHC1-A09	Supplemental		0 (Surface)		
WHC1-A10	Supplemental		0 (Surface)		
WHC1-A11	Supplemental		0 (Surface)		
WHC1-A12	Supplemental		0 (Surface)		
WHC1-A13	Supplemental		0 (Surface)		
WHC1-A14	Supplemental		0 (Surface)		
WHC1-A15	Supplemental		0 (Surface)		
WHC1-A16	Supplemental		0 (Surface)		
WHC1-BJ01NE	Supplemental		0 (Surface)		
WHC1-BJ01NW	Supplemental		0 (Surface)		
WHC1-BJ01SE	Supplemental		0 (Surface)		
WHC1-BJ01SW	Supplemental		0 (Surface)		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 11 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
WHC1-BL08NE	Supplemental		0 (Surface)		
WHC1-BL08NW	Supplemental		0 (Surface)		
WHC1-BL08SE	Supplemental		0 (Surface)		
WHC1-BL08SW	Supplemental		0 (Surface)		
WHC1-BL11NE	Supplemental		0 (Fill/Surface)		
WHC1-BL11NW	Supplemental		0 (Fill/Surface)		
WHC1-BL11SE	Supplemental		0 (Fill/Surface)		
WHC1-BL11SW	Supplemental		0 (Fill/Surface)		
WHC1-BN07NE	Supplemental		0 (Surface)		
WHC1-BN07NW	Supplemental		0 (Surface)		
WHC1-BN07SE	Supplemental		0 (Surface)		
WHC1-BN07SW	Supplemental		0 (Surface)		
WHC1-BN08NE	Supplemental		0 (Surface)		
WHC1-BN08NW	Supplemental		0 (Surface)		
WHC1-BN08SE	Supplemental		0 (Surface)		
WHC1-BN08SW	Supplemental		0 (Surface)		
WHC1-BN10NE	Supplemental		0 (Surface)		
WHC1-BN10NW	Supplemental		0 (Surface)		
WHC1-BN10SE	Supplemental		0 (Surface)		
WHC1-BN10SW	Supplemental		0 (Surface)		
WHC1-P01NE	Supplemental		0 (Fill/Surface)		
WHC1-P01NW	Supplemental		0 (Fill/Surface)		
WHC1-P01SE	Supplemental		0 (Fill/Surface)		
WHC1-P01SW	Supplemental		0 (Fill/Surface)		
WHC1-P15NE	Supplemental		0 (Surface)		
WHC1-P15NW	Supplemental		0 (Surface)		
WHC1-P15SE	Supplemental		0 (Surface)		
WHC1-P15SW	Supplemental		0 (Surface)		
WHC2-A09	Confirmation		0 (Surface)		
WHC2-A09C	Confirmation		0 (Surface)		
WHC2-BF01	Confirmation		0 (Fill/Surface)		
WHC2-BF01C	Confirmation		0 (Fill/Surface)		
WHC2-BF02C	Supplemental		0 (Fill/Surface)		
WHC2-BF02NE	Supplemental		0 (Fill/Surface)		
WHC2-BF02NW	Supplemental		0 (Fill/Surface)		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 12 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
WHC2-BF02SE	Supplemental		0 (Fill/Surface)		
WHC2-BF02SW	Supplemental		0 (Fill/Surface)		
WHC2-BF04C	Supplemental		0 (Surface)		
WHC2-BF04NE	Supplemental		0 (Surface)		
WHC2-BF04NW	Supplemental		0 (Surface)		
WHC2-BF04SE	Supplemental		0 (Surface)		
WHC2-BF04SW	Supplemental		0 (Surface)		
WHC2-BF05C	Supplemental		0 (Fill/Surface)	12 (Subsurface)	
WHC2-BF05NE	Supplemental		0 (Fill/Surface)	12 (Subsurface)	
WHC2-BF05NW	Supplemental		0 (Fill/Surface)	12 (Subsurface)	
WHC2-BF05SE	Supplemental		0 (Fill/Surface)	12 (Subsurface)	
WHC2-BF05SW	Supplemental		0 (Fill/Surface)	12 (Subsurface)	
WHC2-BF06	Confirmation		0 (Surface)		
WHC2-BF06C	Confirmation/Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-BF06NE	Confirmation/Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-BF06NW	Confirmation/Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-BF06SE	Confirmation/Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-BF06SW	Confirmation/Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-BG02C	Supplemental		0 (Surface)		
WHC2-BG02NE	Supplemental		0 (Surface)		
WHC2-BG02NW	Supplemental		0 (Surface)		
WHC2-BG02SE	Supplemental		0 (Surface)		
WHC2-BG02SW	Supplemental		0 (Surface)		
WHC2-BG03C	Supplemental		0 (Fill/Surface)		
WHC2-BG03NE	Supplemental		0 (Fill/Surface)		
WHC2-BG03NW	Supplemental		0 (Fill/Surface)		
WHC2-BG03SE	Supplemental		0 (Fill/Surface)		
WHC2-BG03SW	Supplemental		0 (Fill/Surface)		
WHC2-BG04C	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-BG04NE	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-BG04NW	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-BG04SE	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-BG04SW	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-BG06C	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-BG06NE	Supplemental		0 (Surface)	10 (Subsurface)	

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 13 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
WHC2-BG06NW	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-BG06SE	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-BG06SW	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-BH03C	Supplemental		0 (Surface)		
WHC2-BH05C	Supplemental		0 (Surface)		
WHC2-BH05NE	Supplemental		0 (Surface)		
WHC2-BH05NW	Supplemental		0 (Surface)		
WHC2-BH05SE	Supplemental		0 (Surface)		
WHC2-BH05SW	Supplemental		0 (Surface)		
WHC2-BH06C	Supplemental		0 (Surface)		
WHC2-BH06NE	Supplemental		0 (Surface)		
WHC2-BH06NW	Supplemental		0 (Surface)		
WHC2-BH06SE	Supplemental		0 (Surface)		
WHC2-BH06SW	Supplemental		0 (Surface)		
WHC2-BI05C	Supplemental		0 (Surface)		
WHC2-BJ05C	Supplemental		0 (Surface)		
WHC2-BJ05NE	Supplemental		0 (Surface)		
WHC2-BJ05NW	Supplemental		0 (Surface)		
WHC2-BJ05SE	Supplemental		0 (Surface)		
WHC2-BJ05SW	Supplemental		0 (Surface)		
WHC2-BK05NE	Supplemental		0 (Fill/Surface)		
WHC2-BK05NW	Supplemental		0 (Fill/Surface)		
WHC2-BK05SC	Supplemental		0 (Fill/Surface)		
WHC2-BK05SE	Supplemental		0 (Fill/Surface)		
WHC2-BK05SW	Supplemental		0 (Fill/Surface)		
WHC2-BL05	Confirmation		0 (Surface)		
WHC2-BL07	Confirmation		0 (Surface)		
WHC2-BM06C	Supplemental		0 (Surface)		
WHC2-BM07	Confirmation		0 (Fill/Surface)		
WHC2-BM07C	Supplemental		0 (Fill/Surface)		
WHC2-BM08	Confirmation		0 (Surface)		
WHC2-BM08C	Supplemental		0 (Fill/Surface)		
WHC2-BM10C	Supplemental		0 (Fill)	13 (Subsurface)	
WHC2-BM10NE	Supplemental		0 (Fill)	13 (Subsurface)	
WHC2-BM10NW	Supplemental		0 (Fill)	13 (Subsurface)	

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 14 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
WHC2-BM10SE	Supplemental		0 (Fill)	13 (Subsurface)	
WHC2-BM10SW	Supplemental		0 (Fill)	13 (Subsurface)	
WHC2-BN05	Confirmation		0 (Surface)		
WHC2-BN05C	Supplemental		0 (Surface)		
WHC2-BN09C	Supplemental		0 (Fill/Surface)	11 (Subsurface)	
WHC2-BN09NE	Supplemental		0 (Fill/Surface)	11 (Subsurface)	
WHC2-BN09NW	Supplemental		0 (Fill/Surface)	11 (Subsurface)	
WHC2-BN09SE	Supplemental		0 (Fill/Surface)	11 (Subsurface)	
WHC2-BN09SW	Supplemental		0 (Fill/Surface)	11 (Subsurface)	
WHC2-BN10	Confirmation		0 (Surface)		
WHC2-BN10NE	Confirmation		0 (Surface)		
WHC2-BN10SE	Confirmation		0 (Surface)		
WHC2-BN10SW	Confirmation		0 (Surface)		
WHC2-BO09	Confirmation		0 (Surface)		
WHC2-BO09C	Confirmation		0 (Surface)		
WHC2-BO10C	Supplemental		0 (Surface)		
WHC2-BP05C	Supplemental		0 (Surface)		
WHC2-BP05NE	Supplemental		0 (Surface)		
WHC2-BP05NW	Supplemental		0 (Surface)		
WHC2-BP05SE	Supplemental		0 (Surface)		
WHC2-BP05SW	Supplemental		0 (Surface)		
WHC2-BP06	Confirmation		0 (Surface)		
WHC2-BP07C	Supplemental		0 (Fill)	3 (Surface)	
WHC2-BP07NE	Supplemental		0 (Fill)	3 (Surface)	
WHC2-BP07NW	Supplemental		0 (Fill)	3 (Surface)	
WHC2-BP07SE	Supplemental		0 (Fill)	3 (Surface)	
WHC2-BP07SW	Supplemental		0 (Fill)	3 (Surface)	
WHC2-BP08C	Supplemental		0 (Fill)	4 (Surface)	
WHC2-BP08NE	Supplemental		0 (Fill)	4 (Surface)	
WHC2-BP08NW	Supplemental		0 (Fill)	4 (Surface)	
WHC2-BP08SE	Supplemental		0 (Fill)	4 (Surface)	
WHC2-BP08SW	Supplemental		0 (Fill)	4 (Surface)	
WHC2-D01	Confirmation		0 (Surface)		
WHC2-D01C	Supplemental		0 (Surface)		
WHC2-D02C	Supplemental		0 (Surface)		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 15 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
WHC2-D03C	Supplemental		0 (Surface)		
WHC2-D04C	Supplemental		0 (Surface)		
WHC2-D05C	Supplemental		0 (Surface)		
WHC2-D06C	Supplemental		0 (Surface)		
WHC2-D07C	Supplemental		0 (Surface)		
WHC2-D08C	Confirmation		0 (Surface)		
WHC2-D09C	Supplemental		0 (Fill/Surface)		
WHC2-D10C	Supplemental		0 (Surface)		
WHC2-D11C	Supplemental		0 (Surface)		
WHC2-D12C	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-D13C	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-D13NE	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-D13NW	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-D13SE	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-D13SW	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-D14C	Supplemental		0 (Surface)		
WHC2-D15C	Supplemental		0 (Surface)		
WHC2-D16C	Supplemental		0 (Surface)		
WHC2-D17C	Supplemental		0 (Surface)		
WHC2-D18	Confirmation		0 (Surface)		
WHC2-D18C	Supplemental		0 (Surface)		
WHC2-D19C	Supplemental		0 (Surface)		
WHC2-D20C	Supplemental		0 (Surface)		
WHC2-D21C	Supplemental		0 (Surface)		
WHC2-D22C	Supplemental		0 (Surface)		
WHC2-D23C	Supplemental		0 (Surface)		
WHC2-D24C	Supplemental		0 (Surface)		
WHC2-D25C	Supplemental		0 (Surface)		
WHC2-D26C	Supplemental		0 (Surface)		
WHC2-D27C	Supplemental		0 (Surface)		
WHC2-D28C	Supplemental		0 (Surface)		
WHC2-D29C	Supplemental		0 (Surface)		
WHC2-JE01	Confirmation		0 (Surface)		
WHC2-JE02	Confirmation		0 (Surface)		
WHC2-P07C	Supplemental		0 (Surface)		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 16 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
WHC2-P11C	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-P12C	Supplemental		0 (Fill/Surface)		
WHC2-P13C	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-P13NE	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-P13NW	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-P13SE	Supplemental		0 (Surface)	10 (Subsurface)	
WHC2-P13SW	Supplemental		0 (Surface)	10 (Subsurface)	
WHC3-A09N	Supplemental		0 (Surface)		
WHC3-A09S	Supplemental		0 (Surface)		
WHC3-A09W	Supplemental		0 (Surface)		
WHC3-BL05N	Supplemental		0 (Surface)		
WHC3-BL05S	Supplemental		0 (Surface)		
WHC3-BM06C	Confirmation		0 (Surface)		
WHC3-BO10C	Confirmation		0 (Surface)		
WHC3-BP06NE	Confirmation		0 (Surface)		
WHC3-BP06SE	Confirmation		0 (Surface)		
WHC3-D11C	Confirmation		0 (Surface)		
WHC3-D14C	Confirmation		0 (Surface)		
WHC3-D26C	Confirmation		0 (Surface)		
WHC3-D27C	Confirmation		0 (Surface)		
WHC3-D28C	Confirmation		0 (Surface)		
WHC3-JE01	Confirmation		0 (Surface)		
WHC3-P11C	Confirmation		0 (Surface)		
WHC4-D27N	Confirmation		0 (Surface)		
WHC4-D27S	Confirmation		0 (Surface)		
WHC6-A09	Confirmation		0 (Surface)		
WHC6-BG02SW	Confirmation		0 (Surface)		
WHC6-BH06NE	Confirmation		0 (Surface)		
WHC6-BL05	Confirmation		0 (Surface)		
WHC6-BM06	Confirmation		0 (Surface)		
WHC6-BP06	Confirmation		0 (Surface)		
WHC6-D01	Confirmation		0 (Surface)		
WHC6-D04	Confirmation		0 (Surface)		
WHC6-D05	Confirmation		0 (Surface)		
WHC6-D06	Confirmation		0 (Surface)		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 17 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
WHC6-D07	Confirmation		0 (Surface)		
WHC6-D08	Confirmation		0 (Surface)		
WHC6-D09	Confirmation		0 (Fill/Surface)		
WHC6-D10	Confirmation		0 (Surface)		
WHC6-D11	Confirmation		0 (Surface)		
WHC6-D14	Confirmation		0 (Surface)		
WHC6-D15	Confirmation		0 (Surface)		
WHC6-D16	Confirmation		0 (Surface)		
WHC6-D17	Confirmation		0 (Surface)		
WHC6-D18	Confirmation		0 (Surface)		
WHC6-D20	Confirmation		0 (Surface)		
WHC6-D27	Confirmation		0 (Surface)		
WHC6-JE01	Confirmation		0 (Surface)		
WHC6-P10	Confirmation		0 (Surface)		
WHC6-P11	Confirmation		0 (Surface)		
WHC7-BG02SW_3	Confirmation		0 (Surface)		
WHC7-BG02SW_5	Confirmation		0 (Surface)		
WHC7-BH06NE_3	Confirmation		0 (Surface)		
WHC7-BH06NE_5	Confirmation		0 (Surface)		
WHC7-D04_3	Confirmation		0 (Surface)		
WHC7-D04_5	Confirmation		0 (Surface)		
WHC7-D09_3	Confirmation		0 (Fill/Surface)		
WHC7-D09_5	Confirmation		0 (Fill/Surface)		
WHC7-D10_3	Confirmation		0 (Surface)		
WHC7-D10_5	Confirmation		0 (Surface)		
WHC7-D11_3	Confirmation		0 (Surface)		
WHC7-D11_5	Confirmation		0 (Surface)		
WHC7-D12	Confirmation		0 (Surface)		
WHC7-D14_3	Confirmation		0 (Surface)		
WHC7-D14_5	Confirmation		0 (Surface)		
WHC7-D17_3	Confirmation		0 (Surface)		
WHC7-D17_5	Confirmation		0 (Surface)		
WHC7-D18_3	Confirmation		0 (Surface)		
WHC7-D18_5	Confirmation		0 (Surface)		
WHC7-D20_3	Confirmation		0 (Surface)		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 18 of 18)

Sample	Sample	Grading	Sample	Sample	Sample
Location	Type	Plan	Depth 1	Depth 2	Depth 3
WHC7-D20_5	Confirmation		0 (Surface)		
WHC7-P11_3	Confirmation		0 (Surface)		
WHC7-P11_5	Confirmation		0 (Surface)		
WHC7-W11	Confirmation		0 (Surface)		
WHC7-WA11	Confirmation		0 (Surface)		
WHC8-D09	Confirmation		0 (Fill/Surface)		
WHC8-D11	Confirmation		0 (Surface)		
WHC8-D17	Confirmation		0 (Surface)		
WHC8-D18	Confirmation		0 (Surface)		
WHC8-D20	Confirmation		0 (Surface)		
WHD-AS-BG05	Supplemental		0 (Surface)	10 (Subsurface)	
WHD-AS-BH04	Supplemental		0 (Surface)	10 (Subsurface)	
WHD-AS-BK03	Supplemental		0 (Surface)	12 (Subsurface)	
WHD-AS-BL03	Supplemental		0 (Surface)		
WHD-AS-BN01	Supplemental		0 (Surface)	12 (Subsurface)	
WHD-AS-BN10	Supplemental		0 (Surface)	==	
WHD-AS-BP03	Supplemental		0 (Surface)	11 (Subsurface)	
WHD-AS-BP04	Supplemental		0 (Surface)		
WHD-AS-BP08	Supplemental		0 (Fill)	4 (Surface)	
WHD-AS-P14	Supplemental		0 (Surface)		

Note: Because sample collection was be over a two to three foot depth interval, sample locations with an anticipated cut depth less than three feet only sampled at the surface and one post-grade subsurface depth.

Yellow shaded locations indicates deep soil sample collected for physical parameter analyses.

Green shaded locations indicates subsurface soil sample also included synthetic precipitation leaching procedure (SPLP) sampling and analysis.

Depths are in feet bgs (current grade).

TABLE 3-2 SITE-RELATED CHEMICALS AND INITIAL SAMPLE ANALYSES AND DEPTHS HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 10)

Parameter of	Preparation	Analytical		CAS Sample Deptl			Fable 3-1)
Interest	Method	Method	Compound List	Number	Depth 1	Depth 2/3	Deep
Ions	EPA 300.0	EPA 300.0	Bromide	24959-67-9	√	- ✓	(d)
			Chlorate	14866-68-3	✓	✓	(d)
			Chloride	16887-00-6	✓	✓	(d)
			Fluoride	16984-48-8	✓	✓	(d)
			Nitrate (as N)	14797-55-8	✓	✓	(d)
			Nitrite (as N)	14797-65-0	✓	✓	(d)
			Orthophosphate	14265-44-2	✓	✓	(d)
			Sulfate	14808-79-8	✓	✓	(d)
	EPA 314.0	EPA 314.0	Perchlorate	14797-73-0	✓	✓	(d)
Chlorinated	EPA 551.1	EPA 551.1	Chloral	75-87-6	(e)	(e)	(d)
Compounds			Dichloroacetaldehyde	79-02-7	(e)	(e)	(d)
Polychlorinated	EPA 8290	EPA 8290	1,2,3,4,6,7,8,9-Octachlorodibenzofuran	39001-02-0	✓	(b)	(b)
Dibenzodioxins/			1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	3268-87-9	✓	(b)	(b)
Dibenzofurans			1,2,3,4,6,7,8-Heptachlorodibenzofuran	67562-39-4	✓	(b)	(b)
			1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	35822-46-9	✓	(b)	(b)
			1,2,3,4,7,8,9-Heptachlorodibenzofuran	55673-89-7	✓	(b)	(b)
			1,2,3,4,7,8-Hexachlorodibenzofuran	70648-26-9	✓	(b)	(b)
			1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	39227-28-6	✓	(b)	(b)
			1,2,3,6,7,8-Hexachlorodibenzofuran	57117-44-9	✓	(b)	(b)
			1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	57653-85-7	✓	(b)	(b)
			1,2,3,7,8,9-Hexachlorodibenzofuran	72918-21-9	✓	(b)	(b)
			1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	19408-74-3	✓	(b)	(b)
			1,2,3,7,8-Pentachlorodibenzofuran	57117-41-6	✓	(b)	(b)
			1,2,3,7,8-Pentachlorodibenzo-p-dioxin	40321-76-4	✓	(b)	(b)
			2,3,4,6,7,8-Hexachlorodibenzofuran	60851-34-5	✓	(b)	(b)
			2,3,4,7,8-Pentachlorodibenzofuran	57117-31-4	✓	(b)	(b)
			2,3,7,8-Tetrachlorodibenzofuran	51207-31-9	✓	(b)	(b)
			2,3,7,8-Tetrachlororodibenzo-p-dioxin	1746-01-6	✓	(b)	(b)
Asbestos	Elutrator	Elutriator/TEM	Asbestos	1332-21-4	✓	(c)	(c)
General Chemistry	EPA 350.1	EPA 350.2	Ammonia (as N)	7664-41-7	✓	✓	(d)
Parameters	EPA 9012A	EPA 9010/9014	Cyanide (Total)	57-12-5	✓	✓	(d)
	NA	EPA 9045C	pH in soil	pН	✓	✓	✓
	EPA 376.1/376.2	EPA 376.1/376.2	Sulfide	18496-25-8	✓	✓	(d)
	Mod. EPA 415.1	Mod. EPA 415.1	Total inorganic carbon	7440-44-0	✓	✓	(d)
	EPA 351.2	EPA 351.2	Total Kjeldahl nitrogen (TKN)	TKN	✓	✓	(d)
	EPA 9060	EPA 415.1	Total organic carbon (TOC)	7440-44-0	✓	✓	✓

TABLE 3-2
SITE-RELATED CHEMICALS AND INITIAL SAMPLE ANALYSES AND DEPTHS
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 10)

Parameter of	Preparation	Analytical		CAS	Sample D	epth (from]	Table 3-1)
Interest	Method	Method	Compound List	Number	Depth 1	Depth 2/3	Deep
Metals	EPA 3050M	EPA 6020/6010B	Aluminum	7429-90-5	√	- ✓	(d)
			Antimony	7440-36-0	✓	√	(d)
			Arsenic	7440-38-2	✓	✓	(d)
			Barium	7440-39-3	✓	✓	(d)
			Beryllium	7440-41-7	✓	✓	(d)
			Boron	7440-42-8	✓	✓	(d)
			Cadmium	7440-43-9	✓	✓	(d)
			Calcium	7440-70-2	✓	✓	(d)
			Chromium	7440-47-3	✓	✓	(d)
			Cobalt	7440-48-4	✓	✓	(d)
			Copper	7440-50-8	✓	✓	(d)
			Iron	7439-89-6	✓	✓	(d)
			Lead	7439-92-1	✓	✓	(d)
			Lithium	1313-13-9	✓	✓	(d)
			Magnesium	7439-95-4	✓	✓	(d)
			Manganese	7439-96-5	✓	✓	(d)
			Molybdenum	7439-98-7	✓	✓	(d)
			Nickel	7440-02-0	✓	✓	(d)
			Niobium	7440-03-1	(e)	(e)	(d)
			Palladium	7440-05-3	(e)	(e)	(d)
			Phosphorus	7723-14-0	(e)	(e)	(d)
			Platinum	7440-06-4	(e)	(e)	(d)
			Potassium	7440-09-7	✓	✓	(d)
			Selenium	7782-49-2	✓	✓	(d)
			Silicon	7440-21-3	(e)	(e)	(d)
			Silver	7440-22-4	✓	✓	(d)
			Sodium	7440-23-5	✓	✓	(d)
			Strontium	7440-24-6	✓	✓	(d)
			Sulfur	7704-34-9	(e)	(e)	(d)
			Thallium	7440-28-0	✓	✓	(d)
			Tin	7440-31-5	✓	✓	(d)
			Titanium	7440-32-6	✓	✓	(d)
			Tungsten	7440-33-7	✓	✓	(d)
			Uranium	7440-61-1	✓	✓	(d)
			Vanadium	7440-62-2	✓	✓	(d)
			Zinc	7440-66-6	✓	✓	(d)
			Zirconium	7440-67-7	(e)	(e)	(d)

TABLE 3-2
SITE-RELATED CHEMICALS AND INITIAL SAMPLE ANALYSES AND DEPTHS
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 10)

Parameter of	Preparation	Analytical		CAS	Sample D	epth (from '	Гable 3-1)
Interest	Method	Method	Compound List	Number	Depth 1	Depth 2/3	Deep
Metals (continued)	EPA 3060A	EPA 7196A	Chromium (VI)	18540-29-9	√	- ✓	(d)
	EPA 7471A	EPA 7470/7471A	Mercury	7439-97-6	✓	✓	(d)
Organophosphorous	EPA 8141A	EPA 8141A	Azinphos-ethyl	264-27-19	(a)	(a)	(a)
Pesticides			Azinphos-methyl	86-50-0	(a)	(a)	(a)
			Carbophenothion	786-19-6	(a)	(a)	(a)
			Chlorpyrifos	2921-88-2	(a)	(a)	(a)
			Coumaphos	56-72-4	(a)	(a)	(a)
			Demeton-O	298-03-3	(a)	(a)	(a)
			Demeton-S	126-75-0	(a)	(a)	(a)
			Diazinon	333-41-5	(a)	(a)	(a)
			Dichlorvos	62-73-7	(a)	(a)	(a)
			Dimethoate	60-51-5	(a)	(a)	(a)
			Disulfoton	298-04-4	(a)	(a)	(a)
			EPN	2104-64-5	(a)	(a)	(a)
			Ethoprop	13194-48-4	(a)	(a)	(a)
		Ethyl parathion	56-38-2	(a)	(a)	(a)	
			Fampphur	52-85-7	(a)	(a)	(a)
			Fenthion	55-38-9	(a)	(a)	(a)
			Malathion	121-75-5	(a)	(a)	(a)
			Methyl carbophenothion	953-17-3	(a)	(a)	(a)
			Methyl parathion	298-00-0	(a)	(a)	(a)
			Mevinphos	7786-34-7	(a)	(a)	(a)
			Naled	300-76-5	(a)	(a)	(a)
			O,O,O-Triethyl phosphorothioate (TEPP)	297-97-2	(a)	(a)	(a)
			Phorate	298-02-2	(a)	(a)	(a)
			Phosmet	732-11-6	(a)	(a)	(a)
			Ronnel	299-84-3	(a)	(a)	(a)
			Stirophos (Tetrachlorovinphos)	22248-79-9	(a)	(a)	(a)
			Sulfotep	3689-24-5	(a)	(a)	(a)
Chlorinated	EPA 8151A	EPA 8151A	2,4,5-T	93-76-5	(a)	(a)	(a)
Herbicides			2,4,5-TP (Silvex)	93-72-1	(a)	(a)	(a)
			2,4-D	94-75-7	(a)	(a)	(a)
			2,4-DB	94-82-6	(a)	(a)	(a)
			Dalapon	75-99-0	(a)	(a)	(a)
			Dicamba	1918-00-9	(a)	(a)	(a)

TABLE 3-2
SITE-RELATED CHEMICALS AND INITIAL SAMPLE ANALYSES AND DEPTHS
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 10)

Parameter of	Preparation	Analytical		CAS	Sample D	epth (from	Table 3-1)
Interest	Method	Method	Compound List	Number	Depth 1	Depth 2/3	Deep
Chlorinated	EPA 8151A	EPA 8151A	Dichloroprop	120-36-5	(a)	(a)	(a)
Herbicides			Dinoseb	88-85-7	(a)	(a)	(a)
(continued)			MCPA	94-74-6	(a)	(a)	(a)
			MCPP	93-65-2	(a)	(a)	(a)
Organic Acids	HPLC	HPLC	4-Chlorobenzene sulfonic acid	98-66-8	(a)	(a)	(a)
			Benzenesulfonic acid	98-11-3	(a)	(a)	(a)
			O,O-Diethylphosphorodithioic acid	298-06-6	(a)	(a)	(a)
			O,O-Dimethylphosphorodithioic acid	756-80-9	(a)	(a)	(a)
Nonhalogenated	EPA 8015B	EPA 8015B	Ethylene glycol	107-21-1	(a)	(a)	(a)
Organics			Ethylene glycol monobutyl ether	111-76-2	(a)	(a)	(a)
			Methanol	67-56-1	(a)	(a)	(a)
			Propylene glycol	57-55-6	(a)	(a)	(a)
Organochlorine	EPA 3550B	EPA 8081A	2,4-DDD	53-19-0	✓	✓	(d)
Pesticides			2,4-DDE	3424-82-6	✓	✓	(d)
			4,4-DDD	72-54-8	✓	✓	(d)
			4,4-DDE	72-55-9	✓	✓	(d)
			4,4-DDT	50-29-3	✓	✓	(d)
			Aldrin	309-00-2	✓	✓	(d)
			alpha-BHC	319-84-6	✓	✓	(d)
			alpha-Chlordane	5103-71-9	✓	✓	(d)
			beta-BHC	319-85-7	✓	✓	(d)
			Chlordane	57-74-9	✓	✓	(d)
			delta-BHC	319-86-8	✓	✓	(d)
			Dieldrin	60-57-1	✓	✓	(d)
			Endosulfan I	959-98-8	✓	✓	(d)
			Endosulfan II	33213-65-9	✓	✓	(d)
			Endosulfan sulfate	1031-07-8	✓	✓	(d)
			Endrin	72-20-8	✓	✓	(d)
			Endrin aldehyde	7421-93-4	✓	✓	(d)
			Endrin ketone	53494-70-5	✓	✓	(d)
			gamma-BHC (Lindane)	58-89-9	✓	✓	(d)
			gamma-Chlordane	5103-74-2	✓	✓	(d)
			Heptachlor	76-44-8	✓	✓	(d)
			Heptachlor epoxide	1024-57-3	✓	✓	(d)
			Methoxychlor	72-43-5	✓	✓	(d)
			Toxaphene	8001-35-2	✓	√	(d)

TABLE 3-2
SITE-RELATED CHEMICALS AND INITIAL SAMPLE ANALYSES AND DEPTHS
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page	5	of	10	D)

Parameter of	Preparation	Analytical		CAS	Sample D	epth (from '	Fable 3-1)
Interest	Method	Method	Compound List	Number	Depth 1	Depth 2/3	Deep
Polychlorinated	EPA 3510C	EPA 8082	Aroclor 1016	12674-11-2	√	(b)	(b)
Biphenyls			Aroclor 1221	11104-28-2	✓	(b)	(b)
			Aroclor 1232	11141-16-5	✓	(b)	(b)
			Aroclor 1242	53469-21-9	✓	(b)	(b)
			Aroclor 1248	12672-29-6	✓	(b)	(b)
			Aroclor 1254	11097-69-1	✓	(b)	(b)
			Aroclor 1260	11096-82-5	✓	(b)	(b)
		EPA 1668	PCB-77	32598-13-3	✓	(b)	(b)
			PCB-81	70362-50-4	✓	(b)	(b)
			PCB-105	32598-14-4	✓	(b)	(b)
			PCB-114	74472-37-0	✓	(b)	(b)
			PCB-118	31508-00-6	✓	(b)	(b)
			PCB-123	65510-44-3	✓	(b)	(b)
			PCB-126	57465-28-8	✓	(b)	(b)
			PCB-156	38380-08-4	✓	(b)	(b)
		PCB-157	69782-90-7	✓	(b)	(b)	
			PCB-167	52663-72-6	✓	(b)	(b)
			PCB-169	32774-16-6	✓	(b)	(b)
			PCB-189	39635-31-9	✓	(b)	(b)
			PCB-209	2051-24-3	✓	(b)	(b)
Polynuclear	EPA 3550	EPA 8310	Acenaphthene	83-32-9	✓	✓	(d)
Aromatic		or EPA 8270SIM	Acenaphthylene	208-96-8	✓	✓	(d)
Hydrocarbons			Anthracene	120-12-7	✓	✓	(d)
			Benzo(a)anthracene	56-55-3	✓	✓	(d)
			Benzo(a)pyrene	50-32-8	✓	✓	(d)
			Benzo(b)fluoranthene	205-99-2	✓	✓	(d)
			Benzo(g,h,i)perylene	191-24-2	✓	✓	(d)
			Benzo(k)fluoranthene	207-08-9	✓	✓	(d)
			Chrysene	218-01-9	✓	✓	(d)
			Dibenzo(a,h)anthracene	53-70-3	✓	✓	(d)
			Indeno(1,2,3-cd)pyrene	193-39-5	✓	✓	(d)
			Phenanthrene	85-01-8	✓	✓	(d)
			Pyrene	129-00-0	✓	✓	(d)
Radionuclides	HASL 3003	EPA 903.0 / 903.1	Radium-226	13982-63-3	✓	✓	(d)
		EPA 904.0	Radium-228	15262-20-1	✓	✓	(d)

TABLE 3-2
SITE-RELATED CHEMICALS AND INITIAL SAMPLE ANALYSES AND DEPTHS
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 10)

Parameter of	Preparation	Analytical		CAS	Sample Depth (from Table 3-1)		
Interest	Method	Method	Compound List	Number	Depth 1	Depth 2/3	Deep
Radionuclides	HASL 300	HASL A-01-R	Thorium-228	7440-29-1	✓	✓	(d)
(continued)	(Total Dissolution)		Thorium-230	14274-82-9	√	√	(d)
			Thorium-232	14269-63-7	√	✓	(d)
	HASL 300		Uranium-233/234	13966-29-5	√	✓	(d)
	(Total Dissolution)		Uranium-235/236	15117-96-1	✓	✓	(d)
			Uranium-238	7440-61-1	✓	✓	(d)
Aldehydes	EPA 8315A	EPA 8315A	Acetaldehyde	75-07-0	✓	✓	(d)
			Chloroacetaldehyde	107-20-0	(e)	(e)	(d)
			Dichloroacetaldehyde	79-02-7	(e)	(e)	(d)
			Formaldehyde	50-00-0	✓	✓	(d)
			Trichloroacetaldehyde	75-87-6	(e)	(e)	(d)
Semivolatile	EPA 3550B	EPA 8270C	1,2,4,5-Tetrachlorobenzene	95-94-3	✓	✓	(d)
Organic			1,2-Diphenylhydrazine	122-66-7	✓	✓	(d)
Compounds			1,4-Dioxane	123-91-1	✓	✓	(d)
			2,2'/4,4'-Dichlorobenzil	3457-46-3	✓	✓	(d)
			2,4,5-Trichlorophenol	95-95-4	✓	✓	(d)
			2,4,6-Trichlorophenol	88-06-2	✓	✓	(d)
			2,4-Dichlorophenol	120-83-2	✓	✓	(d)
			2,4-Dimethylphenol	105-67-9	✓	✓	(d)
			2,4-Dinitrophenol	51-28-5	✓	✓	(d)
			2,4-Dinitrotoluene	121-14-2	✓	✓	(d)
			2,6-Dinitrotoluene	606-20-2	✓	✓	(d)
			2-Chloronaphthalene	91-58-7	✓	✓	(d)
			2-Chlorophenol	95-57-8	✓	✓	(d)
			2-Methylnaphthalene	91-57-6	✓	✓	(d)
			2-Nitroaniline	88-74-4	✓	✓	(d)
			2-Nitrophenol	88-75-5	✓	✓	(d)
			3,3-Dichlorobenzidine	91-94-1	✓	✓	(d)
			3-Nitroaniline	99-09-2	✓	✓	(d)
			4-Bromophenyl phenyl ether	101-55-3	✓	✓	(d)
			4-Chloro-3-methylphenol	59-50-7	✓	✓	(d)
			4-Chlorophenyl phenyl ether	7005-72-3	✓	✓	(d)
			4-Chlorothioanisole	123-09-1	✓	✓	(d)
			4-Nitroaniline	100-01-6	✓	✓	(d)
			4-Nitrophenol	100-02-7	✓	✓	(d)
			Acetophenone	98-86-2	✓	✓	(d)
			Aniline	62-53-3	✓	✓	(d)

TABLE 3-2
SITE-RELATED CHEMICALS AND INITIAL SAMPLE ANALYSES AND DEPTHS
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA
(Page 7 of 10)

Parameter of	Preparation	Analytical		CAS	Sample D	Pepth (from T	Table 3-1)
Interest	Method	Method	Compound List	Number	Depth 1	Depth 2/3	Deep
Semivolatile	EPA 3550B	EPA 8270C	Benzenethiol	108-98-5	√	1 ✓	(d)
Organic			Benzoic acid	65-85-0	✓	✓	(d)
Compounds			Benzyl alcohol	100-51-6	✓	✓	(d)
(continued)			bis(2-Chloroethoxy)methane	111-91-1	✓	✓	(d)
			bis(2-Chloroethyl) ether	111-44-4	√	√	(d)
			bis(2-Chloroisopropyl) ether	108-60-1	√	✓	(d)
			bis(2-Ethylhexyl) phthalate	117-81-7	✓	✓	(d)
			bis(p-Chlorophenyl) sulfone	80-07-9	✓	✓	(d)
			bis(p-Chlorophenyl)disulfide	1142-19-4	✓	✓	(d)
			Butylbenzyl phthalate	85-68-7	✓	✓	(d)
			Carbazole	86-74-8	✓	✓	(d)
			Dibenzofuran	132-64-9	✓	✓	(d)
			Dichloromethyl ether	542-88-1	✓	✓	(d)
			Diethyl phthalate	84-66-2	✓	✓	(d)
			Dimethyl phthalate	131-11-3	✓	✓	(d)
			Di-n-butyl phthalate	84-74-2	✓	✓	(d)
			Di-n-octyl phthalate	117-84-0	✓	✓	(d)
			Diphenyl disulfide	882-33-7	✓	✓	(d)
			Diphenyl sulfide	139-66-2	✓	✓	(d)
			Diphenyl sulfone	127-63-9	✓	✓	(d)
			Diphenylamine	122-39-4	✓	✓	(d)
			Fluoranthene	206-44-0	✓	✓	(d)
			Fluorene	86-73-7	✓	✓	(d)
			Hexachlorobenzene	118-74-1	✓	✓	(d)
			Hexachlorobutadiene	87-68-3	✓	✓	(d)
			Hexachlorocyclopentadiene	77-47-4	✓	✓	(d)
			Hexachloroethane	67-72-1	✓	✓	(d)
			Hydroxymethyl phthalimide	118-29-6	✓	✓	(d)
			Isophorone	78-59-1	✓	✓	(d)
			m,p-Cresols	106-44-5	✓	✓	(d)
			Naphthalene	91-20-3	✓	✓	(d)
			Nitrobenzene	98-95-3	✓	√	(d)
			N-nitrosodi-n-propylamine	621-64-7	✓	√	(d)
			o-Cresol	95-48-7	✓	✓	(d)

Octachlorostyrene

p-Chlorobenzenethiol

p-Chloroaniline

29082-74-4

106-47-8

106-54-7

(d)

(d)

(d)

√

TABLE 3-2
SITE-RELATED CHEMICALS AND INITIAL SAMPLE ANALYSES AND DEPTHS
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 8 of 10)

Parameter of	Preparation	Analytical		CAS	Sample D	epth (from T	Гable 3-1)
Interest	Method	Method	Compound List	Number	Depth 1	Depth 2/3	Deep
Semivolatile	EPA 3550B	EPA 8270C	Pentachlorobenzene	608-93-5	√	√	(d)
Organic			Pentachlorophenol	87-86-5	✓	✓	(d)
Compounds			Phenol	108-95-2	✓	✓	(d)
(continued)			Phthalic acid	88-99-3	✓	✓	(d)
			Pyridine	110-86-1	✓	✓	(d)
			Tentatively Identified Compounds (TICs)		✓	✓	(d)
Volatile	EPA 5030B/	EPA 8260B	1,1,1,2-Tetrachloroethane	630-20-6	✓	✓	(d)
Organic	EPA 5035		1,1,1-Trichloroethane	71-55-6	✓	✓	(d)
Compounds			1,1,2,2-Tetrachloroethane	79-34-5	✓	✓	(d)
			1,1,2-Trichloroethane	79-00-5	✓	✓	(d)
			1,1-Dichloroethane	75-34-3	✓	✓	(d)
			1,1-Dichloroethene	75-35-4	✓	✓	(d)
			1,1-Dichloropropene	563-58-6	✓	✓	(d)
			1,2,3-Trichlorobenzene	87-61-6	✓	✓	(d)
			1,2,3-Trichloropropane	96-18-4	✓	✓	(d)
			1,2,4-Trichlorobenzene	120-82-1	✓	✓	(d)
			1,2,4-Trimethylbenzene	95-63-6	✓	✓	(d)
			1,2-Dichlorobenzene	95-50-1	✓	✓	(d)
			1,2-Dichloroethane	107-06-2	✓	✓	(d)
			1,2-Dichloroethene	540-59-0	✓	✓	(d)
			1,2-Dichloropropane	78-87-5	✓	✓	(d)
			1,3,5-Trichlorobenzene	108-70-3	✓	✓	(d)
			1,3,5-Trimethylbenzene	108-67-8	✓	✓	(d)
			1,3-Dichlorobenzene	541-73-1	✓	✓	(d)
			1,3-Dichloropropane	142-28-9	✓	✓	(d)
			1,4-Dichlorobenzene	106-46-7	✓	✓	(d)
			2,2-Dichloropropane	594-20-7	✓	✓	(d)
			2,2-Dimethylpentane	590-35-2	✓	✓	(d)
			2,2,3-Trimethylbutane	464-06-2	✓	✓	(d)
			2,3-Dimethylpentane	565-59-3	✓	✓	(d)
			2,4-Dimethylpentane	108-08-7	✓	✓	(d)
			2-Chlorotoluene	95-49-8	✓	✓	(d)
			2-Hexanone	591-78-6	✓	✓	(d)
			2-Methylhexane	591-76-4	✓	✓	(d)
			2-Nitropropane	79-46-9	✓	✓	(d)
			3,3-Dimethylpentane	562-49-2	✓	✓	(d)
			3-Ethylpentane	617-78-7	✓	✓	(d)

TABLE 3-2
SITE-RELATED CHEMICALS AND INITIAL SAMPLE ANALYSES AND DEPTHS
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 9 of 10)

Parameter of	Preparation	Analytical		CAS	Sample D	epth (from '	Fable 3-1)
Interest	Method	Method	Compound List	Number	Depth 1	Depth 2/3	Deep
Volatile	EPA 5030B/	EPA 8260B	3-Methylhexane	589-34-4	V	1 ✓	(d)
Organic	EPA 5035		4-Chlorotoluene	106-43-4	√	✓	(d)
Compounds			4-Methyl-2-pentanone (MIBK)	108-10-1	✓	✓	(d)
(continued)			Acetone	67-64-1	✓	✓	(d)
			Acetonitrile	75-05-8	√	✓	(d)
			Benzene	71-43-2	✓	✓	(d)
			Bromobenzene	108-86-1	✓	✓	(d)
			Bromodichloromethane	75-27-4	✓	√	(d)
			Bromoform	75-25-2	✓	✓	(d)
			Bromomethane	74-83-9	✓	✓	(d)
			Carbon disulfide	75-15-0	✓	✓	(d)
			Carbon tetrachloride	56-23-5	✓	✓	(d)
			Chlorobenzene	108-90-7	✓	✓	(d)
			Chlorobromomethane	74-97-5	✓	✓	(d)
			Chloroethane	75-00-3	✓	✓	(d)
			Chloroform	67-66-3	✓	✓	(d)
			Chloromethane	74-87-3	✓	✓	(d)
			cis-1,2-Dichloroethene	156-59-2	✓	✓	(d)
			cis-1,3-Dichloropropene	10061-01-5	✓	✓	(d)
			Cymene (Isopropyltoluene)	99-87-6	✓	✓	(d)
			Dibromochloromethane	124-48-1	✓	✓	(d)
			Dibromochloropropane	96-12-8	✓	✓	(d)
			Dibromomethane	74-95-3	✓	✓	(d)
			Dichloromethane (Methylene chloride)	75-09-2	✓	✓	(d)
			Dimethyldisulfide	624-92-0	✓	✓	(d)
			Ethanol	64-17-5	✓	✓	(d)
			Ethylbenzene	100-41-4	✓	✓	(d)
			Freon-11 (Trichlorofluoromethane)	75-69-4	✓	✓	(d)
			Freon-113 (1,1,2-Trifluoro-1,2,2-trichloroethane)		✓	✓	(d)
			Freon-12 (Dichlorodifluoromethane)	75-71-8	✓	✓	(d)
			Heptane	142-82-5	✓	✓	(d)
			Isopropylbenzene	98-82-8	✓	✓	(d)
			m,p-Xylene	mp-XYL	✓	✓	(d)
			Methyl ethyl ketone (2-Butanone)	78-93-3	✓	✓	(d)
			Methyl iodide	74-88-4	✓	✓	(d)
			MTBE (Methyl tert-butyl ether)	1634-04-4	✓	✓	(d)
			n-Butylbenzene	104-51-8	✓		(d)

SITE-RELATED CHEMICALS AND INITIAL SAMPLE ANALYSES AND DEPTHS HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 10 of 10)

Parameter of	Preparation	Analytical		CAS	Sample D	Pepth (from T	Table 3-1)
Interest	Method	Method	Compound List	Number	Depth 1	Depth 2/3	Deep
Volatile	EPA 5030B/	EPA 8260B	n-Propylbenzene	103-65-1	√	√	(d)
Organic	EPA 5035		Nonanal	124-19-6	✓	✓	(d)
Compounds			o-Xylene	95-47-6	✓	✓	(d)
(continued)			sec-Butylbenzene	135-98-8	✓	✓	(d)
			Styrene	100-42-5	✓	✓	(d)
			tert-Butylbenzene	98-06-6	✓	✓	(d)
			Tetrachloroethene	127-18-4	✓	✓	(d)
			Toluene	108-88-3	✓	✓	(d)
			trans-1,2-Dichloroethene	156-60-5	✓	✓	(d)
			trans-1,3-Dichloropropene	10061-02-6	✓	✓	(d)
			Trichloroethene	79-01-6	✓	√	(d)
			Vinyl acetate	108-05-4	✓	√	(d)
			Vinyl chloride	75-01-4	✓	√	(d)
			Xylenes (total)	1330-20-7	✓	√	(d)
			Tentatively Identified Compounds (TICs)		✓	√	(d)
Flashpoint	NA	EPA 1010	Flammables	NA	(a)	(a)	(a)
Total Petroleum	EPA 3550	EPA 8015	Diesel	64742-46-7	(a)	(a)	(a)
Hydrocarbons	EPA 3550		Gasoline	8006-61-9	(a)	(a)	(a)
	EPA 1664A		Grease	68153-81-1	(a)	(a)	(a)
			Mineral Spirits	NA	(a)	(a)	(a)
White Phosphorus	EPA 7580M	EPA 7580M	White phosphorus	12185-10-3	(a)	(a)	(a)
Methyl Mercury	EPA 1630	EPA 1630	Methyl mercury	22967-92-6	(a)	(a)	(a)
Soil Physical	NA	ASTM D2937/ MOSA1Ch .13	Dry bulk density	NA	(d)	✓	✓
Parameters		ASTM D2435/ MOSA1Ch .18	Total porosity	NA	(d)	✓	✓
		ASTM D5084	Soil permeability/saturated hydraulic cond.	NA	(d)	✓	✓
		ASTM D854	Specific gravity of soils	NA	(d)	✓	✓
		SW846 Method 9081	Cation exchange capacity	NA	(d)	✓	√
		ASTM D2216/D4643/D2974	Volumetric water content	NA	(d)	✓	✓
		ASTM D422	Grain size analysis by sieve and hydrometer	NA	(d)	✓	✓
		EPA 415.1/ASTM 2947	Fractional organic carbon content	NA	(d)	✓	✓

Notes:

Laboratory limits are subject to matrix interferences and may not always be achieved in all samples.

The laboratory was instructed to report the top 25 Tentatively Identified Compounds (TICs) under method 8260B and 8270C. NA = Not applicable.

- a Removed based on rationale provided in the text.
- b Dioxins/furans and PCBs analyzed for in fill and surface soil samples only.
- c Asbestos analyzed for in current grade surface soil samples only.
- d Soil physical parameters collected from at-depth samples only (see Table 3-1).
- e Removed based on Revisions to the Analyte List Technical Memorandum approved by NDEP on 10/16/2008.

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
OSC1-BM11	0	Initial		Yes	X	X	X	X	X	X	X	X	X	X	X
OSC1-BM11	10	Initial		Yes		X		X	X	X	X		X	X	X
OSC1-BN11	0	Initial	Yes	Yes	X	X	X	X	X	X	X	X	X	X	X
OSC1-BN11	5	Initial		Yes		X		X	X	X	X		X	X	X
OSC2-BN11	0	Confirmation	Yes	Yes					X						
OSC1-BN11N1	0	Supplemental	Yes	Yes					X						
OSC2-BN11N1	0	Confirmation		Yes					X						
OSC1-BN11N2	0	Supplemental	Yes	Yes					X						
OSC2-BN11N2	0	Confirmation		Yes					X						
OSC1-BN11S1	0	Supplemental	Yes	Yes					X						
OSC2-BN11S1	0	Confirmation		Yes					X						
OSC1-BN11S2	0	Supplemental	Yes	Yes					X						
OSC2-BN11S2	0	Confirmation		Yes					X						
OSC1-BO11	0	Initial	Yes	Yes	X	X	X	X	X	X	X	X	X	X	X
OSC1-BO11	5	Initial		Yes		X		X	X	X	X		X	X	X
OSC2-BO11	0	Confirmation		Yes					X				X		
OSC1-BO11E1	0	Supplemental	Yes	Yes					X						
OSC2-BO11E1	0	Confirmation		Yes					X						
OSC1-BO11E2	0	Supplemental	Yes	Yes					X						
OSC2-BO11E2	0	Confirmation		Yes					X						
OSC1-BO11W1	0	Supplemental	Yes	Yes					X						
OSC2-BO11W1	0	Confirmation		Yes					X						
OSC1-BO11W2	0	Supplemental	Yes	Yes					X						
OSC2-BO11W2	0	Confirmation		Yes					X						
OSC1-BP11	0	Initial	Yes	Yes	X	X	X	X	X	X	X	X	X	X	X
OSC1-BP11	5	Initial		Yes		X		X	X	X	X		X	X	X
OSC2-BP11	0	Confirmation		Yes					X				X		
OSC1-BP11NE	0	Supplemental	Yes	Yes					X				X		
OSC2-BP11NE	0	Confirmation		Yes					X						
OSC1-BP11NW	0	Supplemental	Yes	Yes					X				X		
OSC2-BP11NW	0	Confirmation		Yes					X						
OSC1-BP11SE	0	Supplemental	Yes	Yes					X				X		
OSC2-BP11SE	0	Confirmation		Yes					X						
OSC1-BP11SW	0	Supplemental	Yes	Yes					X				X		
OSC2-BP11SW	0	Confirmation		Yes					X						
OSC2-JE01	0	Confirmation	Yes	Yes			X					X			

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?		Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
OSC3-JE01	0	Confirmation	Yes	Yes			X					X			
OSC6-JE01	0	Confirmation		Yes			X					X			
OSC4-JE01N	0	Confirmation		Yes			X					X			
OSC4-JE01S	0	Confirmation		Yes			X					X			
OSC2-JE02	0	Confirmation	Yes	Yes			X					X			
OSC3-JE02	0	Confirmation		Yes			X					X			
OSC2-JE03	0	Confirmation		Yes			X					X			
OSC1-JP06	0	Initial	Yes	Yes		X	X	X	X	X	X	X	X	X	X
OSC1-JP06	5	Initial		Yes		X		X	X	X	X		X	X	X
OSC2-JP06	0	Confirmation	Yes	Yes					X				X		
OSC6-JP06	0	Confirmation		Yes									X		
OSC1-JP06NE	0	Supplemental	Yes	Yes									X		
OSC2-JP06NE	0	Confirmation		Yes					X				X		
OSC1-JP06NW	0	Supplemental	Yes	Yes									X		
OSC2-JP06NW	0	Confirmation		Yes					X				X		
OSC1-JP06SE	0	Supplemental	Yes	Yes									X		
OSC2-JP06SE	0	Confirmation	Yes	Yes					X				X		
OSC6-JP06SE	0	Confirmation		Yes									X		
OSC3-JP06SES	0	Confirmation	Yes	Yes									X		
OSC1-JP06SW	0	Supplemental	Yes	Yes									X		
OSC2-JP06SW	0	Confirmation		Yes					X				X		
OSC1-JP07	0	Initial	Yes	Yes		X	X	X	X	X	X	X	X	X	X
OSC1-JP07	5	Initial		Yes		X		X	X	X	X		X	X	X
OSC2-JP07	0	Confirmation	Yes	Yes					X				X		
OSC6-JP07	0	Confirmation		Yes					X				X		
OSC1-JP07NE	0	Supplemental		Yes									X		
OSC1-JP07NW	0	Supplemental	Yes	Yes									X		
OSC2-JP07NW	0	Confirmation	Yes	Yes					X				X		
OSC6-JP07NW	0	Confirmation		Yes					X				X		
OSC1-JP07SE	0	Supplemental		Yes									X		
OSC1-JP07SW	0	Supplemental	Yes	Yes									X		
OSC2-JP07SW	0	Confirmation	Yes	Yes					X				X		
OSC6-JP07SW	0	Confirmation		Yes					X				X		
OSC3-JP07SWS	0	Confirmation	Yes	Yes									X		
OSC3-JP07SWW	0	Confirmation	Yes	Yes									X		
OSC1-JP08	0	Initial	Yes	Yes		X	X	X	X	X	X	X	X	X	X

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
OSC1-JP08	10	Initial		Yes		X		X	X	X	X		X	X	X
OSC2-JP08	0	Confirmation		Yes					X						
OSC1-JP08N1	0	Supplemental	Yes	Yes					X						
OSC2-JP08N1	0	Confirmation		Yes					X						
OSC1-JP08S1	0	Supplemental	Yes	Yes					X						
OSC2-JP08S1	0	Confirmation		Yes					X						
OSC1-JP08S2	0	Supplemental	Yes	Yes					X						
OSC2-JP08S2	0	Confirmation		Yes					X						
OSC1-JS10	0	Supplemental	Yes	Yes			X		X	X		X	X		
OSC2-JS10	0	Confirmation		Yes			X		X			X	X		
WH-AS_A0	0	Supplemental							As Only						
WH-AS_A3	0	Supplemental							As Only						
WH-AS_A4	0	Supplemental							As Only						
WH-AS_A5	0	Supplemental							As Only						
WH-AS_A6	0	Supplemental							As Only						
WH-AS_A8	0	Supplemental							As Only						
WH-AS_B0	0	Supplemental							As Only						
WH-AS_B1	0	Supplemental							As Only						
WH-AS_B5	0	Supplemental							As Only						
WH-AS_B7	0	Supplemental							As Only						
WH-AS_B9	0	Supplemental							As Only						
WH-AS_C1	0	Supplemental							As Only						
WH-AS_C5	0	Supplemental							As Only						
WH-AS_C6	0	Supplemental							As Only						
WH-AS_C9	0	Supplemental							As Only						
WH-AS_D0	0	Supplemental							As Only						
WH-AS_D1	0	Supplemental							As Only						
WH-AS_D2	0	Supplemental							As Only						
WH-AS_D4	0	Supplemental							As Only						
WH-AS_D5	0	Supplemental							As Only						
WH-AS_D6	0	Supplemental							As Only						
WH-AS_D7	0	Supplemental							As Only						
WH-AS_D9	0	Supplemental							As Only						
WH-AS_E1	0	Supplemental							As Only						
WH-AS_E6	0	Supplemental							As Only						
WH-AS_F0	0	Supplemental							As Only						

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WH-AS_F3	0	Supplemental							As Only						
WH-AS_F6	0	Supplemental							As Only						
WH-AS_F7	0	Supplemental							As Only						
WH-AS_G1	0	Supplemental							As Only						
WH-AS_G6	0	Supplemental							As Only						
WH-AS_H3	0	Supplemental							As Only						
WH-AS_H5	0	Supplemental							As Only						
WH-AS_J0	0	Supplemental							As Only						
WH-AS_J1	0	Supplemental							As Only						
WH-AS_J2	0	Supplemental							As Only						
WH-AS_J3	0	Supplemental							As Only						
WH-AS_J4	0	Supplemental							As Only						
WH-AS_J6	0	Supplemental							As Only						
WH-AS_K1	0	Supplemental							As Only						
WH-AS_K4	0	Supplemental							As Only						
WH-AS_K5	0	Supplemental							As Only						
WH-AS_K7	0	Supplemental							As Only						
WH-AS_L0	0	Supplemental							As Only						
WH-AS_L1	0	Supplemental							As Only						
WH-AS_L2	0	Supplemental							As Only						
WH-AS_L5	0	Supplemental							As Only						
WH-AS_L6	0	Supplemental							As Only						
WH-AS_M1	0	Supplemental							As Only						
WH-AS_M4	0	Supplemental							As Only						
WH-AS_M6	0	Supplemental							As Only						
WH-AS_N1	0	Supplemental							As Only						
WH-AS_N10	0	Supplemental							As Only						
WH-AS_N18	0	Supplemental		Yes					As Only						
WH-AS_N19	0	Supplemental		Yes					As Only						
WH-AS_N3	0	Supplemental							As Only						
WH-AS_N4	0	Supplemental							As Only						
WH-AS_N5	0	Supplemental							As Only						
WH-AS_N6	0	Supplemental							As Only						
WH-AS_N8	0	Supplemental							As Only						
WH-AS_P0	0	Supplemental							As Only						
WH-AS_P11	0	Supplemental							As Only						

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WH-AS_P12	0	Supplemental							As Only						
WH-AS_P14	0	Supplemental							As Only						
WH-AS_P15	0	Supplemental							As Only						
WH-AS_P16	0	Supplemental							As Only						
WH-AS_P17	0	Supplemental		Yes					As Only						
WH-AS_P4	0	Supplemental							As Only						
WH-AS_P5	0	Supplemental							As Only						
WH-AS_P9	0	Supplemental							As Only						
WH-AS_Q0	0	Supplemental							As Only						
WH-AS_Q10	0	Supplemental							As Only						
WH-AS_Q11	0	Supplemental							As Only						
WH-AS_Q12	0	Supplemental							As Only						
WH-AS_Q13	0	Supplemental							As Only						
WH-AS_Q15	0	Supplemental		Yes					As Only						
WH-AS_Q16	0	Supplemental		Yes					As Only						
WH-AS_Q18	0	Supplemental		Yes					As Only						
WH-AS_Q3	0	Supplemental							As Only						
WH-AS_Q4	0	Supplemental							As Only						
WH-AS_Q5	0	Supplemental							As Only						
WH-AS_Q6	0	Supplemental							As Only						
WH-AS_Q8	0	Supplemental							As Only						
WH-AS_R1	0	Supplemental							As Only						
WH-AS_R10	0	Supplemental							As Only						
WH-AS_R12	0	Supplemental							As Only						
WH-AS_R14	0	Supplemental							As Only						
WH-AS_R15	0	Supplemental							As Only						
WH-AS_R3	0	Supplemental							As Only						
WH-AS_R7	0	Supplemental							As Only						
WH-AS_R9	0	Supplemental							As Only						
WH-AS_S0	0	Supplemental							As Only						
WH-AS_S10	0	Supplemental							As Only						
WH-AS_S11	0	Supplemental							As Only						
WH-AS_S13	0	Supplemental		Yes					As Only						
WH-AS_S14	0	Supplemental							As Only						
WH-AS_S15	0	Supplemental							As Only						
WH-AS_S16	0	Supplemental		Yes					As Only						

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WH-AS_S17	0	Supplemental		Yes					As Only						
WH-AS_S18	0	Supplemental		Yes					As Only						
WH-AS_S3	0	Supplemental							As Only						
WH-AS_S8	0	Supplemental							As Only						
WH-AS_S9	0	Supplemental							As Only						
WH-AS_T0	0	Supplemental							As Only						
WH-AS_T10	0	Supplemental							As Only						
WH-AS_T12	0	Supplemental							As Only						
WH-AS_T13	0	Supplemental		Yes					As Only						
WH-AS_T15	0	Supplemental		Yes					As Only						
WH-AS_T17	0	Supplemental		Yes					As Only						
WH-AS_T2	0	Supplemental							As Only						
WH-AS_T3	0	Supplemental							As Only						
WH-AS_T5	0	Supplemental							As Only						
WH-AS_T9	0	Supplemental							As Only						
WH-AS_U12	0	Supplemental							As Only						
WH-AS_U13	0	Supplemental							As Only						
WH-AS_U14	0	Supplemental		Yes					As Only						
WH-AS_U19	0	Supplemental		Yes					As Only						
WH-AS_U4	0	Supplemental							As Only						
WH-AS_U6	0	Supplemental							As Only						
WH-AS_U9	0	Supplemental							As Only						
WH-AS_W11	0	Supplemental	Yes						As Only						
WH-AS_W13	0	Supplemental							As Only						
WH-AS_W16	0	Supplemental		Yes					As Only						
WH-AS_W18	0	Supplemental		Yes					As Only						
WHC1-A01	0	Supplemental			X										
WHC1-A02	0	Supplemental			X										
WHC1-A03	0	Supplemental			X										
WHC1-A04	0	Supplemental			X										
WHC1-A05	0	Supplemental			X			,							
WHC1-A06	0	Supplemental			X										
WHC1-A07	0	Supplemental			X			,							
WHC1-A08	0	Supplemental			X										
WHC1-A09	0	Supplemental	Yes		X										
WHC2-A09	0	Confirmation	Yes		X										

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 7 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WHC2-A09C	0	Confirmation	Yes		X										
WHC3-A09N	0	Supplemental			X										
WHC3-A09S	0	Supplemental			X										
WHC3-A09W	0	Supplemental			X										
WHC6-A09	0	Confirmation			X										
WHC1-A10	0	Supplemental			X										
WHC1-A11	0	Supplemental			X										
WHC1-A12	0	Supplemental			X										
WHC1-A13	0	Supplemental			X										
WHC1-A14	0	Supplemental		Yes	X										
WHC1-A15	0	Supplemental		Yes	X										
WHC1-A16	0	Supplemental		Yes	X										
WHC1-BF01	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BF01	12	Initial				X		X	X	X	X		X	X	X
WHC2-BF01	0	Confirmation			X										
WHC2-BF01C	0	Confirmation			X										
WHC1-BF02	0	Initial	Yes			X	X	X	X	X	X	X	X	X	X
WHC1-BF02	11	Initial				X		X	X	X	X		X	X	X
WHC2-BF02C	0	Supplemental					X					X			
WHC2-BF02NE	0	Supplemental					X					X			
WHC2-BF02NW	0	Supplemental					X					X			
WHC2-BF02SE	0	Supplemental					X					X			
WHC2-BF02SW	0	Supplemental					X					X			
WHC1-BF03	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BF03	10	Initial				X		X	X	X	X		X	X	X
WHC1-BF04	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BF04	10	Initial		Yes		X		X	X	X	X		X	X	X
WHC2-BF04C	0	Supplemental			X		X					X			
WHC2-BF04NE	0	Supplemental					X					X			
WHC2-BF04NW	0	Supplemental					X					X			
WHC2-BF04SE	0	Supplemental					X					X			
WHC2-BF04SW	0	Supplemental					X					X			
WHC1-BF05	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BF05	12	Initial	Yes	Yes		X		X	X	X	X		X	X	X
WHC2-BF05C	12	Supplemental		Yes					X				X		
WHC2-BF05NE	12	Supplemental		Yes					X				X		

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 8 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WHC2-BF05NW	12	Supplemental		Yes					X				X		
WHC2-BF05SE	12	Supplemental		Yes					X				X		
WHC2-BF05SW	12	Supplemental		Yes					X				X		
WHC1-BF06	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC2-BF06	0	Confirmation			X										
WHC2-BF06C	0	Confirmation			X										
WHC2-BF06NE	0	Confirmation			X										
WHC2-BF06NW	0	Confirmation			X										
WHC2-BF06SE	0	Confirmation			X										
WHC2-BF06SW	0	Confirmation			X										
WHC1-BF06	10	Initial	Yes	Yes		X		X	X	X	X		X	X	X
WHC2-BF06C	10	Supplemental		Yes									X		
WHC2-BF06NE	10	Supplemental		Yes									X		
WHC2-BF06NW	10	Supplemental		Yes									X		
WHC2-BF06SE	10	Supplemental		Yes									X		
WHC2-BF06SW	10	Supplemental		Yes									X		
WHC1-BG01	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BG01	11	Initial				X		X	X	X	X		X	X	X
WHC1-BG02	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BG02	10	Initial				X		X	X	X	X		X	X	X
WHC2-BG02C	0	Supplemental			X		X					X			
WHC2-BG02NE	0	Supplemental					X					X			
WHC2-BG02NW	0	Supplemental					X					X			
WHC2-BG02SE	0	Supplemental					X					X			
WHC2-BG02SW	0	Supplemental	Yes				X					X			
WHC6-BG02SW	0	Confirmation	Yes				X					X			
WHC7-BG02SW_3	0	Confirmation	Yes				X					X			
WHC7-BG02SW_5	0	Confirmation					X					X			
WHC1-BG03	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BG03	11	Initial				X		X	X	X	X		X	X	X
WHC2-BG03C	0	Supplemental					X					X			
WHC2-BG03NE	0	Supplemental					X					X			
WHC2-BG03NW	0	Supplemental					X					X			
WHC2-BG03SE	0	Supplemental					X					X			
WHC2-BG03SW	0	Supplemental					X					X			
WHC1-BG04	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 9 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WHC1-BG04	10	Initial	Yes	Yes		X		X	X	X	X		X	X	X
WHC2-BG04C	10	Supplemental		Yes					X				X		
WHC2-BG04NE	10	Supplemental		Yes					X				X		
WHC2-BG04NW	10	Supplemental		Yes					X				X		
WHC2-BG04SE	10	Supplemental		Yes					X				X		
WHC2-BG04SW	10	Supplemental		Yes					X				X		
WHC1-BG05	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BG05	10	Initial		Yes		X		X	X	X	X		X	X	X
WHC1-BG06	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BG06	10	Initial	Yes	Yes		X		X	X	X	X		X	X	X
WHC2-BG06C	0	Supplemental					X					X			
WHC2-BG06C	10	Supplemental		Yes					X				X		
WHC2-BG06NE	0	Supplemental					X					X			
WHC2-BG06NE	10	Supplemental		Yes					X				X		
WHC2-BG06NW	0	Supplemental					X					X			
WHC2-BG06NW	10	Supplemental		Yes					X				X		
WHC2-BG06SE	0	Supplemental					X					X			
WHC2-BG06SE	10	Supplemental		Yes					X				X		
WHC2-BG06SW	0	Supplemental					X					X			
WHC2-BG06SW	10	Supplemental		Yes					X				X		
WHC1-BH01	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BH01	11	Initial				X		X	X	X	X		X	X	X
WHC1-BH02	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-BH02	10	Initial				X		X	X	X	X		X	X	X
WHC1-BH03	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BH03	10	Initial				X		X	X	X	X		X	X	X
WHC2-BH03C	0	Supplemental					X					X			
WHC1-BH04	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BH04	10	Initial		Yes		X		X	X	X	X		X	X	X
WHC1-BH05	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BH05	10	Initial		Yes		X		X	X	X	X		X	X	X
WHC2-BH05C	0	Supplemental					X					X			
WHC2-BH05NE	0	Supplemental					X				,	X			
WHC2-BH05NW	0	Supplemental					X					X			
WHC2-BH05SE	0	Supplemental					X					X			
WHC2-BH05SW	0	Supplemental					X					X			

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 10 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WHC1-BH06	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BH06	10	Initial		Yes		X		X	X	X	X		X	X	X
WHC2-BH06C	0	Supplemental					X					X			
WHC2-BH06NE	0	Supplemental	Yes				X					X			
WHC6-BH06NE	0	Confirmation	Yes				X					X			
WHC7-BH06NE_3	0	Confirmation	Yes				X					X			
WHC7-BH06NE_5	0	Confirmation					X					X			
WHC2-BH06NW	0	Supplemental					X					X			
WHC2-BH06SE	0	Supplemental					X					X			
WHC2-BH06SW	0	Supplemental					X					X			
WHC1-BI01	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BI01	11	Initial				X		X	X	X	X		X	X	X
WHC1-BI02	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BI02	3	Initial				X		X	X	X	X		X	X	X
WHC1-BI02	13	Initial				X		X	X	X	X		X	X	X
WHC1-BI03	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BI03	11	Initial				X		X	X	X	X		X	X	X
WHC1-BI04	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BI04	10	Initial				X		X	X	X	X		X	X	X
WHC1-BI05	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BI05	10	Initial				X		X	X	X	X		X	X	X
WHC2-BI05C	0	Supplemental					X		X			X			
WHC1-BJ01	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-BJ01	3	Initial				X		X	X	X	X		X	X	X
WHC1-BJ01	13	Initial				X		X	X	X	X		X	X	X
WHC1-BJ01NE	0	Supplemental							X						
WHC1-BJ01NW	0	Supplemental							X						
WHC1-BJ01SE	0	Supplemental							X						
WHC1-BJ01SW	0	Supplemental							X						
WHC1-BJ02	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-BJ02	12	Initial				X		X	X	X	X		X	X	X
WHC1-BJ03	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BJ03	12	Initial				X		X	X	X	X		X	X	X
WHC1-BJ04	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BJ04	11	Initial				X		X	X	X	X		X	X	X
WHC1-BJ05	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 11 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WHC1-BJ05	10	Initial				X		X	X	X	X		X	X	X
WHC2-BJ05C	0	Supplemental					X					X			
WHC2-BJ05NE	0	Supplemental					X					X			
WHC2-BJ05NW	0	Supplemental					X					X			
WHC2-BJ05SE	0	Supplemental					X					X			
WHC2-BJ05SW	0	Supplemental					X					X			
WHC1-BK01	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-BK01	10	Initial				X		X	X	X	X		X	X	X
WHC1-BK02	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BK02	11	Initial				X		X	X	X	X		X	X	X
WHC1-BK03	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BK03	12	Initial				X		X	X	X	X		X	X	X
WHC1-BK04	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BK04	10	Initial				X		X	X	X	X		X	X	X
WHC1-BK05	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BK05	11	Initial				X		X	X	X	X		X	X	X
WHC2-BK05NE	0	Supplemental					X					X			
WHC2-BK05NW	0	Supplemental					X					X			
WHC2-BK05SC	0	Supplemental					X					X			
WHC2-BK05SE	0	Supplemental					X					X			
WHC2-BK05SW	0	Supplemental					X					X			
WHC1-BL01	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-BL01	10	Initial				X		X	X	X	X		X	X	X
WHC1-BL02	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BL02	10	Initial				X		X	X	X	X		X	X	X
WHC1-BL03	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BL03	10	Initial				X		X	X	X	X		X	X	X
WHC1-BL04	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BL04	12	Initial				X		X	X	X	X		X	X	X
WHC1-BL05	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BL05	10	Initial				X		X	X	X	X		X	X	X
WHC2-BL05	0	Confirmation	Yes		X										
WHC3-BL05N	0	Supplemental			X										
WHC3-BL05S	0	Supplemental			X										
WHC6-BL05	0	Confirmation			X										
WHC1-BL06	0	Initial			X	X	X	X	X	X	X	X	X	X	X

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 12 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WHC1-BL06	11	Initial				X		X	X	X	X		X	X	X
WHC1-BL07	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BL07	10	Initial				X		X	X	X	X		X	X	X
WHC2-BL07	0	Confirmation			X				X				X		
WHC1-BL08	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BL08	10	Initial				X		X	X	X	X		X	X	X
WHC1-BL08NE	0	Supplemental							X						
WHC1-BL08NW	0	Supplemental							X						
WHC1-BL08SE	0	Supplemental							X						
WHC1-BL08SW	0	Supplemental							X						
WHC1-BL11	0	Initial		Yes	X	X	X	X	X	X	X	X	X	X	X
WHC1-BL11	12	Initial		Yes		X		X	X	X	X		X	X	X
WHC1-BL11NE	0	Supplemental		Yes					X						
WHC1-BL11NW	0	Supplemental		Yes					X						
WHC1-BL11SE	0	Supplemental		Yes					X						
WHC1-BL11SW	0	Supplemental		Yes					X						
WHC1-BM01	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BM01	10	Initial				X		X	X	X	X		X	X	X
WHC1-BM02	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-BM02	12	Initial				X		X	X	X	X		X	X	X
WHC1-BM03	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BM03	10	Initial				X		X	X	X	X		X	X	X
WHC1-BM04	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BM04	10	Initial				X		X	X	X	X		X	X	X
WHC1-BM05	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BM05	10	Initial				X		X	X	X	X		X	X	X
WHC1-BM06	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BM06	10	Initial				X		X	X	X	X		X	X	X
WHC2-BM06C	0	Supplemental	Yes				X		X			X			
WHC3-BM06C	0	Confirmation	Yes				X					X			
WHC6-BM06	0	Confirmation					X					X			
WHC1-BM07	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BM07	11	Initial				X		X	X	X	X		X	X	X
WHC2-BM07C	0	Supplemental			X		X					X			
WHC2-BM07	0	Confirmation			X										
WHC1-BM08	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 13 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WHC1-BM08	11	Initial				X		X	X	X	X		X	X	X
WHC2-BM08C	0	Supplemental			X		X					X	X		
WHC2-BM08	0	Confirmation			X										
WHC1-BM09	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BM09	12	Initial				X		X	X	X					X
WHC1-BM10	0	Initial	Yes	Yes	X	X	X	X	X	X	X	X	X	X	X
WHC1-BM10	3	Initial	Yes	Yes		X		X	X	X	X		X	X	X
WHC1-BM10	13	Initial	Yes	Yes		X		X	X	X	X		X	X	X
WHC2-BM10C	13	Supplemental		Yes					X				X		
WHC2-BM10NE	13	Supplemental		Yes					X				X		
WHC2-BM10NW	13	Supplemental		Yes					X				X		
WHC2-BM10SE	13	Supplemental		Yes					X				X		
WHC2-BM10SW	13	Supplemental		Yes					X				X		
WHC1-BN01	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BN01	12	Initial		Yes		X		X	X	X	X		X	X	X
WHC1-BN02	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BN02	11	Initial				X		X	X	X	X		X	X	X
WHC1-BN03	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-BN03	10	Initial				X		X	X	X	X		X	X	X
WHC1-BN04	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-BN04	7	Initial				X		X	X	X	X		X	X	X
WHC1-BN04	17	Initial				X		X	X	X	X		X	X	X
WHC1-BN05	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BN05	10	Initial				X		X	X	X	X		X	X	X
WHC2-BN05C	0	Supplemental			X		X					X			
WHC2-BN05	0	Confirmation			X										
WHC1-BN06	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BN06	10	Initial				X		X	X	X					X
WHC1-BN07	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BN07	3	Initial				X		X	X	X	X		X	X	X
WHC1-BN07	13	Initial				X		X	X	X	X		X	X	X
WHC1-BN07NE	0	Supplemental							X						
WHC1-BN07NW	0	Supplemental							X						
WHC1-BN07SE	0	Supplemental							X						
WHC1-BN07SW	0	Supplemental							X						
WHC1-BN08	0	Initial		Yes	X	X	X	X	X	X	X	X	X	X	X

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 14 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WHC1-BN08	10	Initial		Yes		X		X	X	X	X		X	X	X
WHC1-BN08NE	0	Supplemental		Yes					X						
WHC1-BN08NW	0	Supplemental		Yes					X						
WHC1-BN08SE	0	Supplemental		Yes					X						
WHC1-BN08SW	0	Supplemental		Yes					X						
WHC1-BN09	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BN09	11	Initial	Yes	Yes		X		X	X	X	X		X	X	X
WHC2-BN09C	11	Supplemental		Yes					X				X		
WHC2-BN09NE	11	Supplemental		Yes					X				X		
WHC2-BN09NW	11	Supplemental		Yes					X				X		
WHC2-BN09SE	11	Supplemental		Yes					X				X		
WHC2-BN09SW	11	Supplemental		Yes					X				X		
WHC1-BN10	0	Initial	Yes	Yes	X	X	X	X	X	X	X	X	X	X	X
WHC1-BN10	10	Initial		Yes		X		X	X	X	X		X	X	X
WHC2-BN10	0	Confirmation		Yes					X						
WHC1-BN10NE	0	Supplemental		Yes					X						
WHC2-BN10NE	0	Confirmation		Yes					X						
WHC1-BN10NW	0	Supplemental		Yes					X						
WHC1-BN10SE	0	Supplemental		Yes					X						
WHC2-BN10SE	0	Confirmation		Yes					X						
WHC1-BN10SW	0	Supplemental		Yes					X						
WHC2-BN10SW	0	Confirmation		Yes					X						
WHC1-BO01	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BO01	4	Initial				X		X	X	X	X		X	X	X
WHC1-BO01	14	Initial				X		X	X	X	X		X	X	X
WHC1-BO02	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BO02	12	Initial				X		X	X	X	X		X	X	X
WHC1-BO03	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BO03	12	Initial				X		X	X	X	X		X	X	X
WHC1-BO04	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BO04	12	Initial				X		X	X	X	X		X	X	X
WHC1-BO05	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BO05	10	Initial				X		X	X	X	X	,	X	X	X
WHC1-BO06	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BO06	10	Initial				X		X	X	X	X		X	X	X
WHC1-BO07	0	Initial			X	X	X	X	X	X	X	X	X	X	X

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 15 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos		Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WHC1-BO07	10	Initial				X		X	X	X	X		X	X	X
WHC1-BO08	0	Initial		Yes	X	X	X	X	X	X	X	X	X	X	X
WHC1-BO08	11	Initial		Yes		X		X	X	X	X		X	X	X
WHC1-BO09	0	Initial	Yes	Yes	X	X	X	X	X	X	X	X	X	X	X
WHC1-BO09	6	Initial		Yes				X	X	X	X		X	X	X
WHC1-BO09	16	Initial		Yes		X		X	X	X	X		X	X	X
WHC2-BO09C	0	Confirmation		Yes	X										
WHC2-BO09	0	Confirmation		Yes	X										
WHC1-BO10	0	Initial	Yes	Yes	X	X	X	X	X	X	X	X	X	X	X
WHC1-BO10	10	Initial		Yes		X		X	X	X					X
WHC2-BO10C	0	Supplemental	Yes	Yes					X				X		
WHC3-BO10C	0	Confirmation		Yes					X						
WHC1-BP01	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BP01	10	Initial		Yes		X		X	X	X	X		X	X	X
WHC1-BP02	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BP02	11	Initial				X		X	X	X	X		X	X	X
WHC1-BP03	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BP03	11	Initial		Yes		X		X	X	X	X		X	X	X
WHC1-BP04	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BP04	12	Initial				X		X	X	X	X		X	X	X
WHC1-BP05	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BP05	10	Initial				X		X	X	X	X		X	X	X
WHC2-BP05C	0	Supplemental					X					X			
WHC2-BP05NE	0	Supplemental					X					X			
WHC2-BP05NW	0	Supplemental					X					X			
WHC2-BP05SE	0	Supplemental					X					X			
WHC2-BP05SW	0	Supplemental					X					X			
WHC1-BP06	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BP06	10	Initial				X		X	X	X	X		X	X	X
WHC2-BP06	0	Confirmation	Yes		X										
WHC3-BP06SE	0	Confirmation			X										
WHC3-BP06NE	0	Confirmation			X										
WHC6-BP06	0	Confirmation			X								X		
WHC1-BP07	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-BP07	3	Initial	Yes	Yes		X		X	X	X	X		X	X	X
WHC1-BP07	13	Initial		Yes		X		X	X	X	X		X	X	X

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 16 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WHC2-BP07C	3	Supplemental		Yes					X						
WHC2-BP07NE	3	Supplemental		Yes					X						
WHC2-BP07NW	3	Supplemental		Yes					X						
WHC2-BP07SE	3	Supplemental		Yes					X						
WHC2-BP07SW	3	Supplemental		Yes					X						
WHC1-BP08	0	Initial	Yes		X		X	X	X	X	X	X	X	X	X
WHC1-BP08	4	Initial	Yes	Yes		X		X	X	X	X		X	X	X
WHC1-BP08	14	Initial		Yes		X		X	X	X	X		X	X	X
WHC2-BP08C	4	Supplemental		Yes					X						
WHC2-BP08NE	4	Supplemental		Yes					X						
WHC2-BP08NW	4	Supplemental		Yes					X						
WHC2-BP08SE	4	Supplemental		Yes					X						
WHC2-BP08SW	4	Supplemental		Yes					X						
WHC1-BP09	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BP09	10	Initial				X		X	X	X	X		X	X	X
WHC1-BP10	0	Initial			X	X	X	X	X	X	X	X	X	X	X
WHC1-BP10	10	Initial				X		X	X	X	X		X	X	X
WHC1-D01	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D01	10	Initial				X		X	X	X	X		X	X	X
WHC2-D01C	0	Supplemental	Yes		X		X			X		X			
WHC2-D01	0	Confirmation	Yes		X					X					
WHC6-D01	0	Confirmation			X										
WHC1-D02	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D02	10	Initial				X		X	X	X	X		X	X	X
WHC2-D02C	0	Supplemental					X					X		X	
WHC1-D03	0	Initial	Yes			X	X	X	X	X	X	X	X	X	X
WHC1-D03	10	Initial				X		X	X	X	X		X	X	X
WHC2-D03C	0	Supplemental					X					X			
WHC1-D04	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D04	10	Initial				X		X	X	X	X		X	X	X
WHC2-D04C	0	Supplemental	Yes				X			X		X		X	
WHC6-D04	0	Confirmation	Yes				X					X			
WHC7-D04_3	0	Confirmation	Yes				X					X			
WHC7-D04_5	0	Confirmation					X					X			
WHC1-D05	0	Initial	Yes			X	X	X	X	X	X	X	X	X	X
WHC1-D05	10	Initial				X		X	X	X	X		X	X	X

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 17 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WHC2-D05C	0	Supplemental	Yes				X			X		X		X	
WHC6-D05	0	Confirmation	Yes				X			X	X	X		X	
WHC1-D06	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D06	10	Initial				X		X	X	X	X		X	X	X
WHC2-D06C	0	Supplemental	Yes				X					X			
WHC6-D06	0	Confirmation					X					X			
WHC1-D07	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D07	10	Initial				X		X	X	X	X		X	X	X
WHC2-D07C	0	Supplemental	Yes		X		X					X			
WHC6-D07	0	Confirmation					X					X			
WHC1-D08	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D08	10	Initial				X		X	X	X	X		X	X	X
WHC2-D08C	0	Confirmation			X										
WHC6-D08	0	Confirmation					X					X			
WHC1-D09	0	Initial	Yes			X	X	X	X	X	X	X	X	X	X
WHC1-D09	11	Initial				X		X	X	X	X		X	X	X
WHC2-D09C	0	Supplemental	Yes				X					X			
WHC6-D09	0	Confirmation	Yes				X					X			
WHC7-D09_3	0	Confirmation	Yes				X					X			
WHC7-D09_5	0	Confirmation	Yes				X					X			
WHC8-D09	0	Confirmation					X					X			
WHC1-D10	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D10	10	Initial				X		X	X	X	X		X	X	X
WHC2-D10C	0	Supplemental	Yes				X					X			
WHC6-D10	0	Confirmation	Yes				X					X			
WHC7-D10_3	0	Confirmation	Yes				X					X			
WHC7-D10_5	0	Confirmation					X					X			
WHC1-D11	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D11	10	Initial				X		X	X	X	X		X	X	X
WHC2-D11C	0	Supplemental	Yes		X		X		X	X		X		X	
WHC3-D11C	0	Confirmation	Yes		X		X		X	X		X			
WHC6-D11	0	Confirmation	Yes		X		X			X	X	X		X	
WHC7-D11_3	0	Confirmation	Yes				X					X			
WHC7-D11_5	0	Confirmation	Yes				X					X			
WHC8-D11	0	Confirmation					X					X			
WHC1-D12	0	Initial	Yes			X	X	X	X	X	X	X	X	X	X

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 18 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?		Asbestos		Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WHC1-D12	10	Initial	Yes	Yes		X		X	X	X	X		X	X	X
WHC2-D12C	10	Supplemental		Yes									X		
WHC7-D12	0	Confirmation							X						
WHC1-D13	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D13	10	Initial	Yes	Yes		X		X	X	X	X		X	X	X
WHC2-D13C	0	Supplemental					X					X		X	
WHC2-D13C	10	Supplemental		Yes					X				X		
WHC2-D13NE	0	Supplemental					X					X		X	
WHC2-D13NE	10	Supplemental		Yes					X				X		
WHC2-D13NW	0	Supplemental					X					X		X	
WHC2-D13NW	10	Supplemental		Yes					X				X		
WHC2-D13SE	0	Supplemental					X					X		X	
WHC2-D13SE	10	Supplemental		Yes					X				X		
WHC2-D13SW	0	Supplemental					X					X		X	
WHC2-D13SW	10	Supplemental		Yes					X				X		
WHC2-D14C	0	Supplemental	Yes	Yes		X	X	X	X	X	X	X	X	X	
WHC3-D14C	0	Confirmation	Yes	Yes					X				X		
WHC6-D14	0	Confirmation	Yes	Yes									X		
WHC7-D14_3	0	Confirmation		Yes									X		
WHC7-D14_5	0	Confirmation		Yes									X		
WHC1-D15	0	Initial	Yes			X	X	X	X	X	X	X	X	X	X
WHC1-D15	10	Initial		Yes		X		X	X	X	X		X	X	X
WHC2-D15C	0	Supplemental	Yes				X					X			
WHC6-D15	0	Confirmation					X					X			
WHC1-D16	0	Initial	Yes			X	X	X	X	X	X	X	X	X	X
WHC1-D16	10	Initial		Yes		X		X	X	X	X		X	X	X
WHC2-D16C	0	Supplemental	Yes				X		X			X			
WHC6-D16	0	Confirmation					X					X			
WHC1-D17	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D17	10	Initial				X		X	X	X	X		X	X	X
WHC2-D17C	0	Supplemental	Yes				X		X			X		X	
WHC6-D17	0	Confirmation	Yes				X					X			
WHC7-D17_3	0	Confirmation	Yes				X					X			
WHC7-D17_5	0	Confirmation	Yes				X					X			
WHC8-D17	0	Confirmation					X					X			
WHC1-D18	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 19 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WHC1-D18	10	Initial				X		X	X	X	X		X	X	X
WHC2-D18C	0	Supplemental	Yes		X		X					X		X	
WHC2-D18	0	Confirmation			X										
WHC6-D18	0	Confirmation	Yes				X					X			
WHC7-D18_3	0	Confirmation	Yes				X					X			
WHC7-D18_5	0	Confirmation	Yes				X					X			
WHC8-D18	0	Confirmation					X					X			
WHC1-D19	0	Initial	Yes			X	X	X	X	X	X	X	X	X	X
WHC1-D19	10	Initial				X		X	X	X	X		X	X	X
WHC2-D19C	0	Supplemental					X					X			
WHC1-D20	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D20	10	Initial				X		X	X	X	X		X	X	X
WHC2-D20C	0	Supplemental	Yes		X		X					X			
WHC6-D20	0	Confirmation	Yes				X					X			
WHC7-D20_3	0	Confirmation	Yes				X					X			
WHC7-D20_5	0	Confirmation	Yes				X					X			
WHC8-D20	0	Confirmation					X					X			
WHC1-D21	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D21	10	Initial				X		X	X	X	X		X	X	X
WHC2-D21C	0	Supplemental			X		X					X			
WHC1-D22	0	Initial	Yes			X	X	X	X	X	X	X	X	X	X
WHC1-D22	10	Initial				X		X	X	X	X		X	X	X
WHC2-D22C	0	Supplemental					X					X			
WHC1-D23	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D23	10	Initial				X		X	X	X	X		X	X	X
WHC2-D23C	0	Supplemental			X		X					X			
WHC1-D24	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D24	10	Initial				X		X	X	X	X		X	X	X
WHC2-D24C	0	Supplemental					X					X			
WHC1-D25	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D25	10	Initial				X		X	X	X	X		X	X	X
WHC2-D25C	0	Supplemental			X		X					X		X	
WHC1-D26	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D26	10	Initial				X		X	X	X	X		X	X	X
WHC2-D26C	0	Supplemental	Yes				X					X			
WHC3-D26C	0	Confirmation					X					X			

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 20 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WHC1-D27	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D27	10	Initial				X		X	X	X	X		X	X	X
WHC2-D27C	0	Supplemental	Yes				X					X	X		
WHC3-D27C	0	Confirmation	Yes				X					X	X		
WHC6-D27	0	Confirmation					X					X			
WHC4-D27N	0	Confirmation					X					X			
WHC4-D27S	0	Confirmation					X					X			
WHC1-D28	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D28	10	Initial				X		X	X	X	X		X	X	X
WHC2-D28C	0	Supplemental	Yes				X					X			
WHC3-D28C	0	Confirmation					X					X			
WHC1-D29	0	Initial	Yes		X	X	X	X	X	X	X	X	X	X	X
WHC1-D29	10	Initial				X		X	X	X	X		X	X	X
WHC2-D29C	0	Supplemental					X					X			
WHC2-JE01	0	Confirmation	Yes				X					X			
WHC3-JE01	0	Confirmation	Yes				X					X			
WHC6-JE01	0	Confirmation					X					X			
WHC2-JE02	0	Confirmation					X					X			
WHC1-P01	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-P01	12	Initial				X		X	X	X	X		X	X	X
WHC1-P01NE	0	Supplemental							X						
WHC1-P01NW	0	Supplemental							X						
WHC1-P01SE	0	Supplemental							X						
WHC1-P01SW	0	Supplemental							X						
WHC1-P02	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-P02	10	Initial				X		X	X	X	X		X	X	X
WHC1-P03	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-P03	3	Initial				X		X	X	X	X		X	X	X
WHC1-P03	13	Initial				X		X	X	X	X		X	X	X
WHC1-P04	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-P04	10	Initial				X		X	X	X	X		X	X	X
WHC1-P05	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-P05	10	Initial				X		X	X	X	X		X	X	X
WHC1-P06	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-P06	12	Initial				X		X	X	X	X		X	X	X
WHC1-P07	0	Initial	Yes	_		X	X	X	X	X	X	X	X	X	X

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 21 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WHC1-P07	3	Initial				X		X	X	X	X		X	X	X
WHC1-P07	13	Initial				X		X	X	X	X		X	X	X
WHC2-P07C	0	Supplemental							X				X		
WHC1-P08	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-P08	11	Initial				X		X	X	X	X		X	X	X
WHC1-P09	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-P09	10	Initial				X		X	X	X	X		X	X	X
WHC1-P10	0	Initial	Yes			X	X	X	X	X	X	X	X	X	X
WHC1-P10	10	Initial		Yes		X		X	X	X	X		X	X	X
WHC6-P10	0	Confirmation					X					X			
WHC1-P11	0	Initial	Yes			X	X	X	X	X	X	X	X	X	X
WHC1-P11	10	Initial	Yes			X		X	X	X	X		X	X	X
WHC2-P11C	0	Supplemental	Yes				X	X	X	X		X		X	
WHC6-P11	0	Confirmation	Yes				X			X	X	X	X	X	
WHC7-P11_3	0	Confirmation	Yes				X					X			
WHC7-P11_5	0	Confirmation					X					X			
WHC2-P11C	10	Supplemental							X						
WHC3-P11C	0	Confirmation	Yes				X		X	X		X	X		
WHC1-P12	0	Initial	Yes			X	X	X	X	X	X	X	X	X	X
WHC1-P12	11	Initial				X		X	X	X	X		X	X	X
WHC2-P12C	0	Supplemental					X					X			
WHC1-P13	0	Initial	Yes			X	X	X	X	X	X	X	X	X	X
WHC1-P13	10	Initial	Yes	Yes		X		X	X	X	X		X	X	X
WHC2-P13C	0	Supplemental					X					X			
WHC2-P13C	10	Supplemental		Yes					X				X		
WHC2-P13NE	0	Supplemental					X					X			
WHC2-P13NE	10	Supplemental		Yes					X				X		
WHC2-P13NW	0	Supplemental					X					X			
WHC2-P13NW	10	Supplemental		Yes					X				X		
WHC2-P13SE	0	Supplemental					X					X			
WHC2-P13SE	10	Supplemental		Yes					X				X		
WHC2-P13SW	0	Supplemental					X					X			
WHC2-P13SW	10	Supplemental		Yes					X				X		
WHC1-P14	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-P15	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-P15	1.5	Initial				X		X	X	X	X		X	X	X

FINAL CONFIRMATION SOIL SAMPLE LOCATIONS AND ANALYSES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 22 of 22)

Sample	Sample	Sample				Alde-		Gen							
Location	Depth	Type	Scraped?	Covered?	Asbestos	hydes	Dioxins	Chem	Metals	OCPs	PAHs	PCBs	Rads	SVOCs	VOCs
WHC1-P15	10	Initial				X		X	X	X	X		X	X	X
WHC1-P15NE	0	Supplemental							X						
WHC1-P15NW	0	Supplemental							X						
WHC1-P15SE	0	Supplemental							X						
WHC1-P15SW	0	Supplemental							X						
WHC1-P16	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-P16	11	Initial				X		X	X	X	X		X	X	X
WHC1-P17	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-P17	12	Initial				X		X	X	X	X		X	X	X
WHC1-P18	0	Initial				X	X	X	X	X	X	X	X	X	X
WHC1-P18	12	Initial				X		X	X	X	X		X	X	X
WHC7-W11	0	Confirmation	Yes						X						
WHC7-WA11	0	Confirmation							X						
WHD-AS-BG05	0	Supplemental						X	As Only						
WHD-AS-BG05	10	Supplemental		Yes				X	As Only						
WHD-AS-BH04	10	Supplemental						X	As Only						
WHD-AS-BK03	12	Supplemental						X	As Only						
WHD-AS-BL03	0	Supplemental						X	As Only						
WHD-AS-BN01	12	Supplemental		Yes				X	As Only						
WHD-AS-BN10	0	Supplemental		Yes				X	As Only						
WHD-AS-BP03	11	Supplemental		Yes				X	As Only						
WHD-AS-BP04	0	Supplemental						X	As Only						
WHD-AS-BP08	0	Supplemental	Yes					X	As Only						
WHD-AS-BP08	4	Supplemental	Yes	Yes				X	As Only						
WHD-AS-P14	0	Supplemental			Î			X	As Only						

⁼ Location removed. As noted in the text, post-scrape analyses associated with follow-up rounds of remediation focused on the analytes triggering that additional remediation, and did not include the full suite analyses of the original analytical program. Therefore, analytical results from the original SAP dataset were retained for all analytes except those that were re-run after additional scraping.

= Sample location covered with fill material (see text).

FINAL HUMAN HEALTH RISK ASSESSMENT SOIL DATASET RESULTS SUMMARY HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA

BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page	1	of 6)	
-------	---	-------	--

D 4 6			T				Censor	ed (Non-De	tect) Data					Γ	Detected Da	ta ⁽¹⁾			D	Count of	I DCI	Count of	I D CI	Count of		Count of
Parameter of	Constant	TT - 14	Total	Detect	G	3.41	01	M. P.		01	3.6	G: 4	3.41		T		01	3.6	Residential	Detects	LBCL	Detects	LBCL	Detects	Max.	Detects
Interest	Compound List	Units	Count	Freq.	Count	Min	Q1	Median	Mean	Q3	Max	Count	Min	Q1	Median	Mean	Q3	Max	Soil BCL	> BCL	(DAF 1)	> DAF 1	(DAF 20)	> DAF 20	Ŭ	> Bkgrnd
Asbestos ⁽³⁾	Amphibole	Structures	133	0%	133							0 40						25								
A1J-1J	Chrysotile	Structures	133	30.1%	93	0.151	0.21	0.21	0.29	0.22	0.368	3	0.150	0.16	0.38	0.22	0.43	25 0.433	12.0	0						
Aldehydes	Acetaldehyde	mg/kg	250	1.2% 78.7%	247	0.151	0.31	0.31	0.28 0.45	0.32	1.22		0.159	0.16	0.38	0.32	0.45	3.38	13.9 12200	0						
Dioxins/Furans	Formaldehyde	mg/kg	244 189	78.3%	52 41	0.104	0.21 1.6	5	0.43	5.1	7.7	192 148	2.3	8.1	25	0.41 39	56	210								
Dioxilis/Furalis	1,2,3,4,6,7,8-Heptachlorodibenzofuran ⁽⁴⁾	pg/g	189	52.9%	89	0.64	2.6	5	4.3	5.2	7.7	100	0.41	4.1	7.1	15	14	330		+						
	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin ⁽⁴⁾	pg/g	189	64.0%	68	0.41	2.0	5		5.1	7.7	121		6.5	15	22	31				1	1				
	1,2,3,4,7,8,9-Heptachlorodibenzofuran ⁽⁴⁾	pg/g	189	75.7%	46	0.23	1.8	5	4.1	5.1	7.7	143	1.1	5.8	17	27	36	75 200								+
	1,2,3,4,7,8-Hexachlorodibenzofuran ⁽⁴⁾	pg/g	189	10.6%	169	0.41	1.0	2	3.1	5	7.7	20	0.11	0.44	0.83	1.2	1.9	4.1								
	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin ⁽⁴⁾	pg/g	189	63.5%	69	0.077	1.1	5	3.9	5.1	7.7	120	0.11	5.9	13	1.2	23	65								
	1,2,3,6,7,8-Hexachlorodibenzofuran ⁽⁴⁾ 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin ⁽⁴⁾	pg/g	189	23.3%	145	0.18	1.4	4.9	3.4	5.1	7.7	44	0.01	1.2	2.9	3.1	4.4	13								
	740	pg/g	189	29.6%	133	0.11	1.1	4.9	3.4	5.1	7.7	56	0.28	1.7	3.8	3.6	4.4	8.7								
	1,2,3,7,8,9-Hexachlorodibenzofuran ⁽⁴⁾	pg/g	189	29.6%	150	0.11	1.1	4.9	3.4	5.1	7.7	39	0.13	1.7	2.6	2.6	3.6	7.5			1		 			
	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin ⁽⁴⁾	pg/g	189	64.0%	68	0.11	1.2	5	3.8	5.1	7.7	121	0.29	5.3	13	17	26	67								
	1,2,3,7,8-Pentachlorodibenzofuran (4)	pg/g	189	13.8%	163	0.18		2.2	3.2	5	7.7	26	0.82	0.8	2.6	2.4	3.7	5.1			1	1				
	1,2,3,7,8-Pentachlorodibenzo-p-dioxin ⁽⁴⁾	pg/g	189	40.7%	112	0.03	1.1	4.9	3.6	5.1	7.7	77	0.34	3.3	4.8	5.8	7.4	20								
	2,3,4,6,7,8-Hexachlorodibenzofuran ⁽⁴⁾	pg/g	189	52.4%	90	0.085	1.4	4.9	3.6	5.1	7.7	99	0.1	4.2	8.2	10	15	32								
	2,3,4,7,8-Pentachlorodibenzofuran ⁽⁴⁾	pg/g		86.2%	26	0.1	0.76	4.9			 		0.31				15						 			
	2,3,7,8-Tetrachlorodibenzofuran ⁽⁴⁾ 2,3,7,8-Tetrachlorodibenzo-p-dioxin ⁽⁴⁾	pg/g	189 189	21.7%	148	0.2	0.76	0.96	1.2 0.79	1.5	3.6 1.5	163 41	0.32	1.6 0.5	5.1 0.69	0.74	0.99	93 1.7								
	Octachlorodibenzodioxin ⁽⁴⁾	pg/g	189	60.3%		0.063	9.7	10	9.1	10	1.5	114		12	20	76	42	2600								
		pg/g			75		9.7 5		8.5		l		1.1		58											
	Octachlorodibenzofuran ⁽⁴⁾	pg/g	189	78.3%	41	1.4		10		10	15	148	5.1 0.22	17		110	140	1600 47	50	0						
C1	TCDD TEQ	pg/g	189 251	12.50/	217	0.79	0.01	0.01	1.2	0.83	20.6	189		5.1	6.9	5.2	14	40.7								
General	Ammonia (as N)	mg/kg	251	13.5%	201		0.81	0.81	1.3		25.6	34	0.89	1.1	2.1		5.8		26600		95.6		1010			
Chemistry/	Bromide	mg/kg		22.1%		0.25	0.26	0.26	0.44	0.26	l	57	0.45	0.97	1.7	2.4	2.7	12.8	26600	0	 	0	1910	0		
Ions	Chloride	mg/kg	258	10.9%	230	0.48	0.54	0.55	0.6	0.56	5.8	28 258	0.55	1.8	3.7	7.6	9.8	43.1 30900	2350	0	1.13	25	22.6	2		
	Chloride Carrida Tatal	mg/kg	258	100%	0		0.083	0.51	0.25	0.52	0.66		0.000	17	110	1100	680		 71		2		40			
	Cyanide, Total	mg/kg	251	11.2% 85.3%	223	0.08		0.51	0.35	0.52		28	0.089	0.19	0.57	0.59	0.71	1.9	5.71 3670	·	_	Ü	40	Ü		
	Fluoride	mg/kg	258		38	0.1	0.1	0.1	0.13	0.11	1.1 0.028	220	0.19		1.2	1.4	1.9	5.5 327	•	0	7	102	140			
	Nitrate	mg/kg	258	97.7%	6 138	0.025		0.027 0.022	0.027	0.028	l	252	0.087	1.6	4.4	21	15	486	100000	0	· '	102	140	8		
	Nitrite Outhorhosphoto as P	mg/kg	258 258	46.5%	158	0.02	0.021	0.022	1.2	0.42	21.9 5.5	120 105	0.08	0.45	1.3	11	10	167	7820	0						
	Orthophosphate as P Perchlorate	mg/kg	248	91.5%	21	0.0101	0.32		0.011	5.1	0.0114	227	0.72	0.04	0.1	0.43	0.29	7.53	54.8	0	0.0185	217	0.371	 49		
		mg/kg	258	100%	0			0.01	0.011	0.011		258		83	310	2600		43400								
	Sulfate Sulfide	mg/kg	258	0%	258	0.84	1.8	1.8	1.8	1.0	2.3	0	7.5				1900									
	Total Kjeldahl Nitrogen (TKN)	mg/kg	251	94.8%	13	51.5	52	52	54	1.9 54	65.9	238	24	66	120	210	210	2860								
Madala		mg/kg	243	100%	0							243	3130	5500	6600	6800	7600	12800	77200	0	75	243	1500	243	15300	0
Metals	Aluminum Antimony	mg/kg	243	0.8%	241	0.225	0.32	0.32	0.38	0.32	2.7	243	0.87		1	1		1.2	31.3	0	0.3	243	6	0	0.5	2
	Arsenic	mg/kg	392	99.5%	241	5.3		5.4	5.4		5.4	390	2.4	5.6	6.9	7.4	8.6	17.6	0.39	390	1	390	20	0	13.1	14
	Barium	mg/kg	243	100%	0							243	54.1	120	140	160	170	796	15300	0	82	234	1640	0	836	0
	Beryllium	mg/kg	243	97.9%	5	0.51	0.52	0.54	0.54	0.56	0.56	238	0.19	0.4	0.46	0.47	0.52	0.82	155	0	3	0	60	0	0.89	0
	_ *	mg/kg	243	6.6%		16.5					56.5		14.2					197	15600		23.4			0		
	Boron	mg/kg			227		17	17	17	17		16		21	27	0.10	39		77.7	0		10	467	0	11.6	16
	Calaires	mg/kg	243	67.5%	79	0.04	0.1	0.1	0.16	0.26	0.29	164	0.11	0.13	0.16	0.19	0.22	0.82		0	0.4	5	8	Ů	0.13	109
	Chromium	mg/kg	243	100%	0							243	1300	31000	38000	45000	55000	124000	100000						82800	18
	Chromium (VI)	mg/kg	243 233	100% 39.1%	0 142	0.1	0.1	0.1	0.13	0.11	0.49	243	4.6 0.11	0.15	12 0.19	13 0.28	0.25	58	100000 234	0	2	1	40		18.3	23
	Chromium (VI)	mg/kg		100%	0	0.1	0.1	0.1				91 243				6.7		3.9	23.4	0	0.495	243		0	1.6	0
	Copper	mg/kg	243									243	2.4	5.9	6.7		7.6	9.7 42.2	2910	0	45.8		9.9 915	-	30.5	3
	Copper	mg/kg	243	100%	0								8.6 6730	16	18	18			•		 	242		242		1
	Iron	mg/kg	243	100%	0							243	6730	12000	13000	13000	15000	25300	54800	0	7.56	243	151	243	22500	20
	Lead	mg/kg	243	100%	0							243	4.2	7	9.7	17	17	220	400	0	21.0	12	120		35.1	30
	Lithium	mg/kg	243	100%	0							243	4.7	6000	2100	15	17	29.4	156	0	21.9	12	438	1	124	0
	Magnesium	mg/kg	243	100%	0							243	2090	6900	8100	8800	10000	25900	100000	0	973	243 243	19500	242	17500	1
	Manganese	mg/kg	243	100%	U							243	78.4	260	330	340	390	1710	1820	0	1.3	243	26.1	243	1090	1

FINAL HUMAN HEALTH RISK ASSESSMENT SOIL DATASET RESULTS SUMMARY HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 6)

Parameter of			Total	Detect			Censor	ed (Non-De	tect) Data					Γ	Detected Da	ta ⁽¹⁾			Residential	Count of Detects	LBCL	Count of Detects	LBCL	Count of Detects	Max.	Count of Detects
Interest	Compound List	Units	Count	Freq.	Count	Min	01	Median	Mean	Q3	Max	Count	Min	01	Median	Mean	Q3	Max	Soil BCL	> BCL	(DAF 1)	> DAF 1	(DAF 20)		Bkgrnd ⁽²⁾	> Bkgrnd
	Mercury	mg/kg	243	23.9%	185	0.011	0.012	0.012	0.02	0.034	0.0439	58	0.011	0.016	0.022	0.031	0.037	0.151	23.5	0	0.104	2	2.09	0	0.11	2
	Molybdenum	mg/kg	243	80.2%	48	0.47	0.47	0.54	1.5	2.6	2.8	195	0.48	0.58	0.71	0.81	0.88	3.8	391	0	3.69	1	73.7	0	2	4
	Nickel	mg/kg	243	100%	0							243	5.9	15	17	17	19	37.2	1540	0	7	241	140	0	30	1
	Potassium	mg/kg	243	100%	0							243	1290	1700	2100	2400	3000	6590							3890	21
	Selenium	mg/kg	243	4.1%	233	0.225	0.4	0.4	0.4	0.4	0.86	10	0.28	0.89	0.95	0.95	1.1	1.4	391	0	0.3	9	6	0	0.6	9
	Silver	mg/kg	243	79.0%	51	0.11	0.11	0.11	0.18	0.11	1.1	192	0.079	0.12	0.14	0.16	0.16	0.79	391	0	0.85	0	17	0	2.2	0
	Sodium	mg/kg	243	99.6%	1	104		100	100		104	242	181	320	570	1200	1100	27300							3250	14
	Strontium	mg/kg	243	100%	0							243	49.8	160	200	230	250	849	46900	0					808	1
	Thallium	mg/kg	243	2.1%	238	0.105	0.75	0.75	0.74	0.75	1.1	5	0.9	1.1	1.3	1.3	1.6	1.8	5.16	0	0.4	5	8	0	1.8	0
	Tin	mg/kg	243	10.7%	217	0.75	0.75	0.75	0.75	0.75	1	26	0.52	0.98	1.4	2.3	2.1	13.3	46900	0					0.8	25
	Titanium	mg/kg	243	100%	0							243	350	660	750	770	860	1320	100000	0	146000	0	2920000	0	1010	24
	Tungsten	mg/kg	243	4.1%	233	0.185	1.3	1.3	1.3	1.3	2.8	10	1.5	1.7	2.2	2.9	3.9	8.1	587	0	41.1	0	822	0	3.6	3
	Uranium	mg/kg	243	100%	0							243	0.49	0.92	1.1	1.3	1.5	3.8	234	0	13.5	0	270	0	2.8	3
	Vanadium	mg/kg	243	99.6%	1	3.51		3.5	3.5		3.51	242	24.8	40	44	45	48	128	391	0	300	0	6000	0	73.3	5
	Zinc	mg/kg	243	100%	0							243	19.6	30	35	38	43	107	23500	0	620	0	12400	0	121	0
Organochlorine	2,4-DDD	mg/kg	248	16.1%	208	0.00031	0.00031	0.00032	0.00052	0.00032	0.031	40	0.0017	0.0027	0.0055	0.0078	0.0094	0.028								
Pesticides	2,4-DDE	mg/kg	248	44.4%	138	0.0002	0.00021	0.00021	0.00039	0.00021	0.02	110	0.0018	0.0051	0.017	0.04	0.057	0.34								
	4,4-DDD	mg/kg	251	21.1%	198	0.00009	0.000092	0.000093	0.00016	0.000094	0.009	53	0.0019	0.0038	0.0064	0.012	0.017	0.064	2.44	0	0.8	0	16	0		
	4,4-DDE	mg/kg	251	53.8%	116	0.0002	0.0002	0.0002	0.00042	0.0002	0.019	135	0.002	0.0065	0.02	0.05	0.067	0.4	1.72	0	3	0	60	0		
	4,4-DDT	mg/kg	251	41.8%	146	0.0002	0.00021	0.00021	0.00039	0.00021	0.02	105	0.0018	0.0041	0.013	0.029	0.035	0.17	1.72	0	2	0	40	0		
	Aldrin	mg/kg	251	0.4%	250	0.000096	0.000098	0.000099	0.00016	0.0001	0.0096	1	0.0053		0.0053	0.0053		0.0053	0.0286	0	0.02	0	0.4	0		
	alpha-BHC	mg/kg	251	4.8%	239	0.00014	0.00029	0.00029	0.00045	0.0003	0.029	12	0.00079	0.0027	0.0045	0.025	0.0072	0.25	21.1	0	0.0291	1	0.583	0		
	alpha-Chlordane	mg/kg	251	0.8%	249	0.00021	0.00022	0.00022	0.00026	0.00022	0.0022	2	0.0023		0.044	0.044		0.085								
	beta-BHC	mg/kg	251	58.6%	104	0.00019	0.00019	0.00019	0.00042	0.0002	0.019	147	0.0018	0.0032	0.0057	0.012	0.011	0.26	4.22	0	0.00596	71	0.119	1		
	Chlordane	mg/kg	251	0.4%	250	0.0023	0.0024	0.0024	0.0028	0.0025	0.024	1	0.77		0.77	0.77		0.77	1.62	0	0.5	1	10	0		
	delta-BHC	mg/kg	251	0.4%	250	0.00017	0.00017	0.00017	0.00027	0.00018	0.017	1	0.0027		0.0027	0.0027		0.0027	21.1	0	30.8	0	615	0		
	Dieldrin	mg/kg	251	1.2%	248	0.000092	0.000094	0.000095	0.00015	0.000096	0.0092	3	0.0019	0.0019	0.0021	0.0021	0.0022	0.0022	0.0304	0	0.0002	3	0.004	0		
	Endosulfan I	mg/kg	251	0%	251	0.00011	0.00011	0.00011	0.00018	0.00011	0.011	0							367		0.9		18			
	Endosulfan II	mg/kg	251	0%	251	0.000094	0.000096	0.000097	0.00016	0.000098	0.0094	0							367		0.9		18			
	Endosulfan sulfate	mg/kg	251	0.8%	249	0.00026	0.00027	0.00027	0.00042	0.00028	0.027	2	0.0057		0.0071	0.0071		0.0085	10.0							
	Endrin	mg/kg	251	0.4%	250	0.000084	0.000086	0.000086	0.00014	0.000088	0.0084	1	0.0033	0.0024	0.0033	0.0033	0.0072	0.0033	18.3	0	0.05	0	1	0		
	Endrin aldehyde	mg/kg	251	15.9%	211	0.00018	0.00018	0.00019	0.00031	0.00019	0.018	40	0.0012	0.0024	0.0041	0.0055	0.0072	0.029		-						
	Endrin ketone	mg/kg	251	0.4%	250	0.00016	0.00017	0.00017	0.00027	0.00017	0.017	1	0.0018		0.0018	0.0018		0.0018	0.702	0	0.0005		0.01			
	gamma-BHC (Lindane) gamma-Chlordane	mg/kg mg/kg	251 251	0.8%	249 247	0.00012	0.00013	0.00013	0.0002	0.00013	0.012	4	0.007	0.0027	0.011	0.011	0.14	0.014	0.703	U	0.0005	2	0.01	1		
	Heptachlor	mg/kg	251	0.4%	250	0.0001	0.00018	0.00018	0.0001	0.00018	0.00089	1	0.0020		0.0031	0.047		0.18	0.108	0	1	0	20	0		
	Heptachlor epoxide	mg/kg	251	0.4%	249	0.0001	0.00014		0.00028	0.00014	0.017	2	0.0021		0.0042	0.0042		0.0063	0.0534	0	0.03	0	0.6	0		
	Methoxychlor	mg/kg	251	7.2%	233	0.00013	0.00014		0.00022	0.00014	0.013	18	0.0021	0.0038	0.0042	0.0042	0.014	0.0003	306	0	8	0	160	0		
	Toxaphene	mg/kg	251	0%	251	0.00032	0.00032	0.00033	0.00033	0.00033	0.032	0	0.002				0.014		0.442		2		40			
Polynuclear	Acenaphthene	mg/kg	252	2.0%	247	0.00167	0.0017	0.0017	0.0018	0.0018	0.00347	5	0.00198	0.002	0.0024	0.008	0.017	0.0206	509	0	29	0	580	0		
•	Acenaphthylene	mg/kg	252	2.0%	247	0.00167	0.0017	0.0017	0.0018	0.0018	0.00347	5	0.0021	0.0022	0.0023	0.0024	0.0026	0.00279	147	0						
	Anthracene	mg/kg	252	5.6%	238	0.00167	0.0017	0.0017	0.0018	0.0018	0.00321	14	0.00177	0.002	0.003	0.07	0.0085	0.909	2000	0	590	0	11800	0		
ny ar ocur bons	Benzo(a)anthracene	mg/kg	252	6.7%	235	0.00167	0.0017	0.0017	0.0018	0.0018	0.00347	17	0.00214	0.0024	0.0041	0.0085	0.0055	0.0741	0.621	0	0.08	0	1.6	0		
	Benzo(a)pyrene	mg/kg	252	19.0%	204	0.00167	0.0017	0.0017	0.0018	0.0018	0.00706	48	0.00175	0.0022	0.0035	0.0063	0.009	0.0611	0.0621	0	0.4	0	8	0		
	Benzo(b)fluoranthene	mg/kg	252	25.4%	188	0.00167	0.0017	0.0017	0.0018	0.0018	0.00397	64	0.00191	0.0029	0.004	0.009	0.0083	0.125	0.621	0	0.2	0	4	0		
	Benzo(g,h,i)perylene	mg/kg	252	4.4%	241	0.00167	0.0017	0.0017	0.0018	0.0018	0.00347	11	0.00185	0.0022	0.0034	0.0067	0.0046	0.0414	2350	0						
	Benzo(k)fluoranthene	mg/kg	252	12.7%	220	0.00167	0.0017	0.0017	0.0018	0.0018	0.00623	32	0.00177	0.0024	0.003	0.0077	0.0047	0.0881	6.21	0	2	0	40	0		
	Chrysene	mg/kg	252	16.7%	210	0.00167	0.0017	0.0017	0.0018	0.0018	0.00347	42	0.00181	0.0029	0.0047	0.011	0.0083	0.104	62.1	0	8	0	160	0		
	Dibenzo(a,h)anthracene	mg/kg	252	0%	252	0.00167	0.0017	0.0017	0.0018	0.0018	0.00688	0							0.0621		0.08		1.6			
	Indeno(1,2,3-cd)pyrene	mg/kg	252	7.1%	234	0.00167	0.0017	0.0017	0.0018	0.0018	0.00379	18	0.00181	0.004	0.012	0.011	0.013	0.0471	0.621	0	0.7	0	14	0		
	Phenanthrene	mg/kg	252	13.1%	219	0.00167	0.0017	0.0017	0.0018	0.0018	0.00396	33	0.00175	0.0026	0.0043	0.019	0.013	0.215	24.5	0						
	Pyrene	mg/kg	252	29.0%	179	0.00167	0.0017	0.0017	0.0018	0.0018	0.00431	73	0.00175	0.0026	0.0041	0.0088	0.0089	0.0997	1890	0	210	0	4200	0		

FINAL HUMAN HEALTH RISK ASSESSMENT SOIL DATASET RESULTS SUMMARY HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 6)

Parameter of			Total	Detect			Censor	ed (Non-De	etect) Data					I	Detected Da	ta ⁽¹⁾			Residential	Count of Detects	LBCL	Count of Detects	LBCL	Count of Detects	Max.	Count of Detects
Interest	Compound List	Units	Count	Freq.	Count	Min	Q1	Median	Mean	Q3	Max	Count	Min	Q1	Median	Mean	Q3	Max	Soil BCL	> BCL	(DAF 1)	> DAF 1	(DAF 20)	> DAF 20	Bkgrnd ⁽²⁾	> Bkgrnd
Polychlorinated	PCB 105 ⁽⁴⁾	pg/g	189	81.0%	36	0.84	2.1	2.2	2.6	2.8	8.8	153	2.1	12	36	91	94	880								
Biphenyls	PCB 114 ⁽⁴⁾	pg/g	189	48.7%	97	0.23	2	2.1	2.4	2.2	22	92	1	4	6.6	14	18	100								
	PCB 118 ⁽⁴⁾	pg/g	189	83.6%	31	0.77	2.1	2.2	4.8	3.8	38	158	3	20	63	170	200	1700								
	PCB 123 ⁽⁴⁾	pg/g	189	3.7%	182	0.24	2	2.1	2.7	2.1	37	7	1.8	2.1	3.7	4.4	7.4	8.6								
	PCB 126 ⁽⁴⁾	pg/g	189	47.1%	100	0.29	2	2.1	2.5	2.2	20	89	1.8	3.5	5.3	10	9.5	97								
	PCB 156 ⁽⁴⁾	pg/g	179	73.2%	48	0.29	2.1	2.1	2.4	2.5	7.2	131	2	6.9	15	42	39	790								
	PCB 156/157 ⁽⁴⁾	pg/g	10	90.0%	1	0.86		0.86	0.86		0.86	9	2.8	6.3	25	130	280	470								
	PCB 157 ⁽⁴⁾	pg/g	179	49.2%	91	0.29	2	2.1	2.2	2.2	7.2	88	2.2	4	6.7	18	14	240								
	PCB 167 ⁽⁴⁾	pg/g	189	62.4%	71	0.2	2	2.1	2.2	2.2	5.7	118	1.1	5.2	9.4	25	21	380								
	PCB 169 ⁽⁴⁾	pg/g	189	12.7%	165	0.24	2	2.1	2	2.1	6.6	24	2.1	2.4	3.2	6.4	5.5	29								
	PCB 189 ⁽⁴⁾	pg/g	189	55.0%	85	0.16	2	2.1	2.1	2.2	3.7	104	1.4	3.9	5.8	13	13	210								
	PCB 209 ⁽⁴⁾	pg/g	189	86.8%	25	2	2	2.1	2.3	2.5	3.9	164	21	110	340	570	830	2900								
	PCB 77 ⁽⁴⁾	pg/g	189	11.1%	168	0.28	2	2.1	2.4	2.1	27	21	1.4	7.5	28	68	120	300								
	PCB 81 ⁽⁴⁾	pg/g	189	7.4%	175	0.21	2	2.1	2.1	2.1	8.6	14	0.55	3.6	13	22	36	69								
Radionuclides	Radium-226	pCi/g	243	82.7%	42							201	0.223	0.79	1	1	1.3	2.56	0.0071	201	0.016	201	0.32	200	2.36	2
	Radium-228	pCi/g	243	70.4%	72							171	-0.0741	0.88	1.2	1.3	1.6	3.7	0.013	171	0.016	171	0.32	171	2.94	3
	Thorium-228	pCi/g	243	100%	0							243	0.847	1.4	1.7	1.7	2	3.19	0.0078	243	0.0023	243	0.045	243	2.30	30
	Thorium-230	pCi/g	243	93.0%	17							226	0.37	1.1	1.3	1.4	1.7	3.43	3.2	2	0.00084	226	0.017	226	3.01	2
	Thorium-232	pCi/g	243	100%	0							243	0.589	1.1	1.3	1.4	1.7	2.6	2.8	0	0.0029	243	0.058	243	2.23	5
	Uranium-233/234	pCi/g	243	91.4%	21							222	0.385	1	1.3	1.4	1.7	4.19	4.2	0					2.84	7
	Uranium-235/236	pCi/g	243	15.2%	206							37	-0.152	0.027	0.078	0.1	0.16	1	0.11	33					0.21	17
	Uranium-238	pCi/g	243	99.2%	2							241	0.445	0.84	1.0	1.1	1.3	3.19	0.46	240					2.79	3
Semivolatile	1,2,4,5-Tetrachlorobenzene	mg/kg	253	0.4%	252	0.0669	0.069	0.07	0.081	0.07	2.78	1	0.0915		0.092	0.092		0.0915	18.3	0						
Organic	1,2-Diphenylhydrazine	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							0.608							
Compounds	1,4-Dioxane	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							4.86							
	2,2'-Dichlorobenzil	mg/kg	253	0.0%	253	0.11	0.11	0.12	0.13	0.12	4.59	0							23.5		0.0003		0.006			
	2,4,5-Trichlorophenol	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							6110		14		280			
	2,4,6-Trichlorophenol	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							44.2		0.008		0.16			
	2,4-Dichlorophenol	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							183		0.05		1			
	2,4-Dimethylphenol	mg/kg	252	0.0%	252	0.0669	0.069	0.07	0.081	0.07	2.78	0							1220		0.4		8			
	2,4-Dinitrophenol	mg/kg	253	0.0%	253	0.127	0.13	0.13	0.15	0.13	5.28	0							122		0.01		0.2			
	2,4-Dinitrotoluene	mg/kg	253	0.0%	253	0.0334	0.034	0.035	0.041	0.035	1.39	0							1.57		0.00004		0.0008			
	2,6-Dinitrotoluene	mg/kg	253	0.0%	253	0.0334	0.034	0.035	0.041	0.035	1.39	0							61.1		0.00003		0.0006			
	2-Chloronaphthalene	mg/kg	253	0.0%	253	0.0117	0.012	0.012	0.014	0.012	0.486	0							82.6							
	2-Chlorophenol	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							220		0.2		4			
	2-Methylnaphthalene	mg/kg	253	0.4%	252	0.00669	0.0069	0.007	0.0081	0.007	0.278	1	0.0166		0.017	0.017		0.0166								
	2-Nitroaniline	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							183							
	2-Nitrophenol	mg/kg	253	0.0%	253	0.0334	0.034	0.035	0.041	0.035	1.39	0														
	3,3-Dichlorobenzidine	mg/kg	253	0.0%	253	0.1	0.1	0.1	0.12	0.11	4.17	0							1.08		0.0003		0.006			
	3-Nitroaniline	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0														
	4-Bromophenyl phenyl ether	mg/kg	253	0.0%	253	0.0334	0.034	0.035	0.041	0.035	1.39	0														
	4-Chloro-3-methylphenol	mg/kg	253	0.0%	253	0.0334	0.034	0.035	0.041	0.035	1.39	0														
	4-Chlorophenyl phenyl ether	mg/kg	253	0.0%	253	0.0334	0.034	0.035	0.041	0.035	1.39	0														
	4-Chlorothioanisole	mg/kg	253	0.0%	253	0.11	0.11	0.12	0.13	0.12	4.59	0														-
	4-Nitroaniline	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0														
	4-Nitrophenol	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							489							
	Acetophenone	mg/kg	253	0.0%	253	0.0334	0.034	0.035	0.041	0.035	1.39	0							1740							
	Aniline	mg/kg	253	0.0%	253	0.117	0.12	0.12	0.14	0.12	4.86	0							85.3							
	Benzenethiol	mg/kg	253	0.0%	253	0.11	0.11	0.12	0.13	0.12	4.59	0														
	Benzoic acid	mg/kg	253	0.4%	252	0.167	0.17	0.17	0.2	0.18	6.95	1	0.389		0.39	0.39		0.389	100000	0	20	0	400	0		
	Benzyl alcohol	mg/kg	253	0.0%	253	0.1	0.1	0.1	0.12	0.11	4.17	0							30600							
	bis(2-Chloroethoxy)methane	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0														

FINAL HUMAN HEALTH RISK ASSESSMENT SOIL DATASET RESULTS SUMMARY HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 6)

												of 6)														
Parameter of			Total	Detect			Censore	ed (Non-De	tect) Data					Г	Detected Da	ta ⁽¹⁾			Residential	Count of Detects	LBCL	Count of Detects	LBCL	Count of Detects	Max.	Count of Detects
Interest	Compound List	Units	Count	Freq.	Count	Min	Q1	Median	Mean	Q3	Max	Count	Min	Q1	Median	Mean	Q3	Max	Soil BCL	> BCL	(DAF 1)	> DAF 1	(DAF 20)	> DAF 20	Bkgrnd ⁽²⁾	> Bkgrn
Semivolatile	bis(2-Chloroethyl) ether	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0				-			0.244		0.00002		0.0004			
Organic	bis(2-Chloroisopropyl) ether	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							3.37							
Compounds	bis(2-Ethylhexyl) phthalate	mg/kg	253	1.6%	249	0.0669	0.069	0.07	0.081	0.07	2.78	4	0.0709	0.082	0.18	0.18	0.27	0.282	34.7	0	180	0	3600	0		
-	bis(p-Chlorophenyl) sulfone	mg/kg	252	5.2%	239	0.11	0.11	0.12	0.14	0.12	4.59	13	0.114	0.15	0.17	0.23	0.31	0.549								
	bis(p-Chlorophenyl)disulfide	mg/kg	253	0.8%	251	0.11	0.11	0.12	0.13	0.12	4.59	2	0.161		0.2	0.2		0.233								
	Butylbenzyl phthalate	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							240		810		16200			
	Carbazole	mg/kg	253	0.0%	253	0.01	0.01	0.01	0.012	0.011	0.417	0							24.3		0.03		0.6			
	Dibenzofuran	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							156							
	Dichloromethyl ether	mg/kg	253	0%	253	0.11	0.11	0.12	0.13	0.12	4.59	0							0.000242							
	Diethyl phthalate	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							48900							
	Dimethyl phthalate	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							100000							
	Di-n-butyl phthalate	mg/kg	253	0.4%	252	0.0334	0.034	0.035	0.041	0.035	1.39	1	0.0525		0.053	0.053		0.0525	6110	0	270	0	5400	0		
	Di-n-octyl phthalate	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0														
	Diphenyl disulfide	mg/kg	253	0.0%	253	0.11	0.11	0.12	0.13	0.12	4.59	0														
	Diphenyl sulfide	mg/kg	253	0.0%	253	0.11	0.11	0.12	0.13	0.12	4.59	0				1							-			
	Diphenyl sulfone	mg/kg	253	0.0%	253	0.11	0.11	0.12	0.13	0.12	4.59	0							183							
	Diphenylamine	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							1530							
	Fluoranthene	mg/kg	253	3.2%	245	0.01	0.01	0.01	0.012	0.011	0.417	8	0.011	0.012	0.016	0.023	0.034	0.0522	2290	0	210	0	4200	0		
	Fluorene	mg/kg	253	0.0%	253	0.01	0.01	0.01	0.012	0.011	0.417	0							671		28		560			
	Hexachlorobenzene	mg/kg	253	2.0%	248	0.0669	0.069	0.07	0.081	0.07	2.78	5	0.0906	0.095	0.099	0.11	0.12	0.129	0.304	0	0.1	2	2	0		
	Hexachlorobutadiene	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							6.24		0.1		2			
	Hexachlorocyclopentadiene	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							366		20		400			
	Hexachloroethane	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							34.7		0.02		0.4			
	Hydroxymethyl phthalimide	mg/kg	253	0.4%	252	0.11	0.11	0.12	0.13	0.12	4.59	1	0.4		0.4	0.4		0.4								
	Isophorone	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							512		0.03		0.6			
	m,p-Cresols	mg/kg	253	0.0%	253	0.134	0.14	0.14	0.16	0.14	5.56	0							3060		0.8		16			
	Naphthalene	mg/kg	253	0.0%	253	0.01	0.01	0.01	0.012	0.011	0.417	0							3.1		4		80			
	Nitrobenzene	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0				1			2.69		0.007		0.14			
	N-nitrosodi-n-propylamine	mg/kg	253	0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0				ŀ			0.0695		0.000002		0.00004			
	o-Cresol	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0				-			3060		0.8		16			
	Octachlorostyrene	mg/kg	253	0.4%	252	0.11	0.11	0.12	0.13	0.12	4.59	1	0.161		0.16	0.16		0.161					-			
	p-Chloroaniline	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							2.43		0.03		0.6			
	p-Chlorobenzenethiol	mg/kg	253	0.8%	251	0.11	0.11	0.12	0.13	0.12	4.59	2	0.184		0.23	0.23		0.278								
	Pentachlorobenzene	mg/kg	253	0.8%	251	0.0669	0.069	0.07	0.081	0.07	2.78	2	0.102		0.14	0.14		0.176	48.9	0						
	Pentachlorophenol	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							0.894		0.001		0.02			
	Phenol	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0				-			18300		5		100		-	
	Phthalic acid	mg/kg	253	2.0%	248	0.11	0.11	0.12	0.14	0.12	4.59	5	0.334	0.34	0.36	0.41	0.5	0.619	100000	0						
	Pyridine	mg/kg	253	0.0%	253	0.0669	0.069	0.07	0.081	0.07	2.78	0							60.5							
Volatile	1,1,1,2-Tetrachloroethane	mg/kg	250	0%	250	0.00018	0.00018	0.00019	0.00019	0.00019	0.00092	0							3.69							
Organic	1,1,1-Trichloroethane	mg/kg	250	0%	250	0.00011	0.00011	0.00011	0.00011	0.00011	0.00054	0							1390		0.1		2			
Compounds	1,1,2,2-Tetrachloroethane	mg/kg	248	0%	248	0.000079	0.00008		0.000083	0.000082	0.0004	0							0.472		0.0002		0.004			
	1,1,2-Trichloroethane	mg/kg	250	0%	250	0.000068	0.000069	0.00007	0.000071	0.000071	0.00035	0							1.05		0.0009		0.018			
	1,1-Dichloroethane	mg/kg	250	0%	250	0.000071	0.000072	0.000073	0.000075	0.000074	0.00036	0							4.19		1		20			
	1,1-Dichloroethene	mg/kg	250	0%	250	0.00012	0.00012	0.00012	0.00013	0.00013	0.00062	0							285		0.003		0.06			
	1,1-Dichloropropene	mg/kg	250	0%	250	0.000088	0.00009		0.000093		0.00045	0														
	1,2,3-Trichlorobenzene	mg/kg	249	1.2%	246	0.00039	0.0004	0.0004	0.00041	0.00041	0.002	3	0.00091	0.00091	0.00096	0.0014	0.0022	0.0022								
	1,2,3-Trichloropropane	mg/kg	248	0%	248	0.00025	0.00026	0.00026	0.00027	0.00026	0.0013	0							0.0213							
	1,2,4-Trichlorobenzene	mg/kg	249	2.0%	244	0.00033	0.00034	0.00034	0.00035	0.00035	0.0017	5	0.00094	0.00095	0.0015	0.0021	0.0036	0.0038	22.1	0	0.3	0	6	0		
	1,2,4-Trimethylbenzene	mg/kg	251	17.1%	208	0.00013	0.00014	0.00014	0.00077	0.00025	0.0061	43	0.0002	0.00036	0.00045	0.00064	0.00066	0.0031	144	0						
	1,2-Dichlorobenzene	mg/kg	250	2.4%	244	0.00012	0.00012	0.00013	0.00022	0.00013	0.0058	6	0.00013	0.00044	0.00083	0.0011	0.0017	0.0026	373	0	0.9	0	18	0		
	1,2-Dichloroethane	mg/kg	250	0%	250		0.000068		0.00007	0.00007	0.00034	0							0.433		0.001		0.02			
	1,2-Dichloroethene	mg/kg	250	0%	250	0.00011	0.00011	0.00011	0.00011	0.00011	0.00056	0														

FINAL HUMAN HEALTH RISK ASSESSMENT SOIL DATASET RESULTS SUMMARY HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 6)

											(Page 5	or o)														
Parameter of			Total	Detect			Censor	ed (Non-De	etect) Data					Γ	Detected Da	ta ⁽¹⁾			Residential	Count of Detects	LBCL	Count of Detects	LBCL	Count of Detects	Max.	Count of Detects
Interest	Compound List	Units	Count	Freq.	Count	Min	Q1	Median	Mean	Q3	Max	Count	Min	Q1	Median	Mean	Q3	Max	Soil BCL	> BCL	(DAF 1)	> DAF 1	(DAF 20)	> DAF 20	Bkgrnd ⁽²⁾	> Bkgrn
Volatile	1,2-Dichloropropane	mg/kg	250	0%	250	0.00011	0.00011	0.00011	0.00012	0.00012	0.00057	0							0.82		0.001		0.02			
Organic	1,3,5-Trichlorobenzene	mg/kg	248	0.4%	247	0.00037	0.00038	0.00038	0.00039	0.00039	0.0019	1	0.0014		0.0014	0.0014		0.0014			-					
Compounds	1,3,5-Trimethylbenzene	mg/kg	249	3.6%	240	0.000098	0.0001	0.0001	0.0001	0.0001	0.00013	9	0.0001	0.00014	0.00023	0.00028	0.00041	0.0006	57.9	0	1		-			
	1,3-Dichlorobenzene	mg/kg	250	1.2%	247	0.00013	0.00013	0.00014	0.00014	0.00014	0.00068	3	0.00018	0.00018	0.0018	0.0016	0.0027	0.0027	214	0						
	1,3-Dichloropropane	mg/kg	250	0%	250	0.000051	0.000053	0.000053	0.000054	0.000054	0.00026	0							15.2		0.001		0.02			
	1,4-Dichlorobenzene	mg/kg	250	2.0%	245	0.00014	0.00014	0.00014	0.00014	0.00014	0.0007	5	0.0006	0.00072	0.0014	0.0012	0.0017	0.0018	2.59	0	0.1	0	2	0		
	2,2,3-Trimethylbutane	mg/kg	250	0%	250	0.00021	0.00022	0.00022	0.00022	0.00022	0.0011	0														
	2,2-Dichloropropane	mg/kg	250	0%	250	0.00023	0.00024	0.00024	0.00025	0.00024	0.0012	0														
	2,2-Dimethylpentane	mg/kg	250	0%	250	0.00028	0.00028	0.00029	0.00029	0.00029	0.0014	0														
	2,3-Dimethylpentane	mg/kg	250	0%	250	0.00023	0.00023	0.00023	0.00024	0.00024	0.0012	0														
	2,4-Dimethylpentane	mg/kg	250	0%	250	0.00019	0.0002	0.0002	0.0002	0.0002	0.00025	0														
	2-Chlorotoluene	mg/kg	249	0.4%	248	0.00025	0.00025	0.00026	0.00026	0.00026	0.0013	1	0.0013		0.0013	0.0013		0.0013	248	0						
	2-Hexanone	mg/kg	250	0.4%	249	0.00024	0.00024	0.00025	0.00025	0.00025	0.00031	1	0.12		0.12	0.12		0.12	460	0						
	2-Methylhexane	mg/kg	250	0%	250	0.0002	0.00021	0.00021	0.00022	0.00021	0.001	0														
	2-Nitropropane	mg/kg	250	0.4%	249	0.00061	0.00062	0.00063	0.00064	0.00063	0.0031	1	0.012		0.012	0.012		0.012	0.0109	1						
	3,3-Dimethylpentane	mg/kg	250	0%	250	0.0002	0.00021	0.00021	0.00022	0.00021	0.001	0														
	3-Ethylpentane	mg/kg	250	0%	250	0.00021	0.00022	0.00022	0.00022	0.00022	0.0011	0														
	3-Methylhexane	mg/kg	250	0%	250	0.00014	0.00014	0.00015	0.00015	0.00015	0.00072	0														
	4-Chlorotoluene	mg/kg	249	0.4%	248	0.00017	0.00018	0.00018	0.00018	0.00018	0.00088	1	0.0024		0.0024	0.0024		0.0024								
	4-Methyl-2-pentanone (MIBK)	mg/kg	250	0%	250	0.00029	0.0003	0.0003	0.00031	0.0003	0.0015	0							5800							
	Acetone	mg/kg	251	9.2%	228	0.0017	0.0018	0.0018	0.0043	0.0039	0.023	23	0.0027	0.0089	0.017	0.025	0.023	0.17	60000	0	0.8	0	16	0		
	Acetonitrile	mg/kg	250	0%	250	0.0055	0.0056	0.0056	0.0058	0.0057	0.028	0							1470							
	Benzene	mg/kg	250	0%	250	0.000088	0.00009	0.00009	0.000093	0.000092	0.00045	0							0.81		0.002		0.04			
	Bromobenzene	mg/kg	248	0%	248	0.00012	0.00012	0.00013	0.00013	0.00013	0.00062	0							243							
	Bromodichloromethane	mg/kg	250	0%	250	0.00021	0.00022	0.00022	0.00023	0.00022	0.0011	0							0.648		0.03		0.6			
	Bromoform	mg/kg	250	0%	250	0.000059	0.000061	0.000061	0.000063	0.000062	0.0003	0							61.6		0.04		0.8			
	Bromomethane	mg/kg	250	0%	250	0.00013	0.00013	0.00014	0.00014	0.00014	0.00067	0							8.7		0.01		0.2			
	Carbon disulfide	mg/kg	250	0%	250	0.00012	0.00012	0.00013	0.00013	0.00013	0.00062	0							721		2		40			
	Carbon tetrachloride	mg/kg	250	0%	250	0.00021	0.00021	0.00021	0.00022	0.00022	0.0011	0							0.735		0.003		0.06			
	Chlorobenzene	mg/kg	250	0%	250	0.00011	0.00011	0.00011	0.00011	0.00011	0.00056	0							273		0.07		1.4			
	Chlorobromomethane	mg/kg	250	0%	250	0.00023	0.00023	0.00023	0.00024	0.00024	0.0003	0														
	Chloroethane	mg/kg	250	0%	250	0.00046	0.00048	0.00048	0.00049	0.00049	0.0024	0							221							
	Chloroform	mg/kg	250	0%	250	0.0001	0.0001	0.0001	0.0001	0.00011	0.00052	0							0.306		0.03		0.6			
	Chloromethane	mg/kg	250	0%	250	0.00027	0.00028	0.00028	0.00029	0.00028	0.0014	0							1.6							
	cis-1,2-Dichloroethene	mg/kg	250	0%	250	0.000054	0.000056	0.000056	0.000058	0.000057	0.00028	0							148		0.02		0.4			
	cis-1,3-Dichloropropene	mg/kg	250	0%	250	0.0001	0.0001	0.0001	0.0001	0.00011	0.00052	0														
	Cymene (Isopropyltoluene)	mg/kg	248	0%	248	0.00012	0.00013	0.00013	0.00013		0.00016	0							389							
	Dibromochloromethane	mg/kg	250	0%	250	0.00012	0.00012	0.00012	0.00012	0.00012	0.00016	0							1.12		0.02		0.4			
	Dibromochloropropane	mg/kg	248	0%	248	0.00021	0.00022	0.00022	0.00022	0.00022	0.0011	0							0.0104							
	Dibromomethane	mg/kg	250	0%	250	0.00017	0.00017	0.00017	0.00018	0.00017	0.00086	0							43.4							
	Dichloromethane (Methylene chloride)	mg/kg	251	10.4%	225	0.00069	0.00071	0.00073	0.0029	0.0034	0.027	26	0.0012	0.0027	0.0038	0.0047	0.0049	0.017	11	0	0.001	26	0.02	0		
	Dimethyldisulfide	mg/kg	250	0%	250	0.00018	0.00018	0.00018	0.00019	0.00019	0.00091	0														
	Ethanol	mg/kg	250	0.8%	248	0.048	0.049	0.049	0.05	0.05	0.24	2	0.36		1	1		1.7	100000	0						
	Ethylbenzene	mg/kg	251	3.6%	242	0.000059	0.00006	0.000061	0.00024	0.000063	0.0058	9	0.000068	0.000078	0.00021	0.00025	0.00033	0.00082	3.79	0	0.7	0	14	0		
	Freon-11 (Trichlorofluoromethane)	mg/kg	250	0%	250	0.00022	0.00022	0.00023	0.00023	0.00023	0.0011	0							883							
	Freon-113 (1,1,2-Trifluoro-1,2,2-trichloroethar		250	0%	250	0.00015	0.00015	0.00015	0.00015	0.00015	0.00075	0							5550							
	Freon-12 (Dichlorodifluoromethane)	mg/kg	250	0%	250	0.00029	0.0003	0.0003	0.00031	0.0003	0.0015	0							218							
	Heptane	mg/kg	250	0%	250	0.00016		0.00017	0.00031	0.00017	0.00021	0							220		0.03		0.6			
	Isopropylbenzene	mg/kg	250	0%	250	0.0001	0.00017	0.00017	0.00017	0.00017	0.00053	0							371							
	m,p-Xylene	mg/kg	251	2.4%	245	0.00017	0.00017	0.00017	0.00011	0.00011	0.0058	6	0.00019	0.0002	0.00072	0.001	0.0018	0.0028	214	0	10	0	200	0		
	Methyl ethyl ketone (2-Butanone)	mg/kg	251	1.6%	247	0.00017	0.00017	0.00017	0.00020	0.00013	0.0038	4	0.00017	0.0049	0.0072	0.085	0.0018	0.32	32100	0						
	Methyl iodide Methyl iodide	mg/kg	250	0%	250	•	0.00033	0.0003	0.00031		0.00064	0							360							

FINAL HUMAN HEALTH RISK ASSESSMENT SOIL DATASET RESULTS SUMMARY HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 6)

Parameter of			Total	Detect			Censor	ed (Non-De	tect) Data					D	etected Da	ta ⁽¹⁾			Residential	Count of Detects	LBCL	Count of Detects	LBCL	Count of Detects	Max.	Count of Detects
Interest	Compound List	Units	Count	Freq.	Count	Min	Q1	Median	Mean	Q3	Max	Count	Min	Q1	Median	Mean	Q3	Max	Soil BCL	> BCL	(DAF 1)	> DAF 1	(DAF 20)	> DAF 20	Bkgrnd ⁽²⁾	> Bkgrnd
Volatile	MTBE (Methyl tert-butyl ether)	mg/kg	250	0%	250	0.00009	0.000092	0.000093	0.000095	0.000094	0.00046	0							39.2							
Organic	n-Butylbenzene	mg/kg	249	0.4%	248	0.00018	0.00019	0.00019	0.00019	0.00019	0.00093	1	0.0011		0.0011	0.0011		0.0011	237	0						
Compounds	Nonanal	mg/kg	249	0%	249	0.00047	0.00048	0.00049	0.0005	0.00049	0.0024	0														
	n-Propylbenzene	mg/kg	249	2.4%	243	0.00011	0.00011	0.00011	0.00011	0.00011	0.00056	6	0.0004	0.0008	0.0047	0.0034	0.0047	0.0048	237	0						
	o-Xylene	mg/kg	251	2.8%	244	0.000077	0.000078	0.000079	0.00012	0.00008	0.0051	7	0.00008	0.000085	0.00012	0.00028	0.0003	0.00096	282	0	9	0	180	0		
	sec-Butylbenzene	mg/kg	248	0%	248	0.00011	0.00011	0.00011	0.00011	0.00011	0.00055	0							223							
	Styrene	mg/kg	250	0.8%	248	0.00017	0.00018	0.00018	0.00018	0.00018	0.00089	2	0.00029	-	0.0025	0.0025		0.0047	1730	0	0.2	0	4	0		
	tert-Butylbenzene	mg/kg	248	0.4%	247	0.0001	0.0001	0.0001	0.0001	0.00011	0.00052	1	0.00017	-	0.00017	0.00017		0.00017	393	0						
	Tetrachloroethene	mg/kg	250	0%	250	0.000088	0.00009	0.00009	0.000093	0.000092	0.00045	0		-					0.624		0.003		0.06			
	Toluene	mg/kg	251	5.2%	238	0.00032	0.00033	0.00034	0.00035	0.00034	0.00083	13	0.00037	0.00047	0.00062	0.00096	0.0017	0.0019	521	0	0.6	0	12	0		
	trans-1,2-Dichloroethene	mg/kg	250	0%	250	0.000091	0.000093	0.000094	0.000096	0.000095	0.00046	0							122		0.03		0.6			
	trans-1,3-Dichloropropene	mg/kg	250	0%	250	0.0001	0.0001	0.0001	0.0001	0.00011	0.00052	0														
	Trichloroethene	mg/kg	250	0%	250	0.0001	0.00011	0.00011	0.00011	0.00011	0.00054	0							1.06		0.003		0.06			
	Vinyl acetate	mg/kg	248	0%	248	0.00024	0.00025	0.00025	0.00026	0.00025	0.0012	0		-					988		8		160			
	Vinyl chloride	mg/kg	250	0%	250	0.00011	0.00012	0.00012	0.00012	0.00012	0.00058	0							0.291		0.0007		0.014			
	Xylenes (total)	mg/kg	251	2.4%	245	0.00023	0.00024	0.00024	0.00025	0.00024	0.0012	6	0.00031	0.0008	0.0012	0.0015	0.0021	0.0037	214	0	10	0	200	0		

Notes:

This table includes only data included in the risk assessment. Because of this, the total number of analyses does not always coincide with the total number of analyses reported in the tables in Appendix B, which include all data, regardless of status.

The values used are simply a comparison to NDEP BCL values for information purposes only.

Because both non-detect and detected radionuclides have reported activity levels, calculated summary statistics (and exceedances of comparison levels) are presented as detected regardless of the lab detect flags are represented by the censored (non-detect) and detect count fields in the table. Values for Q1, median, mean, and Q3 are rounded to 2 significant figures. BCLs are rounded to 3 significant figures.

BCL = Basic Comparison Levels (BCLs) from NDEP 2013.

LBCL = Leaching-based BCLs from NDEP 2013.

Max = Maximum

Min = Minimum

Q1 = 1st quartile (25th percentile)

Q3 = 3rd quartile (75th percentile)

- (1) Range of detections include estimated values of detect results between the detection limit and reporting limit. As such some minimum detected concentrations may be below the minimum reporting limit. In these cases the respective sample results are flagged in the dataset.
- (2) Comparisons are for information purposes only. See Chapter 5 for statistical background comparisons, and the background dataset used.
- (3) Asbestos results shown are for long protocol structures (>10um). The minimum and maximum values represent the number of structures in an individual sample. The detect count represents the number of samples with at least one detected protocol structure, not the total number of structures.
- (4) TCDD TEQ values are calculated from congener-specific (dioxins, furans, and PCBs) concentrations. An individual TCDD TEQ value may include detect and non-detect congeners. Therefore, the number of detects and non-detects, and a frequency of detection for TCDD TEQ are not presented.
- -- = Not applicable or no value has been established.

TABLE 3-10 SURFACE FLUX SAMPLE ANALYSES

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 3)

	CAS	MDL	RL	MDL	RL
Compound	Number	ppbv	ppbv	μg/m ³	μg/m ³
List of Compounds for USEPA Method T	O-15 Full Scan Mode O	peration and N	MDLs		
1,1,1,2-Tetrachloroethane	630-20-6	0.1	0.51	0.72	3.62
1,1,1-Trichloroethane	71-55-6	0.1	0.52	0.58	2.89
1,1,2-Trichloroethane	79-00-5	0.1	0.51	0.57	2.86
1,1-Dichloroethane	75-34-3	0.1	0.52	0.43	2.15
1,1-Dichloroethene	75-35-4	0.1	0.52	0.42	2.13
1,1-Dichloropropene	563-58-6	0.1	0.49	0.46	2.3
1,2,3-Trichloropropane	96-18-4	0.11	0.55	0.68	3.39
1,2,4-Trichlorobenzene	120-82-1	0.1	0.52	0.79	3.94
1,2,4-Trimethylbenzene	95-63-6	0.1	0.52	0.52	2.61
1,2-Dichlorobenzene	95-50-1	0.1	0.52	0.64	3.2
1,2-Dichloropropane	78-87-5	0.1	0.52	0.49	2.46
1,3,5-Trimethylbenzene	108-67-8	0.1	0.52	0.53	2.64
1,3-Dichlorobenzene	541-73-1	0.1	0.52	0.64	3.2
1,3-Dichloropropane	142-28-9	0.11	0.54	0.52	2.58
1,4-Dioxane	123-91-1	0.09	0.44	0.33	1.64
2,2-Dichloropropane	594-20-7	0.11	0.53	0.5	2.53
2-Hexanone	591-78-6	0.09	0.44	0.37	1.86
4-Methyl-2-pentanone (MIBK)	108-10-1	0.09	0.46	0.38	1.95
Acetone	67-64-1	0.09	0.45	0.22	1.1
Acetonitrile	75-05-8	0.22	1.12	0.48	2.39
Benzene	71-43-2	0.1	0.52	0.34	1.7
Bromodichloromethane	75-27-4	0.08	0.4	0.55	2.77
Bromoform	75-25-2	0.09	0.47	0.99	4.96
Bromomethane	74-83-9	0.1	0.51	0.41	2.04
Carbon disulfide	75-15-0	0.09	0.45	0.29	1.45
Chlorobenzene	108-90-7	0.1	0.52	0.5	2.48
Chlorobromomethane	74-97-5	0.1	0.51	0.55	2.76
Chloroethane	75-00-3	0.1	0.51	0.28	1.39
Chloromethane	74-87-3	0.1	0.51	0.22	1.09

TABLE 3-10 SURFACE FLUX SAMPLE ANALYSES

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 3)

	CAS	MDL	RL	MDL	RL
Compound	Number	ppbv	ppbv	μg/m ³	μg/m ³
cis-1,2-Dichloroethene	156-59-2	0.1	0.52	0.42	2.11
cis-1,3-Dichloropropene	10061-01-5	0.1	0.52	0.48	2.41
Cymene (Isopropyltoluene)	99-87-6	0.11	0.55	0.62	3.12
Dibromomethane	74-95-3	0.11	0.55	0.97	4.84
Dichloromethane (Methylene chloride)	75-09-2	0.1	0.52	0.37	1.86
Ethanol	64-17-5	0.22	1.12	0.44	2.18
Ethylbenzene	100-41-4	0.1	0.52	0.46	2.33
Freon-11 (Trichlorofluoromethane)	75-69-4	0.1	0.51	0.59	2.95
Freon-113 (1,1,2-Trifluoro-1,2,2-trichloroethane)	76-13-1	0.1	0.52	0.81	4.07
Freon-12 (Dichlorodifluoromethane)	75-71-8	0.1	0.51	0.52	2.61
Heptane	142-82-5	0.08	0.42	0.35	1.78
Isopropylbenzene	98-82-8	0.11	0.57	0.58	2.89
Methyl ethyl ketone (2-Butanone)	78-93-3	0.09	0.43	0.26	1.31
Methyl iodide	74-88-4	0.19	0.94	1.13	5.67
MTBE (Methyl tert-butyl ether)	1634-04-4	0.08	0.39	0.29	1.45
Naphthalene	91-20-3	0.22	1.09	1.19	5.9
n-Butylbenzene	104-51-8	0.1	0.52	0.59	2.95
n-Propylbenzene	103-65-1	0.11	0.54	0.55	2.74
o-Xylene	95-47-6	0.1	0.52	0.46	2.31
sec-Butylbenzene	135-98-8	0.11	0.52	0.59	2.95
Styrene	100-42-5	0.1	0.52	0.45	2.26
tert-Butylbenzene	98-06-6	0.11	0.52	0.59	2.85
Tetrachloroethene	127-18-4	0.1	0.52	0.72	3.61
Toluene	108-88-3	0.1	0.52	0.4	2
trans-1,2-Dichloroethene	156-60-5	0.09	0.44	0.36	1.8
trans-1,3-Dichloropropene	10061-02-6	0.1	0.52	0.48	2.41
Trichloroethene	79-01-6	0.1	0.52	0.57	2.85
Vinyl acetate	108-05-4	0.09	0.43	0.31	1.56
Vinyl chloride	75-01-4	0.1	0.51	0.27	1.35
Xylenes (total)	108-38-3	0.21	1.03	0.92	4.61

TABLE 3-10 SURFACE FLUX SAMPLE ANALYSES

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 3)

	CAS	MDL	RL	MDL	RL
Compound	Number	ppbv	ppbv	μg/m ³	μg/m ³
List of Compounds for USEPA Method TO-15 S	Selective Ion Mod	de (SIM) Operat	ion and MDLs		
1,1,2,2-Tetrachloroethane	79-34-5	0.005	0.026	0.035	0.18
1,2-Dichloroethane	107-06-2	0.005	0.026	0.021	0.11
1,4-Dichlorobenzene	106-46-7	0.005	0.026	0.031	0.16
Carbon tetrachloride	56-23-5	0.005	0.026	0.032	0.17
Chloroform	67-66-3	0.005	0.026	0.025	0.13
Dibromochloromethane	124-48-1	0.005	0.026	0.043	0.23
Dibromochloropropane	96-12-8	0.01	0.026	0.098	0.26
Hexachlorobutadiene	87-68-3	0.01	0.026	0.108	0.28

Note:

The actual reported MDL may vary based on Canister dilution or matrix interferences.

CAS - Chemical abstract system

MDL - Method detection limit

RL - Reporting limit

ppbv - Parts per billion by volume

μg/m³ - microgram per cubic meter

SURFACE FLUX SAMPLE RESULTS SUMMARY

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 2)

Parameter of Interest	Compound List	Units	Total Count		Censored (Non-Detect) Data							Detected Data ⁽¹⁾						
					Count	Min	Q1	Median	Mean	Q3	Max	Count	Min	Q1	Median	Mean	Q3	Max
Volatile	1,1,1,2-Tetrachloroethane	μg/m ² ,min ⁻¹	80	0%	80	0.01	0.0197	0.0204	0.0208	0.0212	0.0738	0						
Organic	1,1,1-Trichloroethane	μg/m ² ,min ⁻¹	80	0%	80	0.0173	0.0181	0.0185	0.0197	0.0195	0.0673	0						
Compounds	1,1,2,2-Tetrachloroethane	μg/m ² ,min ⁻¹	80	1.3%	79	0.00142	0.00169	0.00177	0.00218	0.00185	0.0106	1	0.00288		0.00288	0.00288		0.00288
	1,1,2-Trichloroethane	μg/m ² ,min ⁻¹	80	0%	80	0.0173	0.0181	0.0185	0.0197	0.0195	0.0673	0	-					
	1,1-Dichloroethane	μg/m ² ,min ⁻¹	80	0%	80	0.0127	0.0135	0.0135	0.0145	0.0142	0.0496	0	-					
	1,1-Dichloroethene	μg/m ² ,min ⁻¹	80	0%	80	0.0127	0.0131	0.0135	0.0141	0.0138	0.0485	0	1			-		
	1,1-Dichloropropene	μg/m ² ,min ⁻¹	80	0%	80	0.0104	0.0123	0.0127	0.0133	0.0131	0.0462	0	1			-		
	1,2,3-Trichloropropane	μg/m ² ,min ⁻¹	80	1.3%	79	0.0104	0.0169	0.0173	0.0178	0.0177	0.0627	1	0.281		0.281	0.281		0.281
	1,2,4-Trichlorobenzene	μg/m ² ,min ⁻¹	79	0%	79	0.0157	0.0188	0.0193	0.0275	0.0202	0.169	0						
	1,2,4-Trimethylbenzene	μg/m ² ,min ⁻¹	80	23.8%	61	0.0158	0.0165	0.0169	0.0524	0.0321	0.438	19	0.0169	0.0219	0.0385	0.0825	0.114	0.43
	1,2-Dichlorobenzene	μg/m ² ,min ⁻¹	80	2.5%	78	0.0188	0.0196	0.02	0.0249	0.0209	0.133	2	0.0304		0.0817	0.0817		0.133
	1,2-Dichloroethane	μg/m ² ,min ⁻¹	80	66.3%	27	0.001	0.00104	0.00112	0.00176	0.00204	0.00635	53	0.00089	0.00123	0.00146	0.00197	0.00229	0.00573
	1,2-Dichloropropane	μg/m ² ,min ⁻¹	80	1.3%	79	0.015	0.0154	0.0158	0.0163	0.0165	0.0262	1	0.0658		0.0658	0.0658		0.0658
	1,3,5-Trimethylbenzene	μg/m ² ,min ⁻¹	80	16.3%	67	0.0162	0.0169	0.0177	0.0251	0.0185	0.123	13	0.0188	0.0202	0.0273	0.0595	0.0481	0.33
	1,3-Dichlorobenzene	μg/m ² ,min ⁻¹	80	2.5%	78	0.0192	0.02	0.0204	0.0254	0.0213	0.135	2	0.0242		0.0666	0.0666		0.109
	1,3-Dichloropropane	μg/m ² ,min ⁻¹	80	0%	80	0.0108	0.0123	0.0127	0.0133	0.0135	0.0465	0						
	1,4-Dichlorobenzene	μg/m ² ,min ⁻¹	80	5.0%	76	0.00123	0.00185	0.00237	0.00323	0.00341	0.0222	4	0.00208	0.00245	0.00381	0.00374	0.00497	0.00527
	1,4-Dioxane	μg/m ² ,min ⁻¹	80	30.0%	56	0.01	0.0104	0.0104	0.0121	0.0111	0.0373	24	0.0112	0.0144	0.0329	0.11	0.0968	1.03
	2,2-Dichloropropane	μg/m ² ,min ⁻¹	80	0%	80	0.0142	0.136	0.139	0.14	0.146	0.509	0						
	2-Hexanone	μg/m ² ,min ⁻¹	80	27.5%	58	0.01	0.0119	0.0119	0.0127	0.0124	0.0438	22	0.0127	0.0152	0.0208	0.0246	0.0313	0.0531
	4-Methyl-2-pentanone (MIBK)	μg/m ² ,min ⁻¹	80	22.5%	62	0.0108	0.0123	0.0127	0.0152	0.0132	0.0531	18	0.0127	0.0171	0.0194	0.03	0.0295	0.101
	Acetone	μg/m ² ,min ⁻¹	80	65.0%	28	0.00692	0.104	0.208	0.339	0.542	1.09	52	0.116	0.252	0.439	0.621	0.856	1.91
	Acetonitrile	$\mu g/m^2, min^{-1}$	80	32.5%	54	0.0127	0.0131	0.0135	0.0215	0.0142	0.292	26	0.0135	0.0192	0.0712	0.129	0.171	0.67
	Benzene	$\mu g/m^2, min^{-1}$	80	11.3%	71	0.0131	0.0223	0.0296	0.036	0.0423	0.119	9	0.0219	0.0281	0.0758	0.0976	0.159	0.288
	Bromodichloromethane	μg/m ² ,min ⁻¹	80	0%	80	0.00923	0.0173	0.0177	0.0182	0.0185	0.065	0						
	Bromoform	μg/m ² ,min ⁻¹	80	0%	80	0.00962	0.0312	0.0319	0.0323	0.0334	0.117	0						
	Bromomethane	μg/m ² ,min ⁻¹	80	0%	80	0.0127	0.0131	0.0135	0.0143	0.0141	0.0488	0						
	Carbon disulfide	μg/m ² ,min ⁻¹	80	35.0%	52	0.00885	0.00885	0.00923	0.0113	0.00962	0.0415	28	0.00962	0.0179	0.0458	0.116	0.116	0.639
	Carbon tetrachloride	μg/m ² ,min ⁻¹	80	88.8%	9	0.00169	0.00204	0.00254	0.0026	0.00327	0.0035	71	0.00242	0.00415	0.00535	0.0063	0.00796	0.0217
	Chlorobenzene	μg/m ² ,min ⁻¹	80	0%	80	0.0146	0.0154	0.0158	0.0166	0.0164	0.0569	0						
	Chlorobromomethane	μg/m ² ,min ⁻¹	80	0%	80	0.01	0.0147	0.015	0.0156	0.0158	0.055	0						
	Chloroethane	μg/m ² ,min ⁻¹	80	5.0%	76	0.00846	0.00885	0.00923	0.0097	0.00962	0.0331	4	0.0104	0.0105	0.015	0.0224	0.0417	0.0492
	Chloroform	μg/m ² ,min ⁻¹	80	93.8%	5	0.00123	0.00181	0.00365	0.00433	0.0072	0.00758	75	0.00169	0.00254	0.00358	0.00571	0.00662	0.051
	Chloromethane	μg/m ² ,min ⁻¹	80	37.5%	50	0.00654	0.00692	0.00692	0.00735	0.00731	0.0254	30	0.00731	0.0153	0.0208	0.063	0.0499	0.812
	cis-1,2-Dichloroethene	μg/m ² ,min ⁻¹	80	1.3%	79	0.0127	0.0135	0.0135	0.0144	0.0142	0.0496	1	0.0935		0.0935	0.0935		0.0935
	cis-1,3-Dichloropropene	μg/m ² ,min ⁻¹	80	0%	80	0.015	0.0158	0.0162	0.017	0.0168	0.0585	0						
	Cymene (Isopropyltoluene)	μg/m²,min ⁻¹	80	10.0%	72	0.0135	0.0162	0.0165	0.0174	0.0173	0.0604	8	0.0192	0.0248	0.0323	0.0308	0.0363	0.0404

TABLE 3-11

SURFACE FLUX SAMPLE RESULTS SUMMARY

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 2)

Parameter of			Total	Detect			Censor	ed (Non-D	etect) Dat	a				D	etected Da	ata ⁽¹⁾		
Interest	Compound List	Units	Count	Freq.	Count	Min	Q1	Median	Mean	Q3	Max	Count	Min	Q1	Median	Mean	Q3	Max
Volatile	Dibromochloromethane	μg/m ² ,min ⁻¹	80	2.5%	78	0.00127	0.00154	0.00158	0.00179	0.00165	0.00958	2	0.00285		0.003	0.003		0.00315
Organic	Dibromochloropropane	μg/m ² ,min ⁻¹	80	1.3%	79	0.00419	0.00504	0.00519	0.00602	0.00542	0.0314	1	0.0335		0.0335	0.0335		0.0335
Compounds	Dibromomethane	μg/m ² ,min ⁻¹	80	0%	80	0.00923	0.0204	0.0208	0.0212	0.0215	0.0758	0						
	Dichloromethane (Methylene chloride)	μg/m ² ,min ⁻¹	80	13.8%	69	0.0112	0.0119	0.0119	0.0128	0.0127	0.0438	11	0.0131	0.0162	0.0188	0.0402	0.0746	0.124
	Ethanol	μg/m ² ,min ⁻¹	80	41.3%	47	0.0142	0.015	0.015	0.0276	0.0162	0.171	33	0.0269	0.0525	0.111	0.404	0.346	4.42
	Ethylbenzene	μg/m ² ,min ⁻¹	80	12.5%	70	0.0142	0.0146	0.015	0.0184	0.0158	0.0612	10	0.0169	0.0207	0.0248	0.0579	0.061	0.241
	Freon-11 (Trichlorofluoromethane)	μg/m ² ,min ⁻¹	80	10.0%	72	0.0181	0.0188	0.0194	0.0207	0.0204	0.0708	8	0.0219	0.0239	0.026	0.0312	0.0418	0.0462
	Freon-113 (1,1,2-Trifluoro-1,2,2-trichloroethane)	μg/m ² ,min ⁻¹	80	0%	80	0.0242	0.0254	0.0262	0.0276	0.0272	0.0946	0						
	Freon-12 (Dichlorodifluoromethane)	μg/m ² ,min ⁻¹	80	5.0%	76	0.0162	0.0169	0.0173	0.0195	0.0181	0.0869	4	0.0192	0.0211	0.0317	0.0391	0.0645	0.0738
	Heptane	μg/m ² ,min ⁻¹	80	37.5%	50	0.00885	0.0112	0.0115	0.0227	0.0214	0.177	30	0.0112	0.0174	0.0242	0.0333	0.0332	0.145
	Hexachlorobutadiene	μg/m ² ,min ⁻¹	80	0%	80	0.00223	0.00269	0.00279	0.00336	0.00291	0.0167	0						
	Isopropylbenzene	μg/m ² ,min ⁻¹	80	22.5%	62	0.0131	0.0154	0.0156	0.0217	0.0162	0.139	18	0.0185	0.0233	0.0362	0.0823	0.133	0.266
	Methyl ethyl ketone (2-Butanone)	μg/m ² ,min ⁻¹	80	10.0%	72	0.00808	0.00808	0.00846	0.00882	0.00885	0.0308	8	0.00885	0.0109	0.041	0.0837	0.168	0.273
	Methyl iodide	μg/m ² ,min ⁻¹	80	0%	80	0.00654	0.0386	0.0396	0.0398	0.0414	0.144	0	-	-				
	MTBE (Methyl tert-butyl ether)	μg/m ² ,min ⁻¹	80	0%	80	0.00885	0.00923	0.00923	0.00987	0.00962	0.0342	0						
	Naphthalene	μg/m ² ,min ⁻¹	80	31.3%	55	0.00227	0.00273	0.00277	0.0045	0.00288	0.0254	25	0.00269	0.00362	0.00442	0.00664	0.00941	0.0164
	n-Butylbenzene	μg/m ² ,min ⁻¹	80	3.8%	77	0.0127	0.0165	0.0165	0.0174	0.0177	0.0612	3	0.0254	0.0254	0.035	0.0328	0.0381	0.0381
	n-Propylbenzene	μg/m ² ,min ⁻¹	80	12.5%	70	0.0131	0.0135	0.0138	0.0183	0.0146	0.112	10	0.0169	0.0181	0.0389	0.0624	0.106	0.161
	o-Xylene	μg/m ² ,min ⁻¹	80	21.3%	63	0.0138	0.0146	0.015	0.0214	0.0158	0.103	17	0.0162	0.0208	0.0281	0.0619	0.0404	0.378
	sec-Butylbenzene	μg/m ² ,min ⁻¹	80	8.8%	73	0.0135	0.0162	0.0165	0.0174	0.0173	0.0604	7	0.0185	0.0262	0.0362	0.0383	0.0512	0.0635
	Styrene	μg/m ² ,min ⁻¹	80	1.3%	79	0.0138	0.0142	0.0146	0.0156	0.0154	0.0531	1	0.0154		0.0154	0.0154		0.0154
	tert-Butylbenzene	μg/m ² ,min ⁻¹	80	5.0%	76	0.0127	0.0162	0.0165	0.0186	0.0173	0.06	4	0.0212	0.0216	0.0279	0.052	0.107	0.131
	Tetrachloroethene	μg/m ² ,min ⁻¹	80	16.3%	67	0.0219	0.0227	0.0231	0.0246	0.0238	0.0838	13	0.0273	0.0323	0.0354	0.537	0.503	4.1
	Toluene	μg/m ² ,min ⁻¹	80	75.0%	20	0.0123	0.0129	0.0368	0.0509	0.0702	0.135	60	0.0131	0.0278	0.0452	0.103	0.0842	1.79
	trans-1,2-Dichloroethene	μg/m ² ,min ⁻¹	80	0%	80	0.01	0.0112	0.0115	0.012	0.0119	0.0419	0						
	trans-1,3-Dichloropropene	μg/m ² ,min ⁻¹	80	0%	80	0.0146	0.0154	0.0158	0.0167	0.0165	0.0573	0						
	Trichloroethene	μg/m ² ,min ⁻¹	80	2.5%	78	0.0173	0.0181	0.0188	0.0211	0.0196	0.0669	2	0.0273		0.208	0.208		0.388
	Vinyl acetate	μg/m ² ,min ⁻¹	80	22.5%	62	0.00962	0.00991	0.01	0.0134	0.0105	0.0631	18	0.0115	0.0181	0.0293	0.0903	0.14	0.459
	Vinyl chloride	μg/m ² ,min ⁻¹	80	0%	80	0.00846	0.00885	0.00885	0.00941	0.00923	0.0323	0						
	Xylenes (total)	μg/m ² ,min ⁻¹	80	27.5%	58	0.0281	0.0292	0.03	0.043	0.0321	0.198	22	0.0296	0.0496	0.0625	0.165	0.107	1.16

Notes:

Values for Q1, median, mean, and Q3 are rounded to 3 significant figures.

Max = Maximum

Min = Minimum

Q1 = 1st quartile (25th percentile)

Q3 = 3rd quartile (75th percentile)

- (1) Range of detections include estimated values of detect results ("J" flagged values).
- -- = Not applicable or no value has been established.

TABLE 4-10

METALS SAMPLES QUALIFIED DUE TO RECOVERIES OUTSIDE ACCEPTANCE CRITERIA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

Laboratory	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Lead	Lithium	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	u	Titanium	Tungsten	Uranium	Vanadium	nc
Data Package	Ar	Ar	Ba	Be	\mathbf{B}_0	Ca	င်ဒ	CF	သ	သ	Le	Lil	M	M	M	M	Ż	\mathbf{P}_{0}	Se	Sil	\mathbf{So}	Stı	Th	Tin	Ti	nΤ	Ur	Na Na	Zinc
F8K200234	-																									-			
F8K210227	-		+	+	+	+		+		+	+					+		+		-						-		+	+
F8K220190	-		+			+		+		+	+			+				+		+								+	+
F8K250122	-	+	+	+		+		+	+	+	+	+				+	+	+		+	+							+	+
F8K260286	-	+	+	+	+	+		+	+	+	+	+				+	+	+		+	+						+	+	+
F8L020153	-																	-		+		-				-		<u> </u>	
F8L030154	-		+										-									-				-		-	
F8L040142	-																									-			
F8L050133	-		+			+		+		+			+					+		+	+	+						+	+
F8L060161	-		+			+												+		+		+				•		+	
F8L090162	-	+				-											-	+		+						١		•	
F8L100188	-		+																	+		+/-				•			
F8L110242	-									•																•			
F8L120182	-	+	+			+		+		+						+				+								+	
F8L130169	-					+		+				+						+		+									+
F8L170249	-		+			+		+					+				+	+		+	+	+				•		+	
F8L190153													+		•					+		+							
F8L190190													+		•					+		+							
F8L200127	-					+		-					-					•		+						•			
F8L230161	-					+		+		+		+	-					+		+		+					+	-	+
F9L010465		+	+		-	+				+	+					+				+				+			+		+
F9L020487		+	+	+		+				+	+	+		+	•	+		+		+	+		+					+	+
F0H100484	-				-										+			+			+					-			
160-6006-1	-																	+				+			+	-			
160-6633-1	-		-															+			+	+						i	

^{+ =} Recovery greater than the acceptance limits

Blank entry signifies that the recovery was within the acceptance limits

^{- =} Recovery less than the acceptance limits

TABLE 4-14
SOIL RESULTS QUALIFIED DUE TO DUPLICATE DIFFERENCES OUTSIDE ACCEPTANCE CRITERIA
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA
(Page 1 of 3)

Field	Lab				RPD or
Sample ID	Sample ID	Analyte	Result	Unit	Difference
WHC1-B003-0	221307009	Uranium-233/234	1.15	pCi/g	Difference=1.196
WHC1-BF01-0	220076001	Radium-228	0.969	pCi/g	Difference=1.161
WHC1-BF01-12	220076002	Radium-228	1.39	pCi/g	Difference=1.162
WHC1-BG01-0	220076003	Radium-228	2.34	pCi/g	Difference=1.163
WHC1-BG01-11	220076004	Radium-228	1.75	pCi/g	Difference=1.164
WHC1-BG02-0	220076005	Radium-228	1.6	pCi/g	Difference=1.165
WHC1-BG02-FD	220076006	Radium-228	2.18	pCi/g	Difference=1.166
WHC1-BH01-0	220742019	Radium-228	<1.00	pCi/g	Difference=1.025
WHC1-BH02-0	220708001	Radium-226	2.22	pCi/g	Difference=103
WHC1-BH02-10	220708002	Radium-226	<1	pCi/g	Difference=103
WHC1-BH03-0	220917001	Radium-228	1.7	pCi/g	Difference=5.006
WHC1-BH05-0	220917011	Radium-228	2.15	pCi/g	Difference=5.006
WHC1-BI02-0	220708006	Radium-226	<1	pCi/g	Difference=103
WHC1-BI02-13	220708008	Radium-226	1.68	pCi/g	Difference=103
WHC1-BI02-3	220708007	Radium-226	<1	pCi/g	Difference=103
WHC1-BI03-0	220708009	Radium-226	<1	pCi/g	Difference=103
WHC1-BI03-11	220708010	Radium-226	<1	pCi/g	Difference=103
WHC1-BJ03-0	220708011	Radium-226	<1	pCi/g	Difference=103
WHC1-BJ03-0-FD	220708012	Radium-226	<1	pCi/g	Difference=103
WHC1-BJ03-12	220708013	Radium-226	1.08	pCi/g	Difference=103
WHC1-BJ04-0	220708014	Radium-226	<1	pCi/g	Difference=103
WHC1-BJ04-11	220708015	Radium-226	2.56	pCi/g	Difference=103
WHC1-BK03-0	221307008	Uranium-233/234	1.19	pCi/g	Difference=1.196
WHC1-BK04-0	220708016	Radium-226	< 0.312	pCi/g	Difference=103
WHC1-BK04-10	220708017	Radium-226	<1	pCi/g	Difference=103
WHC1-BL05-0	220022011	Radium-228	1.35	pCi/g	Difference=1.161
WHC1-BL05-10	220022012	Radium-228	2.52	pCi/g	Difference=1.161
WHC1-BL06-0	220022009	Radium-228	2.87	pCi/g	Difference=1.161
WHC1-BL06-11	220022010	Radium-228	2.85	pCi/g	Difference=1.161
WHC1-BL07-10	220022014	Radium-228	2.02	pCi/g	Difference=1.161
WHC1-BM05-0	220022004	Radium-228	3.17	pCi/g	Difference=1.161
WHC1-BM05-10	220022005	Radium-228	1.38	pCi/g	Difference=1.161
WHC1-BM06-0	220022006	Radium-228	2.11	pCi/g	Difference=1.161
WHC1-BM06-0-FD	220022007	Radium-228	1.28	pCi/g	Difference=1.161
WHC1-BM06-10	220022008	Radium-228	2.31	pCi/g	Difference=1.161
WHC1-BN07-0	220022001	Radium-228	2.1	pCi/g	Difference=1.161
WHC1-BN07-13	220022003	Radium-228	1.77	pCi/g	Difference=1.161
WHC1-BN07-3	220022002	Radium-228	1.72	pCi/g	Difference=1.161
WHC1-BO04-0	221307011	Uranium-233/234	0.928	pCi/g	Difference=1.196

TABLE 4-14
SOIL RESULTS QUALIFIED DUE TO DUPLICATE DIFFERENCES OUTSIDE ACCEPTANCE CRITERIA
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA
(Page 2 of 3)

Field	Lab				RPD or
Sample ID	Sample ID	Analyte	Result	Unit	Difference
WHC1-BP03-0	221307002	Uranium-233/234	2.05	pCi/g	Difference=1.196
WHC1-BP03-0-FD	221307003	Uranium-233/234	1.21	pCi/g	Difference=1.196
WHC1-BP04-0	221307001	Uranium-233/234	2.39	pCi/g	Difference=1.196
WHC1-BP05-0	221307005	Uranium-233/234	1.14	pCi/g	Difference=1.196
WHC1-D01-0	220742003	Radium-228	1.02	pCi/g	Difference=1.026
WHC1-D01-10	220742004	Radium-228	< 0.568	pCi/g	Difference=1.027
WHC1-D02-0	220742005	Radium-228	1.28	pCi/g	Difference=1.028
WHC1-D02-10	220742006	Radium-228	< 0.621	pCi/g	Difference=1.029
WHC1-D03-0	220742007	Radium-228	< 0.469	pCi/g	Difference=1.030
WHC1-D03-0-FD	220742008	Radium-228	1.53	pCi/g	Difference=1.031
WHC1-D03-10	220742009	Radium-228	< 0.655	pCi/g	Difference=1.032
WHC1-D04-0	220742010	Radium-228	< 0.367	pCi/g	Difference=1.033
WHC1-D04-10	220742011	Radium-228	<1.00	pCi/g	Difference=1.034
WHC1-D05-0	220742012	Radium-228	< 0.676	pCi/g	Difference=1.035
WHC1-D05-10	220742013	Radium-228	<1.00	pCi/g	Difference=1.036
WHC1-D06-0	220742014	Radium-228	1.14	pCi/g	Difference=1.037
WHC1-D06-10	220742015	Radium-228	3.33	pCi/g	Difference=1.038
WHC1-D07-0	220742016	Radium-228	2.64	pCi/g	Difference=1.039
WHC1-D07-10	220742017	Radium-228	<1.00	pCi/g	Difference=1.040
WHC1-D08-10	220917003	Radium-228	1.39	pCi/g	Difference=5.006
WHC1-D11-10	220917007	Radium-228	1.87	pCi/g	Difference=5.006
WHC1-D21-0	221409010	Thorium-232	1.99	pCi/g	Difference=1.23
WHC1-D21-10	221409011	Thorium-232	1.14	pCi/g	Difference=1.23
WHC1-D22-0	221409008	Thorium-232	2.15	pCi/g	Difference=1.23
WHC1-D22-10	221409009	Thorium-232	1.61	pCi/g	Difference=1.23
WHC1-D23-0	221409006	Thorium-232	1.6	pCi/g	Difference=1.23
WHC1-D23-10	221409007	Thorium-232	1.97	pCi/g	Difference=1.23
WHC1-D24-0	221409003	Thorium-232	1.27	pCi/g	Difference=1.23
WHC1-D24-0-FD	221409004	Thorium-232	2.18	pCi/g	Difference=1.23
WHC1-D24-10	221409005	Thorium-232	1.74	pCi/g	Difference=1.23
WHC1-D25-0	221409001	Thorium-232	2.38	pCi/g	Difference=1.23
WHC1-D25-10	221409002	Thorium-232	1.25	pCi/g	Difference=1.23
WHC1-P01-0	221307004	Uranium-233/234	1.22	pCi/g	Difference=1.196
WHC1-P03-0	221307007	Uranium-233/234	0.792	pCi/g	Difference=1.196
WHC1-P04-0	221307006	Uranium-233/234	1.34	pCi/g	Difference=1.196
WHC1-P08-0	220742018	Radium-228	< 0.319	pCi/g	Difference=1.041
WHC1-P09-0	220708003	Radium-226	<1	pCi/g	Difference=103
WHC1-P09-0-FD	220708004	Radium-226	<1	pCi/g	Difference=103
WHC1-P09-10	220708005	Radium-226	<1	pCi/g	Difference=103

TABLE 4-14
SOIL RESULTS QUALIFIED DUE TO DUPLICATE DIFFERENCES OUTSIDE ACCEPTANCE CRITERIA
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page	3	Λf	3)
(I agu	J	OI.	J)

Field	Lab				RPD or
Sample ID	Sample ID	Analyte	Result	Unit	Difference
WHC1-P12-0	220742001	Radium-228	< 0.794	pCi/g	Difference=1.042
WHC1-P12-11	220742002	Radium-228	1.64	pCi/g	Difference=1.043
WHC1-P17-0	221307010	Uranium-233/234	0.846	pCi/g	Difference=1.196
WHC2-P07C-0	242075007	Thorium-230	0.581	pCi/g	Difference $= 1.495$
WHC1-BK02-11	F8L190190008	Cation Exchange Capacity	4.3	meq/100g	Difference=8
WHC1-BK03-12	F8L190190009	Cation Exchange Capacity	10.8	meq/100g	Difference=8
WHC1-BN09-11	F8L200127001	Cation Exchange Capacity	13.5	meq/100g	Difference=8
WHC1-BO03-12	F8L200127003	Cation Exchange Capacity	9.5	meq/100g	Difference=8
WHC1-BO04-12	F8L200127007	Cation Exchange Capacity	9.2	meq/100g	Difference=8
WHC1-BP03-11	F8L200127005	Cation Exchange Capacity	16.6	meq/100g	Difference=8
WHC1-BP04-12	F8L200127002	Cation Exchange Capacity	10.5	meq/100g	Difference=8
WHC1-BP05-10	F8L200127010	Cation Exchange Capacity	8.4	meq/100g	Difference=8
WHC1-P01-12	F8L200127006	Cation Exchange Capacity	9.2	meq/100g	Difference=8
WHC1-P03-3	F8L190190010	Cation Exchange Capacity	9.8	meq/100g	Difference=8
WHC1-P03-3-FD	F8L190190011	Cation Exchange Capacity	10.3	meq/100g	Difference=8
WHC1-P17-12	F8L200127008	Cation Exchange Capacity	10.8	meq/100g	Difference=8
WHC1-P17-12-FD	F8L200127009	Cation Exchange Capacity	11.8	meq/100g	Difference=8

TABLE 5-1 BACKGROUND COMPARISON SUMMARY HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 6)

							Wester	n Hook-Dev	elopment S	ub-Area						
					Censore	d (Non-Dete	ect) Data	ı	ı			D	etected Data	n ⁽¹⁾	Ī	
Chemical	Total Count	Detect Freq.	Count	Min	01	Median	Mean	Q3	Max	Count	Min	01	Median	Mean	Q3	Max
Aluminum	243	100%	0							243	3130	5500	6600	6800	7600	12800
Antimony	243	0.8%	241	0.225	0.32	0.32	0.38	0.32	2.7	2	0.87		1	1		1.2
Arsenic	392	99.5%	2	5.3		5.4	5.4		5.4	390	2.4	5.6	6.9	7.4	8.6	17.6
Barium	243	100%	0							243	54.1	120	140	160	170	796
Beryllium	243	97.9%	5	0.51	0.52	0.54	0.54	0.56	0.56	238	0.19	0.4	0.46	0.47	0.52	0.82
Boron	243	6.6%	227	16.5	17	17	17	17	56.5	16	14.2	21	27	44	39	197
Cadmium	243	67.5%	79	0.04	0.1	0.1	0.16	0.26	0.29	164	0.11	0.13	0.16	0.19	0.22	0.82
Calcium	243	100%	0							243	1300	31000	38000	45000	55000	124000
Chromium	243	100.0%	0							243	4.6	10	12	13	14	58
Chromium (VI)	233	39.1%	142	0.1	0.1	0.1	0.13	0.11	0.49	91	0.11	0.15	0.19	0.28	0.25	3.9
Cobalt	243	100%	0							243	2.4	5.9	6.7	6.7	7.6	9.7
Copper	243	100%	0							243	8.6	16	18	18	20	42.2
Iron	243	100%	0							243	6730	12000	13000	13000	15000	25300
Lead	243	100%	0							243	4.2	7	9.7	17	17	220
Lithium	243	100%	0							243	4.7	12	14	15	17	29.4
Magnesium	243	100%	0							243	2090	6900	8100	8800	10000	25900
Manganese	243	100%	0							243	78.4	260	330	340	390	1710
Mercury	243	23.9%	185	0.011	0.012	0.012	0.02	0.034	0.0439	58	0.011	0.016	0.022	0.031	0.037	0.151
Molybdenum	243	80.2%	48	0.47	0.47	0.54	1.5	2.6	2.8	195	0.48	0.58	0.71	0.81	0.88	3.8
Nickel	243	100%	0							243	5.9	15	17	17	19	37.2
Potassium	243	100%	0							243	1290	1700	2100	2400	3000	6590
Selenium	243	4.1%	233	0.225	0.4	0.4	0.4	0.4	0.86	10	0.28	0.89	0.95	0.95	1.1	1.4
Silver	243	79.0%	51	0.11	0.11	0.11	0.18	0.11	1.1	192	0.079	0.12	0.14	0.16	0.16	0.79

BACKGROUND COMPARISON SUMMARY

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 6)

							Wester	n Hook-Dev	elopment S	ub-Area						
					Censore	ed (Non-Dete	ect) Data					D	etected Data	l ⁽¹⁾		
Chemical	Total Count	Detect Freq.	Count	Min	Q1	Median	Mean	Q3	Max	Count	Min	Q1	Median	Mean	Q3	Max
Sodium	243	100%	1	104		100	100		104	242	181	320	570	1200	1100	27300
Strontium	243	100%	0							243	49.8	160	200	230	250	849
Thallium	243	2.1%	238	0.105	0.75	0.75	0.74	0.75	1.1	5	0.9	1.1	1.3	1.3	1.6	1.8
Tin	243	10.7%	217	0.75	0.75	0.75	0.75	0.75	1	26	0.52	0.98	1.4	2.3	2.1	13.3
Titanium	243	100%	0							243	350	660	750	770	860	1320
Tungsten	243	4.1%	233	0.185	1.3	1.3	1.3	1.3	2.8	10	1.5	1.7	2.2	2.9	3.9	8.1
Uranium	243	100.0%	0							243	0.49	0.92	1.1	1.3	1.5	3.8
Vanadium	243	100%	1	3.51		3.5	3.5		3.51	242	24.8	40	44	45	48	128
Zinc	243	100%	0							243	19.6	30	35	38	43	107
Radium-226	243	82.7%	42							201	0.223	0.79	1	1	1.3	2.56
Radium-228	243	70.4%	72							171	-0.0741	0.88	1.2	1.3	1.6	3.7
Thorium-228	243	100.0%	0							243	0.847	1.4	1.7	1.7	2	3.19
Thorium-230	243	93.0%	17							226	0.37	1.1	1.3	1.4	1.7	3.43
Thorium-232	243	100.0%	0							243	0.589	1.1	1.3	1.4	1.7	2.6
Uranium-233/234	243	91.4%	21							222	0.385	1	1.3	1.4	1.7	4.19
Uranium-235/236	243	15.2%	206							37	-0.152	0.027	0.078	0.1	0.16	1
Uranium-238	243	99.2%	2	-	-		-	-	-	241	0.445	0.84	1.0	1.1	1.3	3.19

Note: Background comparison t-tests were performed using one-half the detection limit for metals and using GiSdT® (Neptune and Company 2009). The non-parametric Gehan, quantile and slippage tests make no adjustment for detection limits, since their algorithms account for non-detects through Gehan ranking.

Max = Maximum

Min = Minimum

Q1 = 1st quartile (25th percentile)

Q3 = 3rd quartile (75th percentile)

(1) Range of detections include estimated values of detect results between the detection limit and reporting limit. As such some minimum detected concentrations may be below the minimum reporting limit. In these cases the respective sample results are flagged in the dataset.

BOLD with Highlight indicates Site concentrations are greater than background.

WRS = Wilcoxon Rank Sum Test with the Gehan Modification

N/A = Not applicable.

TABLE 5-1 BACKGROUND COMPARISON SUMMARY HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 6)

							Qal M	cCullough/	Mixed Back	ground						
					Censore	d (Non-Dete	ect) Data	ı				D	etected Data	n ⁽¹⁾		
Chemical	Total Count	Detect Freq.	Count	Min	01	Median	Mean	Q3	Max	Count	Min	01	Median	Mean	Q3	Max
Aluminum	207	100%	0							207	3740	7000	8600	8800	10000	15300
Antimony	207	70.0%	62	0.1046	0.33	0.33	0.3	0.33	0.3298	145	0.089	0.13	0.16	0.18	0.2	0.5
Arsenic	207	100%	0							207	2.2	3.4	4.2	4.7	5.6	13.1
Barium	207	100%	0							207	73	130	170	220	230	836
Beryllium	207	100%	0							207	0.16	0.49	0.56	0.57	0.63	0.89
Boron	207	27.5%	150	2.824	2.8	2.8	3	3.2	3.2	57	3	5.4	6	6.4	7.5	11.6
Cadmium	207	45.9%	112	0.01	0.13	0.13	0.12	0.13	0.1291	95	0.05	0.076	0.084	0.089	0.1	0.13
Calcium	207	100%	0							207	0.43	19000	24000	26000	32000	82800
Chromium	207	100%	0							207	1.1	8.4	10	10	12	18.3
Chromium (VI)	198	10.1%	178	0.16	0.17	0.25	0.22	0.26	0.32	20	0.18	0.2	0.26	0.39	0.39	1.6
Cobalt	207	100%	0							207	3.7	6.8	7.9	8.2	9.4	16.3
Copper	207	100%	0							207	8.8	15	17	17	19	30.5
Iron	207	100%	0							207	5410	12000	14000	14000	16000	22500
Lead	207	100%	0							207	3	6.4	7.7	8.5	9.5	35.1
Lithium	207	94.2%	12	1.4628	3.7	3.7	3.5	3.7	3.657	195	7.5	12	16	17	20	124
Magnesium	207	100%	0						-	207	4580	8400	9600	9700	11000	17500
Manganese	207	100%	0							207	151	290	370	390	460	1090
Mercury	207	58.9%	85	0.00668	0.0067	0.0067	0.0068	0.0072	0.0072	122	0.0072	0.01	0.014	0.019	0.022	0.11
Molybdenum	207	91.8%	17	0.1046	0.1	0.1	0.1	0.1	0.1046	190	0.28	0.43	0.53	0.62	0.72	2
Nickel	207	100%	0							207	7.9	14	15	16	17	30
Potassium	207	100%	0							207	625	1200	1500	1700	2000	3890
Selenium	207	19.3%	167	0.1579	0.16	0.32	0.26	0.32	0.32	40	0.23	0.27	0.32	0.33	0.37	0.6
Silver	207	49.8%	104	0.2609	0.26	0.26	0.26	0.26	0.2609	103	0.074	0.1	0.14	0.22	0.19	2.2

BACKGROUND COMPARISON SUMMARY

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 6)

							Qal M	cCullough/I	Mixed Back	ground						
					Censore	d (Non-Dete	ect) Data				1	D	etected Data	1(1)	1	
Chemical	Total Count	Detect Freq.	Count	Min	Q1	Median	Mean	Q3	Max	Count	Min	Q1	Median	Mean	Q3	Max
Sodium	207	100%	0							207	111	340	590	610	790	3250
Strontium	207	100%	0							207	69	170	220	240	290	808
Thallium	207	14.5%	177	0.2	0.2	0.2	0.35	0.54	0.5428	30	0.15	1.1	1.3	1.2	1.5	1.8
Tin	207	93.7%	13	0.0526	0.053	0.053	0.063	0.053	0.187	194	0.2	0.44	0.52	0.51	0.58	0.8
Titanium	207	100%	0							207	200	490	580	580	680	1010
Tungsten	207	19.3%	167	0.0175	0.018	0.018	0.086	0.2	0.2	40	0.19	0.26	0.32	0.43	0.43	3.6
Uranium	206	100%	0							206	0.43	0.93	1.1	1.2	1.4	2.8
Vanadium	207	100%	0					-		207	19.2	35	40	41	46	73.3
Zinc	207	100%	0							207	15.4	30	33	35	39	121
Radium-226	183	95.6%	8							175	0.394	0.98	1.2	1.3	1.6	2.36
Radium-228	162	89.5%	17	-			-	-	-	145	0.452	1.3	1.7	1.7	2	2.94
Thorium-228	206	100%	0							206	1.07	1.5	1.7	1.7	1.9	2.3
Thorium-230	206	100%	0					-		206	0.602	1.1	1.4	1.4	1.7	3.01
Thorium-232	206	100%	0							206	0.908	1.4	1.5	1.6	1.8	2.23
Uranium-233/234	191	67.0%	63							128	0.47	0.98	1.2	1.3	1.7	2.84
Uranium-235/236	191	64.4%	68							123	0.0009	0.045	0.06	0.065	0.081	0.21
Uranium-238	191	97.9%	4							187	0.57	1	1.2	1.3	1.5	2.79

Note: Background comparison t-tests were performed using one-half the detection limit for metals and using GiSdT® (Neptune and Company 2009). The non-parametric Gehan, quantile and slippage tests make no adjustment for detection limits, since their algorithms account for non-detects through Gehan ranking.

Max = Maximum

Min = Minimum

Q1 = 1st quartile (25th percentile)

Q3 = 3rd quartile (75th percentile)

(1) Range of detections include estimated values of detect results between the detection limit and reporting limit. As such some minimum detected concentrations may be below the minimum reporting limit. In these cases the respective sample results are flagged in the dataset.

BOLD with Highlight indicates Site concentrations are greater than background.

WRS = Wilcoxon Rank Sum Test with the Gehan Modification

N/A = Not applicable.

TABLE 5-1 BACKGROUND COMPARISON SUMMARY HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 6)

		Quantile	Slippage	WRS			
Chemical	T Test	Test	Test	Test	Greater than Background?	Units	Basis
	<i>p</i>	1.0 E+0	p	<i>p</i>			
Aluminum	1.0 E+0		1.0 E+0	1.0 E+0	NO	mg/kg	Multiple tests
Antimony	5.3 E-2	1.0 E+0	2.8 E-1	1.4 E-14	YES	mg/kg	WRS test
Arsenic	2.6 E-45	1.0 E-16	2.4 E-3	0.0 E+0	YES	mg/kg	Multiple tests
Barium	1.0 E+0	1.0 E+0	1.0 E+0	1.0 E+0	NO	mg/kg	Multiple tests
Beryllium	1.0 E+0	1.0 E+0	1.0 E+0	1.0 E+0	NO	mg/kg	Multiple tests
Boron	1.0 E-15	1.0 E+0	9.7 E-25	0.0 E+0	YES	mg/kg	Multiple tests
Cadmium	8.9 E-29	2.9 E-36	1.9 E-40	0.0 E+0	YES	mg/kg	Multiple tests
Calcium	6.8 E-26	1.5 E-14	1.1 E-5	0.0 E+0	YES	mg/kg	Multiple tests
Chromium	2.2 E-10	8.2 E-6	4.2 E-7	9.9 E-11	YES	mg/kg	Multiple tests
Chromium (VI)	3.5 E-1	9.8 E-12	2.9 E-1	1.0 E+0	YES	mg/kg	Quantile test
Cobalt	1.0 E+0	1.0 E+0	1.0 E+0	1.0 E+0	NO	mg/kg	Multiple tests
Copper	3.7 E-4	1.4 E-2	1.6 E-1	4.9 E-4	YES	mg/kg	Multiple tests
Iron	1.0 E+0	1.0 E+0	5.4 E-1	1.0 E+0	NO	mg/kg	Multiple tests
Lead	9.9 E-10	5.9 E-13	3.9 E-9	2.2 E-10	YES	mg/kg	Multiple tests
Lithium	9.8 E-1	1.0 E+0	1.0 E+0	9.9 E-1	NO	mg/kg	Multiple tests
Magnesium	1.0 E+0	9.9 E-1	2.9 E-1	1.0 E+0	NO	mg/kg	Multiple tests
Manganese	1.0 E+0	1.0 E+0	5.4 E-1	1.0 E+0	NO	mg/kg	Multiple tests
Mercury	2.5 E-2	9.9 E-1	2.9 E-1	0.0 E+0	YES	mg/kg	Multiple tests
Molybdenum	5.9 E-10	1.4 E-2	7.0 E-2	0.0 E+0	YES	mg/kg	Multiple tests
Nickel	7.2 E-4	4.8 E-5	5.4 E-1	4.0 E-5	YES	mg/kg	Multiple tests
Potassium	4.2 E-22	1.1 E-9	1.6 E-6	0.0 E+0	YES	mg/kg	Multiple tests
Selenium	3.4 E-7	1.0 E+0	3.5 E-3	0.0 E+0	YES	mg/kg	Multiple tests
Silver	9.7 E-1	1.7 E-1	1.0 E+0	1.0 E+0	NO	mg/kg	Multiple tests

BACKGROUND COMPARISON SUMMARY

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 6)

		Quantile	Slippage	WRS			
Chemical	T Test	Test p	Test p	Test p	Greater than Background?	Units	Basis
Sodium	2.3 E-4	3.3 E-4	1.5 E-4	3.4 E-2	YES	mg/kg	Multiple tests
Strontium	9.1 E-1	9.7 E-1	5.4 E-1	9.8 E-1	NO	mg/kg	Multiple tests
Thallium	1.8 E-2	1.0 E+0	1.0 E+0	0.0 E+0	YES	mg/kg	Multiple tests
Tin	7.3 E-2	1.0 E+0	1.1 E-7	0.0 E+0	YES	mg/kg	Multiple tests
Titanium	9.3 E-29	5.9 E-13	2.2 E-7	0.0 E+0	YES	mg/kg	Multiple tests
Tungsten	6.7 E-36	1.0 E+0	1.6 E-1	0.0 E+0	YES	mg/kg	Multiple tests
Uranium	1.6 E-1	3.7 E-2	1.6 E-1	3.4 E-1	NO	mg/kg	Multiple tests
Vanadium	3.0 E-5	6.2 E-2	4.5 E-2	3.0 E-6	YES	mg/kg	Multiple tests
Zinc	5.9 E-4	3.1 E-3	1.0 E+0	3.1 E-3	YES	mg/kg	Multiple tests
Radium-226	1.0 E+0	1.0 E+0	3.2 E-1	1.0 E+0	NO	pCi/g	Multiple tests
Radium-228	1.0 E+0	1.0 E+0	2.1 E-1	1.0 E+0	NO	pCi/g	Multiple tests
Thorium-228	2.5 E-1	1.5 E-2	4.2 E-9	6.4 E-1	NO	pCi/g	Multiple tests
Thorium-230	4.8 E-1	5.1 E-1	2.9 E-1	6.1 E-1	NO	pCi/g	Multiple tests
Thorium-232	1.0 E+0	9.9 E-1	4.6 E-2	1.0 E+0	NO	pCi/g	Multiple tests
Uranium-233/234	7.9 E-2	3.7 E-1	1.7 E-2	2.1 E-1	NO	pCi/g	Multiple tests
Uranium-235/236	6.7 E-6	1.1 E-13	1.2 E-8	7.4 E-3	NO	pCi/g	All other radionuclides not greater than background; all results near noise level of instrument
Uranium-238	1.0 E+0	1.0 E+0	1.7 E-1	1.0 E+0	NO	pCi/g	Multiple tests

Note: Background comparison t-tests were performed using one-half the detection limit for metals and using GiSdT[®] (Neptune and Company 2009). The non-parametric Gehan, quantile and slippage tests make no adjustment for detection limits, since their algorithms account for non-detects through Gehan ranking.

Max = Maximum

Min = Minimum

Q1 = 1st quartile (25th percentile)

Q3 = 3rd quartile (75th percentile)

(1) Range of detections include estimated values of detect results between the detection limit and reporting limit. As such some minimum detected concentrations may be below the minimum reporting limit. In these cases the respective sample results are flagged in the dataset.

BOLD with Highlight indicates Site concentrations are greater than background.

WRS = Wilcoxon Rank Sum Test with the Gehan Modification

N/A = Not applicable.

RESULTS OF COMPARISON TO RESIDENTIAL SOIL BCLs HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 9)

		Number				Greater		1/10th	Max. Detect
		of	Total	Detect	Max.	than	Residential	Residential	Greater than 1/10th
Chemical	Units	Detects	Count	Freq.	Detect	Background?	Soil BCL	Soil BCL	Residential BCL
	CIII	Dettetts	Count	Aldehyde		2 uongi ounuv	5011 2 02	501202	Trestaentian D CD
Acetaldehyde	mg/kg	3	250	1.2%	0.433		13.9	1.39	NO
Formaldehyde	mg/kg	192	244	78.7%	3.38		12200	1220	NO
,	8 8			Asbestos	5			-	
Asbestos	Structures	40	133	30.1%	25				
				Dioxins / Fu	rans	•	•		
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/g	148	189	78.3%	210				
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/g	100	189	52.9%	330				
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/g	121	189	64.0%	75				
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/g	143	189	75.7%	200				
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/g	20	189	10.6%	4.1				
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/g	120	189	63.5%	65				
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/g	44	189	23.3%	13				
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/g	56	189	29.6%	8.7				
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/g	39	189	20.6%	7.5				
1,2,3,7,8-Pentachlorodibenzofuran	pg/g	121	189	64.0%	67				
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/g	26	189	13.8%	5.1				
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/g	77	189	40.7%	20				
2,3,4,7,8-Pentachlorodibenzofuran	pg/g	99	189	52.4%	32				
2,3,7,8-Tetrachlorodibenzofuran	pg/g	163	189	86.2%	93				
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/g	41	189	21.7%	1.7				
Octachlorodibenzodioxin	pg/g	114	189	60.3%	2600				
Octachlorodibenzofuran	pg/g	148	189	78.3%	1600				
TCDD TEQ	ppt	189	189		47		50		
			C	General Chemis	stry/Ions				
Ammonia (as N)	mg/kg	34	251	13.5%	40.7				
Bromide	mg/kg	57	258	22.1%	12.8		26600	2660	NO
Chlorate	mg/kg	28	258	10.9%	43.1		2350	235	NO
Chloride	mg/kg	258	258	100%	30900				
Cyanide, Total	mg/kg	28	251	11.2%	1.9		5.71	0.571	YES
Fluoride	mg/kg	220	258	85.3%	5.5		3670	367	NO
Nitrate	mg/kg	252	258	97.7%	327		100000	10000	NO
Nitrite	mg/kg	120	258	46.5%	486		7820	782	NO
Orthophosphate as P	mg/kg	105	258	40.7%	167				
Perchlorate	mg/kg	227	248	91.5%	7.53		54.8	5.48	YES
Sulfate	mg/kg	258	258	100%	43400				

TABLE 5-5
RESULTS OF COMPARISON TO RESIDENTIAL SOIL BCLs

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 9)

		Number				Greater		1/10th	Max. Detect
		of	Total	Detect	Max.	than	Residential	Residential	Greater than 1/10th
Chemical	Units	Detects	Count	Freq.	Detect	Background?	Soil BCL	Soil BCL	Residential BCL
Sulfide	mg/kg	0	258	0%					
Total Kjeldahl Nitrogen (TKN)	mg/kg	238	251	94.8%	2860				
				Metals					
Aluminum	mg/kg	243	243	100%	12800	NO	77200	7720	
Antimony	mg/kg	2	243	0.8%	1.2	YES	31.3	3.13	NO
Arsenic	mg/kg	390	392	99.5%	17.6	YES	0.39	0.039	YES
Barium	mg/kg	243	243	100%	796	NO	15300	1530	
Beryllium	mg/kg	238	243	97.9%	0.82	NO	155	15.5	
Boron	mg/kg	16	243	6.6%	197	YES	15600	1560	NO
Cadmium	mg/kg	164	243	67.5%	0.82	YES	77.7	7.77	NO
Calcium	mg/kg	243	243	100%	124000	YES			
Chromium	mg/kg	243	243	100%	58	YES	100000	10000	NO
Chromium (VI)	mg/kg	91	233	39.1%	3.9	YES	234	23.4	NO
Cobalt	mg/kg	243	243	100%	9.7	NO	23.4	2.34	
Copper	mg/kg	243	243	100%	42.2	YES	2910	291	NO
Iron	mg/kg	243	243	100%	25300	NO	54800	5480	
Lead	mg/kg	243	243	100%	220	YES	400		
Lithium	mg/kg	243	243	100%	29.4	NO	156	15.6	
Magnesium	mg/kg	243	243	100%	25900	NO	100000	10000	
Manganese	mg/kg	243	243	100%	1710	NO	1820	182	
Mercury	mg/kg	58	243	23.9%	0.151	YES	23.5	2.35	NO
Molybdenum	mg/kg	195	243	80.2%	3.8	YES	391	39.1	NO
Nickel	mg/kg	243	243	100%	37.2	YES	1540	154	NO
Potassium	mg/kg	243	243	100%	6590	YES			
Selenium	mg/kg	10	243	4.1%	1.4	YES	391	39.1	NO
Silver	mg/kg	192	243	79.0%	0.79	NO	391	39.1	
Sodium	mg/kg	242	243	99.6%	27300	YES			
Strontium	mg/kg	243	243	100%	849	NO	46900	4690	
Thallium	mg/kg	5	243	2.1%	1.8	YES	5.16	0.516	YES
Tin	mg/kg	26	243	10.7%	13.3	YES	46900	4690	NO
Titanium	mg/kg	243	243	100%	1320	YES	100000	10000	NO
Tungsten	mg/kg	10	243	4.1%	8.1	YES	587	58.7	NO
Uranium	mg/kg	243	243	100%	3.8	NO	234	23.4	
Vanadium	mg/kg	242	243	99.6%	128	YES	391	39.1	YES
Zinc	mg/kg	243	243	100%	107	YES	23500	2350	NO

TABLE 5-5 RESULTS OF COMPARISON TO RESIDENTIAL SOIL BCLs HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 9)

		Number				Greater		1/10th	Max. Detect
		of	Total	Detect	Max.	than	Residential	Residential	Greater than 1/10th
Chemical	Units	Detects	Count	Freq.	Detect	Background?	Soil BCL	Soil BCL	Residential BCL
- Chomical	CIII	Detects		ganochlorine l		2 uongi ounu v	5011 2 62	5011202	Titosacinum 2 02
2,4-DDD	mg/kg	40	248	16.1%	0.028				
2,4-DDE	mg/kg	110	248	44.4%	0.34				
4,4-DDD	mg/kg	53	251	21.1%	0.064		2.44	0.244	NO
4,4-DDE	mg/kg	135	251	53.8%	0.4		1.72	0.172	YES
4,4-DDT	mg/kg	105	251	41.8%	0.17		1.72	0.172	NO
Aldrin	mg/kg	1	251	0.4%	0.0053		0.0286	0.00286	YES
alpha-BHC	mg/kg	12	251	4.8%	0.25		21.1	2.11	NO
alpha-Chlordane	mg/kg	2	251	0.8%	0.085				
beta-BHC	mg/kg	147	251	58.6%	0.26		4.22	0.422	NO
Chlordane	mg/kg	1	251	0.4%	0.77		1.62	0.162	YES
delta-BHC	mg/kg	1	251	0.4%	0.0027		21.1	2.11	NO
Dieldrin	mg/kg	3	251	1.2%	0.0022		0.0304	0.00304	NO
Endosulfan I	mg/kg	0	251	0%			367	36.7	
Endosulfan II	mg/kg	0	251	0%			367	36.7	
Endosulfan sulfate	mg/kg	2	251	0.8%	0.0085				
Endrin	mg/kg	1	251	0.4%	0.0033		18.3	1.83	NO
Endrin aldehyde	mg/kg	40	251	15.9%	0.029				
Endrin ketone	mg/kg	1	251	0.4%	0.0018				
gamma-BHC (Lindane)	mg/kg	2	251	0.8%	0.014		0.703	0.0703	NO
gamma-Chlordane	mg/kg	4	251	1.6%	0.18				
Heptachlor	mg/kg	1	251	0.4%	0.012		0.108	0.0108	YES
Heptachlor epoxide	mg/kg	2	251	0.8%	0.0063		0.0534	0.00534	YES
Methoxychlor	mg/kg	18	251	7.2%	0.032		306	30.6	NO
Toxaphene	mg/kg	0	251	0%			0.442	0.0442	
			Polynuc	lear Aromatic	Hydrocarbons				
Acenaphthene	mg/kg	5	252	2.0%	0.0206		509	50.9	NO
Acenaphthylene	mg/kg	5	252	2.0%	0.00279		147	14.7	NO
Anthracene	mg/kg	14	252	5.6%	0.909		2000	200	NO
Benzo(a)anthracene	mg/kg	17	252	6.7%	0.0741		0.621	0.0621	YES
Benzo(a)pyrene	mg/kg	48	252	19.0%	0.0611		0.0621	0.00621	YES
Benzo(b)fluoranthene	mg/kg	64	252	25.4%	0.125		0.621	0.0621	YES
Benzo(g,h,i)perylene	mg/kg	11	252	4.4%	0.0414		2350	235	NO
Benzo(k)fluoranthene	mg/kg	32	252	12.7%	0.0881		6.21	0.621	NO
Chrysene	mg/kg	42	252	16.7%	0.104		62.1	6.21	NO
Dibenzo(a,h)anthracene	mg/kg	0	252	0%			0.0621	0.00621	

TABLE 5-5

RESULTS OF COMPARISON TO RESIDENTIAL SOIL BCLs HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 9)

		Number				Greater		1/10th	Max. Detect
		of	Total	Detect	Max.	than	Residential	Residential	Greater than 1/10th
Chemical	Units	Detects	Count	Freq.	Detect	Background?	Soil BCL	Soil BCL	Residential BCL
Indeno(1,2,3-cd)pyrene	mg/kg	18	252	7.1%	0.0471		0.621	0.0621	NO
Phenanthrene	mg/kg	33	252	13.1%	0.215		24.5	2.45	NO
Pyrene	mg/kg	73	252	29.0%	0.0997		1890	189	NO
			Po	olychlorinated l	Biphenyls				•
PCB 105	pg/g	153	189	81.0%	880				
PCB 114	pg/g	92	189	48.7%	100				
PCB 118	pg/g	158	189	83.6%	1700				
PCB 123	pg/g	7	189	3.7%	8.6				
PCB 126	pg/g	89	189	47.1%	97				
PCB 156	pg/g	131	179	73.2%	790				
PCB 156/157	pg/g	9	10	90.0%	470				
PCB 157	pg/g	88	179	49.2%	240				
PCB 167	pg/g	118	189	62.4%	380				
PCB 169	pg/g	24	189	12.7%	29				
PCB 189	pg/g	104	189	55.0%	210				
PCB 209	pg/g	164	189	86.8%	2900				
PCB 77	pg/g	21	189	11.1%	300				
PCB 81	pg/g	14	189	7.4%	69				
				Radionucli	des				
Radium-226	pCi/g	201	243	82.7%	2.56	NO	0.0071	0.00071	
Radium-228	pCi/g	171	243	70.4%	3.7	NO	0.013	0.0013	
Thorium-228	pCi/g	243	243	100%	3.19	NO	0.0078	0.00078	
Thorium-230	pCi/g	226	243	93.0%	3.43	NO	3.2	0.32	
Thorium-232	pCi/g	243	243	100%	2.6	NO	2.8	0.28	
Uranium-233/234	pCi/g	222	243	91.4%	4.19	NO	4.2	0.42	
Uranium-235/236	pCi/g	37	243	15.2%	1	NO	0.11	0.011	
Uranium-238	pCi/g	241	243	99.2%	3.19	NO	0.46	0.046	
			Semi-V	olatile Organi	c Compounds				
1,2,4,5-Tetrachlorobenzene	mg/kg	1	253	0.4%	0.0915		18.3	1.83	NO
1,2-Diphenylhydrazine	mg/kg	0	253	0%			0.608	0.0608	
1,4-Dioxane	mg/kg	0	253	0%			4.86	0.486	
2,2'-Dichlorobenzil	mg/kg	0	253	0%			23.5	2.35	
2,4,5-Trichlorophenol	mg/kg	0	253	0%			6110	611	
2,4,6-Trichlorophenol	mg/kg	0	253	0%			44.2	4.42	
2,4-Dichlorophenol	mg/kg	0	253	0%			183	18.3	
2,4-Dimethylphenol	mg/kg	0	252	0%			1220	122	

TABLE 5-5

RESULTS OF COMPARISON TO RESIDENTIAL SOIL BCLs HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 9)

		Number				Greater		1/10th	Max. Detect
		of	Total	Detect	Max.	than	Residential	Residential	Greater than 1/10th
Chemical	Units	Detects	Count	Freq.	Detect	Background?	Soil BCL	Soil BCL	Residential BCL
2,4-Dinitrophenol	mg/kg	0	253	0%			122	12.2	
2,4-Dinitrotoluene	mg/kg	0	253	0%			1.57	0.157	
2,6-Dinitrotoluene	mg/kg	0	253	0%			61.1	6.11	
2-Chloronaphthalene	mg/kg	0	253	0%			82.6	8.26	
2-Chlorophenol	mg/kg	0	253	0%			220	22	
2-Methylnaphthalene	mg/kg	1	253	0.4%	0.0166				
2-Nitroaniline	mg/kg	0	253	0%			183	18.3	
2-Nitrophenol	mg/kg	0	253	0%					
3,3-Dichlorobenzidine	mg/kg	0	253	0%			1.08	0.108	
3-Nitroaniline	mg/kg	0	253	0%					
4-Bromophenyl phenyl ether	mg/kg	0	253	0%					
4-Chloro-3-methylphenol	mg/kg	0	253	0%					
4-Chlorophenyl phenyl ether	mg/kg	0	253	0%					
4-Chlorothioanisole	mg/kg	0	253	0%					
4-Nitroaniline	mg/kg	0	253	0%					
4-Nitrophenol	mg/kg	0	253	0%			489	48.9	
Acetophenone	mg/kg	0	253	0%			1740	174	
Aniline	mg/kg	0	253	0%			85.3	8.53	
Benzenethiol	mg/kg	0	253	0%					
Benzoic acid	mg/kg	1	253	0.4%	0.389		100000	10000	NO
Benzyl alcohol	mg/kg	0	253	0%			30600	3060	
bis(2-Chloroethoxy)methane	mg/kg	0	253	0%					
bis(2-Chloroethyl) ether	mg/kg	0	253	0%			0.244	0.0244	
bis(2-Chloroisopropyl) ether	mg/kg	0	253	0%			3.37	0.337	
bis(2-Ethylhexyl) phthalate	mg/kg	4	253	1.6%	0.282		34.7	3.47	NO
bis(p-Chlorophenyl) sulfone	mg/kg	13	252	5.2%	0.549				
bis(p-Chlorophenyl)disulfide	mg/kg	2	253	0.8%	0.233				
Butylbenzyl phthalate	mg/kg	0	253	0%			240	24	
Carbazole	mg/kg	0	253	0%			24.3	2.43	
Dibenzofuran	mg/kg	0	253	0%			156	15.6	
Dichloromethyl ether	mg/kg	0	253	0%			0.000242	0.0000242	
Diethyl phthalate	mg/kg	0	253	0%			48900	4890	
Dimethyl phthalate	mg/kg	0	253	0%			100000	10000	
Di-n-butyl phthalate	mg/kg	1	253	0.4%	0.0525		6110	611	NO
Di-n-octyl phthalate	mg/kg	0	253	0%					
Diphenyl disulfide	mg/kg	0	253	0%					

TABLE 5-5 RESULTS OF COMPARISON TO RESIDENTIAL SOIL BCLs HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 9)

		Number				Greater		1/10th	Max. Detect
		of	Total	Detect	Max.	than	Residential	Residential	Greater than 1/10th
Chemical	Units	Detects	Count	Freq.	Detect	Background?	Soil BCL	Soil BCL	Residential BCL
Diphenyl sulfide	mg/kg	0	253	0%					
Diphenyl sulfone	mg/kg	0	253	0%			183	18.3	
Diphenylamine	mg/kg	0	253	0%			1530	153	
Fluoranthene	mg/kg	8	253	3.2%	0.0522		2290	229	NO
Fluorene	mg/kg	0	253	0%			671	67.1	
Hexachlorobenzene	mg/kg	5	253	2.0%	0.129		0.304	0.0304	YES
Hexachlorobutadiene	mg/kg	0	253	0%			6.24	0.624	
Hexachlorocyclopentadiene	mg/kg	0	253	0%			366	36.6	
Hexachloroethane	mg/kg	0	253	0%			34.7	3.47	
Hydroxymethyl phthalimide	mg/kg	1	253	0.4%	0.4				
Isophorone	mg/kg	0	253	0%			512	51.2	
m,p-Cresols	mg/kg	0	253	0%			3060	306	
Naphthalene	mg/kg	0	253	0%			3.1	0.31	
Nitrobenzene	mg/kg	0	253	0%			2.69	0.269	
N-nitrosodi-n-propylamine	mg/kg	0	253	0%			0.0695	0.00695	
o-Cresol	mg/kg	0	253	0%			3060	306	
Octachlorostyrene	mg/kg	1	253	0.4%	0.161				
p-Chloroaniline	mg/kg	0	253	0%			2.43	0.243	
p-Chlorobenzenethiol	mg/kg	2	253	0.8%	0.278				
Pentachlorobenzene	mg/kg	2	253	0.8%	0.176		48.9	4.89	NO
Pentachlorophenol	mg/kg	0	253	0%			0.894	0.0894	
Phenol	mg/kg	0	253	0%			18300	1830	
Phthalic acid	mg/kg	5	253	2.0%	0.619		100000	10000	NO
Pyridine	mg/kg	0	253	0%			60.5	6.05	
			Vol	atile Organic C	Compounds				
1,1,1,2-Tetrachloroethane	mg/kg	0	250	0%			3.69	0.369	
1,1,1-Trichloroethane	mg/kg	0	250	0%			1390	139	
1,1,2,2-Tetrachloroethane	mg/kg	0	248	0%			0.472	0.0472	
1,1,2-Trichloroethane	mg/kg	0	250	0%			1.05	0.105	
1,1-Dichloroethane	mg/kg	0	250	0%			4.19	0.419	
1,1-Dichloroethene	mg/kg	0	250	0%			285	28.5	
1,1-Dichloropropene	mg/kg	0	250	0%					
1,2,3-Trichlorobenzene	mg/kg	3	249	1.2%	0.0022				
1,2,3-Trichloropropane	mg/kg	0	248	0%			0.0213	0.00213	
1,2,4-Trichlorobenzene	mg/kg	5	249	2.0%	0.0038		22.1	2.21	NO
1,2,4-Trimethylbenzene	mg/kg	43	251	17.1%	0.0031		144	14.4	NO

RESULTS OF COMPARISON TO RESIDENTIAL SOIL BCLs HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 7 of 9)

		Number of	Total	Detect	Max.	Greater than	Residential	1/10th Residential	Max. Detect Greater than 1/10th
Chemical	Units	Detects	Count	Freq.	Detect	Background?	Soil BCL	Soil BCL	Residential BCL
1,2-Dichlorobenzene	mg/kg	6	250	2.4%	0.0026		373	37.3	NO
1,2-Dichloroethane	mg/kg	0	250	0%			0.433	0.0433	
1,2-Dichloroethene	mg/kg	0	250	0%					
1,2-Dichloropropane	mg/kg	0	250	0%			0.82	0.082	
1,3,5-Trichlorobenzene	mg/kg	1	248	0.4%	0.0014				
1,3,5-Trimethylbenzene	mg/kg	9	249	3.6%	0.0006		57.9	5.79	NO
1,3-Dichlorobenzene	mg/kg	3	250	1.2%	0.0027		214	21.4	NO
1,3-Dichloropropane	mg/kg	0	250	0%			15.2	1.52	
1,4-Dichlorobenzene	mg/kg	5	250	2.0%	0.0018		2.59	0.259	NO
2,2,3-Trimethylbutane	mg/kg	0	250	0%					
2,2-Dichloropropane	mg/kg	0	250	0%					
2,2-Dimethylpentane	mg/kg	0	250	0%					
2,3-Dimethylpentane	mg/kg	0	250	0%					
2,4-Dimethylpentane	mg/kg	0	250	0%					
2-Chlorotoluene	mg/kg	1	249	0.4%	0.0013		248	24.8	NO
2-Hexanone	mg/kg	1	250	0.4%	0.12		460	46	NO
2-Methylhexane	mg/kg	0	250	0%					
2-Nitropropane	mg/kg	1	250	0.4%	0.012		0.0109	0.00109	YES
3,3-Dimethylpentane	mg/kg	0	250	0%					
3-Ethylpentane	mg/kg	0	250	0%					
3-Methylhexane	mg/kg	0	250	0%					
4-Chlorotoluene	mg/kg	1	249	0.4%	0.0024				
4-Methyl-2-pentanone (MIBK)	mg/kg	0	250	0%			5800	580	
Acetone	mg/kg	23	251	9.2%	0.17		60000	6000	NO
Acetonitrile	mg/kg	0	250	0%			1470	147	
Benzene	mg/kg	0	250	0%			0.81	0.081	
Bromobenzene	mg/kg	0	248	0%			243	24.3	
Bromodichloromethane	mg/kg	0	250	0%			0.648	0.0648	
Bromoform	mg/kg	0	250	0%			61.6	6.16	
Bromomethane	mg/kg	0	250	0%			8.7	0.87	
Carbon disulfide	mg/kg	0	250	0%			721	72.1	
Carbon tetrachloride	mg/kg	0	250	0%			0.735	0.0735	
Chlorobenzene	mg/kg	0	250	0%			273	27.3	
Chlorobromomethane	mg/kg	0	250	0%					
Chloroethane	mg/kg	0	250	0%			221	22.1	
Chloroform	mg/kg	0	250	0%			0.306	0.0306	

TABLE 5-5

RESULTS OF COMPARISON TO RESIDENTIAL SOIL BCLs HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 8 of 9)

		Number				Greater		1/10th	Max. Detect
		of	Total	Detect	Max.	than	Residential	Residential	Greater than 1/10th
Chemical	Units	Detects	Count	Freq.	Detect	Background?	Soil BCL	Soil BCL	Residential BCL
Chloromethane	mg/kg	0	250	0%			1.6	0.16	
cis-1,2-Dichloroethene	mg/kg	0	250	0%			148	14.8	
cis-1,3-Dichloropropene	mg/kg	0	250	0%					
Cymene (Isopropyltoluene)	mg/kg	0	248	0%			389	38.9	
Dibromochloromethane	mg/kg	0	250	0%			1.12	0.112	
Dibromochloropropane	mg/kg	0	248	0%			0.0104	0.00104	
Dibromomethane	mg/kg	0	250	0%			43.4	4.34	
Dichloromethane (Methylene chloride)	mg/kg	26	251	10.4%	0.017		11	1.1	NO
Dimethyldisulfide	mg/kg	0	250	0%					
Ethanol	mg/kg	2	250	0.8%	1.7		100000	10000	NO
Ethylbenzene	mg/kg	9	251	3.6%	0.00082		3.79	0.379	NO
Freon-11 (Trichlorofluoromethane)	mg/kg	0	250	0%			883	88.3	
Freon-113 (1,1,2-Trifluoro-1,2,2-trichloroethane)	mg/kg	0	250	0%			5550	555	
Freon-12 (Dichlorodifluoromethane)	mg/kg	0	250	0%			218	21.8	
Heptane	mg/kg	0	250	0%			220	22	
Isopropylbenzene	mg/kg	0	250	0%			371	37.1	
m,p-Xylene	mg/kg	6	251	2.4%	0.0028		214	21.4	NO
Methyl ethyl ketone (2-Butanone)	mg/kg	4	251	1.6%	0.32		32100	3210	NO
Methyl iodide	mg/kg	0	250	0%			360	36	
MTBE (Methyl tert-butyl ether)	mg/kg	0	250	0%			39.2	3.92	
n-Butylbenzene	mg/kg	1	249	0.4%	0.0011		237	23.7	NO
Nonanal	mg/kg	0	249	0%					
n-Propylbenzene	mg/kg	6	249	2.4%	0.0048		237	23.7	NO
o-Xylene	mg/kg	7	251	2.8%	0.00096		282	28.2	NO
sec-Butylbenzene	mg/kg	0	248	0%			223	22.3	
Styrene	mg/kg	2	250	0.8%	0.0047		1730	173	NO
tert-Butylbenzene	mg/kg	1	248	0.4%	0.00017		393	39.3	NO
Tetrachloroethene	mg/kg	0	250	0%			0.624	0.0624	
Toluene	mg/kg	13	251	5.2%	0.0019		521	52.1	NO
trans-1,2-Dichloroethene	mg/kg	0	250	0%			122	12.2	
trans-1,3-Dichloropropene	mg/kg	0	250	0%			-		
Trichloroethene	mg/kg	0	250	0%			1.06	0.106	
Vinyl acetate	mg/kg	0	248	0%			988	98.8	
Vinyl chloride	mg/kg	0	250	0%			0.291	0.0291	
Xylenes (total)	mg/kg	6	251	2.4%	0.0037		214	21.4	NO

RESULTS OF COMPARISON TO RESIDENTIAL SOIL BCLs HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 9 of 9)

		Number				Greater		1/10th	Max. Detect
		of	Total	Detect	Max.	than	Residential	Residential	Greater than 1/10th
Chemical	Units	Detects	Count	Freq.	Detect	Background?	Soil BCL	Soil BCL	Residential BCL

mg/kg - milligrams per kilogram

pCi/g - picoCuries per gram

ppt - parts per trillion

-- - Not available or not applicable

Chemical with at least one detection was compared to it's respective BCL.

Dioxin/furans and PCB congeners are evaluated as TCDD TEQs. These constituents, as well as lead, are evaluated using a separate process (see text).

Highlight indicates metals exceeding background and other inorganic/organic chemicals exceeding 1/10th residential BCLs.

TABLE 5-6

SELECTION OF CHEMICALS OF POTENTIAL CONCERN (COPCs) HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 9)

		Number of	Total	Detect	Min	Max	Min	Max		Standard	Greater than	PBT(1) or Class A		
Chemical	Units	Detects	Count	Freq.	ND	ND	Detect	Detect	Mean	Deviation	Background?	Carcinogen?	COPC?	Rationale
A		2	250	1.20/		ldehydes	0.150	0.422	0.20	0.060			2.7	(4) (10)
Acetaldehyde	mg/kg	3	250	1.2%	0.151	0.368	0.159	0.433	0.28	0.069		No	No	(4)(13)
Formaldehyde	mg/kg	192	244	78.7%	0.104	1.22	0.109	3.38	0.42	0.35		No	No	(5)(13)
A -1	Structures	40	133	30.1%		Asbestos 	1	25				Yes	Yes	(1)
Asbestos	Structures	40	133	30.1%		ins / Furans		23				ies	ies	(1)
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/g	148	189	78.3%	0.64	7.7	2.3	210	32	42		Yes	No	(1)(3)
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/g pg/g	100	189	52.9%	0.04	7.7	0.41	330	10	28		Yes	No	(1)(3)
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/g pg/g	121	189	64.0%	0.41	7.7	1.1	75	15	18		Yes	No	(1)(3)
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/g pg/g	143	189	75.7%	0.23	7.7	1.2	200	22	29		Yes	No	(1)(3)
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/g pg/g	20	189	10.6%	0.077	7.7	0.11	4.1	2.9	2.2		Yes	No	(1)(3)
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/g	120	189	63.5%	0.18	7.7	0.61	65	12	13		Yes	No	(1)(3)
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/g	44	189	23.3%	0.1	7.7	0.28	13	3.3	2.2		Yes	No	(1)(3)
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/g	56	189	29.6%	0.11	7.7	0.15	8.7	3.5	2.2		Yes	No	(1)(3)
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/g	39	189	20.6%	0.11	7.7	0.29	7.5	3.2	2.1		Yes	No	(1)(3)
1,2,3,7,8-Pentachlorodibenzofuran	pg/g	121	189	64.0%	0.18	7.7	0.82	67	12	13		Yes	No	(1)(3)
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/g	26	189	13.8%	0.03	7.7	0.34	5.1	3.1	2.1		Yes	No	(1)(3)
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/g	77	189	40.7%	0.085	7.7	0.1	20	4.5	3.3		Yes	No	(1)(3)
2,3,4,7,8-Pentachlorodibenzofuran	pg/g	99	189	52.4%	0.1	7.7	0.31	32	7.1	6.3		Yes	No	(1)(3)
2,3,7,8-Tetrachlorodibenzofuran	pg/g	163	189	86.2%	0.2	3.6	0.32	93	9.4	14		Yes	No	(1)(3)
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/g	41	189	21.7%	0.065	1.5	0.11	1.7	0.78	0.34		Yes	No	(1)(3)
Octachlorodibenzodioxin	pg/g	114	189	60.3%	0.84	15	1.1	2600	50	210		Yes	No	(1)(3)
Octachlorodibenzofuran	pg/g	148	189	78.3%	1.4	15	5.1	1600	86	150		Yes	No	(1)(3)
TCDD TEQ	pg/g	189	189				0.22	47	11	9.8		Yes	No	(1)(3)
					General	Chemistry/I	ons	•						
Ammonia (as N)	mg/kg	34	251	13.5%	0.79	20.6	0.89	40.7	1.8	3.9		No	Yes	(5)(15)
Bromide	mg/kg	57	258	22.1%	0.25	25.6	0.45	12.8	0.87	2.1		No	No	(5)(13)
Chlorate	mg/kg	28	258	10.9%	0.48	5.8	0.55	43.1	1.4	3.9		No	No	(5)(13)
Chloride	mg/kg	258	258	100%			1	30900	1100	3800		No	No	(9)
Cyanide, Total	mg/kg	28	251	11.2%	0.08	0.66	0.089	1.9	0.38	0.26		No	Yes	(5)(14)
Fluoride	mg/kg	220	258	85.3%	0.1	1.1	0.19	5.5	1.2	1		No	No	(5)(13)
Nitrate	mg/kg	252	258	97.7%	0.025	0.028	0.087	327	20	46		No	No	(5)(13)
Nitrite	mg/kg	120	258	46.5%	0.02	21.9	0.08	486	5.8	36		No	No	(5)(13)
Orthophosphate as P	mg/kg	105	258	40.7%	0.51	5.5	0.72	167	5.3	14		No	No	(9)
Perchlorate	mg/kg	227	248	91.5%	0.0101	0.0114	0.0159	7.53	0.39	0.92		No	Yes	(5)(14)
Sulfate	mg/kg	258	258	100%			7.5	43400	2600	5700		No	No	(9)
Sulfide	mg/kg	0	258	0%	0.84	2.3			1.8	0.17		No	No	(2)(9)
Total Kjeldahl Nitrogen (TKN)	mg/kg	238	251	94.8%	51.5	65.9	24	2860	200	310		No	No	(9)

TABLE 5-6

SELECTION OF CHEMICALS OF POTENTIAL CONCERN (COPCs) HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 9)

Chemical	Units	Number of Detects	Total Count	Detect Freq.	Min ND	Max ND	Min Detect	Max Detect	Mean	Standard Deviation	Greater than Background?	PBT(1) or Class A Carcinogen?	COPC?	Rationale
				1		Metals					g			
Aluminum	mg/kg	243	243	100%			3130	12800	6800	1700	NO	No	No	(6)
Antimony	mg/kg	2	243	0.8%	0.225	2.7	0.87	1.2	0.38	0.37	YES	No	No	(4)(8)(13)
Arsenic	mg/kg	390	392	99.5%	5.3	5.4	2.4	17.6	7.4	2.5	YES	Yes	Yes	(1)(8)(14)
Barium	mg/kg	243	243	100%	-		54.1	796	160	80	NO	No	No	(6)
Beryllium	mg/kg	238	243	97.9%	0.51	0.56	0.19	0.82	0.47	0.096	NO	No	No	(6)
Boron	mg/kg	16	243	6.6%	16.5	56.5	14.2	197	19	15	YES	No	No	(8)(13)
Cadmium	mg/kg	164	243	67.5%	0.04	0.29	0.11	0.82	0.18	0.092	YES	No	No	(8)(13)
Calcium	mg/kg	243	243	100%			1300	124000	45000	22000	YES	No	No	(8)(12)(15)
Chromium	mg/kg	243	243	100%			4.6	58	13	6.5	YES	No	No	(8)(13)
Chromium (VI)	mg/kg	91	233	39.1%	0.1	0.49	0.11	3.9	0.19	0.29	YES	Yes	No	(8)(13)
Cobalt	mg/kg	243	243	100%			2.4	9.7	6.7	1.2	NO	No	No	(6)
Copper	mg/kg	243	243	100%			8.6	42.2	18	4.1	YES	No	No	(8)(13)
Iron	mg/kg	243	243	100%			6730	25300	13000	2200	NO	No	No	(6)(12)
Lead	mg/kg	243	243	100%	1		4.2	220	17	22	YES	Yes	No	(11)
Lithium	mg/kg	243	243	100%	1		4.7	29.4	15	3.9	NO	No	No	(6)
Magnesium	mg/kg	243	243	100%	1		2090	25900	8800	2800	NO	No	No	(6)(12)
Manganese	mg/kg	243	243	100%	1		78.4	1710	340	150	NO	No	No	(6)
Mercury	mg/kg	58	243	23.9%	0.011	0.0439	0.011	0.151	0.023	0.016	YES	No	No	(8)(13)
Molybdenum	mg/kg	195	243	80.2%	0.47	2.8	0.48	3.8	0.94	0.7	YES	No	No	(8)(13)
Nickel	mg/kg	243	243	100%			5.9	37.2	17	3.4	YES	No	No	(8)(13)
Potassium	mg/kg	243	243	100%			1290	6590	2400	950	YES	No	No	(8)(12)(15)
Selenium	mg/kg	10	243	4.1%	0.225	0.86	0.28	1.4	0.42	0.13	YES	No	No	(4)(8)(13)
Silver	mg/kg	192	243	79.0%	0.11	1.1	0.079	0.79	0.16	0.14	NO	No	No	(6)
Sodium	mg/kg	242	243	99.6%	104	104	181	27300	1200	2600	YES	No	No	(8)(12)(15)
Strontium	mg/kg	243	243	100%			49.8	849	230	110	NO	No	No	(6)
Thallium	mg/kg	5	243	2.1%	0.105	1.1	0.9	1.8	0.75	0.12	YES	No	Yes	(4)(8)(14)
Tin	mg/kg	26	243	10.7%	0.75	1	0.52	13.3	0.92	1	YES	No	No	(8)(13)
Titanium	mg/kg	243	243	100%			350	1320	770	160	YES	No	No	(8)(13)
Tungsten	mg/kg	10	243	4.1%	0.185	2.8	1.5	8.1	1.4	0.58	YES	No	No	(4)(8)(13)
Uranium	mg/kg	243	243	100%			0.49	3.8	1.3	0.52	NO	No	No	(6)
Vanadium	mg/kg	242	243	99.6%	3.51	3.51	24.8	128	45	11	YES	No	Yes	(8)(14)
Zinc	mg/kg	243	243	100%			19.6	107	38	13	YES	No	No	(8)(13)
					Organoch	nlorine Pesti	cides						•	
2,4-DDD	mg/kg	40	248	16.1%	0.00031	0.031	0.0017	0.028	0.0017	0.0043		Yes	No	(1)(5)(13)
2,4-DDE	mg/kg	110	248	44.4%	0.0002	0.02	0.0018	0.34	0.018	0.044		Yes	No	(1)(5)(13)
4,4-DDD	mg/kg	53	251	21.1%	0.00009	0.009	0.0019	0.064	0.0027	0.0074		Yes	No	(1)(5)(13)
4,4-DDE	mg/kg	135	251	53.8%	0.0002	0.019	0.002	0.4	0.027	0.058		Yes	Yes	(1)(5)(14)

TABLE 5-6 SELECTION OF CHEMICALS OF POTENTIAL CONCERN (COPCs)

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 9)

		Number									Greater	PBT(1) or		
		of	Total	Detect	Min	Max	Min	Max		Standard	than	Class A		1 1
Chemical	Units	Detects	Count	Freq.	ND	ND	Detect	Detect	Mean	Deviation	Background?	Carcinogen?	COPC?	Rationale
4,4-DDT	mg/kg	105	251	41.8%	0.0002	0.02	0.0018	0.17	0.012	0.027		Yes	No	(1)(5)(13)
Aldrin	mg/kg	1	251	0.4%	0.000096	0.0096	0.0053	0.0053	0.00018	0.00069		Yes	No	(4)(14)(16)
alpha-BHC	mg/kg	12	251	4.8%	0.00014	0.029	0.00079	0.25	0.0016	0.016		No	No	(4)(13)
alpha-Chlordane	mg/kg	2	251	0.8%	0.00021	0.0022	0.0023	0.085	0.0006	0.0054		Yes	No	(4)(13)
beta-BHC	mg/kg	147	251	58.6%	0.00019	0.019	0.0018	0.26	0.007	0.02		No	No	(5)(13)
Chlordane	mg/kg	1	251	0.4%	0.0023	0.024	0.77	0.77	0.0059	0.048		Yes	No	(4)(14)(16)
delta-BHC	mg/kg	1	251	0.4%	0.00017	0.017	0.0027	0.0027	0.00028	0.0011		No	No	(4)(13)
Dieldrin	mg/kg	3	251	1.2%	0.000092	0.0092	0.0019	0.0022	0.00017	0.00062		Yes	No	(4)(13)
Endosulfan I	mg/kg	0	251	0%	0.00011	0.011			0.00018	0.0007		No	No	(2)
Endosulfan II	mg/kg	0	251	0%	0.000094	0.0094			0.00016	0.0006		No	No	(2)
Endosulfan sulfate	mg/kg	2	251	0.8%	0.00026	0.027	0.0057	0.0085	0.00047	0.0018		No	No	(4)(13)
Endrin	mg/kg	1	251	0.4%	0.000084	0.0084	0.0033	0.0033	0.00015	0.00057		No	No	(4)(13)
Endrin aldehyde	mg/kg	40	251	15.9%	0.00018	0.018	0.0012	0.029	0.0011	0.003		No	No	(5)(13)
Endrin ketone	mg/kg	1	251	0.4%	0.00016	0.017	0.0018	0.0018	0.00028	0.0011		No	No	(4)(13)
gamma-BHC (Lindane)	mg/kg	2	251	0.8%	0.00012	0.012	0.007	0.014	0.00028	0.0012		No	No	(4)(13)
gamma-Chlordane	mg/kg	4	251	1.6%	0.000084	0.00089	0.0026	0.18	0.00085	0.011		Yes	No	(4)(13)
Heptachlor	mg/kg	1	251	0.4%	0.0001	0.017	0.012	0.012	0.00033	0.0013		No	No	(4)(14)(16)
Heptachlor epoxide	mg/kg	2	251	0.8%	0.00013	0.013	0.0021	0.0063	0.00025	0.00092		No	No	(4)(14)(16)
Methoxychlor	mg/kg	18	251	7.2%	0.00032	0.032	0.002	0.032	0.0012	0.0039		No	No	(5)(13)
Toxaphene	mg/kg	0	251	0%	0.0058	0.59			0.0098	0.038		Yes	No	(2)
				Pc	olynuclear Ai	romatic Hyd	rocarbons							
Acenaphthene	mg/kg	5	252	2.0%	0.00167	0.00347	0.00198	0.0206	0.0019	0.0014		No	No	(4)(13)
Acenaphthylene	mg/kg	5	252	2.0%	0.00167	0.00347	0.0021	0.00279	0.0018	0.00015		No	No	(4)(13)
Anthracene	mg/kg	14	252	5.6%	0.00167	0.00321	0.00177	0.909	0.0056	0.057		No	No	(5)(13)
Benzo(a)anthracene	mg/kg	17	252	6.7%	0.00167	0.00347	0.00214	0.0741	0.0022	0.0046		No	Yes	(5)(14)
Benzo(a)pyrene	mg/kg	48	252	19.0%	0.00167	0.00706	0.00175	0.0611	0.0027	0.0043		Yes	Yes	(5)(14)
Benzo(b)fluoranthene	mg/kg	64	252	25.4%	0.00167	0.00397	0.00191	0.125	0.0036	0.0089		No	Yes	(5)(14)
Benzo(g,h,i)perylene	mg/kg	11	252	4.4%	0.00167	0.00347	0.00185	0.0414	0.002	0.0025		No	No	(4)(13)
Benzo(k)fluoranthene	mg/kg	32	252	12.7%	0.00167	0.00623	0.00177	0.0881	0.0026	0.0062		No	Yes	(5)(13)(10)
Chrysene	mg/kg	42	252	16.7%	0.00167	0.00347	0.00181	0.104	0.0033	0.0079		No	Yes	(5)(13)(10)
Dibenzo(a,h)anthracene	mg/kg	0	252	0%	0.00167	0.00688			0.0018	0.00065		No	Yes	(2)(10)
Indeno(1,2,3-cd)pyrene	mg/kg	18	252	7.1%	0.00167	0.00379	0.00181	0.0471	0.0024	0.0035		No	Yes	(5)(13)(10)
Phenanthrene	mg/kg	33	252	13.1%	0.00167	0.00396	0.00175	0.215	0.004	0.018		No	No	(5)(13)
Pyrene	mg/kg	73	252	29.0%	0.00167	0.00431	0.00175	0.0997	0.0038	0.0084		No	No	(5)(13)
	•		•			inated Biphe	enyls	1	T					
PCB 105	pg/g	153	189	81.0%	0.84	8.8	2.1	880	74	140		Yes	No	(1)(3)
PCB 114	pg/g	92	189	48.7%	0.23	22	1	100	8	14		Yes	No	(1)(3)
PCB 118	pg/g	158	189	83.6%	0.77	38	3	1700	140	260		Yes	No	(1)(3)

SELECTION OF CHEMICALS OF POTENTIAL CONCERN (COPCs) HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 9)

		Number									Greater	PBT(1) or		
		of	Total	Detect	Min	Max	Min	Max		Standard	than	Class A		
Chemical	Units	Detects	Count	Freq.	ND	ND	Detect	Detect	Mean	Deviation	Background?	Carcinogen?	COPC?	Rationale
PCB 123	pg/g	7	189	3.7%	0.24	37	1.8	8.6	2.8	4		Yes	No	(1)(3)
PCB 126	pg/g	89	189	47.1%	0.29	20	1.8	97	6.1	10		Yes	No	(1)(3)
PCB 156	pg/g	131	179	73.2%	0.29	7.2	2	790	31	76		Yes	No	(1)(3)
PCB 156/157	pg/g	9	10	90.0%	0.86	0.86	2.8	470	110	170		Yes	No	(1)(3)
PCB 157	pg/g	88	179	49.2%	0.29	7.2	2.2	240	9.8	24		Yes	No	(1)(3)
PCB 167	pg/g	118	189	62.4%	0.2	5.7	1.1	380	16	39		Yes	No	(1)(3)
PCB 169	pg/g	24	189	12.7%	0.24	6.6	2.1	29	2.6	3.1		Yes	No	(1)(3)
PCB 189	pg/g	104	189	55.0%	0.16	3.7	1.4	210	8.2	19		Yes	No	(1)(3)
PCB 209	pg/g	164	189	86.8%	2	3.9	21	2900	490	600		Yes	No	(1)(3)
PCB 77	pg/g	21	189	11.1%	0.28	27	1.4	300	9.7	33		Yes	No	(1)(3)
PCB 81	pg/g	14	189	7.4%	0.21	8.6	0.55	69	3.6	7.7		Yes	No	(1)(3)
					Rad	dionuclides								
Radium-226	pCi/g	201	243	82.7%			0.223	2.56	1	0.39	NO	Yes	No	(1)(6)
Radium-228	pCi/g	171	243	70.4%			-0.0741	3.7	1.3	0.65	NO	Yes	No	(1)(6)
Thorium-228	pCi/g	243	243	100%			0.847	3.19	1.7	0.46	NO	Yes	No	(1)(6)
Thorium-230	pCi/g	226	243	93.0%			0.37	3.43	1.4	0.47	NO	Yes	No	(1)(6)
Thorium-232	pCi/g	243	243	100%			0.589	2.6	1.4	0.37	NO	Yes	No	(1)(6)
Uranium-233/234	pCi/g	222	243	91.4%			0.385	4.19	1.4	0.62	NO	Yes	No	(1)(6)
Uranium-235/236	pCi/g	37	243	15.2%			-0.152	1	0.1	0.12	NO	Yes	No	(1)(6)
Uranium-238	pCi/g	241	243	99.2%			0.445	3.19	1.1	0.41	NO	Yes	No	(1)(6)
				S	emi-Volatile	Organic Co	mpounds							
1,2,4,5-Tetrachlorobenzene	mg/kg	1	253	0.4%	0.0669	2.78	0.0915	0.0915	0.081	0.17		No	No	(4)(13)
1,2-Diphenylhydrazine	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
1,4-Dioxane	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
2,2'-Dichlorobenzil	mg/kg	0	253	0%	0.11	4.59			0.13	0.28		No	No	(2)
2,4,5-Trichlorophenol	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
2,4,6-Trichlorophenol	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
2,4-Dichlorophenol	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
2,4-Dimethylphenol	mg/kg	0	252	0%	0.0669	2.78			0.081	0.17		No	No	(2)
2,4-Dinitrophenol	mg/kg	0	253	0%	0.127	5.28			0.15	0.32		No	No	(2)
2,4-Dinitrotoluene	mg/kg	0	253	0%	0.0334	1.39			0.041	0.085		No	No	(2)
2,6-Dinitrotoluene	mg/kg	0	253	0%	0.0334	1.39			0.041	0.085		No	No	(2)
2-Chloronaphthalene	mg/kg	0	253	0%	0.0117	0.486			0.014	0.03		No	No	(2)
2-Chlorophenol	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
2-Methylnaphthalene	mg/kg	1	253	0.4%	0.00669	0.278	0.0166	0.0166	0.0082	0.017		No	No	(4)(13)
2-Nitroaniline	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
2-Nitrophenol	mg/kg	0	253	0%	0.0334	1.39			0.041	0.085		No	No	(2)
3,3-Dichlorobenzidine	mg/kg	0	253	0%	0.1	4.17			0.12	0.26		No	No	(2)

SELECTION OF CHEMICALS OF POTENTIAL CONCERN (COPCs) HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 9)

		Number									Greater	PBT(1) or		
		of	Total	Detect	Min	Max	Min	Max		Standard	than	Class A		
Chemical	Units	Detects	Count	Freq.	ND	ND	Detect	Detect	Mean		Background?		COPC?	Rationale
3-Nitroaniline	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
4-Bromophenyl phenyl ether	mg/kg	0	253	0%	0.0334	1.39			0.041	0.085		No	No	(2)
4-Chloro-3-methylphenol	mg/kg	0	253	0%	0.0334	1.39			0.041	0.085		No	No	(2)
4-Chlorophenyl phenyl ether	mg/kg	0	253	0%	0.0334	1.39			0.041	0.085		No	No	(2)
4-Chlorothioanisole	mg/kg	0	253	0%	0.11	4.59			0.13	0.28		No	No	(2)
4-Nitroaniline	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
4-Nitrophenol	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
Acetophenone	mg/kg	0	253	0%	0.0334	1.39			0.041	0.085		No	No	(2)
Aniline	mg/kg	0	253	0%	0.117	4.86			0.14	0.3		No	No	(2)
Benzenethiol	mg/kg	0	253	0%	0.11	4.59			0.13	0.28		No	No	(2)
Benzoic acid	mg/kg	1	253	0.4%	0.167	6.95	0.389	0.389	0.2	0.43		No	No	(4)(13)
Benzyl alcohol	mg/kg	0	253	0%	0.1	4.17			0.12	0.26		No	No	(2)
bis(2-Chloroethoxy)methane	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		Yes	No	(2)
bis(2-Chloroethyl) ether	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
bis(2-Chloroisopropyl) ether	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
bis(2-Ethylhexyl) phthalate	mg/kg	4	253	1.6%	0.0669	2.78	0.0709	0.282	0.083	0.17		No	No	(4)(13)
bis(p-Chlorophenyl) sulfone	mg/kg	13	252	5.2%	0.11	4.59	0.114	0.549	0.14	0.28		No	No	(5)(13)
bis(p-Chlorophenyl)disulfide	mg/kg	2	253	0.8%	0.11	4.59	0.161	0.233	0.13	0.28		No	No	(4)(13)
Butylbenzyl phthalate	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
Carbazole	mg/kg	0	253	0%	0.01	0.417			0.012	0.026		No	No	(2)
Dibenzofuran	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
Dichloromethyl ether	mg/kg	0	253	0%	0.11	4.59			0.13	0.28		No	No	(2)
Diethyl phthalate	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
Dimethyl phthalate	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
Di-n-butyl phthalate	mg/kg	1	253	0.4%	0.0334	1.39	0.0525	0.0525	0.041	0.085		No	No	(4)(13)
Di-n-octyl phthalate	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
Diphenyl disulfide	mg/kg	0	253	0%	0.11	4.59			0.13	0.28		No	No	(2)
Diphenyl sulfide	mg/kg	0	253	0%	0.11	4.59			0.13	0.28		No	No	(2)
Diphenyl sulfone	mg/kg	0	253	0%	0.11	4.59			0.13	0.28		No	No	(2)
Diphenylamine	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
Fluoranthene	mg/kg	8	253	3.2%	0.01	0.417	0.011	0.0522	0.013	0.026		No	No	(4)(13)
Fluorene	mg/kg	0	253	0%	0.01	0.417			0.012	0.026		No	No	(2)
Hexachlorobenzene	mg/kg	5	253	2.0%	0.0669	2.78	0.0906	0.129	0.082	0.17		Yes	Yes	(4)(14)
Hexachlorobutadiene	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
Hexachlorocyclopentadiene	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
Hexachloroethane	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
Hydroxymethyl phthalimide	mg/kg	1	253	0.4%	0.11	4.59	0.4	0.4	0.14	0.28		No	No	(4)(13)
Isophorone	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)

SELECTION OF CHEMICALS OF POTENTIAL CONCERN (COPCs) HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 9)

		Number									Greater	PBT(1) or		
		of	Total	Detect	Min	Max	Min	Max		Standard	than	Class A		
Chemical	Units	Detects	Count	Freq.	ND	ND	Detect	Detect	Mean	Deviation	Background?	Carcinogen?	COPC?	Rationale
m,p-Cresols	mg/kg	0	253	0%	0.134	5.56			0.16	0.34		No	No	(2)
Naphthalene	mg/kg	0	253	0%	0.01	0.417			0.012	0.026		No	No	(2)
Nitrobenzene	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
N-nitrosodi-n-propylamine	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		Yes	No	(2)
o-Cresol	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
Octachlorostyrene	mg/kg	1	253	0.4%	0.11	4.59	0.161	0.161	0.13	0.28		No	No	(4)(13)
p-Chloroaniline	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
p-Chlorobenzenethiol	mg/kg	2	253	0.8%	0.11	4.59	0.184	0.278	0.13	0.28		No	No	(4)(13)
Pentachlorobenzene	mg/kg	2	253	0.8%	0.0669	2.78	0.102	0.176	0.082	0.17		No	No	(4)(13)
Pentachlorophenol	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
Phenol	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
Phthalic acid	mg/kg	5	253	2.0%	0.11	4.59	0.334	0.619	0.14	0.28		No	No	(4)(13)
Pyridine	mg/kg	0	253	0%	0.0669	2.78			0.081	0.17		No	No	(2)
				•	Volatile Or	ganic Comp	ounds		•	•		•		
1,1,1,2-Tetrachloroethane	mg/kg	0	250	0%	0.00018	0.00092			0.00019	0.000047		No	No	(2)
1,1,1-Trichloroethane	mg/kg	0	250	0%	0.00011	0.00054			0.00011	0.000027		No	No	(2)
1,1,2,2-Tetrachloroethane	mg/kg	0	248	0%	0.000079	0.0004			0.000083	0.00002		No	No	(2)
1,1,2-Trichloroethane	mg/kg	0	250	0%	0.000068	0.00035			0.000071	0.000018		No	No	(2)
1,1-Dichloroethane	mg/kg	0	250	0%	0.000071	0.00036			0.000075	0.000018		No	No	(2)
1,1-Dichloroethene	mg/kg	0	250	0%	0.00012	0.00062			0.00013	0.000032		No	No	(2)
1,1-Dichloropropene	mg/kg	0	250	0%	0.000088	0.00045			0.000093	0.000023		No	No	(2)
1,2,3-Trichlorobenzene	mg/kg	3	249	1.2%	0.00039	0.002	0.00091	0.0022	0.00042	0.00016		No	No	(4)(13)
1,2,3-Trichloropropane	mg/kg	0	248	0%	0.00025	0.0013			0.00027	0.000066		No	No	(2)
1,2,4-Trichlorobenzene	mg/kg	5	249	2.0%	0.00033	0.0017	0.00094	0.0038	0.00039	0.00032		No	No	(4)(13)
1,2,4-Trimethylbenzene	mg/kg	43	251	17.1%	0.00013	0.0061	0.0002	0.0031	0.00075	0.0015		No	No	(5)(13)
1,2-Dichlorobenzene	mg/kg	6	250	2.4%	0.00012	0.0058	0.00013	0.0026	0.00024	0.00068		No	No	(4)(13)
1,2-Dichloroethane	mg/kg	0	250	0%	0.000067	0.00034			0.00007	0.000017		No	No	(2)
1,2-Dichloroethene	mg/kg	0	250	0%	0.00011	0.00056			0.00011	0.000029		No	No	(2)
1,2-Dichloropropane	mg/kg	0	250	0%	0.00011	0.00057			0.00012	0.000029		No	No	(2)
1,3,5-Trichlorobenzene	mg/kg	1	248	0.4%	0.00037	0.0019	0.0014	0.0014	0.0004	0.00012		No	No	(4)(13)
1,3,5-Trimethylbenzene	mg/kg	9	249	3.6%	0.000098	0.00013	0.0001	0.0006	0.00011	0.000045		No	No	(4)(13)
1,3-Dichlorobenzene	mg/kg	3	250	1.2%	0.00013	0.00068	0.00018	0.0027	0.00016	0.0002		No	No	(4)(13)
1,3-Dichloropropane	mg/kg	0	250	0%	0.000051	0.00026			0.000054	0.000013		No	No	(2)
1,4-Dichlorobenzene	mg/kg	5	250	2.0%	0.00014	0.0007	0.0006	0.0018	0.00017	0.00017		No	No	(4)(13)
2,2,3-Trimethylbutane	mg/kg	0	250	0%	0.00021	0.0011			0.00022	0.000056		No	No	(2)
2,2-Dichloropropane	mg/kg	0	250	0%	0.00023	0.0012			0.00025	0.000061		No	No	(2)
2,2-Dimethylpentane	mg/kg	0	250	0%	0.00028	0.0014			0.00029	0.000071		No	No	(2)
2,3-Dimethylpentane	mg/kg	0	250	0%	0.00023	0.0012			0.00024	0.000062		No	No	(2)

SELECTION OF CHEMICALS OF POTENTIAL CONCERN (COPCs) HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 7 of 9)

Chemical	Units	Number of Detects	Total Count	Detect Freq.	Min ND	Max ND	Min Detect	Max Detect	Mean	Standard Deviation	Greater than Background?	PBT(1) or Class A Carcinogen?	COPC?	Rationale
2,4-Dimethylpentane	mg/kg	0	250	0%	0.00019	0.00025			0.0002	0.0000065		No	No	(2)
2-Chlorotoluene	mg/kg	1	249	0.4%	0.00025	0.0013	0.0013	0.0013	0.00027	0.000094		No	No	(4)(13)
2-Hexanone	mg/kg	1	250	0.4%	0.00024	0.00031	0.12	0.12	0.00073	0.0076		No	No	(4)(13)
2-Methylhexane	mg/kg	0	250	0%	0.0002	0.001			0.00022	0.00005		No	No	(2)
2-Nitropropane	mg/kg	1	250	0.4%	0.00061	0.0031	0.012	0.012	0.00069	0.00074		No	No	(4)(13)
3,3-Dimethylpentane	mg/kg	0	250	0%	0.0002	0.001			0.00022	0.00005		No	No	(2)
3-Ethylpentane	mg/kg	0	250	0%	0.00021	0.0011			0.00022	0.000056		No	No	(2)
3-Methylhexane	mg/kg	0	250	0%	0.00014	0.00072			0.00015	0.000037		No	No	(2)
4-Chlorotoluene	mg/kg	1	249	0.4%	0.00017	0.00088	0.0024	0.0024	0.00019	0.00015		No	No	(4)(13)
4-Methyl-2-pentanone (MIBK)	mg/kg	0	250	0%	0.00029	0.0015			0.00031	0.000076		No	No	(2)
Acetone	mg/kg	23	251	9.2%	0.0017	0.023	0.0027	0.17	0.0062	0.013		No	No	(5)(13)
Acetonitrile	mg/kg	0	250	0%	0.0055	0.028			0.0058	0.0014		No	No	(2)
Benzene	mg/kg	0	250	0%	0.000088	0.00045			0.000093	0.000023		Yes	No	(2)
Bromobenzene	mg/kg	0	248	0%	0.00012	0.00062			0.00013	0.000032		No	No	(2)
Bromodichloromethane	mg/kg	0	250	0%	0.00021	0.0011			0.00023	0.000056		No	No	(2)
Bromoform	mg/kg	0	250	0%	0.000059	0.0003			0.000063	0.000015		No	No	(2)
Bromomethane	mg/kg	0	250	0%	0.00013	0.00067			0.00014	0.000034		No	No	(2)
Carbon disulfide	mg/kg	0	250	0%	0.00012	0.00062			0.00013	0.000032		No	No	(2)
Carbon tetrachloride	mg/kg	0	250	0%	0.00021	0.0011			0.00022	0.000057		No	No	(2)
Chlorobenzene	mg/kg	0	250	0%	0.00011	0.00056			0.00011	0.000029		No	No	(2)
Chlorobromomethane	mg/kg	0	250	0%	0.00023	0.0003			0.00024	0.0000086		No	No	(2)
Chloroethane	mg/kg	0	250	0%	0.00046	0.0024			0.00049	0.00012		No	No	(2)
Chloroform	mg/kg	0	250	0%	0.0001	0.00052			0.0001	0.000027		No	No	(2)
Chloromethane	mg/kg	0	250	0%	0.00027	0.0014			0.00029	0.000071		No	No	(2)
cis-1,2-Dichloroethene	mg/kg	0	250	0%	0.000054	0.00028			0.000058	0.000014		No	No	(2)
cis-1,3-Dichloropropene	mg/kg	0	250	0%	0.0001	0.00052			0.0001	0.000027		No	No	(2)
Cymene (Isopropyltoluene)	mg/kg	0	248	0%	0.00012	0.00016			0.00013	0.0000036		No	No	(2)
Dibromochloromethane	mg/kg	0	250	0%	0.00012	0.00016			0.00012	0.0000052		No	No	(2)
Dibromochloropropane	mg/kg	0	248	0%	0.00021	0.0011			0.00022	0.000056		No	No	(2)
Dibromomethane	mg/kg	0	250	0%	0.00017	0.00086			0.00018	0.000044		No	No	(2)
Dichloromethane (Methylene chloride)	mg/kg	26	251	10.4%	0.00069	0.027	0.0012	0.017	0.0031	0.0042		No	No	(5)(13)
Dimethyldisulfide	mg/kg	0	250	0%	0.00018	0.00091			0.00019	0.000046		No	No	(2)
Ethanol	mg/kg	2	250	0.8%	0.048	0.24	0.36	1.7	0.058	0.11		No	No	(4)(13)
Ethylbenzene	mg/kg	9	251	3.6%	0.000059	0.0058	0.000068	0.00082	0.00024	0.00091		No	No	(4)(13)
Freon-11 (Trichlorofluoromethane)	mg/kg	0	250	0%	0.00022	0.0011			0.00023	0.000056		No	No	(2)
Freon-113 (1,1,2-Trifluoro-1,2,2-trichloroethane)	mg/kg	0	250	0%	0.00015	0.00075			0.00015	0.000038		No	No	(2)
Freon-12 (Dichlorodifluoromethane)	mg/kg	0	250	0%	0.00029	0.0015			0.00031	0.000076		No	No	(2)
Heptane	mg/kg	0	250	0%	0.00016	0.00021			0.00017	0.0000056		No	No	(2)

SELECTION OF CHEMICALS OF POTENTIAL CONCERN (COPCs) HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 8 of 9)

		Number									Greater	PBT(1) or		
		of	Total	Detect	Min	Max	Min	Max		Standard	than	Class A		
Chemical	Units	Detects	Count	Freq.	ND	ND	Detect	Detect	Mean	Deviation	Background?	Carcinogen?	COPC?	Rationale
Isopropylbenzene	mg/kg	0	250	0%	0.0001	0.00053			0.00011	0.000027		No	No	(2)
m,p-Xylene	mg/kg	6	251	2.4%	0.00017	0.0058	0.00019	0.0028	0.00028	0.00067		No	No	(4)(13)
Methyl ethyl ketone (2-Butanone)	mg/kg	4	251	1.6%	0.00087	0.0011	0.0044	0.32	0.0022	0.02		No	No	(4)(13)
Methyl iodide	mg/kg	0	250	0%	0.00012	0.00064			0.00013	0.000032		No	No	(2)
MTBE (Methyl tert-butyl ether)	mg/kg	0	250	0%	0.00009	0.00046			0.000095	0.000023		No	No	(2)
n-Butylbenzene	mg/kg	1	249	0.4%	0.00018	0.00093	0.0011	0.0011	0.0002	0.000075		No	No	(4)(13)
Nonanal	mg/kg	0	249	0%	0.00047	0.0024			0.0005	0.00012		No	No	(2)
n-Propylbenzene	mg/kg	6	249	2.4%	0.00011	0.00056	0.0004	0.0048	0.00019	0.00058		No	No	(4)(13)
o-Xylene	mg/kg	7	251	2.8%	0.000077	0.0051	0.00008	0.00096	0.00013	0.00045		No	No	(4)(13)
sec-Butylbenzene	mg/kg	0	248	0%	0.00011	0.00055			0.00011	0.000028		No	No	(2)
Styrene	mg/kg	2	250	0.8%	0.00017	0.00089	0.00029	0.0047	0.0002	0.00029		No	No	(4)(13)
tert-Butylbenzene	mg/kg	1	248	0.4%	0.0001	0.00052	0.00017	0.00017	0.00011	0.000027		No	No	(4)(13)
Tetrachloroethene	mg/kg	0	250	0%	0.000088	0.00045			0.000093	0.000023		No	No	(2)
Toluene	mg/kg	13	251	5.2%	0.00032	0.00083	0.00037	0.0019	0.00039	0.0002		No	No	(5)(13)
trans-1,2-Dichloroethene	mg/kg	0	250	0%	0.000091	0.00046			0.000096	0.000023		No	No	(2)
trans-1,3-Dichloropropene	mg/kg	0	250	0%	0.0001	0.00052			0.0001	0.000027		No	No	(2)
Trichloroethene	mg/kg	0	250	0%	0.0001	0.00054			0.00011	0.000027		No	No	(2)
Vinyl acetate	mg/kg	0	248	0%	0.00024	0.0012			0.00026	0.000061		No	No	(2)
Vinyl chloride	mg/kg	0	250	0%	0.00011	0.00058			0.00012	0.00003		No	No	(2)
Xylenes (total)	mg/kg	6	251	2.4%	0.00023	0.0012	0.00031	0.0037	0.00028	0.00026		No	No	(4)(13)

mg/kg - milligrams per kilogram

pCi/g - picoCuries per gram

ppt - parts per trillion

-- - Not available or not applicable.

ND - Not detected.

Highlight indicates selected as COPC.

- (1) Persistent, Bioaccumulative, and Toxic (PBT) Program.
- (2) Not detected.
- (3) Dioxin and PCB congeners are not evaluated separately. Dioxin and PCB congeners are evaluated as TCDD TEQs. The maximum TCDD TEQ was less than the 50 ppt residential BCL (see text).
- (4) Chemical detected in less than 5 percent of the samples and is not a PBT or Class A carcinogen.
- (5) Chemical detected in greater than 5 percent of samples.
- (6) Chemical concentrations are equivalent to background.
- (7) Chemical detected in less than 5 percent of the samples, but is a PBT or Class A carcinogen.
- (8) Based on statistical tests, Site concentrations are elevated compared to background.
- (9) No toxicity criteria or applicable surrogate criteria are available.
- (10) At least one carcinogenic polynuclear aromatic hydrocarbon (PAH) is a COPC, therefore all detected carcinogenic PAHs are COPCs.
- (11) Lead was not selected as a COPC because the maximum concentration is below 400 mg/kg.

SELECTION OF CHEMICALS OF POTENTIAL CONCERN (COPCs) HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 9 of 9)

		Number									Greater	PBT(1) or		
		of	Total	Detect	Min	Max	Min	Max		Standard	than	Class A		
Chemical	Units	Detects	Count	Freq.	ND	ND	Detect	Detect	Mean	Deviation	Background?	Carcinogen?	COPC?	Rationale

⁽¹²⁾ USEPA (1989) states that "Chemicals that are (1) essential human nutrients, (2) present at low concentrations (i.e., only slightly elevated above naturally occurring levels), and (3) toxic only at very high doses (i.e., much higher than those that could be associated with contact at the site) need not be considered further in the quantitative risk assessment. Examples of such chemicals are iron, magnesium, calcium, potassium, and sodium."

- (13) Maximum detected site concentration below one-tenth residential BCL.
- (14) Maximum detected site concentration greater than one-tenth residential BCL.
- (15) Chemical has no BCL.
- (16) Aldrin, chlordane, heptachlor expoxide, and 2-nitropropane have been detected in 2 or less samples out of more than 250 samples at the Site (less than 1.0 percent). These results are considered likely to be anomalous results, and they are therefore not selected as a COPCs. They are discussed further in the uncertainty analysis of the report.

TABLE 6-1
EXPOSURE POINT CONCENTRATIONS IN SOIL
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 2)

		Number	T . 4 . 1	Didicid	NC.	M	M	M
		of _	Total	Detect	Min	Max	Min	Max
Chemical	Units	Detects	Count	Freq.	ND	ND	Detect	Detect
					Inorganics			
Ammonia (as N)	mg/kg	34	251	14%	0.79	20.6	0.89	40.7
Arsenic	mg/kg	390	392	99%	5.3	5.4	2.4	17.6
Cyanide, Total	mg/kg	28	251	11%	0.08	0.66	0.089	1.9
Perchlorate	mg/kg	227	248	92%	0.0101	0.0114	0.0159	7.53
Thallium	mg/kg	5	243	2.1%	0.105	1.1	0.9	1.8
Vanadium	mg/kg	242	243	100%	3.51	3.51	24.8	128
				C	Organochlorine Pestici	des		
4,4-DDE	mg/kg	135	251	54%	0.0002	0.019	0.002	0.4
				Semi-	Volatile Organic Com	pounds		
Hexachlorobenzene	mg/kg	5	253	2.0%	0.0669	2.78	0.0906	0.129
				Polyni	uclear Aromatic Hydro	carbons		
Benzo(a)anthracene	mg/kg	17	252	6.7%	0.00167	0.00347	0.00214	0.0741
Benzo(a)pyrene	mg/kg	48	252	19%	0.00167	0.00706	0.00175	0.0611
Benzo(b)fluoranthene	mg/kg	64	252	25%	0.00167	0.00397	0.00191	0.125
Benzo(k)fluoranthene	mg/kg	32	252	13%	0.00167	0.00623	0.00177	0.0881
Chrysene	mg/kg	42	252	17%	0.00167	0.00347	0.00181	0.104
Dibenzo(a,h)anthracene	mg/kg	0	252	0%	0.00167	0.00688		
Indeno(1,2,3-cd)pyrene	mg/kg	18	252	7.1%	0.00167	0.00379	0.00181	0.0471

⁽¹⁾ The EPC is either the maximum of the All, Fill, Surface, All-Fill or Surface/Fill 95 UCLs unless it exceeds the maximum detection concentration, then it is the maximum detected concentration.

EPC - Exposure point concentration.

UCL - Upper Confidence Limit

NA - Not applicable.

TABLE 6-1
EXPOSURE POINT CONCENTRATIONS IN SOIL
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 2)

			Standard	95%UCL	95%UCL	95%UCL	95%UCL	95%UCL	,
Chemical	Units	Mean	Deviation	All	Fill	Surface/Fill	Surface	All - Fill	EPC ¹
					Inorg	ganics			
Ammonia (as N)	mg/kg	1.3	3.7	1.9	6.0	2.8	2.8	1.9	6.0
Arsenic	mg/kg	7.4	2.6	7.6	7.1	7.1	7.1	7.6	7.6
Cyanide, Total	mg/kg	0.22	0.21	0.25	0.28	0.29	0.30	0.25	0.30
Perchlorate	mg/kg	0.39	0.92	0.51	0.98	0.69	0.73	0.52	0.98
Thallium	mg/kg	0.39	0.14	0.41		0.43	0.43	0.41	0.43
Vanadium	mg/kg	45	11	46	45	47	47	46	47
					Organochlor	ine Pesticides			
4,4-DDE	mg/kg	0.027	0.059	0.034	0.040	0.052	0.053	0.034	0.053
					Semi-Volatile Org	ganic Compounds			
Hexachlorobenzene	mg/kg	0.042	0.086	0.063	0.17	0.081	0.083	0.060	0.17
					Polynuclear Arom	atic Hydrocarbons			
Benzo(a)anthracene	mg/kg	0.0014	0.0047	0.0025	0.0015	0.0033	0.0037	0.0024	0.0037
Benzo(a)pyrene	mg/kg	0.0020	0.0044	0.0026	0.0027	0.0037	0.0039	0.0029	0.0039
Benzo(b)fluoranthene	mg/kg	0.0029	0.0090	0.0045	0.0032	0.0066	0.0069	0.0045	0.0069
Benzo(k)fluoranthene	mg/kg	0.0018	0.0063	0.0030	0.0017	0.0042	0.0042	0.0030	0.0042
Chrysene	mg/kg	0.0025	0.0081	0.0038	0.0023	0.0058	0.0063	0.0038	0.0063
Dibenzo(a,h)anthracene	mg/kg	0.00092	0.00032	0.00097	0.0012	0.0010	0.0010	0.00097	0.0012
Indeno(1,2,3-cd)pyrene	mg/kg	0.0016	0.0037	0.0022	0.0031	0.0028	0.0031	0.0022	0.0031

⁽¹⁾ The EPC is either the maximum of the All, Fill, Surface, All-Fill or Surface/Fill 95 UCLs unless it exceeds the maximum detection concentration, then it is the maximum detected concentration.

EPC - Exposure point concentration.

UCL - Upper Confidence Limit

NA - Not applicable.

ASBESTOS RESULTS AND ANALYTICAL SENSITIVITIES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 4)

				Analytical		Conc Protocol	centrat l Struct				Numb Protocol St			
	Depth	Sample	Sample	Sensitivity		Chrysotile		Amphibole		Chrysotile			Amphibole	
Sample ID	(ft bgs)	Type	Date	$(10^6 \text{ s/gPM}_{10})$		$(10^6 \text{ s/gPM}_{10})$		$(10^6 \text{ s/gPM}_{10})$	Total	Long	Qualifier	Total	Long	Qualifier
WHC1-A01	0	NORM	02/20/09	2.981	<	8.912 E+6	<	8.912 E+6	0	0		0	0	
WHC1-A02	0	NORM	02/20/09	2.981	<	8.912 E+6	<	8.912 E+6	0	0	J	0	0	
WHC1-A02	0	FD	02/20/09	2.965		1.405 E+7	<	8.864 E+6	1	1	J	0	0	
WHC1-A03	0	NORM	02/20/09	2.975	<	8.896 E+6	<	8.896 E+6	0	0		0	0	
WHC1-A04	0	NORM	02/20/09	2.961	<	8.854 E+6	<	8.854 E+6	0	0		0	0	
WHC1-A05	0	NORM	02/20/09	2.965	<	8.864 E+6	<	8.864 E+6	0	0		0	0	
WHC1-A06	0	NORM	02/20/09	2.987		1.792 E+7	<	8.930 E+6	6	1		0	0	
WHC1-A07	0	NORM	02/20/09	2.969	<	8.877 E+6	<	8.877 E+6	0	0		0	0	
WHC1-A08	0	NORM	02/20/09	2.960	<	8.851 E+6	<	8.851 E+6	0	0		0	0	
WHC1-A10	0	NORM	02/20/09	2.975	<	8.894 E+6	<	8.894 E+6	0	0		0	0	
WHC1-A11	0	NORM	02/20/09	2.959		1.403 E+7	<	8.848 E+6	1	1		0	0	
WHC1-A12	0	NORM	02/20/09	2.965		1.186 E+7	<	8.864 E+6	4	1		0	0	
WHC1-A13	0	NORM	02/20/09	2.969	<	8.877 E+6	<	8.877 E+6	0	0		0	0	
WHC1-BF03	0	NORM	10/07/08	2.983	<	8.919 E+6	<	8.919 E+6	0	0		0	0	
WHC1-BF05	0	NORM	10/08/08	2.975	<	8.896 E+6	<	8.896 E+6	0	0		0	0	
WHC1-BG02	0	NORM	10/03/08	2.998		1.421 E+7	<	8.963 E+6	1	1		0	0	
WHC1-BG03	0	NORM	10/08/08	2.987	<	8.930 E+6	<	8.930 E+6	0	0		0	0	
WHC1-BG03	0	FD	10/08/08	2.966	<	8.869 E+6	<	8.869 E+6	0	0		0	0	
WHC1-BG04	0	NORM	10/08/08	2.987	<	1.882 E+7	<	8.930 E+6	2	0		0	0	
WHC1-BG05	0	NORM	10/08/08	2.986	<	8.928 E+6	<	1.415 E+7	0	0		1	0	
WHC1-BG06	0	NORM	10/08/08	2.981	<	8.912 E+6	<	8.912 E+6	0	0		0	0	
WHC1-BH01	0	NORM	10/03/08	2.981		1.413 E+7	<	8.912 E+6	1	1		0	0	
WHC1-BH03	0	NORM	10/08/08	2.975	<	8.894 E+6	<	8.894 E+6	0	0		0	0	
WHC1-BH04	0	NORM	10/08/08	2.961	<	8.854 E+6	<	8.854 E+6	0	0		0	0	
WHC1-BH05	0	NORM	10/08/08	2.969	<	8.876 E+6	<	8.876 E+6	0	0		0	0	
WHC1-BH05	0	FD	10/08/08	2.960	<	8.851 E+6	<	8.851 E+6	0	0		0	0	
WHC1-BH06	0	NORM	10/08/08	2.990		1.883 E+7	<	8.939 E+6	2	2		0	0	
WHC1-BI01	0	NORM	10/03/08	2.994		1.419 E+7	<	8.953 E+6	1	1		0	0	1
WHC1-BI02	0	NORM	10/03/08	2.959	<	8.848 E+6	<	1.403 E+7	0	0	J	1	0	J
WHC1-BI02	0	FD	10/03/08	2.998		1.889 E+7	<	8.963 E+6	2	1	J	0	0	J
WHC1-BI03	0	NORM	10/09/08	2.981	<	8.912 E+6	<	8.912 E+6	0	0		0	0	1
WHC1-BI04	0	NORM	10/08/08	2.979	<	8.908 E+6	<	8.908 E+6	0	0		0	0	1
WHC1-BI05	0	NORM	10/08/08	2.998	<	1.888 E+7	<	8.963 E+6	2	0		0	0	
WHC1-BJ03	0	NORM	10/09/08	2.999	<	1.422 E+7	<	1.422 E+7	1	0	J	1	0	J

ASBESTOS RESULTS AND ANALYTICAL SENSITIVITIES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 4)

				Analytical		Cone Protoco	centrat l Struct				Numb Protocol St			
	Depth	Sample	Sample	Sensitivity		Chrysotile		Amphibole		Chrysotile			Amphibole	T
Sample ID	(ft bgs)	Type	Date	$(10^6 \text{ s/gPM}_{10})$		$(10^6 \text{ s/gPM}_{10})$		$(10^6 \text{ s/gPM}_{10})$	Total	Long	Qualifier	Total	Long	Qualifier
WHC1-BJ03	0	FD	10/09/08	2.990	<	8.939 E+6	<	8.939 E+6	0	0	J	0	0	J
WHC1-BJ04	0	NORM	10/09/08	2.777		2.152 E+7	<	8.303 E+6	3	3		0	0	
WHC1-BJ05	0	NORM	10/09/08	2.982	<	8.915 E+6	<	8.915 E+6	0	0		0	0	
WHC1-BK02	0	NORM	10/09/08	2.973	<	8.891 E+6	<	8.891 E+6	0	0		0	0	
WHC1-BK03	0	NORM	10/09/08	2.979	<	8.908 E+6	<	8.908 E+6	0	0		0	0	
WHC1-BK04	0	NORM	10/09/08	2.991	<	8.944 E+6	<	1.418 E+7	0	0		1	0	
WHC1-BK05	0	NORM	10/09/08	2.991	<	8.944 E+6	<	8.944 E+6	0	0	J	0	0	
WHC1-BK05	0	FD	10/09/08	2.981		1.878 E+7	<	8.912 E+6	2	1	J	0	0	
WHC1-BL02	0	NORM	10/03/08	2.969	<	8.877 E+6	<	8.877 E+6	0	0		0	0	
WHC1-BL03	0	NORM	10/09/08	2.975	<	8.894 E+6	<	8.894 E+6	0	0		0	0	
WHC1-BL04	0	NORM	10/09/08	2.961	<	8.854 E+6	<	8.854 E+6	0	0		0	0	
WHC1-BL06	0	NORM	10/06/08	2.987		1.195 E+7	<	8.930 E+6	4	3		0	0	
WHC1-BL08	0	NORM	10/06/08	2.987		2.315 E+7	<	8.930 E+6	3	1		0	0	
WHC1-BM01	0	NORM	10/03/08	2.979	<	8.908 E+6	<	8.908 E+6	0	0		0	0	
WHC1-BM03	0	NORM	10/09/08	2.898	<	8.666 E+6	<	8.666 E+6	0	0		0	0	
WHC1-BM04	0	NORM	10/09/08	2.991	<	1.418 E+7	<	8.944 E+6	1	0		0	0	
WHC1-BM05	0	NORM	10/06/08	2.975	<	1.410 E+7	<	8.894 E+6	1	0		0	0	
WHC1-BM06	0	NORM	10/06/08	2.991		2.318 E+7	<	8.944 E+6	3	3		0	0	
WHC1-BM09	0	NORM	10/06/08	2.975		1.190 E+7	<	8.894 E+6	4	3		0	0	J
WHC1-BM09	0	FD	10/06/08	2.979		1.490 E+7	<	1.412 E+7	5	2		1	0	J
WHC1-BN01	0	NORM	10/06/08	2.998	<	8.963 E+6	<	8.963 E+6	0	0		0	0	
WHC1-BN02	0	NORM	10/06/08	2.819	<	1.336 E+7	<	8.428 E+6	1	0		0	0	
WHC1-BN06	0	NORM	10/07/08	2.983	<	1.414 E+7	<	8.919 E+6	1	0		0	0	
WHC1-BN07	0	NORM	10/07/08	2.963		2.074 E+7	<	8.859 E+6	7	3		0	0	
WHC1-BN09	0	NORM	10/06/08	2.965	<	8.864 E+6	<	1.405 E+7	0	0		1	0	
WHC1-BO01	0	NORM	10/06/08	2.993	<	8.950 E+6	<	8.950 E+6	0	0		0	0	
WHC1-BO02	0	NORM	10/06/08	2.991	<	8.944 E+6	<	8.944 E+6	0	0		0	0	
WHC1-BO03	0	NORM	10/06/08	2.998	<	8.963 E+6	<	8.963 E+6	0	0		0	0	
WHC1-BO04	0	NORM	10/06/08	2.973	<	8.888 E+6	<	8.888 E+6	0	0		0	0	
WHC1-BO04	0	FD	10/06/08	2.965	<	8.864 E+6	<	8.864 E+6	0	0		0	0	
WHC1-BO05	0	NORM	10/07/08	2.997	<	8.961 E+6	<	8.961 E+6	0	0	J	0	0	
WHC1-BO05	0	FD	10/07/08	2.969		2.301 E+7	<	8.877 E+6	3	1	J	0	0	
WHC1-BO06	0	NORM	10/07/08	2.978		1.191 E+7	<	8.904 E+6	4	4		0	0	
WHC1-BO07	0	NORM	10/07/08	2.959	<	8.846 E+6	<	8.846 E+6	0	0		0	0	

ASBESTOS RESULTS AND ANALYTICAL SENSITIVITIES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 4)

				Analytical		Conc Protocol	centrati Struct				Numb Protocol St			
	Depth	Sample	Sample	Sensitivity		Chrysotile		Amphibole		Chrysotile			Amphibole	
Sample ID	(ft bgs)	Type	Date	$(10^6 \text{ s/gPM}_{10})$		$(10^6 \text{ s/gPM}_{10})$		$(10^6 \text{ s/gPM}_{10})$	Total	Long	Qualifier	Total	Long	Qualifier
WHC1-BP01	0	NORM	10/06/08	2.960	<	8.851 E+6	<	8.851 E+6	0	0		0	0	
WHC1-BP01	0	FD	10/06/08	2.975	<	8.896 E+6	<	8.896 E+6	0	0		0	0	
WHC1-BP02	0	NORM	10/06/08	2.982		8.915 E+6	<	8.915 E+6	0	0		1	0	
WHC1-BP03	0	NORM	10/06/08	2.991	<	1.418 E+7	<	1.418 E+7	1	0		1	0	
WHC1-BP04	0	NORM	10/06/08	2.998	<	8.963 E+6	<	8.963 E+6	0	0		0	0	
WHC1-BP05	0	NORM	10/06/08	2.979		1.412 E+7	<	8.908 E+6	1	1		0	0	
WHC1-BP07	0	NORM	10/07/08	2.998		2.324 E+7	<	8.965 E+6	3	2		0	0	
WHC1-BP08	0	NORM	10/07/08	2.959		1.403 E+7	<	8.848 E+6	1	1		0	0	
WHC1-BP09	0	NORM	10/06/08	2.975	<	8.894 E+6	<	8.894 E+6	0	0		0	0	
WHC1-BP10	0	NORM	10/06/08	2.981	<	8.912 E+6	<	8.912 E+6	0	0		0	0	
WHC1-D02	0	NORM	10/07/08	2.965	<	8.864 E+6	<	8.864 E+6	0	0		0	0	
WHC1-D04	0	NORM	10/07/08	2.960	<	8.851 E+6	<	8.851 E+6	0	0		0	0	
WHC1-D06	0	NORM	10/08/08	2.991	<	8.944 E+6	<	8.944 E+6	0	0		0	0	
WHC1-D10	0	NORM	10/08/08	2.898		2.898 E+7	<	8.666 E+6	10	5		0	0	
WHC1-D10	0	FD	10/08/08	2.965		1.779 E+7	<	8.864 E+6	6	3		0	0	
WHC1-D13	0	NORM	10/08/08	2.969	<	8.877 E+6	<	8.877 E+6	0	0		0	0	
WHC1-D17	0	NORM	10/08/08	2.998	<	8.963 E+6	<	1.421 E+7	0	0		1	0	
WHC1-D24	0	NORM	10/07/08	2.981		1.413 E+7	<	8.912 E+6	1	1		0	0	
WHC1-D26	0	NORM	10/07/08	2.966		2.299 E+7	<	8.869 E+6	3	1		0	0	
WHC1-D27	0	NORM	10/07/08	2.966	<	8.869 E+6	<	8.869 E+6	0	0		0	0	
WHC1-D27	0	FD	10/07/08	2.975	<	8.894 E+6	<	8.894 E+6	0	0		0	0	
WHC1-D28	0	NORM	10/07/08	2.991	<	1.418 E+7	<	8.944 E+6	1	0		0	0	
WHC1-D29	0	NORM	10/07/08	2.961		2.961 E+7	<	8.854 E+6	10	4		0	0	
WHC2-BF01	0	NORM	06/23/10	2.960	<	8.860 E+6	<	8.860 E+6	0	0		0	0	
WHC2-BF01C	0	NORM	12/02/09	2.990	<	8.940 E+6	<	8.940 E+6	0	0		0	0	
WHC2-BF04	0	NORM	06/23/10	3.000	<	8.960 E+6	<	8.960 E+6	0	0		0	0	
WHC2-BF06	0	NORM	06/23/10	2.960	<	8.850 E+6	<	8.850 E+6	0	0		0	0	
WHC2-BF06C	0	NORM	12/03/09	2.980	<	8.910 E+6	<	8.910 E+6	0	0		0	0	
WHC2-BF06NE	0	NORM	12/03/09	2.960	<	8.850 E+6	<	8.850 E+6	0	0		0	0	
WHC2-BF06NW	0	NORM	12/03/09	2.980	<	8.910 E+6	<	8.910 E+6	0	0		0	0	
WHC2-BF06SE	0	NORM	12/03/09	2.990	<	8.940 E+6	<	8.940 E+6	0	0		0	0	
WHC2-BF06SW	0	NORM	12/03/09	2.970	<	8.870 E+6	<	8.870 E+6	0	0		0	0	
WHC2-BG01	0	NORM	08/09/10	2.990		1.790 E+7	<	8.940 E+6	6	3		0	0	
WHC2-BL07	0	NORM	08/09/10	2.990	<	8.940 E+6	<	8.940 E+6	0	0		0	0	

ASBESTOS RESULTS AND ANALYTICAL SENSITIVITIES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 4)

				Analytical		Conc Protocol	entrat				Numb Protocol St			
	Depth	Sample	Sample	Sensitivity		Chrysotile	Juce	Amphibole		Chrysotile	Trotocors		Amphibole	
Sample ID	(ft bgs)	Type	Date	$(10^6 \text{ s/gPM}_{10})$		$(10^6 \text{ s/gPM}_{10})$		$(10^6 \text{ s/gPM}_{10})$	Total	Long	Qualifier	Total	Long	Qualifier
WHC2-BM07	0	NORM	06/23/10	2.970	<	8.890 E+6	<	8.890 E+6	0	0	J	0	0	
WHC2-BM07	0	FD	06/23/10	2.990	<	8.940 E+6	<	8.940 E+6	1	0	J	0	0	
WHC2-BM07C	0	NORM	11/30/09	2.980	<	8.900 E+6	<	8.900 E+6	0	0		0	0	
WHC2-BM07C	0	FD	11/30/09	2.970	<	8.870 E+6	<	8.870 E+6	0	0		0	0	
WHC2-BM08	0	NORM	06/23/10	2.990	<	8.950 E+6	<	8.950 E+6	0	0		0	0	
WHC2-BM08C	0	NORM	11/30/09	2.990	<	8.930 E+6	<	8.930 E+6	0	0		0	0	
WHC2-BN05	0	NORM	06/23/10	2.970	<	8.880 E+6	<	8.880 E+6	0	0		0	0	
WHC2-BN05C	0	NORM	12/08/09	2.960	<	1.180 E+7	<	8.850 E+6	4	0		1	0	
WHC2-D07	0	NORM	06/24/10	2.990	<	8.930 E+6	<	8.930 E+6	0	0		0	0	
WHC2-D08C	0	NORM	12/02/09	2.990		1.790 E+7	<	8.930 E+6	6	1		0	0	
WHC2-D18	0	NORM	06/24/10	2.800		8.39000 E+6	<	8.360 E+6	3	3		0	0	
WHC2-D18C	0	NORM	12/02/09	2.960		8.860 E+6	<	8.860 E+6	1	1	J	0	0	
WHC2-D18C	0	FD	12/02/09	2.970	<	8.870 E+6	<	8.870 E+6	0	0	J	0	0	
WHC2-D20	0	NORM	06/24/10	2.960		2.070 E+7	<	8.850 E+6	7	2		0	0	
WHC2-D21	0	NORM	06/24/10	3.000		8.960 E+6	<	8.960 E+6	2	1		0	0	
WHC2-D23	0	NORM	06/24/10	2.990	<	8.940 E+6	<	8.940 E+6	0	0		0	0	
WHC2-D23	0	FD	06/24/10	2.970	<	8.870 E+6	<	8.870 E+6	0	0		0	0	
WHC2-D25	0	NORM	06/24/10	2.980		2.080 E+7	<	8.900 E+6	7	3		0	0	
WHC3-A09N	0	NORM	01/06/12	3.000	<	8.960 E+6	<	8.960 E+6	0	0		0	0	
WHC3-A09S	0	NORM	01/06/12	2.990	<	8.940 E+6	<	8.940 E+6	0	0		0	0	
WHC3-A09W	0	NORM	01/06/12	2.980		8.910 E+6	<	8.910 E+6	1	1		0	0	
WHC3-BL05N	0	NORM	01/06/12	2.960	<	8.840 E+6	<	8.840 E+6	0	0		0	0	
WHC3-BL05S	0	NORM	01/06/12	2.970	<	8.900 E+6	<	8.900 E+6	0	0		0	0	
WHC3-BP06NE	0	NORM	01/06/12	2.980	<	1.190 E+7	<	8.900 E+6	4	0		0	0	
WHC3-BP06SE	0	NORM	01/06/12	3.000		8.990 E+6	<	8.960 E+6	3	1	J	0	0	
WHC3-BP06SE	0	FD	01/06/12	2.970	<	8.870 E+6	<	8.870 E+6	0	0	J	0	0	
WHC6-A09	0	NORM	08/01/12	2.990		8.930 E+6	<	8.930 E+6	1	1		0	0	
WHC6-BL05	0	NORM	08/01/12	2.970		8.010 E+7	<	8.870 E+6	27	10		0	0	
WHC6-BP06	0	NORM	08/01/12	3.920		2.780 E+8	<	1.170 E+7	71	25	J	0	0	J
WHC6-D01	0	NORM	07/27/12	2.990		8.970 E+6	<	8.940 E+6	3	2		0	0	
WHC6-D11	0	NORM	07/27/12	2.970	<	8.870 E+6	<	8.870 E+6	0	0		0	0	

⁽¹⁾ Fiber dimensions are presented in the respective analytical reports for each sample.

 $^{^{(2)}}$ Protocol structures include structures >5 μ m in length and < 0.4 μ m in width. Only long structures (>10 μ m in length) present a potential risk and are used for estimating asbestos risks. Long protocol structure concentrations are presented for informational purposes only.

TABLE 6-3
EXPOSURE POINT CONCENTRATIONS FROM SURFACE FLUX
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA
(Page 1 of 3)

Sample	Chloroform				Tetrachloroethene			
		Residential		Outdoor		Residential	Commercial	Outdoor
Location	Method	Indoor Air	Indoor Air	Air	Method	Indoor Air	Indoor Air	Air
OSC1-BO11	S	4.0 E-6	1.6 E-6	1.3 E-6		0.0 E+0	0.0 E+0	0.0 E+0
OSC1-BP11	S	2.7 E-6	1.1 E-6	8.9 E-7		0.0 E+0	0.0 E+0	0.0 E+0
OSC1-JP06		0.0 E+0	0.0 E+0	0.0 E+0		0.0 E+0	0.0 E+0	0.0 E+0
OSC1-JP08	S	2.8 E-6	1.1 E-6	9.4 E-7		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BJ01	S	1.7 E-6	6.9 E-7	5.8 E-7		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BJ02	S	1.4 E-6	5.5 E-7	4.6 E-7		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BJ03	S	1.4 E-6	5.4 E-7	4.6 E-7	F	2.1 E-5	8.5 E-6	7.1 E-6
WHC1-BJ04	S	1.5 E-6	6.2 E-7	5.2 E-7		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BK01	S	3.1 E-5	1.2 E-5	1.0 E-5		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BK04	S	2.0 E-6	8.0 E-7	6.7 E-7	F	3.0 E-4	1.2 E-4	1.0 E-4
WHC1-BL01	S	3.0 E-6	1.2 E-6	1.0 E-6		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BL03	S	3.0 E-6	1.2 E-6	9.9 E-7		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BL04	S	3.1 E-6	1.2 E-6	1.0 E-6		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BL06	S	5.3 E-6	2.1 E-6	1.8 E-6		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BL07	S	4.8 E-6	1.9 E-6	1.6 E-6	F	1.6 E-5	6.6 E-6	5.5 E-6
WHC1-BL08	S	6.6 E-6	2.6 E-6	2.2 E-6	F	2.0 E-5	7.8 E-6	6.6 E-6
WHC1-BL11	S	2.0 E-6	8.1 E-7	6.8 E-7		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BM01	S	3.5 E-6	1.4 E-6	1.2 E-6		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BM03	S	1.0 E-6	4.1 E-7	3.4 E-7		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BM04	S	1.5 E-6	6.1 E-7	5.1 E-7		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BM06	S	1.2 E-5	4.8 E-6	4.0 E-6	F	1.9 E-5	7.8 E-6	6.5 E-6
WHC1-BM07	S	3.8 E-6	1.5 E-6	1.3 E-6		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BM08	S	7.2 E-6	2.9 E-6	2.4 E-6		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BM09	S	1.1 E-6	4.3 E-7	3.6 E-7		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BM10	S	2.1 E-6	8.6 E-7	7.2 E-7		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BN01	S	2.5 E-6	1.0 E-6	8.4 E-7	F	3.2 E-5	1.3 E-5	1.1 E-5
WHC1-BN01R	S	5.1 E-6	2.0 E-6	1.7 E-6		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BN06		0.0 E+0	0.0 E+0	0.0 E+0		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BN08	S	1.5 E-6	6.2 E-7	5.2 E-7		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BN09	S	1.3 E-6	5.3 E-7	4.4 E-7		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BN10	S	1.3 E-6	5.3 E-7	4.4 E-7		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BN10R	S	1.0 E-6	4.1 E-7	3.4 E-7		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BO01	S	1.7 E-6	6.9 E-7	5.8 E-7		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BO04	S	2.3 E-6	9.0 E-7	7.6 E-7		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BO06	S	3.5 E-6	1.4 E-6	1.2 E-6		0.0 E+0	0.0 E+0	0.0 E+0
WHC1-BO07	S	3.0 E-6	1.2 E-6	9.9 E-7		0.0 E+0	0.0 E+0	0.0 E+0

TABLE 6-3
EXPOSURE POINT CONCENTRATIONS FROM SURFACE FLUX
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA
(Page 2 of 3)

		(Chloroform		Tetrachloroethene				
Sample		Residential	Commercial	Outdoor		Residential	Commercial	Outdoor	
Location	Method	Indoor Air	Indoor Air	Air	Method	Indoor Air	Indoor Air	Air	
WHC1-BO08	S	2.0 E-6	7.8 E-7	6.6 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-BO09	S	1.8 E-6	7.3 E-7	6.1 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-BO10	S	1.1 E-6	4.5 E-7	3.8 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-BP01	S	1.2 E-6	4.7 E-7	3.9 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-BP02	S	1.2 E-6	5.0 E-7	4.2 E-7		0.0 E+0	0.0 E+0	0.0 E + 0	
WHC1-BP03	S	1.5 E-6	6.2 E-7	5.2 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-BP03R	S	1.4 E-6	5.6 E-7	4.7 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-BP04	S	1.8 E-6	7.0 E-7	5.9 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-BP06	S	2.5 E-6	1.0 E-6	8.5 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-BP06R	S	2.3 E-6	9.3 E-7	7.8 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-BP07	S	2.1 E-6	8.4 E-7	7.0 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-BP08	S	4.7 E-6	1.9 E-6	1.6 E-6		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-BP09	S	2.1 E-6	8.6 E-7	7.2 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-BP10	S	1.3 E-6	5.1 E-7	4.3 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-D02		0.0 E+0	0.0 E+0	0.0 E+0		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-D04	S	2.1 E-6	8.2 E-7	6.9 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-D06	S	1.2 E-5	5.0 E-6	4.2 E-6	F	2.1 E-5	8.3 E-6	6.9 E-6	
WHC1-D08	S	1.2 E-5	4.6 E-6	3.9 E-6	F	1.6 E-5	6.6 E-6	5.5 E-6	
WHC1-D09	S	8.0 E-6	3.2 E-6	2.7 E-6		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-D13	S	2.7 E-6	1.1 E-6	8.9 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-D15	S	4.0 E-6	1.6 E-6	1.3 E-6	F	2.5 E-3	9.8 E-4	8.2 E-4	
WHC1-D17	S	5.6 E-6	2.3 E-6	1.9 E-6	F	6.8 E-4	2.7 E-4	2.3 E-4	
WHC1-D19	S	4.6 E-6	1.9 E-6	1.6 E-6	F	1.9 E-5	7.8 E-6	6.5 E-6	
WHC1-D21	S	1.6 E-6	6.3 E-7	5.3 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-D23	S	1.8 E-6	7.0 E-7	5.9 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-D23R	S	1.4 E-6	5.5 E-7	4.6 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-D24	S	1.9 E-6	7.7 E-7	6.4 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-D25	S	1.2 E-6	4.7 E-7	3.9 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-D27	S	1.5 E-6	6.2 E-7	5.2 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-D28	S	3.4 E-6	1.4 E-6	1.1 E-6		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-P03		0.0 E+0	0.0 E+0	0.0 E+0	F	3.0 E-4	1.2 E-4	1.0 E-4	
WHC1-P04	S	5.1 E-6	2.0 E-6	1.7 E-6		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-P05		0.0 E+0	0.0 E+0	0.0 E+0		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-P06	S	2.1 E-6	8.5 E-7	7.1 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-P07	S	1.7 E-6	6.6 E-7	5.6 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-P08	S	1.3 E-6	5.2 E-7	4.3 E-7		0.0 E+0	0.0 E+0	0.0 E+0	

TABLE 6-3
EXPOSURE POINT CONCENTRATIONS FROM SURFACE FLUX
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA
(Page 3 of 3)

		C	hloroform		Tetrachloroethene				
Sample Location	Method	Residential Indoor Air	Commercial Indoor Air	Outdoor Air	Method	Residential Indoor Air	Commercial Indoor Air	Outdoor Air	
WHC1-P09	S	1.3 E-6	5.1 E-7	4.3 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-P10	S	4.8 E-6	1.9 E-6	1.6 E-6	F	2.8 E-4	1.1 E-4	9.4 E-5	
WHC1-P11	S	2.4 E-6	9.7 E-7	8.1 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-P12	S	1.4 E-6	5.4 E-7	4.6 E-7		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-P13	S	5.4 E-6	2.1 E-6	1.8 E-6		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-P16	S	4.5 E-6	1.8 E-6	1.5 E-6		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-P17	S	3.7 E-6	1.5 E-6	1.2 E-6		0.0 E+0	0.0 E+0	0.0 E+0	
WHC1-P18	S	1.5 E-6	6.0 E-7	5.0 E-7		0.0 E+0	0.0 E+0	0.0 E+0	

Notes:

All units in mg/m³.

Method represents the surface flux measurement used in the risk calculations for that particular chemical/location: S = SIM; F = Full Scan. See Appendix H for all indoor and outdoor air concentration calculations from surface flux measurement data. See Table 6-6 for outdoor air exposure point concentrations for non-volatile COPCs in soil. Exposure point concentrations for surface flux data are based on a sample by sample basis. Averaging of the data was not conducted. Therefore only those chemicals detected in a particular sample were included in the risk estimates. A "--" is presented for those chemical not detected and not included in the risk estimates for each sample location. The exposure point concentration is the maximum of the full scan or SIM analysis results (when both had detected values, otherwise the detected value from one or the other is used). Thus, summary statistics are not presented in this table (see Table 3-10 for the surface flux data summary).

PARTICULATE EMISSION FACTOR (PEF) FOR ON-SITE RESIDENTIAL SCENARIO HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

Parameter	Abbrev.	Units	Value
Wind Erosion and Construction Activities			
Fraction of vegetative cover ⁽¹⁾	V		0.5
Mean annual wind speed ⁽²⁾	U_{m}	m/s	4.10
Equivalent threshold value of wind speed ⁽¹⁾	U_{t}	m/s	11.32
Function dependent on $U/U_t^{(1)}$	F(x)		0.19
Air Dispersion Factor for Area Source ⁽⁴⁾	Q/C _{wind}	g/m ² -sec per kg/m ³	28.82
Constant A ⁽¹⁾	A		13.31
Constant B ⁽¹⁾	В		19.84
Constant C ⁽¹⁾	С		230.17
Areal Extent of site surface contamination ⁽³⁾	A_{surf}	acres	667
Onsite Residential PEF ⁽⁵⁾	PEF _{Onsite Resident}	m³/kg	6.25E+08
Total outdoor ambient air dust concentration ⁽⁶⁾	D _{Onsite Resident}	kg/m ³	1.60E-09

(1) Assumed value for the site based upon USEPA (2002b). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites.

Office of Solid Waste and Emergency Response, Washington, DC. OSWER 9355.4-24. December.

- (2) Derived by averaging data from the Las Vegas Airport and Nellis AFB stations.
- (3) Site area.
- (4) From USEPA 2002b $Q/C_{sa} = A \times exp[(ln(A_{surf}) B)^2/C]$.

$$\{[2.6\times(s/12)^{0.8}\times(W/3)^{0.4}/(M/0.2)^{0.3}]\times[(365\text{-p})/365]\times281.9\times\sum VKT_{road}\}.$$

- (5) From USEPA 2002b PEF_{Onsite Resident} = $Q/C_{wind} * (3600/(0.036*(1-V)*((U_m/U_t)^3)*F(x)))$
- (6) $D_{\text{Onsite Resident}} = 1/\text{PEF}_{\text{Onsite Resident}}$

PARTICULATE EMISSION FACTOR (PEF) FOR CONSTRUCTION SCENARIO HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 3)

Parameter	Abbrev.	Units	Value
Wind Erosion and Const	ruction Activities		
Fugitive dust from wind erosion ⁽¹⁾	$ m M_{wind}$	g	2.8E+06
Fraction of vegetative cover ⁽²⁾	V		0.00
Mean annual wind speed ⁽³⁾	$\mathrm{U_m}$	m/s	4.10
Equivalent threshold value of wind speed ⁽²⁾	U_{t}	m/s	11.32
Function dependent on U/U _t ⁽²⁾	F(x)		0.194
Areal Extent of site surface contamination ⁽⁴⁾	$ m A_{surf}$	m^2	979,374
Exposure duration ⁽⁵⁾	ED	year	1
Fugitive dust from excavation soil dumping ⁽⁶⁾	$ m M_{excav}$	g	1.6E+05
In situ wet soil bulk density ⁽⁷⁾	$ ho_{ m soil}$	Mg/m^3	1.60
Gravimetric Soil Moisture Content % ⁽⁸⁾	M	%	6.29
Areal extent of site excavation ⁽⁹⁾	$A_{ m excav}$	m^2	195874.80
Average depth of site excavation ⁽²⁾	$d_{ m excav}$	m	1.00
Number of times soil is dumped ⁽²⁾	N_A		2.00
Fugitive dust from dozing ⁽¹⁰⁾	$ m M_{doz}$	g	7.5E+04
Soil silt content % ⁽⁷⁾	s	%	9.13
Gravimetric Soil Moisture Content % ⁽⁸⁾	M	%	6.29
Average dozing speed ⁽²⁾	$ m S_{doz}$	km/hr	11.40
Number of times area is dozed	$N_{ m doze}$		3.00
Length of dozer blade	$\mathrm{B_{d}}$	m	2.44
Sum dozing kilometers traveled ⁽¹¹⁾	VKT_{doz}	km	1204.15
Fugitive dust from grading ⁽¹²⁾	$ m M_{grade}$	g	5.3E+05
Average grading speed ⁽²⁾	${ m S}_{ m grade}$	km/hr	11.40
Number of times area is graded	$N_{ m grade}$		3.00
Length of grading blade	B_{g}	m	2.44
Sum grading kilometers traveled ⁽¹²⁾	$ m VKT_{grade}$	km	1204.15

PARTICULATE EMISSION FACTOR (PEF) FOR CONSTRUCTION SCENARIO HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 3)

Parameter	Abbrev.	Units	Value
Fugitive dust from tilling ⁽¹³⁾	$ m M_{till}$	g	1.6E+05
Soil silt content % ⁽⁷⁾	S	%	9.13
Areal extent of site tilling ⁽⁹⁾	A_{till}	acre	48.40
Number of times soil is tilled ⁽²⁾	N_A		2.00
Total Time Averaged PM ₁₀ Emission ⁽¹⁴⁾	J' _T	g/m2-sec	1.22E-07
Duration of construction ⁽²⁾	Т	sec	3.15E+07
Subchronic Dispersion Factor for Area Source ⁽¹⁵⁾	Q/C _{sa}	g/m ² -sec per kg/m ³	5.31
Constant A ⁽²⁾	A		2.45
Constant B ⁽²⁾	В		17.57
Constant C ⁽²⁾	С		189.04
Areal Extent of site surface contamination ⁽⁴⁾	A_{surf}	acres	242.0
Dispersion correction factor ⁽¹⁶⁾	$\mathbf{F}_{\mathbf{D}}$		0.186
Duration of construction (time period during which construction activities occur)	t_{c}	hr	8760
Subchronic PEF for Construction Activities (17)	PEF _{sc}	m ³ /kg	2.34E+08
Unpaved Road Traffic			
Length of road segment ⁽¹⁸⁾	L_R	m	989.63
Width of road segment ⁽²⁾	W_R	m	6.10
Surface area of contaminated road segment ⁽¹⁹⁾	A_R	m^2	6032.80
Road surface silt content % ⁽²⁰⁾	S	%	9.13
Mean vehicle weight ⁽²⁾	W	tons	8.00
Percent moisture in dry road surface ⁽²⁰⁾	M	%	6.29
Number of days/year with at least 0.01 inches of precipitation ⁽³⁾	p	days	27.00
Number of vehicles for duration of construction	N_{V}	vehicles	30.00
Length of road traveled per day	L_{D}	m/day	989.63
Sum of fleet vehicle kilometers traveled during the exposure duration (21)	VKT_{road}	km	3859.57

PARTICULATE EMISSION FACTOR (PEF) FOR CONSTRUCTION SCENARIO HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 3)

Parameter	Abbrev.	Units	Value
Subchronic Dispersion Factor for road segment (22)	Q/C _{sr}	g/m ² -sec per kg/m ³	12.95
Constant A ⁽²⁾	A		12.94
Constant B ⁽²⁾	В		5.74
Constant C ⁽²⁾	С		71.77
Subchronic PEF for Unpaved Road Traffic (23)	PEF _{sc_road}	m ³ /kg	1.20E+07
Total construction related PEF ⁽²⁴⁾	PEF _{sc_total}	m ³ /kg	1.14E+07
Total outdoor ambient air dust concentration (25)	D _{construct}	kg/m ³	8.78E-08

- (1) From USEPA. (2002b). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Solid Waste and Emergency Response, Washington, DC. OSWER 9355.4-24. December. Mwind = $0.036 \times (1-V) \times (Um/Ut)^3 \times F(x) \times Asurf \times ED \times 8760 hr/yr$.
- (2) Assumed value for the site based upon USEPA (2002b).
- (3) Derived by averaging data from the Las Vegas Airport and Nellis AFB stations.
- (4) Site area.
- (5) Construction worker ED
- (6) From USEPA 2002b $M_{excav} = 0.35 \times 0.0016 \times [(U_m/2.2)^{1.3}/(M/2)^{1.4}] \times \rho_{soil} \times A_{excav} \times d_{excav} \times N_A \times 10^3 g/kg$.
- (7) This value can change based on site specific characteristics
- (8) Based on the average of percent moisture across the site.
- (9) Assumed value of one fifth of the site based upon USEPA (2002b).
- (10) From USEPA 2002b $M_{doz} = 0.75 \times [(0.45 \times s^{1.5})/(M)^{1.4}] \times \sum VKT_{doz}/S_{doz} \times 10^{3} g/kg$.
- (11) From USEPA 2002b VKT_{doz} = $[(A_{surf}^{0.5}/2.44m) \times A_{surf}^{0.5} \times 3]/1,000 \text{ m/km}.$
- (12) From USEPA 2002b $M_{grade} = 0.60 \times (0.0056 \times S^{2.0}) \times \sum VKT_{grade} \times 10^{3} g/kg$.
- (13) From USEPA 2002b $M_{till} = 1.1 \times s^{0.6} \times A_{till} \times 4,047 \text{m}^2/\text{acre} \times 10^{-4} \text{ha/m}^2 \times 10^{3} \text{g/kg} \times \text{N}_A$.
- (14) From USEPA 2002b $J'_T = (M_{wind} + M_{excav} + M_{doz} + M_{grade} + M_{till})/(A_{surf} \times T)$.
- (15) From USEPA 2002b $Q/C_{sa} = A \times \exp[(\ln(A_{surf}) B)^2/C]$.
- (16) From USEPA 2002b $F_D = 0.1852 + (5.3537/t_c) + (-9.6318/t_c^2), t_c = T/(3,600sec/hour).$
- (17) From USEPA 2002b PEF_{sc} = $Q/C_{sa} \times (1/F_D) \times (1/J'_T)$.
- (18) Assumed value of the square root of the site area, based upon USEPA (2002b).
- (19) From USEPA 2002b $\hat{A}_R = L_R \times W_R * 0.092903 \text{ m}2/\text{ft}2$
- (20) Average of surface soil percent moisture results.
- (21) From USEPA 2002b VKT_{road} = 30 vehicles \times L_R \times [(52 wks/yr)/2] \times (5 days/week) / (1000 m/km).
- (22) From USEPA 2002b $Q/C_{sr} = A \times exp[(ln(A_{surf}) B)^2/C]$.
- $(23) \ From \ USEPA \ 2002b PEF_{sc_road} = Q/C_{sr} \times (1/F_D) \times T \times A_R \ / \ \{[2.6 \times (s/12)^{0.8} \times (W/3)^{0.4}/(M/0.2)^{0.3}] \times [(365-p)/365] \times 281.9 \times \sum VKTroad\}.$
- (24) $PEF_{sc_total} = \{1/[(1/PEF_{sc})+(1/PEF_{sc_road})]\}.$
- (25) $D_{construct} = 1/PEF_{sc_total}$.

TABLE 6-6
OUTDOOR AIR EXPOSURE POINT CONCENTRATIONS FROM SOIL
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

			ion Worker oor Air	Outdo	oction Worker oor Air				
	Soil Conc.	PEF/VF ⁽¹⁾	Air Conc. (2)	PEF/VF ⁽³⁾	Air Conc. (2)				
Chemical	(mg/kg)	(kg/m^3)	(mg/m^3)	(kg/m^3)	(mg/m^3)				
Inorganics									
Ammonia (as N)	1.9 E+0	8.8 E-8	1.7 E-7	1.6 E-9	3.0 E-9				
Arsenic	7.6 E+0	8.8 E-8	6.7 E-7	1.6 E-9	1.2 E-8				
Cyanide, Total	2.5 E-1	8.8 E-8	2.2 E-8	1.6 E-9	4.0 E-10				
Perchlorate	5.2 E-1	8.8 E-8	4.6 E-8	1.6 E-9	8.3 E-10				
Thallium	4.1 E-1	8.8 E-8	3.6 E-8	1.6 E-9	6.6 E-10				
Vanadium	4.6 E+1	8.8 E-8	4.0 E-6	1.6 E-9	7.4 E-8				
		Organochlorine	Pesticides						
4,4-DDE	3.4 E-2	8.8 E-8	3.0 E-9	1.6 E-9	5.4 E-11				
	Pol	ynuclear Aromatic	c Hydrocarbons						
Benzo(a)anthracene	2.4 E-3	8.8 E-8	2.1 E-10	1.6 E-9	3.8 E-12				
Benzo(a)pyrene	2.9 E-3	8.8 E-8	2.5 E-10	1.6 E-9	4.6 E-12				
Benzo(b)fluoranthene	4.5 E-3	8.8 E-8	4.0 E-10	1.6 E-9	7.2 E-12				
Benzo(k)fluoranthene	3.0 E-3	8.8 E-8	2.6 E-10	1.6 E-9	4.8 E-12				
Chrysene	3.8 E-3	8.8 E-8	3.3 E-10	1.6 E-9	6.1 E-12				
Dibenzo(a,h)anthracene	9.7 E-4	8.8 E-8	8.5 E-11	1.6 E-9	1.6 E-12				
Indeno(1,2,3-cd)pyrene	2.2 E-3	8.8 E-8	1.9 E-10	1.6 E-9	3.5 E-12				
	Se	mi-Volatile Organ	ic Compounds						
Hexachlorobenzene	6.0 E-2	8.8 E-8	5.3 E-9	1.6 E-9	9.6 E-11				

Notes:

- (1) Construction worker PEF from Table 6-5.
- (2) Soil concentration \times PEF (or VF for VOCs).
- (3) On-site residential PEF from Table 6-4.

TABLE 6-7
PLANT UPTAKE FACTORS

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

Chemical	Aboveground Plant ¹ Uptake Factor mg/kg plant DW/mg/kg soil	Belowground Plant ¹ Uptake Factor mg/kg plant DW/mg/kg soil	Reference
	Inorganics		
Ammonia (as N)	NA	NA	Closure Plan
Arsenic	6.3 E-3	8.0 E-3	USEPA 2005b
Cyanide, Total	NA	NA	Closure Plan
Perchlorate	NA	NA	see text
Thallium	4.0 E-3	4.0 E-4	Baes et al 1984
Vanadium	5.5 E-3	3.0 E-3	Baes et al 1984
Organ	ochlorine Pesticides	•	
4,4-DDE	9.4 E-3	7.4 E-4	USEPA 2005b
Semi-Vola	tile Organic Compound	ls	
Benzo(a)anthracene	2.0 E-2	3.0 E-3	USEPA 2005b
Benzo(a)pyrene	1.1 E-2	2.6 E-3	USEPA 2005b
Benzo(b)fluoranthene	1.0 E-2	2.4 E-3	USEPA 2005b
Benzo(k)fluoranthene	1.0 E-2	2.4 E-3	USEPA 2005b
Chrysene	1.9 E-2	3.3 E-3	USEPA 2005b
Dibenzo(a,h)anthracene	4.9 E-3	2.0 E-2	USEPA 2005b
Hexachlorobenzene	1.9 E-2	2.1 E-1	USEPA 2005b
Indeno(1,2,3-cd)pyrene	3.9 E-3	3.1 E-3	USEPA 2005b

⁽¹⁾ Calculations were performed as identified in the BRC Closure Plan (BRC, ERM, and DBS&A 2007) as shown in USEPA 2005b - Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities.

RESIDENTIAL EXPOSURE FACTORS

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

Parameter	Abbrev.	Value	Units	Reference
Dermal absorption fraction	ABS	chemical-specific		see text
Soil-plant bioconcentration factors	Br	chem	ical-specific	see text
Dermal adherence factor, adult	AF_a	0.07	mg/cm ²	Closure Plan
Dermal adherence factor, child	AF_c	0.2	mg/cm ²	Closure Plan
Averaging time, carcinogenic	AT_c	70	years	Closure Plan
Averaging time, carcinogenic (inhalation)	AT_c	613200	hours	Closure Plan
Averaging time, non-carcinogenic	AT _{nc}	6	years	Closure Plan
Averaging time, non-carcinogenic (inhalation)	AT_{nc}	52560	hours	Closure Plan
Adult body weight	BW_a	70	kg	Closure Plan
Child body weight	BW_c	15	kg	Closure Plan
Exposure frequency	EF _r	350	days/year	Closure Plan
Exposure duration - child	$\mathrm{ED}_{\mathrm{rc}}$	6	years	Closure Plan
Exposure duration - child (inhalation)	ED_{rc}	52560	hours	Closure Plan
Exposure duration - adult (for age-weighted)	ED_{ra}	24	years	Closure Plan
Exposure duration - adult (for age-weighted; inhalation)	ED_{ra}	210240	hours	Closure Plan
Exposure duration	EDr	30	years	Closure Plan
Exposure duration (inhalation)	EDr	262800	hours	Closure Plan
Exposure time - outdoors (inhalation only)	ETo	2.0	hours	Closure Plan
Exposure time - indoors (inhalation only)	ET_i	16.7	hours	Closure Plan
Dilution factor for outdoor-to-indoor air	DF_i	0.4	unitless	Closure Plan
Available skin surface area, adult	SA_a	5,700	cm²/day	Closure Plan
Available skin surface area, child	SA_c	2,800	cm ² /day	Closure Plan
Fruit/vegetable ingestion rate, aboveground, child	$CR_{ag,c}$	0.0179	kg DW/d	Closure Plan
Fruit/vegetable ingestion rate, belowground, child	$CR_{bg,c}$	0.0033	kg DW/d	Closure Plan
Fruit/vegetable ingestion rate, aboveground, adult	$CR_{ag,a}$	0.0609	kg DW/d	Closure Plan
Fruit/vegetable ingestion rate, belowground, adult	$CR_{bg,a}$	0.0098	kg DW/d	Closure Plan
Contaminated plant fraction from the site	CPF	0.25		Closure Plan
Adult soil ingestion rate	$IR_{s,a}$	100	mg/day	Closure Plan
Child soil ingestion rate	$IR_{s,c}$	200	mg/day	Closure Plan
Soil ingestion, noncancer		1.28 E-5	day ⁻¹	Calculated
Soil ingestion, cancer		1.57 E-6	day ⁻¹	Calculated
Soil dermal contact, noncancer		3.58 E-5	day ⁻¹	Calculated
Soil dermal contact, cancer		4.94 E-6	day ⁻¹	Calculated
Inhalation, soil-dust, outdoor, noncancer		7.99 E-2	unitless	Calculated
Inhalation, soil-dust, outdoor, cancer		3.42 E-2	unitless	Calculated
Inhalation, soil-volatiles, outdoor, noncancer		7.99 E-2	unitless	Calculated
Inhalation, soil-volatiles, outdoor, cancer		3.42 E-2	unitless	Calculated
Fruit/Vegetable ingestion, noncancer - aboveground		2.86 E-4	day ⁻¹	Calculated
Fruit/Vegetable ingestion, noncancer - belowground		5.27 E-5	day ⁻¹	Calculated
Fruit/Vegetable ingestion, cancer - aboveground		9.60 E-5	day ⁻¹	Calculated
Fruit/Vegetable ingestion, cancer - belowground		1.60 E-5	day ⁻¹	Calculated
Inhalation, soil-dust, indoor, noncancer		2.67 E-1	unitless	Calculated
Inhalation, soil-dust, indoor, cancer		1.14 E-1	unitless	Calculated

WORKERS EXPOSURE FACTORS

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

Parameter	Abbrev.	Value	Units	Reference
Dermal absorption fraction	ABS	chen	nical-specific	see text
Maintenance worker dermal adherence factor	AF_{mw}	0.2	mg/cm ²	Closure Plan
Commercial worker dermal adherence factor	AF_{cmw}	NA	mg/cm ²	Closure Plan
Construction worker dermal adherence factor	AF_{cw}	0.3	mg/cm ²	Closure Plan
Averaging time, carcinogenic	AT_c	70	years	Closure Plan
Averaging time, carcinogenic (inhalation)	AT_c	613200	hours	Closure Plan
Averaging time, non-carcinogenic, maintenance/commercial worker	AT_{nc}	25	years	Closure Plan
Averaging time, non-carcinogenic, maintenance/commercial worker (inhalation)	AT_{nc}	219000	hours	Closure Plan
Averaging time, non-carcinogenic, construction worker	$AT_{nc,c}$	1	years	Closure Plan
Averaging time, non-carcinogenic, construction worker (inhalation)	$AT_{nc,c}$	8760	hours	Closure Plan
Adult body weight	BW_a	70	kg	Closure Plan
Maintenance worker exposure frequency	EF_{mw}	225	days/year	Closure Plan
Commercial worker exposure frequency	EF_{cmw}	250	days/year	Closure Plan
Construction worker exposure frequency	EF_{cmw}	250	days/year	Closure Plan
Exposure duration, maintenance/commercial worker	ED	25	years	Closure Plan
Exposure duration, maintenance/commercial worker (inhalation)	ED	219000	hours	Closure Plan
Exposure duration, construction worker	ED	1	years	Closure Plan
Exposure duration, construction worker (inhalation)	ED	8760	hours	Closure Plan
Maintenance worker exposed surface area	SA_{mw}	3,300	cm²/day	Closure Plan
Construction worker exposed surface area	SA_{mw}	3,300	cm²/day	Closure Plan
Commercial worker exposed surface area	SA_{cmw}	NA	cm²/day	Closure Plan
Maintenance worker soil ingestion rate	$IR_{s,mw}$	100	mg/day	Closure Plan
Commercial worker soil ingestion rate	$IR_{s,cmw}$	50	mg/day	Closure Plan
Construction worker soil ingestion rate	IR _{s,cmw}	330	mg/day	Closure Plan
Commercial worker exposure time, indoors	$ET_{cmw,i}$	8	based on 8 hr/d	Closure Plan
Commercial worker exposure time, outdoors	$ET_{cmw,o}$	0	indoor worker	Closure Plan
Maintenance worker exposure time, indoors	$ET_{mw,i}$	0	outdoor worker	Closure Plan
Maintenance worker exposure time, outdoors	$ET_{mw,o}$	8	based on 8 hr/d	Closure Plan
Soil ingestion, non-cancer, commercial worker		4.89 E-7	day ⁻¹	Calculated
Soil ingestion, cancer, commercial worker		1.75 E-7	day ⁻¹	Calculated
Soil ingestion, non-cancer, maintenance worker		8.81 E-7	day ⁻¹	Calculated
Soil ingestion, cancer, maintenance worker		3.15 E-7	day ⁻¹	Calculated
Soil dermal contact, non-cancer, maintenance worker		5.81 E-6	day ⁻¹	Calculated
Soil dermal contact, cancer, maintenance worker		2.08 E-6	day ⁻¹	Calculated
Inhalation, fugitive-dust, outdoor, non-cancer, maintenance worker		2.05 E-1	unitless	Calculated
Inhalation, fugitive-dust, outdoor, cancer, maintenance worker		7.34 E-2	unitless	Calculated
Soil ingestion, noncancer, construction worker		3.23 E-6	day ⁻¹	Calculated
Soil ingestion, cancer, construction worker		4.61 E-8	day ⁻¹	Calculated
Soil dermal contact, noncancer, construction worker		9.69 E-6	day ⁻¹	Calculated
Soil dermal contact, cancer, construction worker		1.38 E-7	day ⁻¹	Calculated
Inhalation, soil-dust, outdoor, noncancer, construction worker		2.28 E-1	unitless	Calculated
Inhalation, soil-dust, outdoor, cancer, construction worker		3.26 E-3	unitless	Calculated

Note: Exposure parameters for maintenance workers and commercial workers are based on outdoor and indoor commercial/industrial worker exposure factors, respectively, from USEPA, 2002b.

TOXICITY CRITERIA FOR SURFACE FLUX

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

Compound	Cancer IUR 1/(µg/m³)		Non-Cancer RfC (mg/m³)		
Chloroform	2.3 E-5	I	9.8 E-2	A	
Tetrachloroethene	2.6 E-7	I	4.0 E-2	I	

Key:

A = ATSDR

I = IRIS (USEPA 2015)

NON-CANCER TOXICITY CRITERIA FOR SOIL

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

	Inhala	ntion - Chronic	Inhalatio	on - Subchronic	Oral	⁽¹⁾ - Chronic	Oral ⁽¹⁾ - S	Subchronic		
	Value		Value		Value		Value		Oral	Dermal
Chemical	(mg/m^3)	Reference	(mg/m^3)	Reference	(mg/kg/day)	Reference	(mg/kg/day)	Reference	BIO	$ABS^{(2)}$
				Inorganics						
Ammonia (as N)	1.0 E-1	USEPA 2015	1.0 E-1	USEPA 2015	NA		NA		1.0	NA
Arsenic	1.5 E-5	CalEPA	1.5 E-5	CalEPA	3.0 E-4	USEPA 2015	3.0 E-4	Chronic	0.3	NA
Cyanide, Total	8.0 E-4	USEPA 2015	8.0 E-4	USEPA 2015	6.0 E-4	USEPA 2015	6.0 E-4	Chronic	1.0	NA
Perchlorate	NA		NA		7.0 E-4	USEPA 2015	7.0 E-4	Chronic	1.0	NA
Thallium	NA		NA		7.0 E-5	USEPA 2015	7.0 E-5	Chronic	1.0	NA
Vanadium	NA		NA		5.0 E-3	USEPA 2015	5.0 E-3	Chronic	1.0	NA
			(Organic Compou	ınds	-	-			-
4,4-DDE	NA		NA		NA		NA		1.0	0.03
Benzo(a)anthracene	NA		NA		3.0 E-2	pyrene as surrogate	3.0 E-2	Chronic	1.0	0.13
Benzo(a)pyrene	NA		NA		3.0 E-2	pyrene as surrogate	3.0 E-2	Chronic	1.0	0.13
Benzo(b)fluoranthene	NA		NA		3.0 E-2	pyrene as surrogate	3.0 E-2	Chronic	1.0	0.13
Benzo(k)fluoranthene	NA		NA		3.0 E-2	pyrene as surrogate	3.0 E-2	Chronic	1.0	0.13
Chrysene	NA		NA		3.0 E-2	pyrene as surrogate	3.0 E-2	Chronic	1.0	0.13
Dibenzo(a,h)anthracene	NA		NA		3.0 E-2	pyrene as surrogate	3.0 E-2	Chronic	1.0	0.13
Hexachlorobenzene	NA		NA		8.0 E-4	USEPA 2015	8.0 E-4	Chronic	1.0	0.1
Indeno(1,2,3-cd)pyrene	NA		NA		3.0 E-2	pyrene as surrogate	3.0 E-2	Chronic	1.0	0.13

Notes

Values obtained from NDEP (2013).

NA = Not applicable. Data is either not applicable for this chemical or not available.

BIO = bioavailability.

ABS = dermal absorption efficiency.

PPRTV = USEPA Provisional Peer Reviewed Toxicity Values.

- (1) Vanadium required the adjustment of the oral toxicity criteria for the dermal soil exposure pathway (USEPA 2004e).
- (2) Dermal absorption factors obtained from USEPA 2004e.

TABLE 6-12 CANCER TOXICITY CRITERIA FOR SOIL

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

	Iı	nhalation	(Oral ⁽¹⁾					
	Value		Value		Oral	Dermal			
Chemical	$(\mu g/m^3)^{-1}$	Reference	(mg/kg-day) ⁻¹	Reference	BIO	ABS ⁽²⁾			
<u>Inorganics</u>									
Ammonia (as N)	NA		NA		1.0	NA			
Arsenic	4.3 E-3	USEPA 2015	1.5 E+0	USEPA 2015	0.3	NA			
Cyanide, Total	NA		NA		1.0	NA			
Perchlorate	NA		NA		1.0	NA			
Thallium	NA		NA		1.0	NA			
Vanadium	NA		NA		1.0	NA			
	-	Organic Compoun	<u>ds</u>		-				
4,4-DDE	9.7 E-5	USEPA 2015	3.4 E-1	USEPA 2015	1.0	0.03			
Benzo(a)anthracene	1.1 E-4	OEHHA 2015	7.3 E-1	USEPA 1993	1.0	0.13			
Benzo(a)pyrene	1.1 E-3	OEHHA 2015	7.3 E+0	USEPA 2015	1.0	0.13			
Benzo(b)fluoranthene	1.1 E-4	OEHHA 2015	7.3 E-1	USEPA 1993	1.0	0.13			
Benzo(k)fluoranthene	1.1 E-4	OEHHA 2015	7.3 E-2	USEPA 1993	1.0	0.13			
Chrysene	1.1 E-5	OEHHA 2015	7.3 E-3	USEPA 1993	1.0	0.13			
Dibenzo(a,h)anthracene	1.2 E-3	ОЕННА 2015	7.3 E+0	USEPA 1993	1.0	0.13			
Hexachlorobenzene	4.6 E-4	USEPA 2015	1.6 E+0	USEPA 2015	1.0	0.1			
Indeno(1,2,3-cd)pyrene	1.1 E-4	OEHHA 2015	7.3 E-1	USEPA 1993	1.0	0.13			

Notes

Values obtained from NDEP (2013).

NA = Not applicable. Data is either not applicable for this chemical (i.e., not carcinogenic) or not available.

BIO = bioavailability - NOTE: The basis for the arsenic oral bioavailability is presented in Closure Plan.

ABS = dermal absorption efficiency.

OEHHA = California Office of Environmental Health Hazard Assessment.

- (1) No COPCs required oral toxicity criteria adjustment for the dermal soil exposure pathway (USEPA 2004e).
- (2) Dermal absorption factors obtained from USEPA 2004e.

TARGET ORGANS FOR NON-CARCINOGENS

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 2)

		Oral/Dermal								
	Primary		Secondary ⁽¹⁾		Tertiary ⁽¹⁾					
Chemical	Target Organ	Reference	Target Organ	Reference	Target Organ	Reference				
<u>Inorganics</u>										
Ammonia	NA		NA		NA					
Arsenic	Skin	ORNL 2014	CNS	ORNL 2014						
Cyanide, Total	CNS	ORNL 2014	Thyroid	ORNL 2014	Reproduction/Development	ORNL 2014				
Perchlorate	Thyroid	USEPA 2014	NA		NA					
Thallium	Blood	USEPA 2013	CNS	ORNL 2013	Skin	ORNL 2013				
Vanadium	Kidney	ORNL 2014	Gastrointestinal	ORNL 2014	Blood	ORNL 2014				
Organic Compounds										
4,4-DDE	NA		NA		NA					
Benzo(a)anthracene	Kidney	Pyrene	Liver	Pyrene	Blood	Pyrene				
Benzo(a)pyrene	Kidney	Pyrene	Liver	Pyrene	Blood	Pyrene				
Benzo(b)fluoranthene	Kidney	Pyrene	Liver	Pyrene	Blood	Pyrene				
Benzo(k)fluoranthene	Kidney	Pyrene	Liver	Pyrene	Blood	Pyrene				
Chrysene	Kidney	Pyrene	Liver	Pyrene	Blood	Pyrene				
Dibenzo(a,h)anthracene	Kidney	Pyrene	Liver	Pyrene	Blood	Pyrene				
Hexachlorobenzene	Liver	USEPA 2014	NA	-	NA	-				
Indeno(1,2,3-cd)pyrene	Kidney	Pyrene	Liver	Pyrene	Blood	Pyrene				

Note: Target organs are not included for the surface flux COPCs.

NA - Not applicable. Data is either not applicable for this chemical (e.g., not carcinogenic) or not available.

CNS - Central Nervous System

IRIS - USEPA's Integrated Risk Information System. (http://cfpub.epa.gov/ncea/iris/index.cfm).

ORNL - Oak Ridge National Laboratory (http://rais.ornl.gov/tools/tox_profiles.html).

⁽¹⁾ According to ORNL (2014), all three target organs identified are considered primary target organs.

TARGET ORGANS FOR NON-CARCINOGENS

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 2)

		Inhalation								
	Primary		Secondary ⁽¹⁾		Tertiary ⁽¹⁾					
Chemical	Target Organ	Reference	Target Organ	Reference	Target Organ	Reference				
Inorganics										
Ammonia	Respiratory system	USEPA 2014	NA		NA					
Arsenic	Skin	ORNL 2014	CNS	ORNL 2014						
Cyanide, Total	CNS	ORNL 2014	Reproduction/Development	ORNL 2014	Cardiovascular system	ORNL 2014				
Perchlorate	NA		NA		NA					
Thallium	NA		NA		NA					
Vanadium	NA		NA		NA					
Organic Compounds										
4,4-DDE	NA		NA		NA					
Benzo(a)anthracene	NA		NA		NA					
Benzo(a)pyrene	NA		NA		NA					
Benzo(b)fluoranthene	NA		NA		NA					
Benzo(k)fluoranthene	NA		NA		NA					
Chrysene	NA		NA		NA					
Dibenzo(a,h)anthracene	NA		NA		NA					
Hexachlorobenzene	NA		NA		NA					
Indeno(1,2,3-cd)pyrene	NA		NA		NA					

Note: Target organs are not included for the surface flux COPCs.

- (1) According to ORNL (2014), all three target organs identified are considered primary target organs.
- NA Not applicable. Data is either not applicable for this chemical (e.g., not carcinogenic) or not available.

CNS - Central Nervous System

- IRIS USEPA's Integrated Risk Information System. (http://cfpub.epa.gov/ncea/iris/index.cfm).
- ORNL Oak Ridge National Laboratory (http://rais.ornl.gov/tools/tox_profiles.html).

TABLE 6-14

CHEMICAL RISK SUMMARY FOR RESIDENTIAL RECEPTORS HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

Receptor	HI	ILCR
Future On-Site Resident		
Soil, Dermal, Homegrown	0.4	2 E-5
Produce and Dust	0.4	2 E-3
Volatile Inhal. (from Flux) ⁽¹⁾	0.04	2 E-7
Combined	0.5	2 E-5

	Soil			Homegrown	Indoor	Outdoor				Homegrown	Indoor	Outdoor	
	Conc.	Oral	Dermal	Produce	Dust Inhal	Dust Inhal	Total	Oral	Dermal	Produce	Dust Inhal	Dust Inhal	Total
Chemical	(mg/kg)	HQ	HQ	HQ	HQ	HQ	HI	ILCR	ILCR	ILCR	ILCR	ILCR	ILCR
						anics							
Ammonia (as N)	6.0	NA	NA	NA	2.6 E-8	7.7 E-9	3.3 E-8	NA	NA	NA	NA	NA	NA
Arsenic	7.6	9.7 E-2	NA	5.7 E-2	2.2 E-4	6.5 E-5	1.5 E-1	5 E-6	NA	8 E-6	6 E-9	2 E-9	1 E-5
Cyanide, Total	0.3	6.4 E-3	NA	NA	1.6 E-7	4.8 E-8	6.4 E-3	NA	NA	NA	NA	NA	NA
Perchlorate	0.98	1.8 E-2	NA	NA	NA	NA	1.8 E-2	NA	NA	NA	NA	NA	NA
Thallium	0.43	7.9 E-2	NA	7.2 E-3	NA	NA	8.6 E-2	NA	NA	NA	NA	NA	NA
Vanadium	47	1.2 E-1	NA	1.6 E-2	NA	NA	1.4 E-1	NA	NA	NA	NA	NA	NA
				(Organochlor	ine Pesticide	?S						
4,4-DDE	0.053	NA	NA	NA	NA	NA	NA	3 E-8	3 E-9	2 E-8	9 E-13	3 E-13	5 E-8
				Polyn	uclear Arom	atic Hydroco	arbons						
Benzo(a)anthracene	0.0037	1.6 E-6	5.7 E-7	7.3 E-7	NA	NA	2.9 E-6	4 E-9	2 E-9	5 E-9	7 E-14	2 E-14	1 E-8
Benzo(a)pyrene	0.0039	1.7 E-6	6.1 E-7	4.3 E-7	NA	NA	2.7 E-6	4 E-8	2 E-8	3 E-8	8 E-13	2 E-13	9 E-8
Benzo(b)fluoranthene	0.0069	2.9 E-6	1.1 E-6	6.9 E-7	NA	NA	4.7 E-6	8 E-9	3 E-9	5 E-9	1 E-13	4 E-14	2 E-8
Benzo(k)fluoranthene	0.0042	1.8 E-6	6.5 E-7	4.3 E-7	NA	NA	2.9 E-6	5 E-10	2 E-10	3 E-10	8 E-14	3 E-14	1 E-9
Chrysene	0.0063	2.7 E-6	9.8 E-7	1.2 E-6	NA	NA	4.8 E-6	7 E-11	3 E-11	8 E-11	1 E-14	4 E-15	2 E-10
Dibenzo(a,h)anthracene	0.0012	5.1 E-7	1.9 E-7	9.8 E-8	NA	NA	8.0 E-7	1 E-8	6 E-9	7 E-9	3 E-13	8 E-14	3 E-8
Indeno(1,2,3-cd)pyrene	0.0031	1.3 E-6	4.8 E-7	1.3 E-7	NA	NA	1.9 E-6	4 E-9	1 E-9	1 E-9	6 E-14	2 E-14	6 E-9
	Semi-Volatile Organic Compounds												
Hexachlorobenzene	0.17	2.7 E-3	7.6 E-4	3.5 E-3	NA	NA	7.0 E-3	4 E-7	1 E-7	1 E-6	1 E-11	4 E-12	2 E-6
Total		0.32	0.00	0.08	0.00	0.00	0.4	6 E-6	2 E-7	1 E-5	6 E-9	2 E-9	2 E-5

HQ = hazard quotient

HI - hazard index

ILCR = incremental lifetime cancer risk

(1) Note that risk estimates for surface flux data were done on a sample-by-sample basis, therefore, risks presented are the maximum of the range of values. See Appendix H for sample-specific risk estimates.

BACKGROUND RISK SUMMARY FOR RESIDENTIAL RECEPTORS HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

Receptor	HI	ILCR
Future On-Site Resident		
Soil, Dermal, Homegrown	0.3	9 E-6
Produce and Dust	0.3	9 L-0
Volatile Inhal. (from Flux) ⁽¹⁾		
Combined	0.3	9 E-6

	Soil			Homegrown	Indoor	Outdoor				Homegrowr	Indoor	Outdoor	
	Conc.	Oral	Dermal	Produce	Dust Inhal	Dust Inhal	Total	Oral	Dermal	Produce	Dust Inhal	Dust Inhal	Total
Chemical	(mg/kg)	HQ	HQ	HQ	HQ	HQ	HI	ILCR	ILCR	ILCR	ILCR	ILCR	ILCR
					Inorg	ganics							
Ammonia (as N)													
Cyanide, Total													
Perchlorate			-										
					Me	tals							
Arsenic	4.9	6.3 E-2	NA	3.6 E-2	1.4 E-4	4.2 E-5	9.9 E-2	3.5 E-6	NA	5 E-6	4 E-9	1 E-9	9 E-6
Thallium	0.38	6.9 E-2	NA	6.3 E-3	NA	NA	7.6 E-2	NA	NA	NA	NA	NA	NA
Vanadium	42	1.1 E-1	NA	1.5 E-2	NA	NA	1.2 E-1	NA	NA	NA	NA	NA	NA
	-	-		(Örganochlor	ine Pesticide	?S	•		-	-	-	
4,4-DDE			-						-				
				Polyn	uclear Arom	atic Hydroce	arbons						
Benzo(a)anthracene			-						-				
Benzo(a)pyrene			-						-				
Benzo(b)fluoranthene													
Benzo(k)fluoranthene													
Chrysene									-				
Dibenzo(a,h)anthracene									-				
Indeno(1,2,3-cd)pyrene			-										
	-			Semi	-Volatile Or	ganic Compe	ounds				-	-	
Hexachlorobenzene													
Total		0.24	NA	0.057340	0.00014	0.000	0.3	3 E-6	NA	5 E-6	4 E-9	1 E-9	9 E-6

HQ = hazard quotient

HI - hazard index

ILCR = incremental lifetime cancer risk

(1) Note that background risk estimates for surface flux data were not conducted.

CHEMICAL RISK SUMMARY FOR CONSTRUCTION WORKER RECEPTORS HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

Receptor	HI	ILCR
Future On-Site Construction Worker		
Soil, Dermal and Dust	0.09	2 E-7
Volatile Inhalation (from Flux) ⁽¹⁾	0.005	8 E-10
Combined	0.1	2 E-7

	Soil			Outdoor				Outdoor	
	Concentration	Oral	Dermal	Inhal	Total	Oral	Dermal	Inhal	Total
Chemical	(mg/kg)	HQ	HQ	HQ	HI	ILCR	ILCR	ILCR	ILCR
Inorganics									
Ammonia (as N)	6.0	NA	NA	1.2 E-6	1.2 E-6	NA	NA	NA	NA
Arsenic	7.6	2.5 E-2	NA	1.0 E-2	3.5 E-2	2 E-7	NA	9 E-9	2 E-7
Cyanide, Total	0.30	1.6 E-3	NA	7.5 E-6	1.6 E-3	NA	NA	NA	NA
Perchlorate	0.98	4.5 E-3	NA	NA	4.5 E-3	NA	NA	NA	NA
Thallium	0.43	2.0 E-2	NA	NA	2.0 E-2	NA	NA	NA	NA
Vanadium	47	3.0 E-2	NA	NA	3.0 E-2	NA	NA	NA	NA
Organochlorine Pesticides									
4,4-DDE	0.053	NA	NA	NA	NA	8 E-10	7 E-11	1 E-12	9 E-10
	-		Polynuclear Ar	omatic Hydroca	irbons	-	-	-	
Benzo(a)anthracene	0.0037	4.0 E-7	1.6 E-7	NA	5.5 E-7	1 E-10	5 E-11	1 E-13	2 E-10
Benzo(a)pyrene	0.0039	4.2 E-7	1.6 E-7	NA	5.8 E-7	1 E-9	5 E-10	1 E-12	2 E-9
Benzo(b)fluoranthene	0.0069	7.4 E-7	2.9 E-7	NA	1.0 E-6	2 E-10	9 E-11	2 E-13	3 E-10
Benzo(k)fluoranthene	0.0042	4.5 E-7	1.8 E-7	NA	6.3 E-7	1 E-11	6 E-12	1 E-13	2 E-11
Chrysene	0.0063	6.8 E-7	2.6 E-7	NA	9.4 E-7	2 E-12	8 E-13	2 E-14	3 E-12
Dibenzo(a,h)anthracene	0.0012	1.3 E-7	5.0 E-8	NA	1.8 E-7	4 E-10	2 E-10	4 E-13	6 E-10
Indeno(1,2,3-cd)pyrene	0.0031	3.3 E-7	1.3 E-7	NA	4.6 E-7	1 E-10	4 E-11	1 E-13	1 E-10
Semi-Volatile Organic Compounds									
Hexachlorobenzene	0.17	6.9 E-4	2.1 E-4	NA	8.9 E-4	1 E-8	4 E-9	2 E-11	2 E-8
Total		0.082	0.00021	0.010	0.09	2 E-7	5 E-9	9 E-9	2 E-7

HQ = hazard quotient HI - hazard index

ILCR = incremental lifetime cancer risk

(1) Note that risk estimates for surface flux data were done on a sample-by-sample basis, therefore, risks are presented as a range. See Appendix H for samplespecific risk estimates.

TABLE 6-17

CHEMICAL RISK SUMMARY FOR COMMERCIAL (INDOOR) WORKER RECEPTORS HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

Receptor	HI	ILCR
Future On-Site Commercial Worker		
Soil and Dust	0.01	7 E-7
Volatile Inhalation (from Flux) ⁽¹⁾	0.006	2 E-8
Combined	0.02	7 E-7

	Soil		Indoor Dust			Indoor Dust			
	Concentration	Oral	Inhal	Total	Oral	Inhal	Total		
Chemical	(mg/kg)	HQ	HQ	HI	ILCR	ILCR	ILCR		
Inorganics									
Ammonia (as N)	6.0	NA	8.8 E-9	8.8 E-9	NA	NA	NA		
Arsenic	7.6	3.7 E-3	7.4 E-5	3.8 E-3	6 E-7	2 E-9	6 E-7		
Cyanide, Total	0.3	2.4 E-4	5.5 E-8	2.4 E-4	NA	NA	NA		
Perchlorate	0.98	6.8 E-4	NA	6.8 E-4	NA	NA	NA		
Thallium	0.43	3.0 E-3	NA	3.0 E-3	NA	NA	NA		
Vanadium	47	4.6 E-3	NA	4.6 E-3	NA	NA	NA		
Organochlorine Pesticides									
4,4-DDE	0.053	NA	NA	NA	3 E-9	3 E-13	3 E-9		
	•	Polynu	clear Aromatic Hy	drocarbons		•			
Benzo(a)anthracene	0.0037	6.0 E-8	NA	6.0 E-8	5 E-10	2 E-14	5 E-10		
Benzo(a)pyrene	0.0039	6.4 E-8	NA	6.4 E-8	5 E-9	2 E-13	5 E-9		
Benzo(b)fluoranthene	0.0069	1.1 E-7	NA	1.1 E-7	9 E-10	4 E-14	9 E-10		
Benzo(k)fluoranthene	0.0042	6.8 E-8	NA	6.8 E-8	5 E-11	2 E-14	5 E-11		
Chrysene	0.0063	1.0 E-7	NA	1.0 E-7	8 E-12	4 E-15	8 E-12		
Dibenzo(a,h)anthracene	0.0012	2.0 E-8	NA	2.0 E-8	2 E-9	8 E-14	2 E-9		
Indeno(1,2,3-cd)pyrene	0.0031	5.1 E-8	NA	5.1 E-8	4 E-10	2 E-14	4 E-10		
	Semi-Volatile Organic Compounds								
Hexachlorobenzene	0.17	1.0 E-4	NA	1.0 E-4	5 E-8	4 E-12	5 E-8		
Total		0.012	0.000074	0.01	7 E-7	2 E-9	7 E-7		

HQ = hazard quotient HI - hazard index

ILCR = incremental lifetime cancer risk

(1) Note that risk estimates for surface flux data were done on a sample-by-sample basis, therefore, risks are presented as a range. See Appendix H for samplespecific risk estimates.

TABLE 6-18

CHEMICAL RISK SUMMARY FOR MAINTENANCE (OUTDOOR) WORKER RECEPTORS HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

Receptor	HI	ILCR
Future On-Site Maintenance Worker		
Soil, Dermal, and Dust	0.02	1 E-6
Volatile Inhalation (from Flux)(1)	0.004	2 E-8
Combined	0.03	1 E-6

	Soil			Outdoor				Outdoor	
	Conc.	Oral	Dermal	Inhal	Total	Oral	Dermal	Inhal	Total
Chemical	(mg/kg)	HQ	HQ	HQ	HI	ILCR	ILCR	ILCR	ILCR
			In	organics					
Ammonia (as N)	6.0	NA	NA	2.0 E-8	2.0 E-8	NA	NA	NA	NA
Arsenic	7.6	6.7 E-3	NA	1.7 E-4	6.9 E-3	1 E-6	NA	4 E-9	1 E-6
Cyanide, Total	0.30	4.4 E-4	NA	1.2 E-7	4.4 E-4	NA	NA	NA	NA
Perchlorate	0.98	1.2 E-3	NA	NA	1.2 E-3	NA	NA	NA	NA
Thallium	0.43	5.4 E-3	NA	NA	5.4 E-3	NA	NA	NA	NA
Vanadium	47	8.3 E-3	NA	NA	8.3 E-3	NA	NA	NA	NA
			Organoch	lorine Pesticide	rs .				
4,4-DDE	0.053	NA	NA	NA	NA	6 E-9	1 E-9	6 E-13	7 E-9
	-		Polynuclear Ai	romatic Hydroca	arbons	-	-	-	
Benzo(a)anthracene	0.0037	1.1 E-7	9.3 E-8	NA	2.0 E-7	8 E-10	7 E-10	5 E-14	2 E-9
Benzo(a)pyrene	0.0039	1.1 E-7	9.8 E-8	NA	2.1 E-7	9 E-9	8 E-9	5 E-13	2 E-8
Benzo(b)fluoranthene	0.0069	2.0 E-7	1.7 E-7	NA	3.8 E-7	2 E-9	1 E-9	9 E-14	3 E-9
Benzo(k)fluoranthene	0.0042	1.2 E-7	1.1 E-7	NA	2.3 E-7	1 E-10	8 E-11	5 E-14	2 E-10
Chrysene	0.0063	1.8 E-7	1.6 E-7	NA	3.4 E-7	1 E-11	1 E-11	8 E-15	3 E-11
Dibenzo(a,h)anthracene	0.0012	3.5 E-8	3.0 E-8	NA	6.5 E-8	3 E-9	2 E-9	2 E-13	5 E-9
Indeno(1,2,3-cd)pyrene	0.0031	9.1 E-8	7.8 E-8	NA	1.7 E-7	7 E-10	6 E-10	4 E-14	1 E-9
Semi-Volatile Organic Compounds									
Hexachlorobenzene	0.17	1.9 E-4	1.2 E-4	NA	3.1 E-4	9 E-8	6 E-8	9 E-12	1 E-7
Total		0.022	0.00012	0.00017	0.02	1 E-6	7 E-8	4 E-9	1 E-6

HQ = hazard quotient

HI - hazard index

ILCR = incremental lifetime cancer risk

(1) Note that risk estimates for surface flux data were done on a sample-by-sample basis, therefore, risks are presented as a range. See Appendix H for sample-specific risk estimates.

ASBESTOS RISK SUMMARY

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

Asbestos Risk Calculations $Risk = (C_{soil} * URF * (ET_{out} + (ET_{in} * ATT_{in})) * EF * ED) / (PEF * AT)$

Aspestos Risk Calculations	$RISK = (C_{soil} *UKF *(EI_{out} + (EI_{in} *AII_{in}))*EF *ED) / (FEF *AI)$								
			CHRYSO	OTILE			AMPHI	BOLE	
			Outdoor	Indoor	Onsite		Outdoor	Indoor	Onsite
ESTIMATED RISK	Units	Construction	Worker	Worker	Resident	Construction	Worker	Worker	Resident
Estimated Risk (Total Structures)	Unitless	4 E-8	1 E-8	7 E-9	3 E-8	0 E+0	0 E+0	0 E+0	0 E+0
95% UCL (Total Structures)	Unitless	5 E-8	2 E-8	8 E-9	4 E-8	1 E-7	5 E-8	2 E-8	1 E-7
ESTIMATED AIR CONCENTRATIONS									
Estimated Airborne Concentration, C _{air} (best estimate) ^A	f/m ³	2.10E+02	3.55E+00	3.55E+00	3.82E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Estimated Airborne Concentration (upper bound) ^B	f/m ³	2.47E+02	4.17E+00	4.17E+00	4.49E+00	5.93E+00	1.00E-01	1.00E-01	1.08E-01

A Estimated Airborne Concentration = Estimated $C_{soil} * 1/PEF$

^B Estimated Airborne Concentration = 95% UCL (upper bound) * 1/PEF

TABLE 7-1 UNCERTAINTY ANALYSIS

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 3)

	May	May	May Under or
	Underestimate	Overestimate	Overestimate
Source of Uncertainty	Risk	Risk	Risk
Environmental Sampling and Analysis			
Sampling and laboratory analyses may have been inadequate to fully			Moderate
characterize the concentrations at the site.			
Systematic or random errors in the chemical analyses may yield erroneous			Low
data.			
The risk estimates are based on the COPCs only. Other chemicals were	Moderate		
not quantified.			
Some non-detect analytes had SQLs that exceeded risk-based comparison	Low		
levels.			
Although radon flux sampling was performed, the results were not	Low		
evaluated in the human health risk assessment based on results of recent			
radon testing performed in groundwater and indoor air samples.			
Exposure Assumptions			
Fate and transport modeling did not take into account biodegradation or		Moderate	
other degradation processes.			
Modeling did not take into account interactions that may occur among the		Moderate	
different chemicals which may influence their migration.			
Only primary receptors of concern were evaluated. Other populations	Low		
(e.g., students) were not assessed.			
Only primary exposure pathways were evaluated. Other pathways were	Low		
not assessed.			
Residential receptors were evaluated; however, the planned development		Moderate	
of the Site includes parks. Potential residential exposures are considered			
more conservative, and therefore, protective and representative of any			
potential recreational receptors.			

TABLE 7-1 UNCERTAINTY ANALYSIS

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 3)

Source of Uncertainty	May Underestimate Risk	May Overestimate Risk	May Under or Overestimate Risk
Some of the exposure point concentrations used in the exposure			Moderate
assessment were based on modeled, rather than measured, levels in			
various media (e.g., air).			
Reasonable maximum exposure values were combined to arrive at the		Moderate	
ADD and LADD estimates. There is a low probability that all of the			
various upper bound assumptions used in the exposure assessment would			
occur in conjunction with the 95 percent UCL chemical concentration.			
Exposure point concentrations and the amount of media intake were		Low	
assumed to be constant over time.			
Toxicological Data			
Sub-chronic RfDs are appropriate to characterize non-cancer effects for		Moderate	
short-term exposures (i.e., construction workers). However, sub-chronic			
RfDs were not available and therefore, chronic RfDs were used.			
RfDs are derived and extrapolated from laboratory animal studies that			Moderate
expose animals to relatively high intakes. Errors are inherent in the			
extrapolation of data from animals to humans, from high to low doses, and			
from one exposure route to another.			
RfDs used to estimate non-carcinogenic risk are derived from NOAELs		Moderate	
which are based on the sensitive endpoints in the sensitive species. As a			
result, extrapolation of toxicity data from animals to humans is uncertain.			
There may be differences in metabolism, uptake, or distribution of			
chemicals in the body between animals and humans. To account for this,			
NOAELs are divided by uncertainty factors spanning several orders of			
magnitude to establish the RfD. The combination of these two			
conservative assumptions may establish RfDs which greatly overprotect			
human health.			

TABLE 7-1 UNCERTAINTY ANALYSIS

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 3)

	May Underestimate	May Overestimate	May Under or Overestimate
Source of Uncertainty	Risk	Risk	Risk
CSFs used for the animal carcinogens are the 95% UCL derived from the		High	
linearized multistage model using animal chronic bioassay data, which			
tends to greatly overestimate carcinogenic risk in humans. The linearized			
multistage model ignores many known factors that have been documented			
to protect humans against the carcinogenic actions of chemicals, such as			
DNA repair and immunosurveillance.			
RfDs, CSFs and defensible carcinogenicity data were not available for	Low		
some COPCs, which were therefore not quantitatively evaluated.			
Aggregation of Exposure Units			
Aggregating the exposure areas or extrapolating from Site analytical	Low		
results to estimated concentrations for individual 1/8-acre exposure areas.			

TABLE 9-1

DATA QUALITY ASSESSMENT

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA

BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA (Page 1 of 3)

Table 9-1a: Sample Size Results for 4,4-DDE with BCL = 1.72 mg/kg

Number of samples =	S =	0.058		
Threshold = 1.72 r	ng/kg	$\alpha = 5\%$	a = 10%	a = 15%
MDD = 10%	$\beta = 15\%$	3	2	1
(0.172 mg/kg)	$\beta = 20\%$	2	2	1
	$\beta = 25\%$	2	1	1
MDD = 20%	$\beta = 15\%$	2	1	1
(0.344 mg/kg)	$\beta = 20\%$	2	1	1
	$\beta = 25\%$	2	1	1
MDD = 30%	$\beta = 15\%$	2	1	1
(0.516 mg/kg)	$\beta = 20\%$	2	1	1
	$\beta = 25\%$	2	1	1

Table 9-1b: Sample Size Results for Ammonia (No BCL)

1		\	/	
Number of samples =	s =	3.9		
No BCL		$\alpha = 5\%$	a = 10%	$\alpha = 15\%$
MDD = 10%	$\beta = 15\%$			
(No BCL)	$\beta = 20\%$			
	$\beta = 25\%$			
MDD = 20%	$\beta = 15\%$			
(No BCL)	$\beta = 20\%$			
	$\beta = 25\%$			
MDD = 30%	$\beta = 15\%$			
(No BCL)	$\beta = 20\%$			
	$\beta = 25\%$			

Table 9-1c: Sample Size Results for Arsenic with Background = 13.1 mg/kg

Number of samples =	s =)/ ·O		
Threshold = 13.1 n		$\alpha = 5\%$	a = 10%	a = 15%
MDD = 10%	$\beta = 15\%$	54	40	32
(1.31 mg/kg)	$\beta = 20\%$	46	34	26
	$\beta = 25\%$	40	29	22
MDD = 20%	$\beta = 15\%$	15	11	8
(2.62 mg/kg)	$\beta = 20\%$	13	9	7
	$\beta = 25\%$	11	8	6
MDD = 30%	$\beta = 15\%$	7	5	4
(3.93 mg/kg)	$\beta = 20\%$	7	5	3
	$\beta = 25\%$	6	4	3

Table 9-1d: Sample Size Results for Benzo(a)pyrene with BCL = 0.0621 mg/kg

		(-)I-J		0/ 0
Number of samples =	s =			
Threshold = 0.0621	mg/kg	$\alpha = 5\%$	$\alpha = 10\%$	$\alpha = 15\%$
MDD = 10%	$\beta = 15\%$	6	4	3
(0.00621 mg/kg)	$\beta = 20\%$	5	3	3
	$\beta = 25\%$	5	3	2
MDD = 20%	$\beta = 15\%$	3	2	1
(0.01242 mg/kg)	$\beta = 20\%$	2	2	1
	$\beta = 25\%$	2	1	1
MDD = 30%	$\beta = 15\%$	2	1	1
(0.01863 mg/kg)	$\beta = 20\%$	2	1	1
	$\beta = 25\%$	2	1	1

TABLE 9-1

DATA QUALITY ASSESSMENT

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA RML COMMON A DE AS (FASTSURE) CLASIF COUNTY NEVADA

BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA (Page 2 of 3)

Table 9-1e: Sample Size Results for Total Cyanide with BCL = 5.71 mg/kg

<u>.</u>	2	0,	0	
Number of samples =	s =	0.26		
Threshold = 5.71 n	ng/kg	$\alpha = 5\%$	$\alpha = 10\%$	$\alpha = 15\%$
MDD = 10%	$\beta = 15\%$	3	2	2
(0.571 mg/kg)	$\beta = 20\%$	3	2	1
	$\beta = 25\%$	3	2	1
MDD = 20%	$\beta = 15\%$	2	1	1
(1.142 mg/kg)	$\beta = 20\%$	2	1	1
	$\beta = 25\%$	2	1	1
MDD = 30%	$\beta = 15\%$	2	1	1
(1.713 mg/kg)	$\beta = 20\%$	2	1	1
	$\beta = 25\%$	2	1	1

Table 9-1f: Sample Size Results for Hexachlorobenzene with BCL = 0.304 mg/kg

1				0, 0
Number of samples =	s =			
Threshold = 0.304 i	mg/kg	$\alpha = 5\%$	$\alpha = 10\%$	$\alpha = 15\%$
MDD = 10%	$\beta = 15\%$	262	196	156
(0.0304 mg/kg)	$\beta = 20\%$	226	165	129
	$\beta = 25\%$	197	140	107
MDD = 20%	β = 15%	67	50	40
(0.0608 mg/kg)	$\beta = 20\%$	58	42	33
	$\beta = 25\%$	50	36	27
MDD = 30%	$\beta = 15\%$	31	23	18
(0.0912 mg/kg)	$\beta = 20\%$	26	19	15
	$\beta = 25\%$	23	16	12

Table 9-1g: Sample Size Results for Perchlorate with BCL = 54.8 mg/kg

			6/ 10	,
Number of samples =	s =			
Threshold = 54.8 r	ng/kg	$\alpha = 5\%$	$\alpha = 10\%$	$\alpha = 15\%$
MDD = 10%	$\beta = 15\%$	2	1	1
(5.48 mg/kg)	$\beta = 20\%$	2	1	1
	$\beta = 25\%$	2	1	1
MDD = 20%	$\beta = 15\%$	2	1	1
(10.96 mg/kg)	$\beta = 20\%$	2	1	1
	$\beta = 25\%$	2	1	1
MDD = 30%	$\beta = 15\%$	2	1	1
(16.44 mg/kg)	$\beta = 20\%$	2	1	1
	$\beta = 25\%$	2	1	1

Table 9-1h: Sample Size Results for Thallium with BCL = 5.16 mg/kg

			0, 0	
Number of samples = 243		s = 0.12		
Threshold = 5.16 mg/kg		$\alpha = 5\%$	a = 10%	$\alpha = 15\%$
MDD = 10%	$\beta = 15\%$	2	1	1
(0.516 mg/kg)	$\beta = 20\%$	2	1	1
	$\beta = 25\%$	2	1	1
MDD = 20%	$\beta = 15\%$	2	1	1
(1.032 mg/kg)	$\beta = 20\%$	2	1	1
	$\beta = 25\%$	2	1	1
MDD = 30%	$\beta = 15\%$	2	1	1
(1.548 mg/kg)	$\beta = 20\%$	2	1	1
	$\beta = 25\%$	2	1	1

TABLE 9-1

DATA QUALITY ASSESSMENT

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA

BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA (Page 3 of 3)

Table 9-1i: Sample Size Results for TCDD TEQ with BCL = 50 ppt

<u>.</u> 1		~	1.1	
Number of samples =	s = 9.8			
Threshold = 50 ppt		$\alpha = 5\%$	a = 10%	$\alpha = 15\%$
MDD = 10%	$\beta = 15\%$	34	25	20
(5 ppt)	$\beta = 20\%$	29	21	16
	$\beta = 25\%$	26	18	14
MDD = 20%	$\beta = 15\%$	10	7	5
(10 ppt)	$\beta = 20\%$	8	6	5
	$\beta = 25\%$	8	5	4
MDD = 30%	$\beta = 15\%$	5	4	3
(15 ppt)	$\beta = 20\%$	5	3	2
	$\beta = 25\%$	4	3	2

Table 9-1j: Sample Size Results for Vanadium with BCL = 391 mg/kg

			0, 0	
Number of samples = 243		s = 11		
Threshold = 391 mg/kg		$\alpha = 5\%$	a = 10%	$\alpha = 15\%$
MDD = 10%	$\beta = 15\%$	2	1	1
(39.1 mg/kg)	$\beta = 20\%$	2	1	1
	$\beta = 25\%$	2	1	1
MDD = 20%	$\beta = 15\%$	2	1	1
(78.2 mg/kg)	$\beta = 20\%$	2	1	1
	$\beta = 25\%$	2	1	1
MDD = 30%	$\beta = 15\%$	2	1	1
(117.3 mg/kg)	$\beta = 20\%$	2	1	1
	$\beta = 25\%$	2	1	1

 $\alpha = alpha$

 $\beta = beta$

s = standard deviation of sample data

APPENDIX A

NDEP COMMENTS AND BRC'S RESPONSE TO COMMENTS AND REDLINE/STRIKEOUT TEXT

APPENDIX A

NDEP Comments Dated July 17, 2015 on the Human Health Risk Assessment and Closure Report for the Western Hook-Development Sub-Area, BMI Common Areas (Eastside), Clark County, Nevada

1. Table ES-1, footnote 6

"Asbestos risks represent the cumulative asbestos risks for chrysotile and amphibole fibers. Risks shown are the higher of the risks for chrysotile or amphibole fibers." Asbestos cancer risk pertains to the sum of cancer risks for amphibole and chrysotile fibers. Please revise Table ES-1 and footnote 6 to refer to total asbestos cancer risk for both fiber types. Alternatively, since no long amphibole fibers were measured at the Site, explain this in the footnote and state that asbestos risk pertains only to chrysotile.

Response: As noted in the footnote to Table ES-1, risks shown are the higher of the risks for chrysotile or amphibole fibers. Although as noted in the comment long amphibole fibers were not detected at the Site; however, due to the nature of how asbestos risks are calculated the highest asbestos risks are due to amphibole fibers, despite there not being any detected at the Site. Therefore, the last part of the comment is incorrect. Although zero amphibole fiber detects results in a cancer risks, given this BRC does not believe it is appropriate to sum the chrysotile and amphibole cancer risks. Therefore, the footnote is correct as is, and no changes have been made to the report based on this comment.

2. **Indoor Air Exposures**: In the Executive Summary on page ES-4, as well as, in Section 6.1.2 of this Deliverable, there is an assessment regarding the likelihood of adverse indoor air exposures based on a comparison Study Area within the BMI complex to the Western Hook – Development Sub-Area. According to Table 6-2A, groundwater at the site is shallow with depths ranging from 13 to 15 feet below ground surface (bgs). In addition, the comparison of soil properties of the Study Area to the Western Hook – Development appear much different than for other Sub-Areas. The discussion presented in the report was used to support why intrusion of radon into indoor air did not need to be evaluated for sub-areas with groundwater located at a depth of at least 15 feet bgs. Because Table 6-2A documents that the depth to groundwater at the Western Hook – Development Sub-Area can be as shallow as 13 feet bgs, please include a discussion in the uncertainty analysis to address the potential radon exposures to future indoor residents/workers.

In addition, as documented in other reviews of BMI Sub-Area documents, the side-by-side Study was not completed and not approved by the NDEP. The NDEP has required the RPs at the BMI Industrial Complex to indicate the approval status of reports referenced in NDEP Deliverables. Thus, when referencing the side-by-side Study, BRC must make reference to the fact that the study was not approved by the NDEP.

Response: The text has been revised to indicate that depth to groundwater, following placement of fill across the Site, will be greater than 15 feet throughout the site. Following fill placement, the shallowest depth to groundwater will be approximately 20 feet bgs, based on the information provided on Figure 3. Table 6-2A has been revised accordingly.

Reference that the side-by-side study was not approved by the NDEP has been included in the report in Section 6.1.2.

3. Section 1.1, last paragraph, page 1-5

Please identify in the report the appendix or attachment where the TEQ calculations described are documented.

Response: This information (on the CD in Appendix B, in the electronic datafile) has been provided in Section 1.1 of the report on page 1-5.

4. Page ES-4, first full paragraph and page 2-6, Section 2.2.2 Geology/Hydrogeology, third paragraph, third sentence

Will groundwater elevations be controlled in some manner such that the 15 ft separation between "any current or future building structure base" be held constant? If not, what contingencies are in-place should future groundwater elevations increase? Suggest further elaboration within document to clarify current conditions (which are less than 15 ft minimum separation) will not be post-redevelopment grading.

Based upon recent meetings with BRC, it was discussed that groundwater elevations are locally controlled through the line of extraction wells located on the southern edge of the study area. Some question remains regarding the length of operation for this system. Therefore, it is suggested that additional discussion be included in the report regarding this issue.

Response: See response to comment #2 above. In addition, it is BRC's understanding that line of extraction wells located on the southern edge of the study area will be in operation for an extended period of time, likely for decades. The following has been added to both the Executive Summary and Section 2.2.2: "In addition, groundwater elevations are locally controlled through a line of extraction wells located on the southern edge of the Site. These extraction wells will maintain groundwater elevations beneath the site for decades."

5. Page 2-2, Section 2.0 Site Description, first full paragraph, last three sentences

Although not explicitly stated in this section, the cap will be 10 feet thick everywhere. However, review of Figure 2 "Redevelopment grading Plan" depicts a sizeable percentage of

the redevelopment grading as "green" cut areas which appears to contradict the statement "ultimately the entire Site will be filled with clean fill to a constant elevation". Is there another "final" redevelopment grading plan not presented in the HHRA? Why not?

Does the final grade, albeit not depicted/defined in the Closure report, provide sufficient separation in all areas of the site such that there is a "safety factor/buffer" between the future residential structure base and future potentially increasing groundwater elevations? Suggest further clarification of final grades.

Based upon recent meetings with BRC, it was discussed that development grading, post-remediation, will be conducted to bring the site to uniform grade. At the development stage, only fill operations will be employed. It was understood that BRC will revise both Western Hook HHRAs to further elaborate upon this point.

Response: Language similar to that added to the Open Space sub-area report has been added in several places in this report explaining the fill placement conditions for the Site.

6. Page 2-2, Section 2.0 Site Description, second paragraph, first bullet

Note that the flood conveyance channel is not called out on Figure 2. Additionally, this feature should also be evident on Figure 6 Current Development Plan to confirm statement that this area "will not be developed for residential land use". However, Figure 2 appears to depict the feature as being filled to greater than 10 ft as part of redevelopment grading and Figure 6 suggests (although clearly defined) that this feature may be located under a future residential street. Suggest clarification of both figures and further clarification of the statement "not be developed for residential land use".

Response: All future redevelopment of the Site will occur following final grading to align the current grade with the clean fill pad already in place at the Site (see discussions added to the report in the Executive Summary and Section 1.4). This includes any storm water conveyance channel across the Site. Figure 6 depicts the development plan available at the time of this report; however, it is not necessarily the final development plan for the Site. As noted in the text, where the storm water conveyance channel is located will necessarily not be developed for residential land use. Nevertheless, the HHRA has evaluated the entire Site for residential exposures, irrespective of areas of the Site that will not be developed for residential land use.

The following has been added to the end of the first bullet "...,wherever its final placement will be across the Site." The following footnote has been added to Figure 2 "Placement of the storm water conveyance easement may change in the final development plan." The following footnote has been added to Figure 6 "The development plan shown is that available at the time of this report. The final development plan may differ from that depicted on this figure."

7. Section 3.3.3, 1st paragraph, Figure 2

Section 3.3.3 describes the consequences of fill placement in this manner: "The 10-foot layer of clean fill restricts access to Site soils beneath this depth and is an effective institutional control; therefore, samples collected from below this clean fill pad are not included in the HHRA for the Site." Figure 2 indicates that a substantial portion of the soil fill area requires filling during development to achieve a level grade, and some areas require cutting. Please clarify how this area was filled, and whether the "10-foot layer of clean fill" refers to a minimum depth of fill above existing Site soils. Please include ground-level photographs of the Site and an expanded discussion to better describe the topography of the current land surface.

Response: Language similar to that added to the Open Space sub-area report has been added in several places in this report explaining the fill placement conditions for the Site.

8. Section 3.3.3, Page 3-9, first paragraph, fourth and fifth sentence state

"Ultimately, instead of continuing to excavate arsenic-containing soils—which tends to increase in concentration with depth, indicative of a non-soil (e.g., groundwater) contamination source for arsenic across the site—BRC elected to place a 10-foot layer of clean fill over that portion of the Site with elevated arsenic levels. The 10-foot layer of clean fill restricts access to Site soils beneath this depth and is an effective institutional control; therefore, samples collected from below this clean fill pad are not included in the HHRA for the Site. Please explain the conceptualization of the groundwater contamination source and detail why it is no longer an issue.

Please also explain how the use of fill in these cases affects the overall grading plan. Figure 2 shows hashed areas, but it is not clear how these will appear when the whole site is graded. That is, how do the hashed areas interplay with the other cut and fill areas?

Response: See response to comments #2 and #4 above.

9. Page 3-22, Section 3.5 Final Confirmation Data Summary, Radionuclides subsection, first sentence

For consistency with references cited within this section, suggest revising "Table B-8" to reference "Table 3-4".

Response: The first citation to Table B-8 in this section is consistent with all other table callouts, in that only the Appendix B tables include the sample depth (not Table 3-4). Other call-outs are to Table 3-4, as appropriate.

10. Section 4.5.2, 1st paragraph, pages 4-11 and 4-12

Please clarify what is meant by "<[result value] for all others". Table E-14 shows a result of what appears to be <PQL, but the reported concentration is between the PQL and SQL. The footnote 26 does not expound on this; it only references a document to review. It is not clear if this document would be available to the public.

Response: This change has been made to the report.

11. Section 4.5.2.2, 2nd paragraph, page 4-17

This section states, "A total of 105 results were rejected due to MS/MSD recoveries." It is not clear where these results are summarized since there is no rejected data listed in Table E-11. Please clarify where these rejected results can be found. If the information cannot be found in one of the current tables, please add one summarizing rejected data for the HRA.

Response: The number of results rejected due to MS/MSD recoveries has been corrected. Note that Appendix E only includes data that are used in the HHRA. Because rejected data are excluded from the HHRA they are not included in Appendix E. Information on rejected data can be found in the appropriate DVSR, which are included in Appendix F of the report.

12. Section 5.1, paragraph 2.

The explanation for the use of a combined background dataset (shallow Qa1 McCullough, deep Qa1 McCullough, and Mixed lithology) is unclear. The BRC 2007 Background Soil summary report states "Decisions on how best to use the background soils data for future Site-to-background comparisons will be made on a case-by-case basis. Exploratory data analysis using quantitative statistical analysis and statistical plots will be conducted in all cases. Understanding the characteristics and structure of the data for each chemical in each data set is an important facet of exploratory data analysis." Please provide a complete explanation, including quantitative statistical analyses, for why the combined data from these datasets is most analogous to the site dataset. In this explanation, please address the following questions. 1) Why were the McCullough and Mixed background datasets combined when Figure 12 shows that most of Western Hook is associated with the Qa-Mixed lithology, with only limited areas comprised of Qh- McCullough? 2) Why were shallow and deep soil Site data combined for background comparisons if background datasets differentiate these media? 3) Would the results of background comparisons differ if the background comparisons were conducted by comparing Site soil samples only with the directly applicable background dataset?

Response: It is clear that the sub-area contains both Mixed and McCullough Qal lithologies, therefore, similar to the approached used for other sub-areas, the use of both Qal lithologies is warranted. BRC does not believe that a literal interpretation of the lines delineating different lithologies on Figure 12 is appropriate. And as discussed in the report, given the locations of the site versus the background samples, use of both shallow and deep background data is warranted, similar to the NDEP-approved Western Hook-Open Space report.

Given the fact that only 11 out of 32 metals were consistent with background (and therefore 21 out 32 metals failed the background comparison test and were carried forward for further analysis), it is doubtful that the results would be any different using a different background dataset. An analysis using different background datasets corroborates this conclusion, ultimately the metals carried forward for further evaluation in the HHRA would not change from those in the existing report. Therefore, there would be no changes to the risk estimates and conclusions were a different background dataset used. Regardless, BRC stands by the rationale provided in the report for the combined background dataset.

13. Section 6.1.1, 3rd paragraph, 1st, 4th, 5th and last sentences

This paragraph is copied verbatim from the Eastside Main Sub-Area and Open Space Sub-Area human health risk assessments. It is contradicted by the discussion of potential hot spots in Section 3.6 and the plots shown in Appendix I. Please revise this paragraph so that it is accurate and relevant to this risk assessment.

Response: This change has been made to the report.

14. Section 6.1.1, 3^{rd} paragraph, sentences 5-7

Section 6.1 of the risk assessment is titled *Determination of Exposure Point Concentrations*. These sentences reference the statistical background comparisons, which are presented in Section 5.1, and which have no bearing on the calculation of a 95UCL. Please delete this text from Section 6.1.1.

Response: This change has been made to the report.

15. Section 6.1.2, page 6-6, 2nd paragraph

Table J-1 should include the following wells on the southern boundary for comparison: APX-2-P1-16, APX-4-20, and APX-5-16.

Response: BRC does not include these wells in its NDEP-approved Eastside groundwater monitoring program. A query of the "BMI Complex, Common Areas, and Vicinity Database" on NDEP's BMI website only had inorganic chemicals (chlorate, nitrate, and perchlorate) in the most recent sampling event for these wells (from November 2010). The most recent sampling event for VOCs for these wells is from September 2004. Given this is over 10 years ago, BRC feels that these data are inappropriate to use for VOC screening purposes. Therefore, these wells have not been included in the comparison provided in Table J-1.

16. Table 6-11 Non-Cancer Toxicity Criteria for Soil

This table documents the lack of non-cancer toxicity criteria for 4,4-DDE. The uncertainty associated with the lack of uncertainty criteria for 4,4-DDE should be added to the uncertainty analysis with respect to potentially underestimating the total hazard indices presented in the Deliverable.

Response: Discussion regarding the lack of non-cancer toxicity criteria for 4,4-DDE has been added to Section 7.3.1.

17. Section 7.3.6, pages 7-9 and 7-10

Please reference the conceptual site model and provide a discussion of the potential asbestos sources that may be associated with the asbestos results for samples WHC6-BP06 and WHC6-BL05. The results for WHC6-BP06 (25 chrysotile fibers) and WHC6-BL05 (10 chrysotile fibers) are highly anomalous, as chrysotile detections in the remaining 131 samples ranged primarily between zero and 3 fibers with a single value as high as 5 fibers. Discuss the potential significance of the asbestos results for samples WHC6-BP06, WHC6-BL05, and nearby asbestos samples relative to the size of the residential exposure areas shown in Figure 12.

Response: Language has been added to Section 7.3.6 regarding this issue.

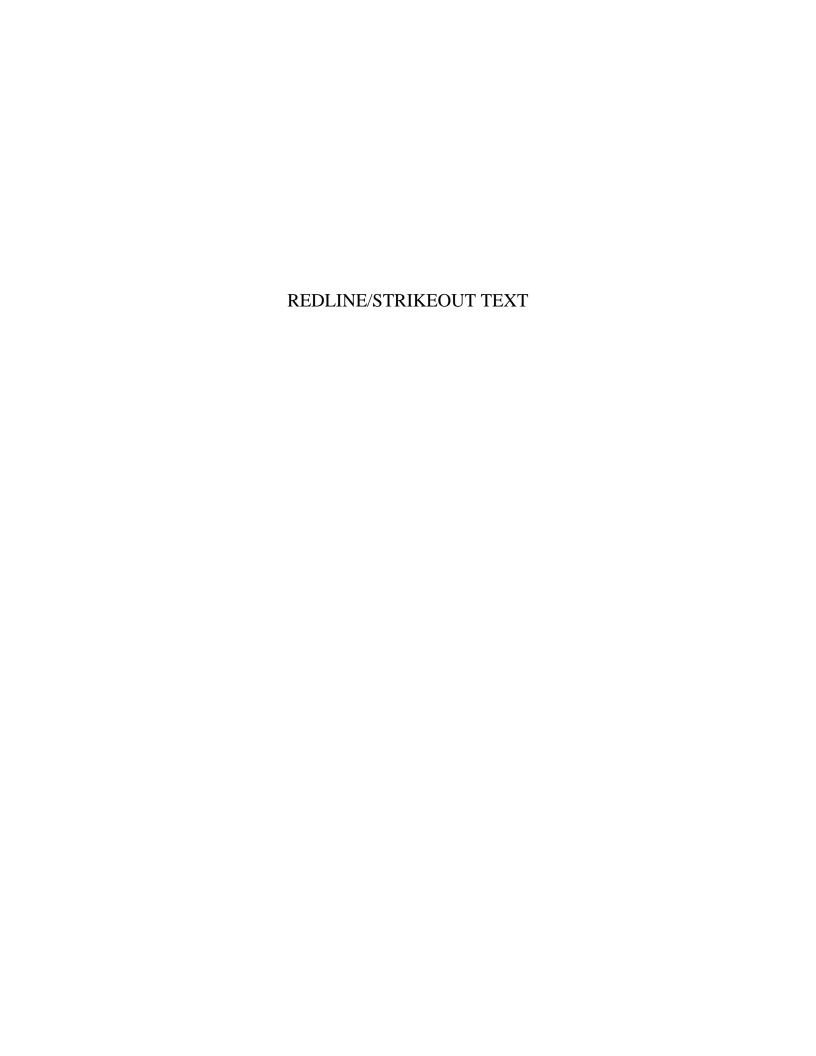
18. Appendix I

Please explain the rationale for using the shallow soil background dataset for background levels in these bubble plots when the background comparisons (discussed in Section 5.1) reportedly used a combined dataset (shallow Qa1 McCullough, deep Qa1 McCullough, and Mixed lithology).

Response: Reference to shallow background dataset has been changed to site background dataset.

19. Appendix I, Figure I-3

Please explain the rationale for showing shallow Qa1 McCullough, Qa1 McCullough, and Qa1 McCullough/Mixed soil background datasets separately for these bubble plots when the background comparisons (discussed in Section 5.1) reportedly used a combined dataset (shallow Qa1 McCullough, deep Qa1 McCullough, and Mixed lithology).


Response: Comparisons to the shallow background maximum and all background maximum were applied for arsenic as a point of reference for the range of concentrations found at the site. Use of the BCL for arsenic is not helpful given all data exceed this low level. No changes have been made to this figure (other than those identified in comment #18 as they apply to Figure I-3).

20. Appendix E Tables

- Table E-4_Rads has XX% RPD for rows 117-119. Please revise to include the actual value.
- Table E-7_GeneralChem has some entries in Column I that are highlighted green. Please provide a key to explain why these specific entries are highlighted.
- Table E-12 (rows 96-99) need to be verified. Results are qualified due to a difference of 18.4, while the limit is \leq 18.4.
- Table E-13, please verify result values and SQLs with J qualifiers. There are samples with results significantly below the SQL (e.g., WHC1-D20-0, 2,4-DDD, result = 0.0021 ug/kg, SQL = 0.31, J+ qualifier for high surrogate recovery), but the results are not listed as non-detects. Note that the J+ qualifier would not apply to non-detects. This may have something to do with a dilution factor but is not clear with the information presented in the table. There are also extremely high values in the recovery column (e.g., 1020, 128139, and 19372). Please verify there is not a typo with these values. If there is, the errors will also need to be corrected in Table 4-20 of the report.
- Most of the tables in Appendix E do not have correct page numbering and repeat 0 of xx for several pages. Please correct this issue.

Response: These changes have been made to the report.

EXECUTIVE SUMMARY

Basic Remediation Company LLC (BRC) has prepared this Human Health Risk Assessment (HHRA) and Closure Report for the Western Hook-Development Sub-Area (Site) of the Basic Management, Inc. (BMI) Common Areas (Eastside) in Clark County, Nevada. The eastern Site boundary has been modified slightly and incorporates a few sample locations from the Western Hook-Open Space sub-area, but the Site is otherwise the same as originally defined within the Eastside property. The purpose of this report is to support a request for a No Further Action Determination (NFAD) by the Nevada Division of Environmental Protection (NDEP) for the Site.

The HHRA evaluates the potential for adverse human health impacts that may occur as a result of potential exposures to residual concentrations of chemicals in soil, groundwater, and air following remediation of the Site. If the residual risks do not pose an unacceptable risk to human health and the environment, then an NFAD will be requested from the NDEP. Upon issuance of an NFAD by the NDEP, redevelopment of the Site is expected to proceed in a manner consistent with the Environmental Covenant (Instrument 201102030002818 Clark County Recorders Office) that is attached to the property. This report also describes the various remediation actions that were performed and presents the subsequent confirmation data collected from 2008 through 2014 at the Site.

BACKGROUND

Initial confirmation sampling investigations were conducted at the Site in 2008 in accordance with BRC's *Sampling and Analysis Plan* (SAP, approved by the NDEP), with follow-up sampling conducted from 2009 through 2014. The SAP addressed sampling procedures such that remaining contaminants and their potential impacts to future Site uses (as discussed in Section 1.1 of the *BRC Closure Plan* for the BMI Common Areas [BRC, Environmental Resources Management (ERM), and Daniel B. Stephens & Associates, Inc. (DBS&A) 2007¹]) can be determined. The Site investigation involved collection of soil matrix and surface flux samples from throughout the Site. The sampling performed for this purpose, as described in Section 4 of the SAP (BRC 2008), was consistent with the approach presented in Section 2 of the *Statistical Methodology Report* (NewFields 2006). The *Statistical Methodology Report* describes

¹ The *BRC Closure Plan* was finalized and approved by NDEP in 2007. Subsequent to this date, revisions were made to Section 9 of the *BRC Closure Plan* (Risk Assessment Methodology–Human Health). The latest revision to Section 9 is March 2010. No other sections of the *BRC Closure Plan* have been revised since 2007.

_

the statistical methods that are used to confirm the final soils closure at each of the Eastside subareas of the BMI Common Areas. Several subsequent rounds of soil remediation and confirmation sampling were performed. The final number of samples collected was determined to be adequate for the completion of a statistically robust dataset upon which to perform an HHRA.

CONCEPTUAL SITE MODEL

The conceptual site model for the Site considers current and potential future land-use conditions. Currently, the Site is undeveloped. Current receptors that may be exposed to Site chemicals of potential concern (COPCs) include on-site trespassers, occasional on-site workers, and off-site residents. Future receptors identified as "on-site receptors" are defined as receptors located within the current Site boundaries (Figure 1), while future "off-site receptors" are those located outside the current Site boundaries. Under the prospective redevelopment plan, the Site is proposed for use by residential redevelopment (low and medium density), parks and trails, and associated roads and parking areas. In addition, current development plans include the construction of a storm water drainageconveyance channel through the property. Therefore, the HHRA for the Site assumes unrestricted land use.

Future receptors may include on-Site residents, indoor commercial workers, outdoor maintenance workers, and construction workers. Due to the requirement for use of default reasonable maximum exposure parameters for future receptors, exposures to future receptors are greater than current exposures. Accordingly, only future receptors were quantitatively assessed in the HHRA. Potential exposures to off-Site residents were qualitatively evaluated.

The entire Site will be enhanced by restoration and redevelopment once remediation is complete. Therefore, there is no exposure to ecological receptors, because the Site will be prepared for human use in residential, commercial, or park setting. The HHRA conforms to the methodology included in Section 9 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010).

CLEAN FILL FROM NFAD SUB-AREAS PLACEMENT

As discussed in Section 3, after remediation efforts were completed at the Site, confirmation sample results indicated that arsenic was broadly present across the lower former pond portion of the Site where, in addition to the presence of generally clay soils, the depth to groundwater is very low. Ultimately, instead of continuing to excavate arsenic-containing soils—which tends to

increase in concentration with depth, indicative of a non-soil (e.g., groundwater) contamination source for arsenic across the Site—BRC, with NDEP's concurrence, elected to place a 10-foot layer of "clean fill from NFAD sub-areas" over that portion of the Site with elevated arsenic levels.

The "clean fill from NFAD sub-areas" was obtained from the shallow soils at Parcel 4A, Parcel 4B, and Mohawk sub-areas, all of which have NDEP-approved NFADs for residential land use for the requisite depth intervals. As noted in the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), "Imported soil data will not be included in risk assessment calculations. However, the chemical data for fill material from the Site may be useful for evaluating sub-areas to receive this fill (that is, imported fill that may be used at the Site will have been included in risk assessments for sub-areas where the fill was obtained)." That is, because the "clean fill from NFAD sub-areas" was already included in the HHRAs for the sub-areas from which it was obtained, the soil is acceptable as-is for use as fill material in other sub-areas, and does not need to be included in the HHRA for the sub-area in which it is placed. The NFAD's for the Parcel 4A, Parcel 4B, and Mohawk sub-areas are for unrestricted, residential, land use requirements.

The 10-foot layer of "clean fill from NFAD sub-areas" restricts access to Site soils beneath this depth and is an effective institutional control; therefore, samples collected from below this clean fill from NFAD sub-areas pad (i.e., those with elevated arsenic, as discussed above) are not included in the HHRA for the Site. Eventually clean fill will be placed over the entire Site to provide a post-grade development surface. The reason why there will be two different fill placement events is because the initial "clean fill from NFAD sub-areas" placed from late 2012 through March 2014 was for Site remedial actions alone, and therefore, is covered under BRC's Soils Insurance Policy. The additional costs associated with development of the Site, beyond simply remediating it, are not covered under BRC's Soils Insurance Policy. Thus, post-remediation, development-driven grading and any associated fill placement which will occur after remediation activities are complete are accounted for separately. Based on this, samples collected from within the Site, but outside the "clean fill from NFAD sub-areas" pads are included in the HHRA for the Site, following the rules presented in Section 3.1 and consistent with all previous closure reports for the Eastside property.

DATA REVIEW AND USABILITY EVALUATION

A data review and usability evaluation was performed to identify appropriate data for use in the HHRA. The results of the data usability evaluation indicate that the data collected from 2008 through 2014 are adequate in terms of quality for use in a risk assessment.

HUMAN HEALTH RISK ASSESSMENT

An HHRA was conducted to determine if chemical concentrations in Site soils are either: (1) representative of background conditions; or (2) do not pose an unacceptable risk to human health and the environment under current and potential future use conditions. The HHRA followed the procedures outlined in U.S. Environmental Protection Agency (USEPA) and the NDEP guidance documents. As noted above, the HHRA also conforms to the methodology presented in Section 9 of the NDEP-approved *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010) and includes all COPCs for the Site. Radionuclides were not included as COPCs because they were consistent with background conditions. Results of the HHRA are summarized below.

TABLE ES-1: SUMMARY OF HUMAN HEALTH RISK ASSESSMENT RESULTS

	Future On-Site Resident	Construc- tion Worker	Commercial (Indoor) Worker	Maintenance (Outdoor) Worker
Site Non-Cancer HI ¹	0. <mark>43</mark> 5	0. 092 1	0. 017 <u>02</u>	0. 025 <u>03</u>
Background Non-Cancer HI ³ HI ²	0. 30 <u>3</u>			
Site Cancer Risk ⁴ Risk ^{3,4}	$\frac{12}{2} \times 10^{-5}$	2×10^{-7}	67×10^{-7}	1×10^{-6}
Background Cancer Risk ³ Risk ^{2,3}	9×10^{-6}			
Asbestos Risk Risk 4,5	1×10^{-7}	1×10^{-7}	2×10^{-8}	5×10^{-8}

Note that risks were calculated for the entire Site and not evaluated for separate exposure areas.

Indoor air exposures were evaluated on a sample-by-sample basis, per NDEP requirements, using surface flux data measurements. Because of this, the minimum and maximum surface flux risks and hazard index estimates are summed with those for soil to provide a range of cumulative

^{1 -} HI = hazard index; the value presented is the total cumulative non-cancer HI.

² Target organ specific non cancer HIs are discussed in the uncertainty section of the report. They are included to provide informed risk management decisions. Target organ specific non cancer HIs were calculated for future on Site residents only.

^{32 –} Background risks were calculated for future on-Site residents only.

^{43 –} Cancer risk is the maximum theoretical upper-bound incremental lifetime cancer risk.

^{4 –} Consistent with the NDEP-approved BRC Closure Plan (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), chemical and asbestos risks are calculated separately.

^{5 –} Asbestos risk refers to the sum of cancer risks for mesothelioma and lung cancer. Asbestos risks represent the cumulative chrysotile and cumulative amphibole asbestos risks for chrysotile and amphibole fibers, respectively. Risks shown are the higher of the risks for chrysotile or amphibole fibers. Asbestos risks are not included in Site Cancer Risk (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010).

risks and hazard indices. The maximum cumulative risks and hazard indices are shown above. Primary risk contributors are discussed in the main body of the report.

In addition, BRC has performed a more detailed Site-specific evaluation of vapor intrusion potential at a comparison study area within the Eastside property. Given the results of this study, and based on the results of the tiered approach followed from USEPA's (2002d) Vapor Intrusion Guidance, it has been demonstrated that there is no likelihood of adverse vapor intrusion into any indoor spaces that may be constructed in the Western Hook-Development Sub-Area.

The NDEP has recently determined that risk assessments for Eastside property sub-areas do not need to evaluate the pathway of radon migration from groundwater to indoor air for sub-areas with a separation distance of at least 15 feet between any current or future building structure base and the high water table (letter dated November 9, 2010, from Greg Lovato, NDEP, to Mark Paris, BRC). Therefore, given the depth to groundwater atacross the Site is approximately will be greater than 15 feet below ground surface (bgs), and the Site will be largely covered with 1 following placement of fill material, the intrusion of radon into indoor air is not evaluated in the HHRA. In addition, groundwater elevations are locally controlled through a line of extraction wells located on the southern edge of the Site. These extraction wells will maintain groundwater elevations beneath the site for decades.

EVALUATION OF UNCERTAINTIES

Risk estimates are values that have uncertainties associated with them. These uncertainties, which arise at every step of a risk assessment, are evaluated in the report to provide an indication of the uncertainty associated with a risk estimate. Uncertainties from different sources are compounded in the HHRA. Because the uncertainties are compounded and because the exposure assumptions and toxicity criteria used are considered conservative, the risk estimates calculated in this HHRA are likely to overestimate rather than underestimate potential risks. A detailed discussion of these uncertainties is provided in the Uncertainty Analysis (Section 7) of the report.

POTENTIAL IMPACTS TO GROUNDWATER

As noted in a letter dated September 17, 2012, from Greg Lovato, NDEP, to Mark Paris, BRC (2012b), HHRA reports for the project no longer evaluate the potential leaching impacts to groundwater for any sub-area. This issue will be addressed in the Eastside groundwater remedial alternatives study. As provided for in Section XVII of the Phase III Administrative Order on Consent, NFADs issued for sub-areas are subject to continuing Work to address Water Pollution

Conditions, Operation and Maintenance, maintenance of existing Institutional Controls, and/or Efficacy Review.

SUMMARY

Based on the results of the various investigations, the HHRA, and the conclusions presented in this report, exposures to residual levels of chemicals in soil at the Western Hook-Development Sub-Area should not result in adverse health effects to any of the future receptors evaluated. As a result, an NFAD for the Western Hook-Development Sub-Area is warranted, given the following provisos:

- 1. The NFAD does not pertain to groundwater. BRC retains the responsibility to address any environmental impacts to groundwater beneath the Site, pursuant to the *Settlement Agreement and Administrative Order on Consent, BMI Common Areas, Phase 3* (NDEP 2006). As such, additional investigation may be necessary on the Site as it relates to BRC's responsibilities for groundwater. BRC must be granted access to the Site for activities such as well or soil boring installations or other investigative or remedial efforts.
- 2. The soils beneath 10 feet bgs of the Recorded Environmental Covenant (Instrument 201102030002818 Clark County Recorders Office) redevelopment grading plan for the Site have not been evaluated to date. Accordingly, the NFAD does not pertain to soil below the top 10 feet of the redevelopment grading plan for the Site- (prior to placement of the "clean fill from NFAD sub-areas"). The property owner should note that these soils should not be disturbed without additional investigation or evaluation. BRC understands that this provision will be reflected in an Environmental Covenant for the Site.
- 3. The property owner should ensure that activities at the Site do not exacerbate existing, subsurface, environmental conditions. The redevelopment grading plan (Figure 2) that has been prepared for redevelopment of the Site (note that the grading plan will be revised following final placement of fill across the Site) has been incorporated as an Environmental Covenant for the Site to control subsurface excavation.
- 4. Site use is otherwise suitable for purposes of residential, recreational, civic, commercial, or industrial use.

1.0 INTRODUCTION

Basic Remediation Company LLC (BRC) has prepared this Human Health Risk Assessment (HHRA) and Closure Report for the Western Hook-Development Sub-Area (Site; Figure 1) of the Basic Management, Inc. (BMI) Common Areas (Eastside) in Clark County, Nevada. The eastern Site boundary has been modified slightly and incorporates a few sample locations from the Western Hook-Open Space sub-area, but the Site is otherwise the same as originally defined within the Eastside property. The purpose of this report is to support a request for a No Further Action Determination (NFAD) by the Nevada Division of Environmental Protection (NDEP) for the Site.

As presented in Section XVII.1.a. of the Settlement Agreement and Administrative Order on Consent: BMI Common Areas, BMI Common Areas, Phase 3 (AOC3; NDEP 2006), the NDEP acknowledges that discrete Eastside areas may be issued an NFAD as remedial actions are completed for selected environmental media. Any such NFAD request shall identify the remedial actions and other work completed at the property in question, the results of such remedial actions and other work, the proposed land use(s), and the reasons supporting the eligibility of the property for an NFAD. This report provides this information for the Site.

BRC recognizes that the following conditions will be included in a Recorded Environmental Covenant (Instrument 201102030002818 Clark County Recorders Office) as a condition to receiving an NFAD from the NDEP:

- 1. The NFAD does not pertain to groundwater. BRC retains the responsibility to address any environmental impacts to groundwater beneath the Site, pursuant to the AOC3. As such, additional investigation may be necessary on the Site as it relates to BRC's responsibilities for groundwater. BRC must be granted access to the Site for activities such as well or soil boring installations or other investigative or remedial efforts.
- 2. The soils beneath 10 feet below ground surface (bgs) of the redevelopment grading plan for the Site have not been evaluated to date. Accordingly, the NFAD does not pertain to soil below the top 10 feet of the redevelopment grading plan for the Site, (prior to placement of the "clean fill from NFAD sub-areas"). The property owner should note that these soils should not be disturbed without additional investigation or evaluation.
- 3. The property owner should ensure that activities at the Site do not exacerbate existing, subsurface, environmental conditions. The grading plan (Figure 2), which has been prepared

for redevelopment of the Site, (note that the grading plan will be revised following final placement of fill across the Site), has been incorporated as an Environmental Covenant for the Site to control subsurface excavation.

4. Site use is otherwise suitable for purposes of residential, recreational, civic, commercial, or industrial use.

As stated in Section VI of the NDEP's *Record of Decision, Remediation of Soils and Sediments in the Upper and Lower Ponds at the BMI Complex* (ROD; NDEP 2001), cleanup of the Site proceeded under Alternative 4B (soils transferred from the Site to a dedicated Corrective Action Management Unit [CAMU] within the BMI Complex),² as identified and described in Section 9 of the *Remedial Alternatives Study for Soils and Sediments in the Upper and Lower Ponds at the BMI Complex* (RAS; Environmental Resources Management [ERM] 2000a) for the Eastside. The RAS was submitted to the NDEP in March 2000. The RAS is documented via issuance of the ROD, dated November 2, 2001, by the NDEP.

This report is consistent in format with prior closure reports for other study areas, and incorporates comments received from the NDEP on those reports. Appendix A has been reserved for potential future NDEP comments on this report and BRC's response to these comments. This revision of the report, Revision 1, incorporates comments received from the NDEP on July 17, 2015 on Revision 0 of the report (dated December 2014). The NDEP comments and BRC's response to comments are included in Appendix A. Also included in Appendix A is a redline/strikeout version of the text showing the revisions from the December 2014 versions of the report. An electronic version of the entire report, as well as original format files (MS Word and MS Excel) of all text, tables, modeling, and risk calculations are included on the report compact disc (CD) in Appendix B.

1.1 PURPOSE OF THE RISK ASSESSMENT

The purpose of the HHRA is to evaluate the potential for adverse human health impacts that may occur as a result of potential exposures to residual concentrations of chemicals in soil, groundwater, and air following remediation, and to assess whether any additional remedial actions are necessary in order to request an NFAD from the NDEP to allow redevelopment of the

² Under this alternative, the Site could be developed in accordance with the current development plan and the recorded Environmental Covenant for the Site that assures appropriate management of soils beneath 10 feet bgs (post-graded), should they need to be disturbed in the future.

_

Site to proceed. The results of the risk assessment provide risk managers an understanding of the potential human health risks associated with background conditions and additional risks associated with past Site activities.³ Pending issuance of an NFAD by the NDEP, redevelopment of the Site is expected to proceed in a manner consistent with the Recorded Environmental Covenant attached to the property.

Initial post-remediation soil, leachate, and flux chamber sampling was conducted at the Site in accordance with the Sampling and Analysis Plan for the Western Hook Development Sub-Area (SAP; BRC 2008; approved by the NDEP on November 19, 2009). When the sampling conducted in accordance with the SAP was performed, additional areas within the Site that warranted remediation were identified, as discussed in Section 3.3. These areas have been addressed.

The overall goal of the risk assessment presented in this report, therefore, is to confirm that residual chemical concentrations are either: (1) representative of background conditions; or (2) do not pose an unacceptable risk to human health and the environment under current and potential future land use conditions. Findings of the HHRA are intended to support the Site closure process.

For human health protection, BRC's goal is to remediate Site soils such that they are suitable for residential uses, assuring health-protective conditions at one-eighth acre exposure areas. The one-eighth acre area corresponds to the size of a typical residential lot size, as presented in the U.S. Environmental Protection Agency (USEPA) guidance (1989) and is applicable to future Site conditions. It should be noted that sampling has not occurred on every one-eighth acre exposure area. Rather, the statistical protocol presented in the NDEP-approved BRC Closure Plan (BRC, ERM, and Daniel B. Stephens & Associates, Inc. [DBS&A] 2007) and Statistical Methodology Report (NewFields 2006) was followed, which allows estimates to be applied to one-eighth acre exposure areas based on similar populations across the Site. The decision can hence be made

³ The HHRA presents total Site-related risk. Background risk is the risk to which a population is normally exposed, and does not include risks from Site contamination. Total Site-related risk includes both incremental (Site only) and background risks. Because naturally occurring constituents are typically included in a risk assessment (i.e., metals and radionuclides), the total Site-related risk will have some element of total risk included. However, because risks are only calculated for a subset of metal and radionuclides, a 'total' risk is not calculated. In instances where the total Site-related risk is calculated to exceed a cancer risk of 10⁻⁵ (typically when radionuclides and/or arsenic are included in the risk assessment calculations) or a non-cancer hazard index greater than 1.0, then a background risk, only including those naturally occurring constituents included in the risk assessment, will also be calculated to provide context to the risk assessment results.

simultaneously for many one-eighth acre exposure areas based on the data and documentation that the exposure areas can be aggregated. This can result in aggregation across the entire Site if concentration distributions appear to be relatively homogeneous and representative of a single population, or within separate sub-areas of the Site if those sub-areas exhibit different distributions. This assumption was evaluated prior to performing the risk assessment, and was found to be valid for the Site (Section 6.1.1).

Project-specific risk level and remediation goals consistent with USEPA precedents and guidelines for residential uses have been established, as summarized below. It should be noted that: (1) all comparisons to risk or chemical-specific goals are made on an exposure area basis consistent with likely exposure assumptions; and (2) these comparisons are demonstrated through the use of spatial statistical analysis to apply to each one-eighth acre exposure area.

Human health risks are represented by estimated theoretical upper-bound cancer risks and non-cancer hazards derived in accordance with standard USEPA and NDEP methods. If the carcinogenic risks or non-cancer hazards exceed USEPA acceptable levels or NDEP risk goals, then remedial action alternatives must be considered. The acceptable risk levels defined by USEPA for the protection of human health, as identified in Section 9.1.1 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), are:

- Post-NFAD chemical and radionuclide concentrations in Site soils are targeted to have an associated residual, cumulative theoretical upper-bound incremental lifetime cancer risk (ILCR) level point of departure of 10⁻⁶. This is the target risk goal for the project. For cases where the NDEP identifies this goal to be unfeasible, it is BRC's understanding that the NDEP will re-evaluate the goal in accordance with USEPA (1991a) guidance. In no case will the residual, cumulative theoretical upper-bound carcinogenic risk levels exceed those allowed per USEPA guidance.
- Post-NFAD chemical concentrations in Site soils are targeted to have an associated cumulative, non-carcinogenic hazard index (HI) of 1.0 or less. If the screening HI is determined to be greater than 1.0, target organ-specific HIs will be calculated for primary and secondary organs. The final risk goal will be to achieve target organ-specific non-carcinogenic HIs of 1.0 or less.
- Where background levels exceed risk level goals or chemical-specific remediation goals, metal concentrations and radionuclide activities in Site soils are targeted to have risks no greater than those associated with background conditions.

In addition to the risk goals discussed above, chemical-specific remediation goals have been established for lead and dioxins/furans. The target goal for lead is 400 milligrams per kilogram (mg/kg) for residential land use, which is a residential soil concentration identified by USEPA (based on the Integrated Exposure Uptake Biokinetic [IEUBK] model) as protective of any exposure scenario (USEPA 2004a).

For dioxins/furans and polychlorinated biphenyl (PCB) congeners, the USEPA toxicity equivalency (TEQ) procedure, developed to describe the cumulative toxicity of these compounds, is used. This procedure involves assigning individual toxicity equivalency factors (TEFs) to the 2,3,7,8 substituted dioxin/furan and PCB congeners. TEFs are estimates of the toxicity of dioxin-like compounds relative to the toxicity of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD), which is assigned a TEF of 1.0. Calculating the TEQ of a mixture involves multiplying the concentration of individual congeners by their respective TEF. One-half the detection limit is used for calculating the TEQ for individual congeners that are non-detect in a particular sample. The sum of the TEQ concentrations for the individual congeners is the TCDD TEQ concentration for the mixture. TEFs from USEPA (2010a) are used. The calculation of the TCDD TEQs are included in the data file on the report CD in Appendix B. Consistent with the Agency for Toxic Substances and Disease Registry (ATSDR) *Update to the ATSDR Policy Guideline for Dioxins and Dioxin-Like Compounds in Residential Soil* (2008a), the target goal for residential land use is the ATSDR screening value and the NDEP residential Basic Comparison Level (BCL; NDEP 2013) of 50 parts per trillion (ppt) TCDD TEQ.

1.2 METHODOLOGY AND REGULATORY GUIDANCE

This risk assessment follows procedures outlined in USEPA *Risk Assessment Guidance for Superfund: Volume I—Human Health Evaluation Manual* (RAGS; USEPA 1989), and conforms to Section 9 (Risk Assessment Methodology–Human Health) of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010) which was approved by the NDEP on July 16, 2007. Various NDEP guidance documents are also relied on for the risk assessment (as referenced throughout this report). In addition, the NDEP's BCLs (NDEP 2013) are used for comparison of Site characterization data to provide for an initial screening evaluation, assist in the evaluation of data usability, and aid in determination of extent of contamination. A full list of

_

⁴ Consistent with the letter dated November 9, 2010, from Greg Lovato, NDEP, to Mark Paris, BRC. BRC will revise the *BRC Closure Plan* accordingly.

guidance documents consulted is provided in Section 6 and the References section at the end of this document.

This report also relies upon methodology and information provided in the NDEP-approved *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010). The main text of the *BRC Closure Plan* provides discussions of the following elements relative to the BMI Common Areas project as a whole:

- The project history, including cleanup goals and project objective (Closure Plan Sections 1 and 2);
- The list of Site-related chemicals (SRCs; Closure Plan Section 3);
- The conceptual site model (CSM) addressing potential contaminant sources, the nature and extent of chemical of potential concern (COPC) occurrence, and potential exposure pathways (Closure Plan Section 4; a CSM discussion specific to the Site is provided in Section 5 of this report);
- Data verification and validation procedures (Closure Plan Section 5);
- The procedures used to evaluate the usability and adequacy of data for use in the risk assessment (Closure Plan Sections 6 and 9 [2010 revision]);
- The data quality objectives (DQOs; Closure Plan Section 7⁵);
- The RAS process for the Site (Closure Plan Section 8);
- Risk assessment procedures that will be used for Site closure (Closure Plan Section 9 for human health [2010 revision] and Section 10 for ecological); and
- Data quality assessment (Closure Plan Section 5).

As discussed in this report, the risk assessment for the Site is conducted primarily using the data collected during implementation of the Site-specific SAP and subsequent confirmation sampling

⁵ As noted in the *BRC Closure Plan*, per discussions with the NDEP, the DQO process is addressed, on an Eastside sub-area by sub-area basis (for soils), in the respective sub-area SAPs developed for each sub-area relating to the soils cleanup. Therefore, the DQO process for the Site is presented in the SAP and is not repeated here. This DQO process was incorporated in the data usability/data adequacy evaluation for the Site data used in the risk assessment.

.

events, which have been designed to produce data representative of the conditions to which current (non-remediation workers) and future users would be exposed.

1.3 REPORT ORGANIZATION

The closure report is composed of 11 sections, as outlined below:

- This section (Section 1) presents the purpose of the risk assessment and the methods used in this assessment.
- Section 2 presents Site background, the environmental setting for the Site, and a summary of
 previous investigations. Section 2 also presents the CSM for the risk assessment. This
 includes identification of potentially exposed populations, and the potential pathways of
 human exposure.
- Section 3 presents the confirmation data collected from 2008 through 2014, as well as discussions on the various remedial actions conducted at the Site.
- Section 4 presents data evaluation procedures, including statistical analysis of background concentrations, and data usability and quality.
- Section 5 presents the selection of COPCs recommended for further assessment, including comparisons of Site metals and radionuclides to background conditions.
- Section 6 presents the HHRA. This includes relevant statistical analyses, determination of representative exposure point concentrations, applicable fate and transport modeling, exposure assessment, toxicity assessment, and risk characterization.
- In Section 7, the uncertainties associated with the risk assessment are discussed.
- A summary of the risk assessment results is provided in Section 8.
- The data quality assessment for the risk assessment is presented in Section 9.
- A summary of the HHRA and Closure Report is provided in Section 10; and
- A list of references is provided in Section 11.

Smaller tables with supporting information are inserted in the text at the place of reference. The text is followed by the figures, the larger tables, and appendices.

1.4 CLEAN FILL FROM NFAD SUB-AREAS PLACEMENT

As discussed in Section 3, after remediation efforts were completed at the Site, confirmation sample results indicated that arsenic was broadly present across the lower former pond portion of the Site where, in addition to the presence of generally clay soils, the depth to groundwater is very low. Ultimately, instead of continuing to excavate arsenic-containing soils—which tends to increase in concentration with depth, indicative of a non-soil (e.g., groundwater) contamination source for arsenic across the Site—BRC, with NDEP's concurrence, elected to place a 10-foot layer of "clean fill from NFAD sub-areas" over that portion of the Site with elevated arsenic levels.

The "clean fill from NFAD sub-areas" was obtained from the shallow soils at Parcel 4A, Parcel 4B, and Mohawk sub-areas, all of which have NDEP-approved NFADs for residential land use for the requisite depth intervals. As noted in the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), "Imported soil data will not be included in risk assessment calculations. However, the chemical data for fill material from the Site may be useful for evaluating sub-areas to receive this fill (that is, imported fill that may be used at the Site will have been included in risk assessments for sub-areas where the fill was obtained)." That is, because the "clean fill from NFAD sub-areas" was already included in the HHRAs for the sub-areas from which it was obtained, the soil is acceptable as-is for use as fill material in other sub-areas, and does not need to be included in the HHRA for the sub-area in which it is placed. The NFAD's for the Parcel 4A, Parcel 4B, and Mohawk sub-areas are for unrestricted, residential, land use requirements.

The 10-foot layer of "clean fill from NFAD sub-areas" restricts access to Site soils beneath this depth and is an effective institutional control; therefore, samples collected from below this clean fill from NFAD sub-areas pad (i.e., those with elevated arsenic, as discussed above) are not included in the HHRA for the Site. Eventually clean fill will be placed over the entire Site to provide a post-grade development surface. The reason why there will be two different fill placement events is because the initial "clean fill from NFAD sub-areas" placed from late 2012 through March 2014 was for Site remedial actions alone, and therefore, is covered under BRC's Soils Insurance Policy. The additional costs associated with development of the Site, beyond simply remediating it, are not covered under BRC's Soils Insurance Policy. Thus, post-remediation, development-driven grading and any associated fill placement which will occur after remediation activities are complete are accounted for separately. Based on this, samples collected from within the Site, but outside the "clean fill from NFAD sub-areas" pads are included in the HHRA for the Site, following the rules presented in Section 3.1 and consistent with all previous closure reports for the Eastside property.

2.0 SITE DESCRIPTION

This section presents a description of the Site, including Site background and history, the environmental setting, and a summary of previous investigations. The area known as the "BMI Common Areas," of which the Western Hook-Development Sub-Area is a part, is delineated in Appendix A of the AOC3. The subject Site is near the BMI Industrial Complex, in Clark County, Nevada, approximately 13 miles southeast of Las Vegas, within the City of Henderson corporate limits, northeast of the City Hall (Figure 1). The eastern Site boundary has been modified slightly, but the Site is otherwise the same as originally defined within the Eastside property in Section 1 and Figure 1-2 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010).

The Site is an L-shaped parcel bounded by Pabco Road to the west, and is surrounded on all sides, but one (the east), by lands outside the BMI Common Areas boundaries, as follows:

North: From west to east: Silver Bowl Park (baseball fields) and Clark County Wetlands Park;

South: From west to east, an industrial park and the City of Henderson Bird Viewing Preserve;

East: From north to south, the Western Hook-Open Space sub-area and the City of Henderson Bird Viewing Preserve; and

West The Sam Boyd Stadium (formerly known as the Silver Bowl) located approximately 750 feet away to the northwest, and a residential community immediately adjacent to the southwest.

The closure process for the Western Hook-Open Space sub-area is ongoing. The Site (Figure 1) is approximately 242 acres in size, and is gently sloping to the northeast. The Site historically contained wastewater effluent evaporation/infiltration ponds and associated conveyance ditches⁶ that were once associated with historical conveyance and/or disposal of operations effluent and

⁶ The Closure Plan and historical documents associated with the BMI Common Areas distinguish two primary sets of ponds in the Common Areas that are associated with historical conveyance and/or disposal operations: the "Upper Ponds" and the "Lower Ponds". The pond row labels shown on Figure 1 distinguish between the two; the 10 rows of Lower Ponds are labeled with an "L" followed by a letter (A through J). The Lower Ponds are located further north on the BMI Common Areas, within the Western Hook-Development and Western Hook-Open Space sub-areas, and were previously located within the footprint of the City of Henderson Water Reclamation Facility (WRF) prior to its construction.

_

cooling water by companies operating at the BMI Complex. Portions of two conveyance ditches (the Western Ditch and the Northwestern Ditch; Figure 1) traverse the southernmost portion of Site. In addition, a portion of the former Alpha Ditch (a third conveyance ditch) transects the site.

The former evaporation/infiltration ponds were located across most of the eastern portion of the Site (approximately 63 acres, representing approximately 26 percent of the Site). The original wastewater effluent evaporation/infiltration ponds were unlined. Until 2010, the individual ponds (varying in size from approximately 3 to 13 acres) were distinct and defined by 4- to 6-feet tall berms along the north, east, and west sides. In 2010, certain berms and surficial materials were removed during remediation activities from the former pond areas (see Section 3.3). From late 2012 through March 2014, "clean fill from NFAD sub-areas" excavated from the Mohawk, Parcel 4A, and Parcel 4B sub-areas was placed on a 10-foot layer over portions of the Site, including many of the former pond locations. As a result, several of the ponds are no longer discernable (see Section 3.3.3 for further discussion on this fill material). The pad of "clean fill from NFAD sub-areas" covers an area of approximately 33.8 acres (Figure 2). BRC plans to cover an additional 22.4 acres with a pad of clean fill to eliminate higher level concentrations of certain substances (in particular, arsenic and radionuclides) found at depth. Ultimately the entire Site will be filled with clean fill to a constant elevation.

In addition to the historical effluent conveyance and discharge features noted above, the following features were also present on the Site:

- A floodstorm water conveyance channel traverses the western portion of the Site (Figure 2). This feature is an engineered concrete channel except at the discharge point furthest to the north; prior to the 1990's this channel appears to have been a natural, unlined channel. Note that although this area is included in the Site dataset, it will not be developed for residential land use, wherever its final placement will be across the Site.
- A remediation system has been constructed by American Pacific Corporation to address nearby, off-site groundwater, and has been in operation for more than 8 years (see Figure 3). This system involves extraction of groundwater flowing onto the Site from the south and west, *ex situ* treatment, and reinjection north of the Site. These extraction wells are scheduled to operate for decades.

Approximately 179 acres of the Site that did not contain ponds is vacant land, for which there are no known historical uses other than the storm water control and remediation activities noted

above. The Site was undeveloped desert land until the construction of the Lower Ponds and conveyance ditches, into which various plant wastewaters were discharged from 1942 through 1976. Since 1976, the former pond and ditch areas have been vacant and unused.

2.1 SITE HISTORY

Approximately 1,200 of the more than 2,200 acres comprising the BMI Common Areas contained a network of ditches, canals, flumes, and unlined ponds that were used for the disposal of aqueous waste from the original magnesium plant and, later, other industrial plants and the adjacent municipality. Effluent wastes discharged to the ponds of the BMI Common Areas from the war-time Basic Magnesium operations can be characterized as salts from the production process (chloride salts of a variety of metals and radionuclides), organic solids, and inorganic solids and dissolved components of various types. Chlorinated organic chemicals were included in the effluent. Notable processes that contributed to the waste stream from the plants that succeeded Basic Magnesium included effluents from the manufacture of the following types of products: chlorine and sodium hydroxide (caustic soda); a variety of chlorate and perchlorate compounds, and halogenated boron compounds; manganese dioxide; titanium and related compounds; and a variety of pesticides. Among these wastes were salts, organic and inorganic chemicals, and metals. A more detailed description of these processes and their effluents is found in Sections 2.2 and 2.3 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010).

2.2 ENVIRONMENTAL SETTING

The BMI Common Areas and Complex are located in Clark County, Nevada, and are situated approximately 2 miles west of the River Mountains and 1 mile north of the McCullough Range. The local surface topography slopes in a westerly to northwesterly direction from the River Mountains and in a northerly to northeasterly direction from the McCullough Range. Near the BMI Common Areas and Complex, the surface topography slopes north toward the Las Vegas Wash. The River Mountains and McCullough Range consist of volcanic rocks: dacite in the River Mountains and andesite in the McCullough Range (Umhoefer et al. 2010).

The Site (Figure 3) comprises 179 acres of undeveloped land with little surface relief that is gently sloping to the northeast, and 63 acres of land previously used for the former effluent ponds (a total of 242 acres). The Site is currently undeveloped, except for the former conveyance ditch segments, storm water channel, and remediation features noted above. The native soils are

2.2.1 Site Location, Climate, and Physical Attributes

The Site is in the northeastern quarter of Section 5, Township 22 South, Range 63 East Mount Diablo Base and Meridian. The Site is in the Las Vegas Valley, a broad alluvial valley that occupies a structural basin in the Basin and Range Physiographic Province. The valley is about 1,550 square miles in size, and the structural and topographical axis is aligned approximately northwest to southeast. The eastern edge of the valley is about 5 miles west of Lake Mead, a major multipurpose artificial reservoir on the Colorado River. The Las Vegas Valley is surrounded mostly by mountains, ranging from 2,000 to 10,000 feet higher than the valley floor. The valley floor ranges in elevation from about 3,000 feet above mean sea level, in the west at the mountain front, to 1,500 feet above mean sea level, in the east at the Wash (Clark County GIS Management Office 2003). The surrounding mountain ranges are:

- Sheep Range to the north;
- Frenchman and Sunrise Mountains to the northeast;
- River Range to the east;
- McCullough Range to the south; and
- Spring Mountains and Sierra Nevada mountain range of California to the west.

The Site is within the City of Henderson corporate limits, northeast of City Hall, and approximately 13 miles southeast of the city of Las Vegas (Figure 1). A residential development is present immediately to the west of the Site. Two recreational features are present in the immediate Site vicinity: the Sam Boyd Stadium is located approximately 750 feet away to the northwest; and two baseball/softball fields are adjacent to the northwest corner. An industrial area is located immediately adjacent to the south of the Site. Open space (Wetlands Park) is located immediately adjacent to the north of the Site, followed by the Las Vegas Wash, which is within 1,200 feet of the Site. The City of Henderson Bird Viewing Preserve, a wetlands area comprising 83 acres of individual ponds, is located immediately adjacent to the Site, to the south and east.

The Site is situated in a natural desert area, where evaporation/evapotranspiration rates are high, due to high temperatures, high winds, and low humidity. Precipitation in this area averages

approximately 0.4 inch per month or 4.8 inches per year (Western Regional Climate Center 2008). As discussed in the *Revised Technical Memorandum: Sources/Sinks and Input Parameters for Groundwater Flow Model* (DBS&A 2009), in arid settings, recharge from precipitation is typically a small percentage of annual precipitation. Based on values from Scanlon et al. (2006), recharge as a percentage of annual precipitation for the Site area was estimated to be between 0.1 and 5 percent. Recharge is thus estimated to be between 0.0048 and 0.24 inch per year.

According to the Southern Nevada Water Authority's document entitled *Extent and Potential Use of the Shallow Aquifer and Wash Flow in Las Vegas Valley, Nevada* (1996), annual potential evapotranspiration exceeds 86 inches. Pan evaporation data measured from 1985 through 1988 were as high as 17 inches per month; the months with the highest evaporation (May through September) coincide with those months with the highest intensity of rainfall (Law Engineering 1993). However, evaporation and evapotranspiration are functions of vegetation type and density and other Site-specific conditions (especially anthropogenic conditions). Therefore, Site-specific evaporation/evapotranspiration may vary from these regional conditions. These climatic parameters may be appreciably influenced by future redevelopment (e.g., vegetation removal, pavement extent, and construction).

Wind flow patterns are fairly consistent from one month to another, but vary slightly between measurement stations (McCarran International Airport and a station within the BMI Complex adjacent to the employee parking lot at the Titanium Metals Corporation [TIMET] plant entrance) adjacent to the BRC haul road. For the McCarran station, the prevailing wind direction is from the southwest. The TIMET station also showed a predominant wind direction from the southwest, with southeasterly components. Wind velocity at both locations tends to be the highest in the spring and early summer months (April through July).

2.2.2 Geology/Hydrology

As is common throughout the Las Vegas Valley, Site soils are primarily sand and gravel, with occasional cobbles. This is consistent with the depositional environment of an alluvial fan. The Site is located on alluvial fan sediments, with a surface that slopes to the north-northeast at a gradient of approximately 0.02 foot per foot towards the Las Vegas Wash. Regional drainage is generally to the east.

The uppermost strata beneath the Site consist primarily of alluvial sands and gravels derived from the volcanic source rocks in the McCullough Range, located southwest of the Site. These

uppermost alluvial sediments were deposited within the last 2 million years and are of Quaternary Age, and are thus mapped and referred to as the Quaternary alluvium (Qal; Carlsen et al. 1991). The Qal is typically on the order of 50-feet thick at the Site with variations due, in part, to the non-uniform contact between the Qal and the underlying Tertiary Muddy Creek Formation (TMCf).

The TMCf underlies the Qal. The Muddy Creek formation, of which the TMCf is the uppermost part, is a lacustrine deposition from the Tertiary Age, and it underlies much of the Las Vegas Valley. It is more than 2,000-feet thick in places. The lithology of the TMCf underlying the Site is typically fine-grained (sandy silt and clayey silt), although layers with increased sand content are sporadically encountered. These TMCf materials have typically low permeability, with hydraulic conductivities on the order of 10⁻⁶ to10⁻⁸ centimeters per second (Weston 1993). The TMCf in the vicinity of the Site was encountered to the maximum explored depth of 430 feet bgs. Lithologic cross sections are shown on Figures 4 and 5.

Two distinct, laterally continuous water-bearing zones are present within the upper 400 feet of the Site subsurface: (1) an upper, unconfined water-bearing zone primarily within the Qal referred to herein as the alluvial aquifer (Aa); and (2) a deep, confined water-bearing zone that occurs in a sandier depth interval within the silts of the deeper TMCf. Both of these water-bearing zones contain high concentrations of total dissolved solids. Between these two distinct water-bearing zones, a series of saturated sand stringers was sporadically and unpredictably encountered during drilling.

The Aa is an unconfined, shallower, water-bearing zone that occurs across the Site. For the most part, water in the Aa occurs in the Qal. The water surface in the Aa generally follows topography, with the water surface sloping towards the Las Vegas Wash. The depth from the surface to first groundwater at the Site ranges from approximately 13 to 16 will be greater than 15 feet bgs following placement of fill material (Figure 3). In addition, groundwater elevations are locally controlled through a line of extraction wells located on the southern edge of the Site. These extraction wells will maintain groundwater elevations beneath the site for decades. Wells completed in the Aa are not highly productive, with sustainable flows typically less than 5 gallons per minute.

2.2.3 Surface Water

Surface water flow occurs for brief periods of time during periodic precipitation events. The Las Vegas Wash collects storm water, shallow groundwater, urban runoff, and treated municipal

wastewater. It is the receiving water body for all major Las Vegas area discharges. In dry weather, flow in the Wash comprises mainly treated effluent from the Clark County Water Reclamation District City of North Las Vegas, City of Las Vegas Water Pollution Control Facility, and the City of Henderson WRF. The City of Henderson contributes smaller amounts. Aggregate flow is in excess of 160 million gallons per day (Las Vegas Wash Coordination Committee 2000). Discharge from these sources is sufficient to maintain surface flows in the Wash throughout the year. In winter, low-intensity rains fall over broad areas; in the spring and fall, thunderstorms provide short periods of high-intensity rainfall. The latter creates high run-off conditions. Run-off is also affected by human development, which tends to (1) create conduits for surface water flow, and (2) decrease infiltration into native soils by covering them with manmade structures or materials (e.g., pavement).

Under current conditions, it is possible that ephemeral surface waters generated within the Site could migrate via overland transport to the Las Vegas Wash from the Site, particularly by means of the engineered storm water channel and the former Alpha Ditch. After redevelopment, when the ditches have been removed, there will be a lower likelihood that ephemeral surface waters generated within the Site could migrate via overland transport to the Las Vegas Wash from the Site because of the proposed design of the future storm water facilities and the regional requirement that nuisance flows not be discharged directly into the Las Vegas Wash unless they do so under existing conditions. (Flows from future development do not meet this criterion.)

Groundwater seeps currently exist at various locations north of the BMI Common Areas near the Las Vegas Wash. Although no seeps currently exist within the Site, they may have occurred in the past. However, an evaluation of historical aerial photos taken between 1964 and 1970 indicates that seeps have historically appeared in other portions of the BMI Common Areas (in the Western Hook-Open Space, Galleria North, and Sunset North Commercial sub-areas), and at nearby off-site locations, but not in the Site itself. Evidence of seeps was not observed in aerial photographs after 1972, and there is no chemical or hydrological evidence that seeps have existed on the Site.

2.3 SUMMARY OF HISTORICAL INVESTIGATIONS

Several historical field investigations were conducted at the Site to characterize the nature and extent of chemical occurrence in Site soils and groundwater. Based on these sampling events, BRC identified portions of the Site that warranted remediation for protection of human health

and the environment,⁷ and subsequently performed remediation in those areas. The SAP presents a detailed analysis of data collected during the historical field investigations conducted at the Western Hook-Development Sub-Area. Of those investigations, the following sampling events included sampling within the Site boundaries:

- The BMI Common Areas Environmental Conditions Investigation conducted during March and April 1996 (dataset 1a). The soil investigation activities were performed in accordance with a work plan approved by the NDEP in February 1996 (ERM 1996a). The soil sampling results for the investigation activities were presented in the *Environmental Conditions Investigation Report* (ERM 1996b), which was approved by the NDEP in March 1997. Data validation results are presented in the *Data Validation Summary Report* (DVSR) for dataset 1a (ERM 2006a), which was approved by the NDEP on September 12, 2006.
- Additional soil sampling conducted in May 1999 to establish the extent of antimony, manganese, and thallium occurrence in site soils (dataset 6c). These data were not collected under a formal NDEP-approved work plan. The results were summarized in the *Interim Remedial Measure (IRM) Completion Report* (ERM 2000b), which has not been approved by NDEP. Data validation results are presented in the DVSR for dataset 6c (ERM 2006b), which was approved by NDEP on October 10, 2006.
- Additional soil sampling conducted in February 2000 to assess the extent of various compound classes in soils in the Lower Ponds (dataset 7b). These data were not collected under a formal NDEP-approved work plan. The results were previously summarized in the IRM Completion Report (ERM 2000b), which has not been approved by NDEP. Data validation results are presented in the DVSR for dataset 7b (ERM 2006c), which was approved by NDEP on September 13, 2006.
- Additional sampling conducted in December 1999 for fill in pond PLF-05 (dataset 7e).⁸
 These data were not collected under a formal NDEP-approved work plan. The results were
 summarized in the IRM Completion Report (ERM 2000b), which has not been approved by
 NDEP. Data validation results are presented in the DVSR for dataset 7e (ERM 2006d), which
 was approved by NDEP on November 3, 2006.

⁸ Although these data were collected after the start of the IRM, they have been included in this section of the report because they are considered characterization samples rather than samples associated with IRM activities.

_

⁷ It should be noted that this determination was based on comparison of chemical detections to then-applicable human-health risk-based screening levels.

- Discrete/composite soil investigation conducted in July 2000 (dataset 8a). The soil investigation activities were performed in accordance with ERM's work plan submitted in July 2000 and approved by the NDEP on July 18, 2000. The soil sampling results for the investigation activities were presented in letters to the NDEP dated August 11, 2000 (soil sampling results) and August 28, 2000 (statistical analysis of results); these letters have not been approved by the NDEP. Data validation results are presented in the DVSR for dataset 8a (ERM 2006e), which was approved by the NDEP on October 10, 2006.
- Additional soil sampling conducted in February and March 2000 within the northernmost Upper and Lower ponds (dataset 8b). These data were not collected under a formal NDEPapproved work plan. The results were previously summarized in the IRM Completion Report (ERM 2000b), which has not been approved by NDEP. Data validation results are presented in the DVSR for dataset 8b (ERM 2006f), which was approved by NDEP on September 14, 2006.
- Supplemental soil investigation conducted in October 2000 (dataset 8c) in the Northwestern Ditch, Western Ditch and Pond PLE-09. These data were not collected under a formal NDEP-approved work plan. Data validation results are presented in the DVSR for dataset 8c (ERM 2006g), which was approved by NDEP on October 26, 2006.
- Supplemental soil investigation conducted in May/June 2001 (datasets 20b and 20c). These
 data were not collected under a formal NDEP-approved work plan. Data validation results
 are presented in the DVSRs for datasets 20b (ERM 2006h) and 20c (ERM 2007), which were
 approved by the NDEP on October 20, 2006 and February 5, 2007, respectively.
- Deep soil characterization conducted in June/July 2004 during monitoring well installation at one on-Site location (SB-16-B) as part of the overall Eastside 2004 Hydrologic Characterization Investigation (dataset 27). The soil investigation activities were performed in accordance with a work plan submitted in December 2003 (MWH 2003) and approved by the NDEP in January 2004. The sampling results for the investigation activities were presented in the 2004 version of the *BRC Closure Plan*, which was not approved by the NDEP. Data validation results are presented in the DVSR for dataset 27 (MWH 2006a), which was approved by the NDEP on August 31, 2006.
- Waste characterization conducted in July and August 2006 (dataset 39). The soil investigation activities were performed in accordance with BRC's SAP submitted on June 29, 2006, and approved by the NDEP in July 2006. The soil sampling results for the

investigation activities were previously presented in the *Remedial Action Plan* (BRC 2007), which was approved by the NDEP on September 24, 2007. Data validation results are presented in the DVSR for dataset 39 (MWH 2006b), which was approved by the NDEP on November 3, 2006.

The Site-related data from the above investigations were also presented in Appendix B of the SAP. During these investigations, soil samples at various depths were collected and analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), organochlorine pesticides, organophosphorus pesticides, PCBs, chlorinated herbicides, dioxins/furans, metals, perchlorate, radionuclides, and/or asbestos. The data from these investigations have been validated, as noted above. Data validations are presented in the respective DVSRs for each of the datasets, and all have been approved by the NDEP.

Several of the samples collected during these historical investigations were composite samples and were collected more than 15 years ago; few of the previous samples were analyzed for all of the major chemicals or chemical families now mandated; several analyses used different analytical methods than established in the current analytical program for the BMI Common Areas; and spatial coverage of the Site was incomplete. In addition, many of these sample locations were excavated during the 2009 mass remediation. Therefore, because of these various factors, the data collected as part of the SAP (as discussed in Section 3) are considered more representative of current Site conditions⁹ than data collected from previous investigations, and these recent 2009 through 2014 data are therefore relied upon for risk assessment purposes as described in this report.

2.4 HISTORICAL REMEDIAL ACTIVITIES

To expedite restoration of the Site, BRC elected to perform an IRM for former ponds PLD-10 and PLE-09, which contained elevated levels of lead and organochlorine pesticides. This IRM was performed following the procedures specified in the NDEP-approved *Sunset North Area IRM Workplan* (ERM 1999). The IRM work plan was approved by NDEP on August 27, 1999. IRM activities consisted of excavation of the impacted shallow soils, transportation to a secured location within the Upper Ponds, and treatment to prevent generation of wind-blown dusts and runoff.

⁹ This determination is also based on the data usability evaluation summarized in Section 4.2.

The scope of the IRM was later expanded to address the following conditions encountered in the field:

- Fill material in PLD-10, after it was determined to contain elevated chemical concentrations; and
- Soils containing asbestos at levels greater than 1 percent in PLE-08 (as well as in PLE-09 and PLD-10).

The soil excavation was performed between October 1999 and May 2000, including two additional ponds in another portion of the BMI Common Areas (*i.e.*, ponds PUP-08 and PUO-07 in the Sunset North Commercial and Upper Ponds sub-areas; for the IRM excavation areas, see Figure 3). The excavation covered approximately 27.5 acres. A total estimated 130,000 cubic yards of soil (including those additional two ponds) were excavated and removed from the Site. Results of the IRM for the Site were presented in the IRM Completion Report (ERM 2000b); this report has not been approved by NDEP.

Subsequently, after completion of this initial IRM phase, based on sampling results that indicated the presence of elevated concentrations of arsenic and asbestos in the soils (dataset 20c), additional surface soil excavation was performed in ponds PLG-05 and PLG-06. This excavation work followed the procedures specified in the IRM work plan, but was not performed in accordance with an NDEP-approved work plan specific to those two ponds. This IRM phase addressed an approximately 14.5-acre area. Both areas of soil removal are shown on Figure 3.

In addition, in 2007, BRC conducted a broad-scale removal of tamarisk plants in the Site; the affected area is depicted on Figure 3. These tamarisk removal efforts covered an area of approximately 25 acres and involved the removal of minimal amounts of site soil incorporated in the plant roots.

2.5 CORRECTIVE ACTION PLAN REMEDIATION WITHIN THE SITE

By definition, IRMs are "interim" remedial activities conducted at a given site, performed in advance of: (1) longer-term evaluations of applicable remedial options, (2) selection of a final remedy to address conditions at that site, and (3) implementation of that remedy. As previously noted, a final remedy for the Site was selected and the *Corrective Action Plan* (CAP; BRC 2006) approved by the NDEP on September 25, 2006. Based on existing historical data showing the presence of elevated chemical concentrations in Site soils, BRC completed mass-scale remediation at the Site in accordance with the CAP. Remedial activities included excavation of

impacted materials from the Site and off-site transport of these materials to the CAMU. Subsequent rounds of remediation were conducted following the mass-scale remediation. Details regarding these activities are provided in Section 3.3.

2.6 CONCEPTUAL SITE MODEL

The CSM is a tool used in risk assessment to describe relationships between chemicals and potentially exposed human receptor populations, thereby delineating the relationships between the suspected sources of chemicals identified at the Site, the mechanisms by which the chemicals might be released and transported in the environment, and the means by which the receptors could come in contact with the chemicals. The CSM provides a basis for defining DQOs, guiding Site characterization, and developing exposure scenarios. The Site history; land uses; climate; physical attributes, including geology and hydrogeology; and various field investigations are described in Sections 2.1 through 2.4 of this HHRA. The history and environmental conditions of the BMI Common Areas are described in Sections 2 and 4 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), and in the Site-wide CSM (in preparation).

The HHRA evaluates current and potential future land-use conditions. The Site is currently undeveloped. The potential on- and off-site receptors are currently trespassers, occasional on-site workers, and off-site residents. Exposures to current receptors are being managed through Site access control. Under the prospective redevelopment plan, the Site will primarily have a residential land use (low and medium density), with parks and trails, and associated roads and parking areas. In addition, current development plans include the construction of a storm water drainageconveyance channel through the property.

The entire Site will be enhanced by restoration and redevelopment once remediation is complete. Therefore, exposures to ecological receptors will be mitigated or removed. Future receptors identified as "on-site receptors" are defined as receptors located within current Site boundaries (Figure 1), while future "off-site receptors" are those located outside current Site boundaries. Many potential human receptors are possible at the Site in the period during and after redevelopment. The potentially exposed populations and their potential routes of exposure are discussed in Section 2.6.3.

The current development plan for the Site is shown on Figure 6. This is an example and actual features may change in the future. To construct residences, parks, and roads, the land will be cut and/or filled, paved with roads or foundations, and nurtured with imported top soils¹⁰ as needed. Figure 2 shows the redevelopment grading plan for the Site (Environmental Covenant Grading Plan), indicating which areas will be filled and which areas will be cut. Since development of that plan, as part of the remediation activities to achieve remedial goals, BRC elected to proceed with placement of 10 feet of "clean fill from NFAD sub-areas" across the Lower Pond portion of the site (Figure 2). The post-"clean fill from NFAD sub-areas" ground surface will be the minimum elevation upon which development will occur in the area, and no cuts will be performed where "clean fill from NFAD sub-areas" was placed. In addition, as noted in Section 1.4, the grading plan will be revised following final placement of additional fill across the Site).

The CSM includes the planned redevelopment of the Site. All potential transfer pathways are included in the CSM. The human health aspects of the CSM for the Site are presented on Figure 7.

Numerous release mechanisms influence chemical behavior in environmental media. Under both current and future land use conditions at the Site, the principal release mechanisms involved are:

- Vertical migration in the vadose zone;
- Storm/surface water runoff into surface water and sediments;
- Fugitive dust generation and transport; and
- Vapor emission and transport.

Although these release mechanisms are identified here, no quantitative modeling is presented in this section. Instead, those primary release mechanisms identified for particular receptors are presented in this section, and are quantitatively evaluated in Section 6.

2.6.1 Impacted Environmental Media

Environmental media at the Site consist of five categories: surface soil, subsurface soil, groundwater, indoor air, and ambient outdoor air. Samples relative to Site baseline conditions

¹⁰ Imported soil data are not included in risk assessment calculations. However, the chemical data for fill material from a given site within the Eastside property may be useful for evaluating sub-areas to receive fill from that site.

have been collected at the Site for soil. Generally, impacted soil is the source of chemical exposures for other media at the Site.

Because the background water quality of groundwater beneath the Site and in the surrounding area is generally poor (viz., high total dissolved solids concentration) and because BRC has placed Environmental Covenants in the form of a deed restriction to prevent future users from utilizing groundwater beneath the Site, the use of private water wells by residents or parks for drinking water, irrigation water, or other non-potable uses (e.g., washing cars, filling swimming pools) will not occur in the post-redevelopment phase. Furthermore, there is no anticipated groundwater uses associated with the proposed residential land use. Therefore, exposure pathways relating to this type of use are incomplete, as defined by USEPA (1989).

Although direct exposures to groundwater will not occur; indirect exposures are possible. The primary indirect exposure pathway from groundwater is the infiltration of VOCs from soil and groundwater to indoor air. In addition, residual levels of chemicals in soil may leach and impact groundwater quality beneath the Site.

2.6.2 Inter-Media Transfers

Exposure to Site chemicals may be direct, as in the case of impacted surface soil, or indirect following inter-media transfers. Impacted soil is the initial source for inter-media transfers at the Site, which can be primary or secondary. For example, upward migration of VOCs from impacted subsurface soil into ambient air thereby reaching a point of human inhalation represents a secondary inter-media transfer.

These inter-media transfers represent the potential migration pathways that may transport one or more chemicals to an area away from the Site where a human receptor could be exposed. Discussions of each of the identified potential transfer pathways are presented below. Figure 7 presents a conceptualized diagram of the inter-media transfers and fate and transport modeling for the Site.

Five initial transfer pathways for which chemicals can migrate from impacted soil to other media have been identified. The first of these pathways is volatilization from soil and upward migration from soil into ambient air. Ambient air can be both indoor and outdoor air. The pathway of volatilization from both soil and groundwater and upward migration into ambient air was evaluated using the surface flux measurements collected. The secondary transfer pathway is downward migration of chemicals from soil to groundwater. The third transfer pathway is

migration of chemicals in surface soil via surface runoff to sediments or surface water bodies. However, the portion of the Site with impacted soils (i.e., within the former pond areas) has been or will be covered with "clean fill, from NFAD sub-areas", and storm water controls will be put in place as part of redevelopment; thus it is unlikely that surface waters (which are ephemeral) will come into contact with impacted sediments, entrain them, and carry them to the Las Vegas Wash from the Site. Therefore, the surface water pathway was not evaluated in this risk assessment. The fourth transfer pathway is on-site fugitive dust generation. Finally, chemicals in soil can be transferred to plants grown on the Site via uptake through the roots. The plant uptake pathway is evaluated for residential receptors only.

2.6.3 Potential Human Exposure Scenarios

The following subsections summarize land use and the human exposure scenarios that are assessed herein.

2.6.3.1 Current and Future Land Use

Current receptors that may use the Site include trespassers, occasional on-site workers, and off-site residents. Current exposures to native soils at the Site are minimal, but exposures to future receptors will be much greater. For example, future receptors evaluated in the HHRA include on-site residents who are assumed to be exposed to soil at the Site for 350 days per year for 30 years, which is much greater than any current exposure scenario. In addition, as discussed above, exposures to current receptors are limited through Site access control. Therefore, a current land use scenario is not quantitatively evaluated in this risk assessment.

USEPA risk assessment guidance (1989) states that potential future land use should be considered in addition to current land use when evaluating the potential for human exposure at a site. As indicated above, under the prospective redevelopment plan, the Site will be used for residential redevelopment (low and medium density), parks and trails, and associated roads and parking areas. The entire Eastside property will be redeveloped in several phases. Throughout the redevelopment process, the sub-areas of the Site will be redeveloped sequentially. Future receptors identified as "on-site receptors" are defined as receptors located within the current Site boundaries (Figure 1), while future "off-site receptors" are those located outside the current Site boundaries. "On-site receptors" are those future receptors that will be located within the Site under evaluation. "Off-site receptors" are those future receptors that will be located outside the Site under evaluation that may have complete exposure pathways associated with sources within

the Site. As noted above, remediation of the Site is to on-site residential standards. Consequently, risks to off-site receptors are addressed qualitatively in this risk assessment.

2.6.3.2 Identification of Potentially Exposed Populations and Pathways

Many potential human receptors are possible at the Site in the period during and after redevelopment. The potentially exposed populations and their potential routes of exposure are presented on Figure 7 and summarized below. For a complete exposure pathway to exist, each of the following elements must be present (USEPA 1989):

- A source and mechanism for chemical release;
- An environmental transport medium (i.e., air, water, soil);
- A point of potential human contact with the medium; and
- A route of exposure (e.g., inhalation, ingestion, dermal contact).

As presented in Section 9 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), the following are the primary exposure pathways for each of the potential receptors following remediation and redevelopment at the Site.

- Adult and child residents
 - Incidental soil ingestion*
 - External exposure from soil[†]
 - Dermal contact with soil
 - Consumption of homegrown produce*
 - Outdoor inhalation of dust*[‡]
 - Indoor inhalation of dust*[‡]
 - Outdoor and indoor inhalation of VOCs from soil and groundwater
- Indoor commercial workers
 - Incidental soil ingestion*
 - External exposure from soil[†]
 - Indoor inhalation of VOCs from soil and groundwater
- Outdoor maintenance workers
 - Incidental soil ingestion*
 - External exposure from soil[†]
 - Dermal contact with soil
 - Outdoor inhalation of dust*[‡]
 - Outdoor inhalation of VOCs from soil and groundwater

- Incidental soil ingestion*
- External exposure from soil[†]
- Dermal contact with soil
- Outdoor inhalation of dust*[‡]
- Outdoor inhalation of VOCs from soil and groundwater

Although trespassers/recreational users and downwind off-site residents are another potential receptor identified in the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), exposures for these receptors are less than those evaluated above. As noted in Sections 9.1.1 and 9.7.1 of the *Closure Plan*, potential exposures for trespassers/recreational users will only be evaluated in areas of the BMI Common Areas that are designated as recreational end use (specifically the Western Hook-Open Space sub-area shown on Figure 1). Also, as noted in Section 9.5.4 of the *Closure Plan*, off-site dust levels based on USEPA's model are much lower than those generated for on-site, construction-related activities. Therefore, risks evaluated for an on-site construction worker, as performed in this HHRA, are considered protective of off-site residents.

^{*}Includes radionuclide exposures

[†]Only radionuclide exposures

[‡]Includes asbestos exposures

3.0 CONFIRMATION DATA PROCESS AND SUMMARY

Based on the historical data for the Site, as noted in Section 2.5 an initial mass remediation was conducted prior to implementing the sampling prescribed in the SAP. This remediation, which consisted of soil excavation and transportation to the CAMU, was performed in accordance with the NDEP-approved CAP (BRC 2006). The extent of this initial mass remediation is depicted on Figure 8. The sampling identified in the SAP was performed when BRC determined that obviously impacted soils had been removed during the initial mass remediation activities.

Decisions for additional excavation were based on the initial data collected in accordance with the SAP (discussed below) in accordance with the Risk Assessment Methodology provided in the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010). The following is the initial scope of work for investigating the Site and meeting the SAP objectives. Much of the discussion below regarding confirmation soil sampling is taken from the NDEP-approved *Statistical Methodology Report* (NewFields 2006).

3.1 INITIAL CONFIRMATION SOIL SAMPLING

As per Section 2 of the *Statistical Methodology Report*, the initial confirmation sampling at the Site was conducted on the basis of combined random and biased (judgmental) sampling, as follows:

- Stratified Random Locations: For this purpose, the Site was covered by a 3-acre cell grid network. Within each 3-acre cell, a sampling location was randomly selected. Sampling locations were randomly selected within both full and partial grid cells if they were greater than 50 percent of the total grid cell area (based on the project-wide grid cell network and the Site boundaries; those partial grid cells that contain less than 50 percent of their area within the Site were included in the adjacent sub-area SAP). The main objective of this stratified random sampling was to provide uniform coverage of each Site within the Eastside property.
- **Biased Locations:** Additional sampling locations were selected within or near small-scale contamination points of interests, including but not limited to previous debris locations, ponds, and berms. For this purpose, the randomly selected location within a corresponding 3-acre cell was adjusted to cover a nearby point of interest. In the event that currently unknown impacted areas were identified during remediation, the presence of these areas were drawn to the NDEP's attention, the need for additional biased sampling points to address those areas was evaluated, and the sampling program modified as needed.

A Site reconnaissance was performed in 2008 to check for environmentally significant features such as debris piles or stained soil. Sixty debris piles were observed during the site reconnaissance. Nine of these had minor stained soil areas. Eighteen biased sampling locations were located based on observed debris piles/soil staining, and 12 random sampling locations were shifted slightly to be positioned within observed debris piles/soil staining. A final reconnaissance was performed prior to sampling to check for any additional environmentally significant features since the initial reconnaissance; if found, these additional features would also have been sampled. No such features were found.

Biased sampling was also conducted along the length of the Alpha, Western, and Northwestern ditches, at approximately 200-foot linear spacing. Figure 9 and accompanying Table 3-1 (see Tables section) show the initial SAP sampling locations within the Site. Rationale for each of the biased sampling locations is presented below:

- WHC1-P01 through P18 (excluding P14) were included to provide coverage within selected debris areas observed at the Site.
- WHC1-P14 was included to evaluate conditions in the terminus of the drainage channel.
- OSC1-JP06, -07, and -08 were included to assess conditions within the former effluent ponds.
- WHC1-D01 through D11 were included to provide coverage within the Western Ditch.
- WHC1-D12 through D17 were included to provide coverage within the Northwestern Ditch.
- WHC1-D18 through D29 were included to provide coverage within the Alpha Ditch.

BRC conducted five rounds of remediation at the Site in response to detections of elevated concentrations of various chemicals at various locations within the Site. The scope of these remediation activities is discussed in Section 3.3.

The following discusses the multi-depth soil samples that were collected and analyzed for the SRC list at each selected location. Samples were collected at:

1. Existing surface (0 foot bgs) and 10 feet bgs for sample locations in relatively flat (ungraded) locations:

- 2. Existing surface (0 foot bgs), post-grading surface (post-redevelopment as shown on Figure 2), and post-grade 10 feet bgs for sample locations with substantial grading (that is, cut depths greater than 2 feet¹¹) and the uppermost sampled soil is expected to be used as surface fill;
- 3. Existing surface (0 foot bgs) and 10 feet bgs for sample locations with minimal grading (that is, cut depths less than 2 feet) and the uppermost sampled soil is expected to be used as surface fill (at any Eastside location); and
- 4. Existing surface (0 foot bgs) and 10 feet bgs for sampling locations in an area expected to be covered by fill material.

Additionally, at four sampling locations (Figure 9), soil physical parameter data were collected at 10 feet and every subsequent 10-foot interval until groundwater was reached.

The analytical sample results were then divided into surface (0- to 2-foot depth), subsurface (2- to 10-foot depth), and deep (>10-foot depth) layers, according to the following rules:

- **Rule 1: IF** the sample was collected in a relatively flat (ungraded) part of the Site (i.e., an area not targeted for substantial grading), **THEN** the depth of the collected soil sample is used to designate its soil layer grouping.
- Rule 2: IF the sample was collected in a part of the Site targeted for substantial grading, AND the sampled soil is located in an area expected to be covered by fill material (e.g., exposed excavated surfaces of ponds), THEN the current surface soil sample is classified as a surface (0- to 2-foot depth) sample, and the soil layer grouping of the remaining deeper sampled soil is determined based on the difference between its elevation and the final (post-graded) surface elevation in that part of the Site.
- Rule 3: IF the sample is collected in a part of the Site targeted for substantial grading, AND the cut depth is expected to be greater than 2 feet, AND the sampled soil is expected to be used as surface fill (e.g., soil within a berm), THEN the current surface soil sample is classified as a fill material sample, a final (post-graded) surface sample is classified as a surface (0- to 2-foot depth) sample, and the soil layer grouping of the remaining deeper

3-3

¹¹ Because sample collection was over a 2- to 3-foot depth interval, locations with an anticipated cut depth less than 3 feet were only sampled at the surface and one post-grade subsurface depth. The sample depth designation (e.g., 10 feet bgs) is based on the center depth of the sample collection interval.

sampled soil is determined based on the difference between its elevation and the final (post-development, graded) surface elevation in that part of the Site.

• Rule 4: IF the sample is collected in a part of the Site targeted for substantial grading, AND the cut depth is expected to be less than 2 feet, AND the sampled soil is expected to be used as surface fill (e.g., soil within a berm), THEN the current surface soil sample is classified as both a fill material sample and as a surface (0- to 2-foot depth) sample, and the soil layer grouping of the remaining deeper sampled soil is determined based on the difference between its elevation and the final (post-graded) surface elevation in that part of the Site.

A schematic example of these rules is shown on Figure 10. The Redevelopment Grading Plan for the Site is shown on Figure 2.¹² The sample-specific collection depths are presented in Table 3-1 (Tables section).

As noted above, soil samples were generally collected over a 2- to 3-foot depth interval. This was because of volume of soil required for completion of all analyses. The 10 feet bgs (and deeper) samples were collected in 2- to 3-foot intervals centered on 10 feet (or centered on the deeper sampling depth as indicated in Table 3-1). Confirmation samples, which usually have a shortened analyte list, were collected over a smaller sampling interval. Contamination by the historical manufacturing processes upgradient is usually found predominantly in surface soils. The objective of remedial actions at the Site was to remove surface soils that were impacted by surface releases of off-site chemicals. Therefore, higher concentrations are expected—and have been generally observed—in surface samples. However, to adequately characterize the vertical extent of possible contamination, one or more deeper samples were also collected at each sampling location, as described above.

As discussed in Section 6.1.1, given the potential for change to the prospective grading plan, samples were classified into four different exposure depths. These different soil exposure depth classifications are considered to represent all possible exposure potential for all receptors, and thus a reasonable worst case scenario has been assessed. The four different exposure depth classifications evaluated are the following:

¹² Note that the grading plan is reflected in an Environmental Covenant for the Site as a condition to receiving an NFAD from the NDEP.

1/

- All data: includes surface, subsurface and fill sample depths/locations, representative of
 potential exposures to all soil depths to a maximum post-grading depth of 10 feet bgs
 (representative of Site exposures if fill material remains on Site);
- Data classified as fill material only: that is, sample locations with substantial grading (cut depths greater than 2 feet) and the uppermost sampled soil is expected to be used as surface fill, including off Site;
- Data classified as fill material and/or surface soil: includes surface sample locations where no grading will occur, or sample locations where fill material will be placed, with a subsurface sample (those samples collected less than 10 feet bgs) collected at the post-grading surface; and
- All data excluding data classified as fill material: representative of exposure to all post-grading soil to a maximum post-grading depth of 10 feet bgs.

These different soil exposure classifications are considered to represent all possible exposure potentials for all receptors, including use of soil as fill material elsewhere in the Eastside property, based on the future grade and use of Site soils. See Section 6.1.1 regarding how these different exposure depths are considered in the HHRA.

Initial sampling for the Site was conducted in November and December 2008. In addition to this initial sampling event for the Site, supplemental/confirmation samples were collected at various locations from September 2009 through May 2014. These supplemental/ confirmation samples are identified in Table 3-1.

All soil samples were tagged in the database with numeric designations of their corresponding assigned soil layer grouping based on the rules presented above. The number of soil samples collected varies for different analytes and analytical suites. For example, for arsenic, initially 308 soil samples (including field duplicates) were collected from 135 soil boring locations. This included 86 random and 49 biased sample locations. At these 135 locations, BRC initially collected 159 surface samples (including field duplicates at 27 locations) and 149 subsurface soil samples (13 subsurface sampling intervals at multiple soil boring locations). As presented in Table 3-1 (Tables section), these 308 samples represent 58 fill material (including field

duplicates), 159 surface (including field duplicates), and 136 subsurface soil samples. ^{13,14} An additional 263 supplemental samples (including 24 field duplicates) and 47 confirmation samples (including 4 field duplicates) were subsequently collected (Section 3.3), bringing the total number of arsenic samples for the Site to 618 (308 initial samples and 310 supplemental and confirmation samples). Of the 618 arsenic samples, 226 were in remediated/filled areas and removed from the risk assessment dataset; thus, there are 392 arsenic samples included in the HHRA dataset. ¹⁵ All sampling results, from which the total number of samples can be found for each analyte, are presented electronically on the report CD in Appendix B, and in Tables B-1 through B-12.

3.2 CHEMICALS SELECTED FOR ANALYSIS

The analyte list for soil samples collected during the initial SAP sampling comprised the BRC project SRC list, and was consistent with the analytical program presented in Section 3 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010)¹⁶ and Table 3-2 (Tables section), with the following exceptions for this Site:

- Asbestos and dioxins/furans were only analyzed for in surface soil samples.¹⁷
- USEPA Method 8141A for organophosphorus pesticides was not conducted. There have been only 47 detections of these compounds in over 10,000 soil sample records (<0.5 percent) from throughout the Eastside property, and no detections in any soil sample records associated with prior sampling within the Site. The few detections are well below the NDEP BCLs.

¹⁷ Note that all samples collected at the Site were discrete samples, with the exception of asbestos samples, which were composite samples collected as per the NDEP-approved Standard Operating Procedure [SOP]-12 as provided in the *Field Sampling and Standard Operating Procedures* [FSSOP; BRC, ERM and MWH 2009]).

3-6

¹³ Note that in some cases, a soil sample may be considered both a fill sample and a surface sample (as indicated in Table 3-1). Therefore, the sum of the number of samples indicated for each post-grade sample type does not necessarily equal the total number of samples collected.

¹⁴ As discussed with the NDEP, once a particular sub-area receives an NFAD from the NDEP, the cut material that is slated to be used as fill material elsewhere would not require additional testing. However, the chemical data for this fill material may be useful for evaluating sub-areas to receive fill (for example, if there is deeper contamination).

¹⁵ Note that in Table 3-4, which summarizes the post-remediation HHRA samples, the number of samples reported in that table for a given analysis does not always equal 392. This is due to 1) exclusion of data that were removed during remediation activities; 2) inclusion in the final dataset of confirmation samples collected to assess the extent of chemical impacts in certain areas following remediation; 3) certain analytes were not included in the subsurface samples, as noted in the following section; and 4) rejected data are excluded.

¹⁶ Specific analytes and analyte-specific reporting limits for each analysis are listed in Table 4 of the Quality Assurance Project Plan (QAPP).

- USEPA Method 8151A for chlorinated herbicides was not conducted. There have been no
 detections of these compounds in over 1,400 soil sample records from throughout the
 Eastside property. Detection limits are below the NDEP BCLs.
- HPLC Method for organic acids was not conducted. There have been only three detections of these compounds in 567 soil sample records (<0.5 percent) from throughout the Eastside property. Moreover, the NDEP has not established BCLs for these compounds.
- USEPA Method 8015B for non-halogenated organics (e.g., methanol and glycols) was not conducted. There have been only five detections of these compounds in 420 soil sample records (1 percent) from throughout the Eastside property. The few detections have been well below the NDEP BCLs.
- USEPA Method 8015 for total petroleum hydrocarbons (TPH) was not conducted. There have been only three detections of these compounds in over 299 soil sample records (1 percent) from throughout the Eastside property. The few detections have been below 100 mg/kg, which is the typical low-end aesthetic threshold used for these compounds. There are no indications of possible TPH source areas (e.g., abandoned vehicles, dumping of oils/hydraulic fluids) at the Site. While TPH was not analyzed for, its components were via other methods. In addition, TPH cannot be included in a risk assessment while its components can.
- Consistent with the current project analyte list, the following radionuclides were analyzed for: radium-226, radium-228, thorium-230, thorium-232, uranium-233/234, uranium-235/236, and uranium-238.

The soil analyte list consisted of 293 of the 418 compounds (including water-only parameters) on the project SRC list. The analytical and preparatory methods (Table 3-2, Tables section) used in accordance with the SAP adhered to the most recent version of the BRC Quality Assurance Project Plan (QAPP; BRC and ERM 2009a; see Section B4, Table 4 of that document). As noted in Section 3.6, the analyte list for surface flux samples was composed of the list specified in the NDEP-approved SOP-16, as provided in the FSSOP (BRC, ERM and MWH 2009). Surface flux samples were analyzed for VOCs by USEPA Method TO-15 full scan, plus selective ion mode (SIM) analyses for a subset of the analytes.

3.3 INTERMEDIATE SAMPLING AND CLEANUP

3.3.1 Initial Mass Removal Action

No initial mass removal activities were conducted at the Site. All initial SAP and supplemental data were reviewed and a determination made, in consultation with the NDEP, as to whether localized soil removals were warranted. As indicated on Figure 8, BRC conducted five rounds of remediation (excavation) at the Site in response to detections of elevated concentrations in the initial dataset of various chemicals; asbestos, aldehydes, dioxins/furans, metals, organochlorine pesticides, polynuclear aromatic hydrocarbons (PAHs), PCBs, radionuclides, and/or SVOCs.

3.3.2 Subsequent Removal Actions

Remediation areas for the removal events subsequent to the initial and supplemental sampling events were generally developed based on a Thiessen map overlaid across the Site. Thiessen maps are constructed from a series of polygons formed around each sampling location. Thiessen polygons are created so that every location within a polygon is closer to the sampling location in that polygon than any other sampling location. These polygons do not take into account the respective concentrations at each location. These polygons were used as the basis for the areal extent of remediation for each of the locations with elevated chemical levels. As depicted on Figure 8, 16 polygons associated with elevated chemical levels following the mass removal action were further remediated at the Site. For the areas adjacent to the Alpha, Western, and Northwestern Ditches, this approach was not used, and soils were removed based on visual evidence in the field during remediation activities along these ditches (Figure 8).

Following remediation, confirmation surface soil samples were collected at each of the original sample locations associated with the remediation area polygons. The naming convention for confirmation samples uses the same sample identification as the initial (pre-remediation) sample, with an updated numerical prefix. For example, confirmation samples associated with WHC1-BN10 are named WHC2-BN10 (after one round of confirmation sampling); however, this naming convention was not strictly adhered to and subsequent confirmation sampling events may not be in proper sequence. All sampling locations are shown on Figure 11. The analyte list for the second round sampling at a given location was composed of those chemicals that triggered the additional remediation at that sampling location.

Following the review of data collected from each round of remedial action, continued exceedances of particular chemicals triggered further rounds of remedial action. These additional remediation areas are shown on Figure 8.

3.3.3 Clean Fill from NFAD Sub-Areas Placement

After the 2012 remediation event was completed, the confirmation sample results indicated that arsenic was broadly present across the Site. To evaluate the extent of elevated arsenic in Site soils, BRC collected supplemental samples for arsenic analysis (i.e., samples with "WH-AS" nomenclature) on a 1-acre grid basis. These samples confirmed the pervasive nature of arsenic above previously determined Site background concentrations, and triggered a reevaluation of the remediation strategy. Ultimately, instead of continuing to excavate arsenic-containing soils—which tends to increase in concentration with depth, indicative of a non-soil (e.g., groundwater) contamination source for arsenic across the site—BRC elected to place a 10-foot layer of "clean fill from NFAD sub-areas" over that portion of the Site with elevated arsenic levels. The 10-foot layer of "clean fill from NFAD sub-areas" was placed following leveling of the existing grade (including berms), and restricts access to Site soils beneath this depth10 feet and is an effective institutional control; Therefore, samples collected from below this "clean fill from NFAD sub-areas" pad are not included in the HHRA for the Site.

The "clean fill from NFAD sub-areas" was obtained from the shallow soils at Parcel 4A, Parcel 4B, and Mohawk sub-areas, all of which have NDEP-approved NFADs for residential land use for the requisite depth intervals. As noted in the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), "Imported soil data will not be included in risk assessment calculations. However, the chemical data for fill material from the Site may be useful for evaluating sub-areas to receive this fill (that is, imported fill that may be used at the Site will have been included in risk assessments for sub-areas where the fill was obtained)." That is, because the "clean fill from NFAD sub-areas" was already included in the HHRAs for the sub-areas from which it was obtained, the soil is acceptable for use as fill material in other sub-areas, and does not need to be included in the HHRA for the sub-area in which it is placed. The NFAD's for the Parcel 4A, Parcel 4B, and Mohawk sub-areas are to unrestricted, residential, land use requirements.

3.4 FINAL CONFIRMATION DATASET

Post-scrape analyses associated with follow-up rounds of remediation focused on the constituents triggering that additional remediation and, therefore, did not include the full suite

analyses of the original analytical program. Analytical results from the original SAP dataset were retained for all constituents except those that were re-analyzed after additional scraping. The final confirmation dataset included the following sampling results:

- SAP sampling data, retaining the results that <u>1)</u> were not superseded by subsequent sampling, and <u>2</u>) were not associated with locations subsequently covered with the <u>10-foot</u> "clean fill from NFAD sub-areas" pad;
- Data generated after intermediate sampling and remediation excavation (retaining the results that 1) were not superseded by subsequent sampling; and 2) were not associated with locations subsequently covered with the 10-foot "clean fill from NFAD sub-areas" pad); and
- Additional samples collected for confirmation after completion of remediation activities on areas outside the 10-foot "clean fill from NFAD sub-areas" pad.

The soil dataset was subjected to a series of statistical analyses to determine representative exposure concentrations for the sub-area, as described in Sections 4 and 5 of the NDEP-approved *Statistical Methodology Report* (NewFields 2006). Consistent with the project *Statistical Methodology Report*, kriging or geostatistical analysis was not performed on the data because each measurement was assumed to be equally representative for that chemical at any point in each sub-area of the Eastside property. Hence, calculation of the 95 percent upper confidence limit (UCL) by exposure area directly from the data is considered reasonable.

As discussed in Section 4, all data have been validated. Results of all confirmation sampling and analysis are presented in Appendix B, and electronically on the report CD in Appendix B, as is the dataset used in the HHRA for the Site. All confirmation sampling locations for the Site are shown on Figure 11. Table 3-3 (Tables section) provides a matrix of which analytical suite was analyzed for in each of the samples collected from the Site. Geotechnical and Environmental Services (GES) conducted all fieldwork at the Site. The GES field reports, including boring logs, for each investigation are provided electronically in Appendix C (included on the report CD in Appendix B).

3.5 FINAL CONFIRMATION DATA SUMMARY

Using the compound-specific information presented in Table 2 of the QAPP (BRC and ERM 2009a), the comparison levels for each chemical included in the investigation were compiled for comparison to Site data. Specific soil comparison levels used for this effort were as follows:

- NDEP BCLs for residential soil (NDEP 2013);
- NDEP BCLs for protection of groundwater (LBCL), assuming dilution attenuation factors (DAF) of 1 and 20 (NDEP 2013); and
- The maximum background concentration (for metals and radionuclides only), derived from the shallow Qal McCullough background soil dataset presented in Section 5.¹⁸

A DAF of 1 is used when little or no dilution or attenuation of soil leachate concentrations is expected, and a DAF of 20 may be used when significant attenuation of the leachate is expected due to Site-specific conditions. For the Site, the LBCLs based on a DAF of 1 were used for discussion purposes. Data for the Site, including the number of instances in which chemical concentrations exceed each of the comparison levels, are listed in Table 3-4 (Tables section), and summarized below, for chemicals that had exceedances of their respective BCLs/LBCLs. It is important to note that these comparisons are used to provide for an initial screening evaluation, assist in the evaluation of data usability, and determine the extent of contamination. They are not used for decision-making purposes or as an indication of the risks associated with the Site.

Aluminum

Aluminum was detected in all 243 of the soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). All of the detections were lower than the 77,200 mg/kg BCL, but were higher than the 75 mg/kg LBCL_{DAF1}. None of these detections exceeded the maximum background concentration of 15,300 mg/kg.

3-11

¹⁸ This value, for the Qal McCullough/Mixed background dataset, is used for comparison only; as discussed in Section 5.1, background comparisons were performed for the Site dataset using statistical tests.

¹⁹ Pre-scrape data for the target constituents are not included in Table 3-4. That is, these have been replaced by post-scrape data; however, pre-scrape data for the non-target constituents are included in Table 3-4. Because of this, the total number of analyses does not always coincide with the total number of analyses reported in the tables in Appendix B, which include all data, regardless of status.

Antimony

Antimony was detected in 2 of the 243 soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of the detections were above the 31.3 mg/kg BCL, but both detections exceeded the 0.3 mg/kg LBCL_{DAF1}. These two detections (0.87 mg/kg at subsurface sample WHC2-P11C from 10 feet bgs and 1.2 J- mg/kg at surface sample WHC3-D11C) also exceeded the maximum soil background concentration of 0.5 mg/kg.

The standard analytical reporting limits were generally lower than the LBCL_{DAF1} for the non-detect samples, such that additional exceedances would have been reported if present.

Arsenic

Arsenic was detected in all but two (~99.5 percent) of the 392 soil samples in which it was analyzed for (281 surface and 111 subsurface samples; Table B-4). All of the detections were higher than the 0.39 mg/kg BCL and the 1 mg/kg LBCL_{DAF1}. Of these, 14 of the detections exceeded the maximum soil background concentration of 13.1 mg/kg. These 14 arsenic exceedances higher than background are identified in Table 3-5.

TABLE 3-5: ARSENIC BCL/LBCL EXCEEDANCES GREATER THAN BACKGROUND

Sample ID	Depth (ft bgs)	Reported Value (mg/kg)
WH-AS_J0	0	13.2
WH-AS_N8	0	13.4
WHC3-P11C	0	13.4
WHC2-P07C	0	13.9 J+
WHC1-BI03	11	14
WHC1-BF01	12	14.1 J+
WHC1-BL07	10	14.2

		Reported
G I ID	Depth	Value
Sample ID	(ft bgs)	(mg/kg)
WHC2-BL07	0	14.3
WHC1-BP05	10	14.5
WHC1-BO01	14	14.6
WHC1-BP02	11	14.6
WHC1-BN06	10	15.1
WHC3-D11C	0	16.2
WHC2-D16C	0	17.6 J+

Barium

Barium was detected in all of the 243 soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 15,300 mg/kg BCL; all but nine of the barium detections exceeded the 82 mg/kg LBCL_{DAF1}. None of these LBCL exceedances were greater than the maximum soil background concentration of 836 mg/kg.

Boron

Boron was detected in 16 of the 243 soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 15,600 mg/kg BCL; however, 10 of the detections were higher than the 23.4 mg/kg LBCL_{DAF1}. These 10 soil samples, which were also higher than the maximum soil background concentration (11.6 mg/kg), are as follows:

- WHC1-BP09 at 0 foot bgs: 23.7 J mg/kg
- WHC1-BO02 at 0 foot bgs: 23.9 J+ mg/kg
- WHC1-P15 at 0 foot bgs: 29.2 J mg/kg
- WHC1-BF04 at 0 foot bgs: 29.6 J+mg/kg
- WHC7-D12 at 0 foot bgs: 32 J mg/kg
- WHC1-BG05 at 0 foot bgs: 36.5 J+ mg/kg
- WHC1-D15 at 0 foot bgs: 39.5 J mg/kg
- WHC1-BH06 at 0 foot bgs: 66.5 J mg/kg
- WHC1-P10 at 0 foot bgs: 109 J+ mg/kg
- WHC1-BH06 at 0 foot bgs: 197 J mg/kg

The standard analytical reporting limits were generally lower than the LBCL_{DAF1} for the non-detect samples, such that additional exceedances would have been reported if present.

Cadmium

Cadmium was detected in 164 (~68 percent) of the 243 soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). Of these, no detections were higher than the 77.7 mg/kg BCL; five exceeded the 0.4 mg/kg LBCL_{DAF1}. These five cadmium exceedances above LBCL_{DAF1}, which also exceed the maximum background concentration of 0.13 mg/kg, are as follows:

- WHC1-D20 at 0 foot bgs: 0.42 J+ mg/kg
- WCH1-D22 at 0 foot bgs: 0.46 J+ mg/kg
- WHC1-BL06 at 11 feet bgs: 0.46 J+ mg/kg
- WHC1-BN07 at 0 foot bgs: 0.54 J+ mg/kg
- WHC3-D11C at 0 foot bgs: 0.82 mg/kg

The analytical reporting limits were lower than the LBCL_{DAF1} for the non-detect samples, such that additional exceedances would have been reported if present.

Chromium (VI)

Chromium VI was detected in 91 (~39 percent) of the 233 soil samples in which it was analyzed (130 surface and 103 subsurface samples; Table B-4). None of these detections were higher than the 234 mg/kg BCL. However, one detection exceeded the 2.0 mg/kg LBCL_{DAF1}. This

exceedance (3.9 mg/kg in the surface soil sample collected at WHC1-BL02) was also above the 1.6 mg/kg maximum background concentration. The analytical reporting limits were lower than the LBCL_{DAF1} for the non-detect samples, such that additional exceedances would have been reported if present.

Cobalt

Cobalt was detected in all 243 of the soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of these detections were higher than the 23.4 mg/kg BCL, and all 243 cobalt detections were higher than the 0.495 mg/kg LBCL_{DAF1}. All of the detections were lower than the 16.3 mg/kg maximum background concentration.

Iron

Iron was detected in all 243 of the soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 54,800 mg/kg BCL, but all detections were higher than the 7.56 mg/kg LBCL_{DAF1}. Of these, only one detection was higher than the 22,500 mg/kg maximum soil background detection, surface sample WHC2-BL07 (25,300 mg/kg).

Lithium

Lithium was detected in all 243 of the soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 156 mg/kg BCL, but 12 of the lithium detections were higher than the 21.9 mg/kg LBCL_{DAF1}. No detections were higher than the 124 mg/kg maximum soil background detection.

Magnesium

Magnesium was detected in all 243 of the soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 100,000 mg/kg BCL. All detections were higher than the 973 mg/kg LBCL_{DAF1}, of which two were higher than the 17,500 mg/kg maximum soil background detection (surface samples collected at WHC1-P14 and WHC1-BF06, 18,500 J+ mg/kg and 25,900 mg/kg, respectively).

Manganese

Manganese was detected in all 243 of the soil samples in which it was analyzed (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 1,820 mg/kg BCL; however, all of the detections were higher than the 1.3 mg/kg LBCL_{DAF1}. Of these, one detection, 1,710 mg/kg at surface sample WHC3-D11C, was higher than the 1,090 mg/kg maximum soil background concentration.

Mercury

Mercury was detected in 58 (~24 percent) of the 243 soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 23.5 mg/kg BCL, but two detections were higher than the 0.104 mg/kg LBCL_{DAF1}. These two samples, which also exceeded the 0.11 mg/kg maximum soil background concentration, were a surface sample collected at WHC3-D11C (0.118 J+ mg/kg) and a 10 feet bgs sample at WHC2-P11C (0.151 mg/kg). The analytical reporting limits were lower than the LBCL_{DAF1} for the non-detect samples, such that additional exceedances would have been reported if present.

Molybdenum

Molybdenum was detected in 195 (~80 percent) of the 243 soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 391 mg/kg BCL. One detection was higher than the 3.69 mg/kg LBCL_{DAF1}. This single exceedance, which also was above the 2 mg/kg maximum soil background concentration, occurred in a surface soil sample collected at WHC3-D11C (3.8 mg/kg). The analytical reporting limits were lower than the LBCL_{DAF1} for the non-detect samples, such that additional exceedances would have been reported if present.

Nickel

Nickel was detected in all 243 of the soil samples in which it was analyzed for (134 surface and 109 subsurface samples; Table B-4). None of these detections exceeded the 1,540 mg/kg BCL. All but two were higher than the 7 mg/kg LBCL_{DAF1}. Of these exceedances, only one was also above the 30 mg/kg maximum background concentration, a concentration of 37.2 J mg/kg in the surface sample collected at WHC1-D19.

Selenium

Selenium was detected in 10 (~4 percent) of the 243 soil samples in which it was analyzed (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 391 mg/kg BCL. Nine of the detections were higher than the 0.3 mg/kg LBCL_{DAF1}. These nine detections, which were also higher than the 0.6 mg/kg maximum soil background concentration, are as follows:

- WHC1-BK02 at 0 foot bgs: 0.83 J mg/kg
- WHC1-BI04 at 10 feet bgs: 0.91 J mg/kg
- WHC1-P12 at 11 feet bgs: 0.94 J mg/kg
- WHC7-D12 at 0 foot bgs: 0.95 J mg/kg
- WHC2-BL07 at 0 foot bgs: 0.95 J mg/kg
- WHC1-D10 at 10 feet bgs: 0.96 J mg/kg
- WHC1-BH05 at 0 foot bgs: 1.1 J mg/kg
- WHC3-D11C at 0 foot bgs: 1.2 J mg/kg
- WHC7-WA11 at 0 foot bgs: 1.4 J mg/kg

The analytical reporting limits were lower than background for the non-detect samples, such that additional exceedances would have been reported if present.

Thallium

Thallium was detected in five (\sim 2 percent) of the 243 soil samples in which it was analyzed (134 surface and 109 subsurface samples; Table B-4). None of the detections were higher than the 5.16 mg/kg BCL, but five of the detections were higher than the 0.4 mg/kg LBCL_{DAF1}. However, none of these five LBCL_{DAF1} exceedances were higher than the 1.8 mg/kg maximum soil background concentration. The analytical reporting limits were lower than background for the non-detect samples, such that additional exceedances would have been reported if present.

Other Inorganics

As seen in Table 3-4 (Tables section) and Tables B-3 and B-4 in Appendix B, several inorganic constituents in addition to those listed above were routinely detected in soil samples. None of these additional inorganic constituents were detected at concentrations in excess of either the BCL or the LBCL_{DAF1}, with the exception of the following:

- Chlorate detections exceeded the 1.13 mg/kg LBCL_{DAF1} in 25 samples;
- Nitrate detections exceeded the 7.0 mg/kg LBCL_{DAF1} in 102 samples; and

Perchlorate detections exceeded the 0.0185 mg/kg LBCL_{DAF1} in 217 samples (for all but 10 of the detections).

The analytical reporting limits for these additional inorganic constituents were lower than their respective BCL and LBCL_{DAF1}.

Dioxins and Furans

For dioxins/furans, as discussed in Section 1.1, the USEPA TEQ procedure, developed to describe the cumulative toxicity of these compounds, is used. Dioxins and furans were analyzed for in 189 surface soil samples²⁰ (Table B-2). All of the individual dioxins and furans congeners analyzed were reported as detections in at least one sample. None of the samples had a calculated TCDD TEQ concentration in excess of the 50 ppt NDEP BCL. LBCL_{DAF1} values have not been established for dioxin/furans, thus the potential for impacts to groundwater quality due to their presence could not be assessed by comparisons to the LBCL_{DAF1}.

Organochlorine Pesticides

Organochlorine pesticides were analyzed for in 251 soil samples²¹ (142 surface and 109 subsurface samples; Table B-5). Most of the analytes were detected in at least one sample. The organochlorine pesticides beta-BHC, 4,4-DDT, 2,4-DDE and 4,4-DDE were detected the most frequently, in approximately 42 to 59 percent of the samples. No organochlorine pesticide was detected above its established BCL. Detections of alpha-BHC, beta-BHC, chlordane, dieldrin, and gamma-BHC (Lindane) had at least one detection above their respective LBCL_{DAF1} levels as discussed below.

alpha-BHC

Alpha-BHC was detected in 12 (~5 percent) of the 251 samples for which it was analyzed (142 surface and 109 subsurface samples; Table B-5). None of the detections were above the 21.1 mg/kg BCL, but one detection exceeded the 0.0291 mg/kg LBCL_{DAF1}. The one exceedance was in the surface sample collected at WHC6-P11 (0.25 J+ mg/kg).

²¹ As noted in Footnote 15, the number of records in the Site dataset for a given analyte may differ from those for other analytes.

20

²⁰ As noted in Footnote 15, the number of records in the Site dataset for a given analyte may differ from those for other analytes.

beta-BHC

Beta-BHC was detected in 147 (~59 percent) of the 251 samples for which it was analyzed (142 surface and 109 subsurface samples; Table B-5). While none of the detections were above the 4.22 mg/kg BCL, 71 detections were above the 0.00596 mg/kg LBCL_{DAF1}, as listed in Table 3-6.

TABLE 3-6: BETA-BHC DETECTIONS GREATER THAN LBCLDAF1

		Reported
	Depth	Value
Sample ID	(ft bgs)	(mg/kg)
WHC1-D26	0	0.006 J+
WHC1-BF04	0	0.0061
WHC1-D10	10	0.0063
WHC1-BI04	0	0.0066
WHC1-BM09	12	0.0066 J+
WHC1-P17	0	0.0068
WHC1-BO04	0	0.0069
WHC1-BM07	0	0.0069 J+
WHC1-D20	0	0.0071 J+
WHC1-D22	10	0.0072
WHC1-D01	10	0.0072 J+
WHC1-D06	0	0.0073
WHC1-D22	0	0.0073
WHC1-P09	0	0.0077 J
WHC1-BH03	0	0.0079
WHC1-BH05	0	0.008 J
WHC1-BL08	0	0.0083 J+
WHC1-BK05	0	0.0084
WHC1-BI01	0	0.0085
WHC1-D03	0	0.0086 J+
WHC1-BN05	10	0.0088
WHC1-D02	10	0.009 J+
WHC1-BG06	0	0.0091 J+
WHC1-P01	0	0.0092
WHC1-D10	0	0.0096 J+
WHC1-BK04	0	0.0097
WHC1-D23	0	0.0099
WHC1-D03	0	0.0099 J+
WHC1-BL03	10	0.01
WHC1-D09	0	0.01
WHC1-BM06	0	0.01 J
WHC1-D19	0	0.01 J

	Depth	Reported
	(ft	Value
Sample ID	bgs)	(mg/kg)
WHC1-BJ03	0	0.012
WHC1-D28	0	0.012 J+
WHC1-BG01	0	0.013
WHC1-BJ03	0	0.013
WHC1-BG02	0	0.014 J+
WHC1-D28	10	0.014 J+
WHC1-D27	0	0.014 J
WHC1-BH02	0	0.015
WHC1-BH04	0	0.015
WHC1-BP05	0	0.015
WHC1-BG02	0	0.016
WHC1-BN07	0	0.016
WHC1-D18	10	0.016
WHC1-BI05	0	0.017
WHC1-D07	10	0.017
WHC1-P14	0	0.017
WHC1-BP06	0	0.019
WHC1-BG03	0	0.02
WHC1-D21	0	0.02 J+
WHC1-D18	0	0.021 J+
WHC1-P12	11	0.021 J+
WHC1-D27	10	0.022 J+
WHC1-D12	0	0.023 J+
WHC1-D16	0	0.023 J+
WHC2-D01	0	0.023 J+
WHC1-D02	0	0.024 J+
WHC1-D19	0	0.031 J
WHC1-BJ05	0	0.031 J+
WHC1-D04	10	0.036
WHC1-P12	0	0.036 J+
WHC1-D27	0	0.045
WHC2-D04C	0	0.064

TABLE 3-6: BETA-BHC DETECTIONS GREATER THAN LBCL_{DAF1}

Sample ID	Depth (ft bgs)	Reported Value (mg/kg)
WHC1-BI03	0	0.011
WHC1-BN07	3	0.011
WHC1-D21	10	0.011
WHC1-BH05	0	0.011 J

Comple ID	Depth (ft bgs)	Reported Value
Sample ID WHC6-P11	()	(mg/kg) 0.089
WHC1-D13	0	0.1
WHC1-D17	0	0.26 J

Chlordane

Chlordane was detected in one (0.4 percent) of the 251 samples in which it was analyzed (142 surface and 109 subsurface samples; Table B-5). The one detection, at surface sample WHC1-BG04 (0.77 J mg/kg) was lower than the 1.62 mg/kg BCL, but higher than the 0.5 mg/kg LBCL_{DAF1}.

Dieldrin

Dieldrin was detected in three (1.2 percent) of the 251 samples in which it was analyzed (142 surface and 109 subsurface samples; Table B-5), as follows:

- WHC1-BJ02 at 0 foot bgs: 0.0019 J mg/kg
- WHC1-P12 at 0 foot bgs: 0.0021 J mg/kg
- WHC1-BG01 at 0 foot bgs: 0.0022 mg/kg

None of the three detections exceeded the 0.0304 mg/kg BCL; however, all three detections exceeded the 0.0002 mg/kg LBCL_{DAF1}. The standard analytical reporting limits for organochlorine pesticides were generally lower than the comparison levels for all but dieldrin.

gamma-BHC (Lindane)

Gamma-BHC (Lindane) was detected in two (0.8 percent) of the 251 samples in which it was analyzed (142 surface and 109 subsurface samples; Table B-5). Neither of the two detections exceeded the 0.703 mg/kg BCL. However, both detections exceeded the 0.0005 mg/kg LBCL_{DAF1}. The detections were associated with surface samples WHC6-P11 (0.007 mg/kg) and WHC1-P12 (0.014 J+ mg/kg).

Polynuclear Aromatic Hydrocarbons

Analysis for PAHs was performed on 252 soil samples (145 surface, 107 subsurface; Table B-6). With the exception of dibenzo(a,h)anthracene, each PAH constituent was detected in at least one soil sample. Pyrene, benzo(b)fluoranthene, and benzo(a)pyrene were detected the most frequently, in 29 percent, 25.4 percent, and 19 percent of the samples, respectively. The detections did not exceed either the BCL or the LBCL_{DAF1} for any PAH for which they are established. The standard PAH analytical reporting limits were lower than the BCL and the LBCL_{DAF1}, thus concentrations in excess of these comparison levels, if present, would have been reported.

Polychlorinated Biphenyls

PCBs (individual PCB congeners) were analyzed in 189 surface soil samples (Table B-7). All of the PCB congeners were detected in at least one sample. BCL values have not been established for individual congeners. PCB congeners are included in the calculation of the TCDD TEQ, and are evaluated in this manner, not on an individual congener basis. LBCL_{DAF1} values have not been established for individual PCB congeners.

Aldehydes

Aldehydes were analyzed in 250 soil samples²² (141 surface and 109 subsurface samples; Table B-9). Acetaldehyde was detected in three (1.2 percent) soil samples in which it was analyzed (Table B-9). None of these detections were higher than the 13.9 mg/kg BCL for this compound. Formaldehyde was detected in 192 (~79 percent) soil samples in which it was analyzed (Table B-9). No detections were higher than the 12,200 mg/kg BCL for formaldehyde. LBCL_{DAF1} values have not been established for these constituents. The analytical reporting limits for both acetaldehyde and formaldehyde were all lower than the BCL.

Semi-Volatile Organic Compounds

SVOCs were analyzed in 253 soil samples, (151 surface and 102 subsurface samples; Table B-9). As seen in Table 3-4 (Tables section) and Table B-9, 14 of the 68 SVOCs were detected in one or more samples. bis(p-Chlorophenyl)sulfone was detected most frequently, in

²² As noted in Footnote 15, the number of records in the Site dataset for a given analyte may differ from those for other analytes.

_

5.2 percent of the samples. Fluoranthene was also detected more frequently than the rest of the SVOCs, in 3.2 percent of the samples. The other 12 detected SVOCs were detected in 2 percent or fewer of the samples; nine of the SVOCs had two or fewer detections. There were no BCL exceedances for any of the SVOCs. Hexachlorobenzene was the only SVOC that exceeded its LCBL_{DAF1}. Of the five detections, two were in exceedance of the 0.1 mg/kg LCBL_{DAF1}. These exceedances occurred at surface samples WHC2-D17C and WHC6-P11, at 0.115 J and 0.129 J mg/kg, respectively.

For SVOC non-detects, the standard reporting limits were lower than the BCL, except for dichloromethyl ether and n-nitrosodi-n-propylamine, which consistently had analytical reporting limits higher than the BCL. For the following SVOC non-detections, the analytical reporting limits were higher than the LBCL_{DAF1}:

- 2,2'-Dichlorobenzil
- 2,4-Dichlorophenol
- 2,4-Dinitrophenol
- 2,4-Dinitrotoluene
- 2.6-Dinitrotoluene
- 3,3'-Dichlorobenzidine
- 2,4,6-Trichlorophenol

- bis(2-Chloroethyl)ether
- Hexachloroethane
- Isophorone
- Nitrobenzene
- N-Nitrosodi-n-propylamine
- p-Chloroaniline
- Pentachlorophenol

Volatile Organic Compounds

VOCs were analyzed in 251 soil samples²³ (142 surface and 109 subsurface samples; Table B-10). As seen in Table 3-4 and Table B-10, the following 25 VOCs were detected in at least one sample:

- 1,2,3-Trichlorobenzene
- 1,2,4-Trichlorobenzene
- 1,2,4-Trimethylbenzene

- Dichloromethane (Methylene chloride)
- Ethanol
- Ethylbenzene

²³ As noted in Footnote 15, the number of records in the Site dataset for a given analyte may differ from those for other analytes. VOC analysis was only performed for initial SAP samples (i.e., it was not included in the analyses for confirmation samples), thus the tally of VOC analyses is lower than for some of the other analytical suites, such as metals, which were often run for supplemental and confirmation samples.

3-21

- 1,2-Dichlorobenzene
- 1,3,5-Trichlorobenzene
- 1,3,5-Trimethylbenzene
- 1,3-Dichlorobenzene
- 1,4-Dichlorobenzene
- 2-Chlorotoluene
- 2-Hexanone
- 2-Nitropropane
- 4-Chlorotoluene
- Acetone

- m,p-Xylene
- Methyl ethyl ketone (2-Butanone)
- n-Butylbenzene
- n-Propylbenzene
- o-Xylene
- Styrene
- tert-Butylbenzene
- Toluene
- Xylenes (total)

1,2,4-Trimethylbenzene was detected most frequently in approximately 17 percent of the samples. Dichloromethane and acetone were detected more frequently than other VOCs in approximately 10 and 9 percent of the samples, respectively.

2-Nitropropane was the only VOC detected above its BCL. One sample exceeded the 0.0109 mg/kg BCL; surface sample WHC1-BI03 had a concentration of 0.012 mg/kg. With the exception of dichloromethane, the VOC detections were also lower than the LBCL_{DAF1}. Dichloromethane was detected in the 26 soil samples listed in Table 3-7 at concentrations in excess of the 0.001 mg/kg LBCL_{DAF1}.

TABLE 3-7: DICHLOROMETHANE DETECTIONS GREATER THAN LBCL_{DAF1}

		Reported
	Depth	Value
Sample ID	(ft bgs)	(mg/kg)
WHC1-P03	13	0.0012 J
WHC1-D26	0	0.0018 J
WHC1-BN03	10	0.0019 J
WHC1-BP06	10	0.0022 J
WHC1-P11	0	0.0023 J
WHC1-D28	0	0.0027 J
WHC1-D27	0	0.0027 J
WHC1-D27	0	0.003 J
WHC1-BP06	0	0.003 J
WHC1-D20	10	0.0031 J
WHC1-BK05	0	0.0032 J
WHC1-D29	0	0.0035 J

		Reported
	Depth	Value
Sample ID	(ft bgs)	(mg/kg)
WHC1-D20	0	0.0038 J
WHC1-D27	10	0.0042 J
WHC1-P01	12	0.0043 J
WHC1-BO03	12	0.0043 J
WHC1-D29	10	0.0045 J
WHC1-D26	10	0.0045 J
WHC1-BP04	12	0.0047 J
WHC1-BK03	12	0.0053
WHC1-P03	3	0.0057
WHC1-P03	3	0.0087
WHC1-P05	10	0.011
WHC1-BK02	11	0.011

TABLE 3-7: DICHLOROMETHANE DETECTIONS GREATER THAN LBCL_{DAF1}

		Reported
	Depth	Value
Sample ID	(ft bgs)	(mg/kg)
WHC1-BK05	11	0.0037 J

		Reported
	Depth	Value
Sample ID	(ft bgs)	(mg/kg)
WHC1-P16	0	0.017 J

The analytical reporting limits for VOCs were generally lower than the screening levels, with the exception of those for dichloromethane, which were often higher than the $LBCL_{DAF1}$.

Radionuclides

Radionuclides were detected in all 243 of the soil samples in which they were analyzed (136 surface and 107 subsurface soil samples; Table B-8). Exceedances of comparison levels for radionuclides are shown in Table 3-4 for the eight radionuclides currently included in the project analyte list (radium-226, radium-228, thorium-228, thorium-230, thorium-232, uranium-233/234, uranium-235/236, and uranium-238). Of those activities greater than comparison levels, most were lower than the maximum soil background activity, as shown in Table 3-4.

Radium-226 activities in 201 of the 243 samples were higher than the 0.0071 picoCurie per gram (pCi/g) BCL and the 0.016 pCi/g LBCL_{DAF1}. Of these, the following two detections were higher than the 2.36 pCi/g maximum soil background activity: the 10 feet bgs sample at WHC1-BM06 (2.43 pCi/g) and the 11 feet bgs sample at WHC1-BJ04 (2.56 J pCi/g).

Radium-228 activities in 171 of the 243 samples were higher than the 0.013 pCi/g BCL and the 0.016 pCi/g LBCL_{DAF1}. Of these, the following three samples were higher than the 2.94 pCi/g maximum soil background activity:

- WHC1-BM05 at 0 foot bgs (3.17 J pCi/g) WHC1-BJ02 at 0 foot bgs (3.7 J pCi/g)
- WHC1-D06 at 10 feet bgs (3.33 J pCi/g)

Thorium-228 activities in all 243 samples were higher than the 0.0078 pCi/g BCL and the 0.0023 pCi/g LBCL_{DAF1}. Of these, the 30 detections listed in Table 3-8 were higher than the 2.30 pCi/g maximum soil background activity.

TABLE 3-8: THORIUM-228 BCL/LBCL EXCEEDANCES GREATER THAN BACKGROUND

<u> </u>	AILKIIIA
Depth	Reported Value
(ft bgs)	(pCi/g)
0	2.31
0	2.33
0	2.33
0	2.35
0	2.35
7	2.37
0	2.38
0	2.39
10	2.39
0	2.42
0	2.44
11	2.45
0	2.47
12	2.49
0	2.52
	(ft bgs) 0 0 0 0 0 7 0 10 0 11 0 12

		Reported
	Depth	Value
Sample ID	(ft bgs)	(pCi/g)
WHC1-D01	10	2.53
WHC1-P03	13	2.58
WHC1-P12	0	2.6
WHC1-D03	10	2.64
WHC1-D24	0	2.69
WHC1-BJ04	0	2.7
WHC1-D25	10	2.7
WHC1-P03	3	2.72
WHC1-BK04	10	2.77
WHC1-P17	12	2.78
WHC1-D21	0	2.88
WHC1-BL04	0	2.98
WHC1-BN05	0	3.02
WHC2-BL07	0	3.02
WHC1-D22	0	3.19

Thorium-230 was detected in 226 of the 243 samples for which it was analyzed. Detections in two samples were above the 3.2 pCi/g BCL; however, all of the activities were above the 0.00084 pCi/g LBCL_{DAF1}. Of these, the following two detections were above the 3.01 pCi/g soil background level: surface sample WHC1-P09 (3.28 J pCi/g) and the 10 feet bgs sample WHC1-D08 (3.43 pCi/g).

Thorium-232 was detected in all 243 of the samples for which it was analyzed. None of the reported thorium-232 activities were above the 2.8 pCi/g BCL. All detections were higher than the 0.0029 pCi/g LBCL_{DAF1}. The five detections higher than the 2.23 pCi/g maximum soil background activity are as follows:

- WHC1-BH01 at 0 foot bgs (2.24 J- pCi/g)
- WHC1-BK04 at 0 foot bgs (2.54 pCi/g)
- WHC1-BN04 at 7 feet bgs (2.27 pCi/g)
- WHC1-BN05 at 0 foot bgs (2.6 J pCi/g)
- WHC1-D25 at 0 foot bgs (2.38 J pCi/g)

Uranium-235/236 was detected much less frequently than the other radionuclides; it was detected in 37 (~15 percent) of the 243 samples for which it was analyzed. All but four of the detections were higher than the 0.11 pCi/g BCL; an LBCL_{DAF1} has not been established for this constituent. Of the detections above the BCL, the 17 detections listed in Table 3-9 were also above the 0.21 pCi/g maximum soil background activity.

TABLE 3-9: URANIUM-235/236 BCL EXCEEDANCES GREATER THAN BACKGROUND

OKEATEK III		
	Donth	Reported Value
	Depth	
Sample ID	(ft bgs)	(pCi/g)
WHC1-BJ02	12	0.218
WHC1-P02	10	0.236
WHC1-BF02	0	0.241
WHC1-BI02	3	0.261
WHC1-BO02	0	0.278
WHC1-D06	10	0.285
WHC1-BK03	0	0.293
WHC1-BO06	0	0.312
WHC1-D19	0	0.321

		Reported
	Depth	Value
Sample ID	(ft bgs)	(pCi/g)
WHC1-BF03	10	0.337
WHC1-P18	12	0.337
WHC1-P11	0	0.347
WHC1-BH02	0	0.386
WHC1-BJ01	13	0.393
WHC1-BP09	10	0.409
WHC1-BP03	0	0.428
WHC1-P11	10	0.846

Uranium-238 was detected in 241 of the 243 samples for which it was analyzed. In all but one of the samples, reported activities were higher than the 0.46 pCi/g BCL; an LBCL_{DAF1} has not been established for this constituent. Of the detections in exceedance of the BCL, the following three were also higher than the 2.79 pCi/g maximum soil background activity:

- WHC2-BM08C at 0 foot bgs (2.8 pCi/g)
- WHC2-BM08C at 0 foot bgs (3.19 pCi/g)
- WHC1-BM06 at 10 feet bgs (3.18 pCi/g)

As presented in NDEP guidance (NDEP 2009a), as part of the process used to evaluate radionuclide data for the BMI Common Areas, BRC assessed whether radionuclides are in secular equilibrium. As discussed in Section 5.1, secular equilibrium is an indication of background conditions.

The data indicate that radionuclides are in secular equilibrium at the Site. Specifically, the mean radioactivities for the thorium-232 decay chain (i.e., thorium-232, radium-228, and thorium-228) are comparable (1.4, 1.3, and 1.7 pCi/g, respectively). Similarly, the mean values for the uranium-238 decay chain (uranium-238, uranium-233/234, thorium-230, and radium-226) are also comparable, ranging from 1.0 to 1.4 pCi/g. All of the mean values are lower than their respective maximum soil background activity levels. A quantitative evaluation of secular equilibrium is presented in Section 5.1.

Summary of Soil Exceedances

As summarized above and in the associated data tables (Table 3-4 and Appendix B), some BCL and LBCL_{DAF1} exceedances are currently observed in Site soils. The following constituents were

reported at concentrations higher than the residential BCL and the maximum soil background concentration (where applicable):

- 2-Nitropropane (1 sample)
- Arsenic (14 samples)
- Radium-226 (2 samples)
- Radium-228 (3 samples)

- Thorium-228 (30 samples)
- Thorium-230 (2 samples)
- Uranium-235/236 (17 samples)
- Uranium-238 (3 samples)

The following constituents were reported at concentrations higher than the LBCL_{DAF1} and the maximum soil background concentration (where applicable):

- Arsenic (14 samples)
- Antimony (2 samples)
- Boron (10 samples)
- Cadmium (5 samples)
- Chromium (VI) (1 sample)
- Iron (1 sample)
- Magnesium (2 samples)
- Manganese (1 sample)
- Mercury (2 samples)
- Molybdenum (1 sample)
- Nickel (1 samples)
- Selenium (9 samples)
- Chlorate (25 samples)
- Nitrate (102 samples)

- Dieldrin (3 samples)
- Thorium-228 (30 samples)
- Thorium-230 (2 samples)
- Thorium-232 (5 samples)
- Radium-226 (2 samples)
- Radium-228 (3 samples)
- Hexachlorobenzene (2 samples)
- Perchlorate (217 samples)
- Dichloromethane (26 samples)
- alpha-BHC (1 sample)
- beta-BHC (71 samples)
- gamma-BHC (2 samples)
- Chlordane (1 sample)

As seen above, BCL and LBCL_{DAF1} exceedances generally represent a small percentage of the samples in the final confirmation dataset. Therefore, there is a low likelihood of adverse impacts to human health and the environment due to residual chemical concentrations in Site soils. Consistent with the methodology in the BRC Closure Plan (BRC, ERM, and DBS&A 2007;

Section 9 revised March 2010), an HHRA was conducted to further evaluate this possibility, as discussed in subsequent sections of this report.

EVALUATION OF POTENTIAL 'HOT SPOTS' 3.6

BRC has identified and evaluated several potential 'hot spots' at the Site. These include the following (along with rationale for why further remediation was not considered necessary and why these areas are not considered hot spots or evaluated separately in the HHRA):

Elevated levels of several metals—notably lead, as well as antimony, barium, cadmium, chromium, copper, thallium, tin, and tungsten—have their highest concentrations within the Western and Alpha ditches, especially the central segments of these ditches and their confluence. The highest levels of 4,4-DDE (and other organochlorine pesticides) are also within these ditch segments. These ditches have undergone repeated soil removals such that levels for all constituents are below risk-based and/or background levels. For example, all concentrations for lead are below its target goal of 400 mg/kg. Of the other constituents, only thallium and 4,4-DDE have detectable concentrations greater than one-tenth their BCL levels. In addition, other constituents of concern, for example, arsenic, dioxins/furans, and radionuclides do not appear to follow the same higher concentrations along these ditch segments as these other constituents. In addition, classification of a linear feature as a separate exposure area is not appropriate for many of the receptors of concern (i.e., residents).

Beyond these observations, due to repeated cleanups throughout the Site, there do not appear to be any other areas that might be considered potential hot spots. That is, there are not areas with multiple co-located chemicals with elevated levels, nor are there areas with clusters of adjacent sample locations with elevated levels. For example, although arsenic has numerous sample results with concentrations greater than background concentrations (see Section 5), these sample results are scattered throughout the Site and are not clustered in any particular area. Therefore, because of this, separate exposure areas were not evaluated in the HHRA; that is, the Site was evaluated as a single exposure area, consistent with the project Statistical Methodology Report (NewFields 2006), and as discussed further in Section 6.1.1.

3.7 SURFACE FLUX SAMPLING

Concurrent with the confirmation soil sampling, BRC implemented surface flux sampling across the Site. This sampling conformed to the most recent NDEP-approved version of SOP-16 (BRC,

ERM, and MWH 2009). The sampling procedure for the effort included the USEPA surface emission isolation flux chamber (flux chamber) sampling to support an air pathway analysis for the Site.

It should be noted that while radon samples were collected, they are not included in this HHRA for the following reason: BRC previously submitted a technical memorandum to the NDEP (BRC 2010), in which the results of recent radon testing performed in groundwater and indoor air samples were presented. Based on the findings of this memorandum, the NDEP concluded that HHRAs for Eastside property sub-areas do not need to evaluate the pathway of radon migration from groundwater to indoor air for sub-areas with a separation distance of at least 15 feet between any current or future building structure base and the high water table (letter dated November 9, 2010, from Greg Lovato, NDEP, to Mark Paris, BRC [NDEP 2010]). Based on this conclusion and given the depth to groundwater at the Site and fill material placed or to be placed across the Site, the intrusion of radon into indoor air is not evaluated in the HHRA. Furthermore, as discussed in Section 5.1, other radionuclides are consistent with background levels, which indicate that radon should also be consistent with background, naturally occurring levels in soil.

The flux chamber sample collection rationale was based on the project goal of obtaining a representative dataset of air emissions per sub-area. Flux chamber samples were collected from 80 locations (Figure 11) with 44 random and 31 biased locations (and five field duplicates). This density of sample collection is considered adequate for Site characterization given the biased nature of the sample locations, the size of the sub-area, and the number of sample locations suggested by the USEPA (1986) in the flux chamber User's Guide for assessing zones of homogeneous sites.

The analyte list for surface flux samples is composed of the list provided in the most recent NDEP-approved version of SOP-16 (BRC, ERM, and MWH 2009). This analyte list is provided in Table 3-10, and consists of the USEPA Method TO-15 full scan, with SIM analyses for a subset of the analytes. The analytical results are summarized in Table B-11 (Appendix B), and the principal investigator Reports of Findings (which include descriptions of sampling

procedures) are provided in Appendix D (included on the report CD in Appendix B).²⁴ A data summary for the surface flux sample results is provided in Table 3-11.

As seen in Tables 3-11 and B-11, the majority (44 of 67) of the organic constituents included in the TO-15 scan were detected in at least one surface flux sample. The most commonly detected constituents were as follows:

- Chloroform was detected in ~94 percent of the samples;
- Carbon tetrachloride was detected in ~89 percent of the samples;
- Toluene was detected in 75 percent of samples;
- 1,2-Dichloroethane was detected in ~66 percent of the samples; and
- Acetone was detected in ~65 percent of the samples.

The highest reported concentrations were as follows:

- Ethanol (4.42 J micrograms per square meter per minute [μg/m²,min⁻¹] at WHC1-P04);
- Tetrachloroethene (4.1 µg/m²,min⁻¹ at WHC1-D15);
- Acetone (1.91 J μ g/m²,min⁻¹ at WHC1-BP02); and
- Toluene $(1.79 \mu g/m^2, min^{-1})$ at WHC1-D15).

As discussed in Section 4, all data have been validated. The HHRA surface flux dataset for the Site is included on the report CD in Appendix B. Surface flux sample locations are shown on Figure 11.

3.8 LEACHATE DATA

As specified in the SAP, samples were collected from three locations (Figure 11) within the Site during the initial sampling event for synthetic precipitation leaching procedure (SPLP) analysis. SPLP samples were analyzed for aldehydes, general chemistry, perchlorate, metals, organochlorine pesticides, PAHs, radionuclides, and SVOCs. As noted in the SAP, these constituents are considered those of greatest concern for potential migration and impacts to

²⁵ SPLP analysis was prepped per USEPA Method 1312 - West solution pH 4.95 with 60/40 weight sulfuric/nitric acid.

_

²⁴ Note that these reports were prepared prior to data validation; therefore, data qualifiers may differ from those in the remainder of this report.

groundwater. Data associated with these SPLP samples are summarized in Appendix B, Table B-12. For reference, Table B-12 includes constituent-specific comparison levels (viz., NDEP's residential water BCLs and USEPA Maximum Contaminant Levels [MCLs]). Detections relative to these screening levels are summarized below.

- Perchlorate was detected in all three of the samples analyzed. None of these detections were higher than the BCL or MCL.
- Approximately two-thirds (21 of 32) of the metals analyzed were detected in at least one leachate sample. Of these, arsenic was detected at all three locations at concentrations above the BCL and the MCL. In addition, at WHC1-BN06, aluminum, iron, and manganese were detected at concentrations above their respective BCLs.
- Radionuclides were detected in the samples collected from WHC1-BM09 and WHC1-BO10.
 Of these, BCLs have only been established for thorium-230 and -232. The thorium-230 detection at WHC1-BM09 and the thorium-232 detection at WHC1- BO10 exceeded the BCLs.
- Aldehydes, PAHs, SVOCs, and organochlorine pesticides were not detected in any of the three SPLP samples in which they were analyzed.

The potential leaching impacts to groundwater will be addressed in the Eastside groundwater remedial alternatives study.

4.0 DATA EVALUATION

This section describes the procedures used to evaluate the acceptability of data for use in the risk assessment. Overall quality of sample results is a function of proper sample management. Management of samples began at the time of collection and continued throughout the analytical process. SOPs were followed to ensure that samples were collected and managed properly and consistently and to optimize the likelihood that the resultant data are valid and representative.

The primary objective of the data review and usability evaluation was to identify appropriate data for use in the HHRA. The analytical data were reviewed for applicability and usability following procedures in USEPA's *Guidance for Data Usability in Risk Assessment (Part A)* (1992a) and *Risk Assessment Guidance for Superfund: Volume I* (1989) and the NDEP's *Supplemental Guidance for Assessing Data Usability for Environmental Investigations at the BMI Complex and Common Areas* (2008a). A quality assurance/quality control (QA/QC) review of the analytical results was conducted during the sampling events. According to the USEPA Data Usability Guidance, there are six principal evaluation criteria by which data are judged for usability in risk assessment. The six criteria are:

- Reports to risk assessor (availability of information associated with Site data);
- Documentation;
- Data sources;
- Analytical methods and detection limits;
- Data review; and
- Data quality indicators (DQIs), including precision, accuracy, representativeness, comparability, and completeness (PARCC).

A summary of these six criteria for determining data usability is provided below. In addition to the six principal evaluation criteria, the NDEP's Data Usability Guidance includes a step for data usability analysis, which is discussed after these six USEPA evaluation criteria. Data usability evaluation tables are provided electronically in Appendix E (included on the report CD in Appendix B).

4.1 CRITERION I – REPORTS TO RISK ASSESSOR (AVAILABILITY OF INFORMATION ASSOCIATED WITH SITE DATA)

The usability analysis of the Site characterization data requires the availability of sufficient data for review. The required information is available from documentation associated with the Site data and data collection efforts. Data have been validated as described in the following DVSRs, which are provided electronically in Appendix F:

- Data Validation Summary Report, Southern Ribs and Western Hook Sub-Area Soil Flux, Revised Data October 2008 (Dataset 53c) (BRC and ERM 2010b), approved by the NDEP on November 24, 2010;
- Data Validation Summary Report, Western Hook Development Sub-Area Soil Investigations, October-December 2008; February 2009; August-September 2009; November-December 2009; February 2010 (Dataset 54) (BRC and ERM 2010c), approved by the NDEP on June 25, 2010;
- Data Validation Summary Report, Western Hook-Open Space Sub-Area Soil Investigations September-October 2009; January 2010 (Dataset 62) (BRC and ERM 2010d), approved by the NDEP on June 25, 2010;
- Data Validation Summary Report, Eastside North Surface Flux Investigations (Remaining Sub-Areas), July through August 2010 (Dataset 71) (BRC and ERM 2011a), approved by the NDEP on July 25, 2011;
- Data Validation Summary Report, Eastside North Confirmation Soil Investigations, December 2008 through October 2010 Part II (Dataset 72b) (BRC and ERM 2011b), approved by the NDEP on May 9, 2011;
- Data Validation Summary Report, Western Hook/Eastside Main Supplemental Sampling Events December 2011 through January 2012 (Dataset 72e) (BRC and ERM 2012), approved by the NDEP on September 17, 2012;
- Data Validation Summary Report, Eastside North Confirmation/Supplemental Sampling Events (Dataset 72f) (BRC and ERM 2014a [pending approval by the NDEP]); and

• Data Validation Summary Report, Eastside Confirmation/Supplemental Sampling Events – March 2014 through August 2014 (Dataset 72g) (BRC and ERM 2014b [pending approval by the NDEP]).

The information sources and the availability of such information for the data usability process are as follows:

- A Site description provided in this report and the NDEP-approved SAP identifies the location and features of the Site, the characteristics of the vicinity, and contaminant transport mechanisms.
- A Site map with sampling locations is provided on Figure 11.
- Sampling design and procedures were provided in the NDEP-approved SAP.
- Analytical methods and sample quantitation limits (SQLs) are provided in the dataset file included on the report CD in Appendix B.
- A complete dataset is provided in the dataset file included on the report CD in Appendix B.
- A narrative of qualified data is provided with each analytical data package; the laboratory
 provided a narrative of QA/QC procedures and results. These narratives are included as part
 of the DVSRs.
- QC results are provided by the laboratory, including blanks, replicates, and spikes. The laboratory QC results are included as part of the DVSRs.
- Data flags used by the laboratory were defined adequately.
- Electronic files containing the raw data made available by the laboratory are included as part of the DVSRs.

4.2 CRITERION II – DOCUMENTATION REVIEW

The objective of the documentation review is to confirm that the analytical results provided are associated with a specific sampling location and collection procedure, using available documentation. For the purposes of this data usability analysis, the chain-of-custody forms prepared in the field were reviewed and compared to the analytical data results provided by the laboratory to ensure completeness of the dataset as discussed in the DVSRs. Based on the

documentation review, all samples analyzed by the laboratory were correlated to the correct geographic location at the Site, as shown on Figure 11. The samples were collected in accordance with the SAPs, and the SOPs developed for the BMI Common Areas as provided in the FSSOP (BRC, ERM, and MWH 2009). Field procedures included documentation of sample times, dates, and locations; other sample-specific information such as sample depth was also recorded. Information from field forms generated during sample collection activities was imported into the project database.

The analytical data were reported in a format that provides adequate information for evaluation, including appropriate QC measures and acceptance criteria. Each laboratory report describes the analytical method used, provides results on a sample-by-sample basis along with sample-specific SQLs, and provides the results of appropriate QC samples such as laboratory control spike samples, sample surrogates and internal standards, and matrix spike samples. All laboratory reports, except for asbestos, were prepared as provided by the documentation required by USEPA's Contract Laboratory Program (USEPA 2003a, 2004b,c) which includes chain-of-custody records; calibration data; QC results for blanks, duplicates, and spike samples from the field and laboratory; and all supporting raw data generated during sample analysis were also included. Reported analytical results were imported into the project database.

Measurement of asbestos was conducted consistent with the NDEP's *Technical Guidance for the Calculation of Asbestos-Related Risk in Soils* (2011a). The recommended method for providing asbestos data that are useful for risk assessment purposes was performed by EMSL Analytical, Inc., in Westmont, New Jersey. Although this laboratory is not currently certified in Nevada, it does have State of California and U.S. accreditation for asbestos analysis. Because many of the QC procedures associated with other analyses do not apply to asbestos analysis (e.g., laboratory blanks, duplicates and spikes), data validation of the asbestos laboratory reports involved a somewhat lesser level of effort than for other analyses (consistent with the NDEP's 2012 *Guidance on Data Validation for Asbestos Data in Soils* [2012a]). Asbestos data were validated in a separate DVSR prepared by Neptune and Company (2014). This DVSR is provided electronically in Appendix F.

4.3 CRITERION III – DATA SOURCES

The review of data sources is performed to determine whether the analytical techniques used in the Site characterization process (i.e., SAP sampling) are appropriate for risk assessment purposes. The data collection activities specified in the SAPs were developed to characterize a

broad spectrum of chemicals potentially present on the Site, including asbestos, aldehydes, general chemistry and ions, VOCs, SVOCs, metals, dioxins/furans, PAHs, organochlorine pesticides, radionuclides, and PCBs (SRCs and analyses performed under SAP implementation are listed in Table 3-2, and Table 3-10 for surface flux samples). Because of the soil removals that have occurred on the Site, data collected prior to SAP implementation had significant gaps and inconsistencies in analytical methodology, and as discussed in Section 2, those historical data are not evaluated further in the data usability process, or the HHRA. Only post-remediation data collected under the SAPs (and subsequent supplemental and confirmation sampling events) are being used in the HHRA, and these were subjected to the formal data usability evaluation described in this section. Figure 11 demonstrates that samples collected in accordance with the SAP are situated across the entire Site; analyses associated with these samples are summarized in Tables 3-2 (soil) and 3-10 (surface flux).

The State of Nevada is in the process of certifying the laboratories used to generate the analytical data. As such, standards of practice in these laboratories follow the quality program developed by the Nevada Revised Statutes and are within the guidelines of the analytical methodologies established by the USEPA. Based on the review of the available information, the data sources for chemical and physical parameter measurements are adequate for use in a risk assessment.

4.4 CRITERION IV – ANALYTICAL METHODS AND DETECTION LIMITS

In addition to the appropriateness of the analytical techniques evaluated as part of Criterion III, it is necessary to evaluate if the detection limits are low enough to allow adequate characterization of risks. At a minimum, this data usability criterion can be met through the determination that routine USEPA and U.S. Department of Energy (DOE) reference analytical methods were used in analyzing samples collected from the Site. The USEPA and DOE methods that were used in conducting the laboratory analysis of soil and surface flux samples are identified in the dataset file included on the report CD in Appendix B. Each of the identified methods is considered the most appropriate method for the respective constituent class and each was approved by the NDEP as part of the SAPs. As recommended by the NDEP's guidance on *Detection Limits and Data Reporting* (NDEP 2008b), the laboratory reported SQL was used in evaluating detection limits.

Laboratory practical quantitation limits (PQLs) were based on those outlined in the reference method, the SAPs, and the project QAPP. In accordance with respective laboratory SOPs, the

analytical processes included performing instrument calibration, laboratory method blanks, and other verification standards used to ensure QC during the analyses of collected samples.

The range of SQLs achieved in soil field samples was compared to the NDEP residential soil BCLs (NDEP 2013). As seen in the summary of the Site soil dataset provided in Table 3-4, of the standard analytes, only the constituents identified below had SQLs that exceeded their respective residential soil BCLs.

- The SQL for arsenic was higher than the BCL in all non-detects (2 of 392 samples). All exceedances of the BCL are due to results qualified due to blank contamination, and are below maximum background levels. Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for toxaphene was higher than the BCL in a single sample (1 of 251 samples). Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for 1,2-diphenylhydrazine was higher than the BCL in a single sample (1 of 253 samples). Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for 3,3-diphenylhydrazine was higher than the BCL in a single sample (1 of 253 samples). Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for bis(2-Chloroethyl) ether was higher than the BCL in a single sample (1 of 253 samples). Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for dichloromethyl ether was higher than the BCL in all 253 samples analyzed. This compound was not detected in any samples. The dichloromethyl ether SQL is greater than 100 times the BCL and a reduction in the SQL is not likely to be achieved by the laboratory. Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for hexachlorobenzene was higher than the BCL in a single sample (1 of 253 samples). Therefore, the analytical SQLs are considered adequate for risk assessment purposes.

- The SQL for nitrobenzene was higher than the BCL in a single sample (1 of 253 samples). Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for N-nitroso-di-n-propylamine in 129 of 253 soil samples exceeded the residential BCL. N-nitroso-di-n-propylamine was not detected in any soil sample. The SQL for most samples was at or below the BCL; therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for p-Chloroaniline was higher than the BCL in a single sample (1 of 253 samples). Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The SQL for pentachlorophenol was higher than the BCL in a single sample (1 of 253 samples). Therefore, the analytical SQLs are considered adequate for risk assessment purposes.
- The radium-226, radium-228, and thorium-228 minimum detectable activity (MDA) in all sample analyses were higher than the BCL; the uranium-235/236 MDA in most sample analyses and the uranium-238 MDA in 11 sample analyses were higher than the BCL. However, all radionuclides were statistically similar to background.

SPLP SQLs were compared to residential water BCLs (see Appendix B, Table B-12).

- The following analytes have SPLP SQLs higher than their residential water BCL: formaldehyde; aldrin; benzo(a)anthracene; benzo(a)pyrene; benzo(b)fluoranthene; benzo(k)fluoranthene; dibenzo(a,h)anthracene; indeno(1,2,3-cd)pyrene; 1,2-diphenylhydrazine; 1,4-dioxane; 2,2'-dichlorobenzil; 2,4,6-trichlorophenol; 2,4-dinitrotoluene; 3,3-dichlorobenzidine; acetaldehyde; aniline; bis(2-chloroethyl) ether; bis(2-chloroisopropyl) ether; bis(2-ethylhexyl)phthalate; hexachlorobenzene; hexachlorobutadiene; hexachloroethane; naphthalene; nitrobenzene; N-nistrosodi-n-propylamine; and pentachlorophenol.
- Only formaldehyde; aldrin; benzo(a)anthracene; benzo(a)pyrene; benzo(b)fluoranthene; benzo(k)fluoranthene; indeno(1,2,3-cd)pyrene; acetaldehyde; bis(2-ethylhexyl)phthalate; and hexachlorobenzene were detected in soils, and with one exception, the soil concentrations were all below the LBCL_{DAF1}. Hexachlorobenzene had two detections above the LBCL_{DAF1}.
- Because the remaining non-detect SPLP constituents were also not detected in soils, they are not anticipated to be of concern with respect to potential impacts to groundwater.

As discussed in the 2008 Supplemental Shallow Soil Background Report (BRC and ERM 2009b), there are differences in SQLs among datasets that may affect data comparability for datasets comprised primarily of non-detect values. For these datasets, left-censored data can result in difficulties in differentiating whether datasets are actually different or merely an artifact of detection limits.

4.5 CRITERION V – DATA REVIEW

The data review portion of the data usability process focuses primarily on the quality of the analytical data received from the laboratory. Soil and surface flux sample data were subject to data validation. DVSRs were prepared as separate deliverables (Appendix F). The analytical data were validated according to the internal procedures using the principles of USEPA National Functional Guidelines (USEPA 1999, 2004d, 2005a, 2008) and were designed to ensure completeness and adequacy of the dataset. Additionally, the DVSRs were issued utilizing the NDEP's two Supplemental Guidance on Data Validation documents (NDEP 2009b,c). Any analytical errors and/or limitations in the data have been addressed and an explanation for data qualification provided in the respective data tables. The results of ERM's data review for these issues are presented in the DVSRs and are summarized below. Data qualifications are discussed in the subsections that follow.

4.5.1 **Holding Time Exceedances / Sample Condition Qualifications**

Holding time refers to the period of time between sample collection and the preparation and/or analysis of the sample. The accuracy of analytical results may depend upon analysis within specified holding times and sample temperature. In general, a longer holding time is assumed to result in a less accurate measurement due to the potential for loss or degradation of the analyte over time. Sample temperature is of greatest concern for VOCs that may volatilize from the sample at higher temperatures. As described in the DVSRs, sample results were reviewed for compliance with the method-prescribed preparation and analysis holding times.

USEPA guidance for validation allows professional judgment to be used in evaluating qualification due to holding time exceedances. Sample results that were generated after the required holding time, but less than two times after the holding time, were qualified as estimated (J- or UJ flagged). If the samples were prepared after two times the holding time was exceeded, non-detect results were qualified as rejected (R) and detections were qualified as estimated (J-). Qualifications to 981 (of which 19 were rejected (R)) samples were made on the basis of

exceeded holding times (see Table 2-2 of the DVSRs; Appendix F; included on the report CD in Appendix B), as follows:

• Hexavalent chromium results for 19 soil samples were rejected (R) due to holding time exceedances greater than two times the holding time. The samples rejected are listed in Table 4-1.

TABLE 4-1: HEXAVALENT CHROMIUM SAMPLES REJECTED DUE TO HOLDING TIME EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BM07-11	F8K210227012	WHC1-BN06-0	F8K210227009
WHC1-BO08-0	F8K210227003	WHC1-BO09-0-FD	F8K200234002
WHC1-BO09-16	F8K200234004	WHC1-BO09-6	F8K200234003
WHC1-BO10-0	F8K200234007	WHC1-BO10-10	F8K200234008
WHC1-BP08-0	F8K200234005	WHC1-BP08-14	F8K200234013
WHC1-BP08-4	F8K200234006	WHC1-BP09-0	F8K200234011
WHC1-BP09-10	F8K200234012	WHC1-BP10-0	F8K200234009
WHC1-BP10-10	F8K200234010	WHC1-D21-0	F8L170249003
WHC1-D21-10	F8L170249004	WHC1-D22-10	F8L170249002
WHC1-D25-10	F8L170249006		

• Cyanide results for 12 soil samples were qualified as estimated (J-/UJ) due to holding time exceedances. The length of time between sample preparation and analysis for this batch was 15 days (1 day beyond the method-prescribed 14-day period, respectively). Results associated with holding time exceedances more than twice the holding time were detected and qualified as estimated. The samples qualified are listed in Table 4-2.

TABLE 4-2: TOTAL CYANIDE SAMPLES QUALIFIED DUE TO HOLDING TIME EXCEEDANCES

DEE TO HOEDING THAT EMCEEDINGEES			
Sample ID	Lab ID	Sample ID	Lab ID
WHC1-D13-0	F8L110242009	WHC1-D21-0 ^U	F8L170249003
WHC1-D21-10 ^U	F8L170249004	WHC1-D22-0 ^U	F8L170249001
WHC1-D22-10 ^U	F8L170249002	WHC1-D23-0	F8L170249010
WHC1-D23-10	F8L170249011	WHC1-D24-0	F8L170249007
WHC1-D24-0-FD	F8L170249008	WHC1-D24-10 ^U	F8L170249009
WHC1-D25-0 ^U	F8L170249005	WHC1-D25-10 ^U	F8L170249006

U = Was qualified J-, but the final qualifier was UJ due to blank contamination.

• Chromium (VI) results for 68 soil samples were qualified as estimated (J-/UJ) due to holding time exceedance. The length of time between sample preparation and analysis was 5, 7, 8, 9, 12, and 13 days (1, 3, 4, 5, 8, and 9 days beyond the method-prescribed 4-day period,

respectively). Results associated with holding time exceedances more than twice the holding time were detected and qualified as estimated. The samples qualified are listed in Table 4-3.

TABLE 4-3: CHROMIUM (VI) SAMPLES QUALIFIED DUE TO HOLDING TIME EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BF06-0	F8L110242012	WHC1-BH02-0	F8L050133001
WHC1-BH02-10	F8L050133002	WHC1-BH03-0	F8L100188010
WHC1-BH03-10	F8L100188011	WHC1-BH05-0	F8L100188007
WHC1-BH05-0-FD	F8L100188008	WHC1-BI02-0	F8L050133006
WHC1-BI02-13	F8L050133008	WHC1-BI02-3	F8L050133007
WHC1-BI03-0	F8L050133009	WHC1-BI03-11	F8L050133010
WHC1-BI04-10	F8L100188013	WHC1-BI05-10	F8L100188006
WHC1-BJ03-0	F8L050133011	WHC1-BJ03-0-FD	F8L050133012
WHC1-BJ03-12	F8L050133013	WHC1-BJ04-0	F8L050133014
WHC1-BJ04-11	F8L050133015	WHC1-BK03-0	F8L160178009
WHC1-BK04-0	F8L050133016	WHC1-BK04-10	F8L050133017
WHC1-BL04-12	F8L230161004	WHC1-BM04-10	F8L230161003
WHC1-BM07-0	F8K210227011	WHC1-BN04-17	F8L230161002
WHC1-BN04-7	F8L230161001	WHC1-BN05-10	F8K210227008
WHC1-BN06-10	F8K210227010	WHC1-BO03-0	F8L160178010
WHC1-BO03-12	F8L200127003	WHC1-BO04-0	F8L160178012
WHC1-BO04-12	F8L200127007	WHC1-BO06-0	F8K210227014
WHC1-BO07-0	F8K200234014	WHC1-BO07-10	F8K200234015
WHC1-BP03-0	F8L160178003	WHC1-BP03-0-FD	F8L160178004
WHC1-BP04-0	F8L160178002	WHC1-BP04-12	F8L200127002
WHC1-BP05-0	F8L160178006	WHC1-BP05-10	F8L200127010
WHC1-D08-10	F8L100188012	WHC1-D09-11	F8L100188014
WHC1-D10-10	F8L100188015	WHC1-D11-10	F8L100188016
WHC1-D17-10	F8L110242007	WHC1-D22-0	F8L170249001
WHC1-D23-0	F8L170249010	WHC1-D23-10	F8L170249011
WHC1-D24-0	F8L170249007	WHC1-D24-0-FD	F8L170249008
WHC1-D24-10	F8L170249009	WHC1-D25-0	F8L170249005
WHC1-P01-0	F8L160178005	WHC1-P01-12	F8L200127006
WHC1-P03-0	F8L160178008	WHC1-P04-0	F8L160178007
WHC1-P09-0	F8L050133003	WHC1-P09-0-FD	F8L050133004
WHC1-P09-10	F8L050133005	WHC1-P17-0	F8L160178011
WHC1-P17-12	F8L200127008	WHC1-P17-12-FD	F8L200127009
WHC2-BL07-0	F0H100484005	WHC3-D11C-0	F0H100484002
WHC3-P11C-0	F0H100484003	WHC3-P11C-0-DUP	F0H100484004

- PAH results for four soil samples (WHC1-BH05-0-FD, WHC1-D03-0-FD, WHC1-D21-10, and WHC1-D25-10) were qualified as estimated (J-/UJ) due to holding time exceedance. The length of time between sample collection and extraction was 22, 28, and 31 days (8, 14, and 17 days beyond the method-prescribed 14-day period, respectively).
- SVOC results for 16 soil samples were qualified as estimated (J-/UJ) due to holding time exceedance. The length of time between sample collection and extraction was 16, 22, 26, and

28 days (8, 12, or 14 days beyond the method-prescribed 14-day period, respectively). The samples qualified are listed in Table 4-4.

TABLE 4-4: SVOC SAMPLES QUALIFIED DUE TO HOLDING TIME EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BG06-0	221033003	WHC1-BH01-0	220742019
WHC1-BP08-0	219865011	WHC1-D01-10	220742004
WHC1-D02-10	220742006	WHC1-D03-0	220742007
WHC1-D03-0-FD	220742008	WHC1-D03-10	220742009
WHC1-D04-10	220742011	WHC1-D05-10	220742013
WHC1-D06-10	220742015	WHC1-D07-0	220742016
WHC1-D09-11	220917005	WHC1-P08-0	220742018
WHC1-P12-0	220742001	WHC1-P12-11	220742002

• Soil flux results for two flux samples (WHC1-P03 and WHC1-P10) were qualified as estimated (J-/UJ) due to holding time exceedance. The length of time between sample collection and analysis was 32 and 34 days (2 and 4 days beyond the method-prescribed 30-day period, respectively).

As noted in the DVSRs, all samples were received at the laboratory within the required temperatures range of $4^{\circ}\pm2^{\circ}$ Celsius with limited exceptions. Five sample results were qualified based on sample temperatures. Results for two dioxins/furans and PCB samples (WHC1-BO05-0 and WHC1-BO06-0) and four organochlorine samples (WHC1-BN05-0, WHC1-BN05-0-FD, WHC1-BO06-0, and WHC1-BO06-10) were qualified as estimated (J-/UJ) due to an exceedance of sample temperature at the time of receipt.

In addition, sample preparation issues resulted in the qualification of several samples. Three radionuclide SPLP samples (WHC1-BM09-12, WHC1-BN06-10, and WHC1-BO10-10) were qualified as estimated (J-/UJ) because unpreserved samples were used for analysis. One SPLP sample (WHC1-BN06-10) was qualified as estimated (J/UJ) since the samples was filtered several days after the SPLP extraction ended instead of immediately. This involved the following analyses: anions, ammonia, total kjeldahl nitrogen, total organic carbon, metals, organochlorine pesticides, and aldehydes.

4.5.2 Blank Contamination

Blanks are artificial samples designed to evaluate the nature and extent of contamination of environmental samples that may be introduced by field or laboratory procedures. Field and laboratory blanks for soil samples, consisting of contaminant-free water, were prepared and

analyzed as part of standard QA/QC procedures to monitor for potential contamination of field equipment, laboratory process reagents, and sample containers. As presented in the DVSRs, 1,392 results were qualified as undetected (U or UJ) or estimated (J or J+) due to laboratory or field blank contamination, as discussed below. Most of the results (1,355) were qualified as undetected. Detections of constituents qualified due to comparable detections in laboratory or field blanks, and are presented in Table 2-2 of DVSR 53c, Tables 2-6 and 2-7 of DVSR 54, Tables 2-4 and 2-5 of DVSR 62, Tables 2-3 and 2-4 of DVSR 71, Tables 2-6 and 2-7 of DVSR 72b, Tables 2-5 of DVSR 72e, Tables 2-4 and 2-5 of DVSR 72f, and Table 2-3 of DVSR 72g (Appendix F). Data qualified as non-detections are known as "censored" data and censoring of data was included in DVSRs 53c, 54, 62, 71, and 72b. In these cases, non-detections are represented in the database as "< [the PQL]" in the case of inorganics detected below the PQL, or as "<[result value]" for all others.26 However, for the DVSR 54 dataset it was determined there was an inconsistency in the value used for organics. The majority of the data followed the rule of <[result value], however, for 82 results: one PAH, dibenz(a,h)anthracene (4 results); and seven VOCs, 1,2,4-trimethylbenzene (24 results); 1,2-dichlorobenzene (4 results); acetone (12 results); dichloromethane (24 results); ethylbenzene (8 results); m,p-xylene (4 results); and o-xylene (2 results), the value shown is the PQL. Of these, only dibenz(a,h)anthracene was selected as a COPC and only because other carcinogenic PAHs were detected above screening levels. Therefore, there is no effect on the HHRA results. Censoring of data was not performed in DVSRs 72e, 72f, and 72g.

These censored data are summarized in Appendix E, Table E-14 (included on the report CD in Appendix B) by compound class. As seen in that table, analytes were initially reported as detections in samples, but were later qualified as non-detections based on the presence of comparable concentrations of that analyte in blank samples. As seen in Appendix E, compounds most often censored for soil results included the following:

- Cyanide, Total (136 samples)
- Orthophosphate (as P) (46 samples)
- Ethylbenzene (52 samples)

- Formaldehyde (29 samples)
- Acetone (64 samples)
- Dichloromethane (93 samples)

²⁶ Although NDEP has issued recent guidance regarding qualifying data due to blank contamination (NDEP 2012b); BRC has addressed this issue in the *Technical Memorandum – BRC Comments on NDEP Blank Contamination Guidance* (BRC 2011) and, consistent with this Technical Memorandum, no changes were made to the Site dataset.

4-12

• Mercury (68 samples)

- Radium-226 (32 samples)
- Total Organic Carbon (134 samples)
- 1,2,4-Trimethylbenzene (80 samples)

In addition, 295 of the sample results qualified due to laboratory or field blank contamination were surface flux samples. Benzene (71 results) was the most frequently censored in surface flux samples.

Table 4-5 presents the metals most likely to be affected by this issue.

TABLE 4-5: METALS MOST FREQUENTLY CENSORED DURING BLANK SAMPLE EVALUATION

	Number of	Number of	Number of	Max Non Detect	NDEP Residential
Metal	Number of Detect	Number of Samples	Censored Results	Non-Detect (mg/kg)	BCL (mg/kg)
Cadmium	164	243	27	0.29	77.7
Mercury	58	243	68	0.0439	23.5
Molybdenum	195	243	23	2.8	391

What this table demonstrates is that while the number of censored results is numerous for some metals compared to the number of detections, censored values are still much lower than BCLs.

4.5.2.1 Sample/Duplicate Differences Outside Permissible Range or Greater than Permissible Values

During the data validation process, sample/duplicate results are evaluated to determine whether differences in those results suggest potential issues with data quality. Specifically, the analyst evaluates the following:

- Matrix spike/matrix spike duplicate (MS/MSD) percent recoveries, to determine if the recoveries are outside acceptance limits;
- Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) percent recoveries, to determine if the recoveries are outside acceptance limits;
- Sample/field duplicate results, to determine if differences are greater than the permissible value; and
- Sample/laboratory duplicate results, to determine if differences are greater than the permissible value.

4.5.2.2 Qualifications Due to MS/MSD Recoveries Outside Acceptance Criteria

As discussed in the DVSRs, 1,873 inorganic sample results were qualified as estimated based on MS/MSD recoveries (either UJ for non-detections or J for detections; "+" or " – " added to denote potential high or low bias, respectively). Three results were rejected due to MS/MSD recoveries less than 30 percent.

The results rejected include the following:

• Vinyl acetate results for two soil samples (WHC1-BK05-0 and WHC1-P11-0) were rejected (R) due to 0 percent recoveries.

• A single 2,4-dimethylphenol result (WHC1-BL06-0) was rejected (R) due to 0 percent recoveries.

The qualifications applied on the basis of MS/MSD recoveries were as follows:

• The ammonia (as N) result for one soil sample (WHC1-BO01-0) was qualified as estimated (J+) due to a recovery greater than the acceptance criteria (75 to 125 percent). The final qualifier was UJ due to an additional qualification for blank contamination.

• The chloride result for one soil sample (WHC1-D29-10) was qualified as estimated (J+) due to a recovery greater than the acceptance criteria (75 to 125 percent).

• The cyanide results for two soil samples (WHC1-BJ01-0 and WHC1-P16-11) were qualified as estimated (J-/UJ) due to recoveries below the acceptance criteria (75 to 125 percent). The final qualifier for the detected result was UJ due to an additional qualification for blank contamination.

• The fluoride results for two soil samples (WHC1-D29-10 and WHC1-P12-11) were qualified as estimated (J+) due to recoveries above the acceptance criteria (75 to 125 percent).

• The nitrate results for three soil samples (WHC1-D03-10, WHC1-D29-10, and WHC1-P18-0) was qualified as estimated (J+) due to recoveries greater than the acceptance criteria (75 to 125 percent).

• The orthophosphate results for three soil samples were qualified as estimated (J+) due to recoveries greater than the acceptance criteria (75 to 125 percent; note that the final qualifier for one sample (WHC1-D29-10) was UJ due to an additional qualification for blank

contamination) and 15 soil samples were qualified as estimated (J-/UJ) due to recoveries below the acceptance criteria (75 to 125 percent). The affected samples are listed in Table 4-6.

TABLE 4-6: ORTHOPHOSPHATE SAMPLES ESTIMATED DUE TO MATRIX SPIKE RECOVERY EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BN01-0	F8L020153005	WHC1-BN02-0 ^U	F8L020153015
WHC1-BN02-0-FD ^U	F8L020153016	WHC1-BN02-11	F8L020153017
WHC1-BO02-0 ^U	F8L020153011	WHC1-BO02-12	F8L020153012
WHC1-BP01-0	F8L020153007	WHC1-BP02-0	F8L020153009
WHC1-BP02-11	F8L020153010	WHC1-D03-10	F8L060161013
WHC1-D29-10 ^U	F8L130169011	WHC1-P02-0 ^U	F8L020153003
WHC1-P02-10 ^U	F8L020153004	WHC1-P16-0 ^U	F8L020153018
WHC1-P16-11	F8L020153002	WHC1-P18-0	F8L020153013
WHC1-P18-12	F8L020153014	WHC1-D16-0	F8L110242008
II.			

^U = Was qualified J+ or J- due to matrix spike recoveries, but the final qualifier was UJ due to additional qualification.

• The perchlorate results for 20 soil samples were qualified as estimated (J-/UJ) due to recoveries less than the acceptance criteria (75 to 125 percent) and two soil samples were qualified as estimated (J+) due to recoveries greater than the acceptance criteria. The affected samples are listed in Table 4-7.

TABLE 4-7: PERCHLORATE SAMPLES ESTIMATED DUE TO MATRIX SPIKE RECOVERY EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BF01-0	220076001	WHC1-BF01-12	220076002
WHC1-BF02-0	220184001	WHC1-BG01-0	220076003
WHC1-BG01-11	220076004	WHC1-BG02-0	220076005
WHC1-BG02-0-FD	220076006	WHC1-BG02-10	220076007
WHC1-BM01-0	220507001	WHC1-BM07-0	219938018
WHC1-BM07-11	219938019	WHC1-BN05-0	219938013
WHC1-BN05-0-FD	219938014	WHC1-BN05-10	219938015
WHC1-BN06-0	219938016	WHC1-BO05-0	219938011
WHC1-BO05-10	219938012	WHC1-BO06-0	219938009
WHC1-BO06-10	219938010	WHC1-BP07-0	219938006
WHC1-P15-0	220809001	WHC1-D16-0	221033007

- The sulfate results for three soil samples (WHC1-BJ05-0, WHC1-D03-10, and WHC1-D29-10) were qualified as estimated (J+) due to recoveries greater than the acceptance criteria (75 to 125 percent).
- The total Kjeldahl nitrogen results for 10 soil samples were qualified as estimated (J-/UJ) due to recoveries less than the acceptance criteria (75 to 125 percent) and 10 soil samples were

qualified as estimated (J+) due to recoveries greater than the acceptance criteria. The affected samples are listed in Table 4-8.

TABLE 4-8: TOTAL KJELDAHL NITROGEN SAMPLES ESTIMATED DUE TO MATRIX SPIKE RECOVERY EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BF02-0	F8K260286001	WHC1-BF02-11	F8K260286002
WHC1-BF03-0	F8K260286003	WHC1-BF03-10	F8K260286004
WHC1-BF04-0	F8K260286005	WHC1-BF04-0-FD	F8K260286006
WHC1-BF05-0	F8L110242014	WHC1-BF06-0	F8L110242012
WHC1-BG02-0-FD	F8K250122006	WHC1-BG02-10	F8K250122007
WHC1-D10-0	F8L090162011	WHC1-D11-0	F8L090162012
WHC1-D13-0	F8L110242009	WHC1-D17-0 ^U	F8L110242006
WHC1-D17-10	F8L110242007	WHC1-P10-0	F8K260286010
WHC1-P11-0	F8L090162013	WHC1-P11-0-FD	F8L090162014
WHC1-BG05-0	F8K260286008	WHC1-D16-0	F8L110242008

U = Was qualified J+ or J- due to matrix spike recoveries, but the final qualifier was UJ due to additional qualification.

- The radium-228 results for five soil samples (WHC1-BH04-0-FD, WHC1-BL08-0, WHC1-BL08-10, WHC1-BM08-11, and WHC1-BM09-0) were qualified as estimated (J-) due to recoveries less than the acceptance criteria (75 to 125 percent).
- The thorium-232 results for 19 soil samples were qualified as estimated (J-/UJ) due to recoveries less than the acceptance criteria (75 to 125 percent). The affected samples are listed in Table 4-9.

TABLE 4-9: THORIUM-232 SAMPLES ESTIMATED DUE TO MATRIX SPIKE RECOVERY EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BH01-0	220742019	WHC1-D01-0	220742003
WHC1-D01-10	220742004	WHC1-D02-0	220742005
WHC1-D02-10	220742006	WHC1-D03-0	220742007
WHC1-D03-0-FD	220742008	WHC1-D03-10	220742009
WHC1-D04-0	220742010	WHC1-D04-10	220742011
WHC1-D05-0	220742012	WHC1-D05-10	220742013
WHC1-D06-0	220742014	WHC1-D06-10	220742015
WHC1-D07-0	220742016	WHC1-D07-10	220742017
WHC1-P08-0	220742018	WHC1-P12-0	220742001
WHC1-P12-11	220742002		

• The benzyl alcohol result for one SPLP sample (WHC1-BM09-12) was qualified as estimated (UJ) due to recoveries below the acceptance criteria (26 to 98 percent).

- The total organic carbon results for five samples (OSC1-BO11-0, OSC1-BO11-0-DUP, OSC1-BO11-5, OSC1-BP11-0, and OSC1-BP11-5) were qualified as estimated (J-) due to recoveries below the acceptance criteria (75 to 125 percent).
- Metals results for soil samples in various laboratory data packages were qualified as estimated (J+ for high recoveries/J- or UJ for low recoveries) due to recoveries outside the acceptance criteria (75 to 125 percent), as summarized in Table 4-10 (Tables section).

Appendix E, Table E-11 (included on the report CD in Appendix B) lists the samples and associated analytes exhibiting MS/MSD percent recoveries below the laboratory control limits. In cases in which the recoveries were higher than the acceptance criteria, the results have the potential of being similarly biased high, and using these data in the HHRA could result in risks being calculated that are higher than would be associated with actual Site conditions. Of more concern for the HHRA is underestimation of risk, which could be associated with the use of data that are biased low.

As indicated in that table, reported detections and non-detects for soil data were flagged as estimated ("J-" or "UJ," respectively) due to low MS/MSD recoveries (*i.e.*, from 30 to 74 percent for metals).²⁷ Non-detects associated with "very low" MS/MSD recoveries (i.e., less than 30 percent for metals) are generally rejected as unusable. A total of 105 Two results were rejected due to MS/MSD recoveries. The data flagged as estimated based on low MS/MSD recoveries were subjected to further review in terms of data usability for the Site, as discussed in Section 4.6.2.3.

4.5.2.3 Qualifications Due to LCS/LCSD Recoveries Outside Acceptance Criteria

Organic and inorganic constituent results for 115 samples were qualified as estimated (either UJ for non-detections or J for detections; "+" or "-" added to denote potential high or low bias, respectively) based on LCS/LCSD recoveries. No data were rejected due to very low LCS recoveries.

• The 1,2,3,4,6,7,8-HpCDD results for two soil samples (WHC7-P11_5 and WHC7-BH06NE_5) were qualified as estimated (J+) due to recoveries above the acceptance criteria (75 to 125 percent).

²⁷ If additional validation criteria (aside from the MS/MSD recoveries) did not suggest a low bias for a given result, the sample result was flagged with "J" (no bias inferred).

- The 1,2,3,4,7,8,9-HpCDF results for two soil samples (WHC4-D27N and WHC4-D27S) were qualified as estimated (J+) due to recoveries above the acceptance criteria (75 to 125 percent).
- The 1,2,3,7,8-PCDD results for two soil samples (WHC7-BG02SW_5 and WHC7-D10_5) were qualified as estimated (J+) due to recoveries above the acceptance criteria (75 to 125 percent).
- The 1,2-diphenylhydrazine results for seven soil samples (WHC1-BO03-12, WHC1-BO04-12, WHC1-BP04-12, WHC1-BP05-10, WHC1-P01-12, WHC1-P17-12, and WHC1-P17-12-FD) were qualified as estimated (UJ) due to recoveries below the acceptance criteria (58 to 102 percent).
- The 2,4-dichlorophenol results for seven soil samples (WHC1-BO03-12, WHC1-BO04-12, WHC1-BP04-12, WHC1-BP05-10, WHC1-P01-12, WHC1-P17-12, and WHC1-P17-12-FD) were qualified as estimated (UJ) due to recoveries below the acceptance criteria (57 to 105 percent).
- The 2,4-dimethylphenol results for 13 soil samples were qualified as estimated (UJ) due to recoveries below the acceptance criteria (47 to 105 percent). The affected samples are listed in Table 4-11.

TABLE 4-11: 2,4-DIMETHYLPHENOL SAMPLES ESTIMATED DUE TO LCS/LCSD RECOVERY EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BL05-0	220022011	WHC1-BL05-10	220022012
WHC1-BL06-11	220022010	WHC1-BL07-0	220022013
WHC1-BL07-10	220022014	WHC1-BM05-0	220022004
WHC1-BM05-10	220022005	WHC1-BM06-0	220022006
WHC1-BM06-0-FD	220022007	WHC1-BM06-10	220022008
WHC1-BN07-0	220022001	WHC1-BN07-13	220022003
WHC1-BN07-3	220022002		

- The boron results for three soil samples (WHC1-BL01-10, WHC1-BN01-0, and WHC1-BO02-0) were qualified as estimated (J+) due to recoveries above the acceptance criteria (80 to 120 percent).
- The cis-1,2-dichloroethene result for one soil sample (WHC1-BG01-11) was qualified as estimated (UJ) due to recoveries below the acceptance criteria (84 to 118 percent).

• The copper results for 19 soil samples were qualified as estimated (J+) due to recoveries above the acceptance criteria (80 to 120 percent). The affected samples are listed in Table 4-12.

TABLE 4-12: COPPER SAMPLES ESTIMATED DUE TO LCS/LCSD RECOVERY EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BK02-11	F8L190190008	WHC1-BK03-12	F8L190190009
WHC1-BL03-10	F8L190190007	WHC1-BL04-0	F8L190153001
WHC1-BM03-10	F8L190190005	WHC1-BM04-0	F8L190153002
WHC1-BM04-0-FD	F8L190153003	WHC1-BN03-0	F8L190153005
WHC1-BN03-10	F8L190190004	WHC1-BN04-0	F8L190153004
WHC1-D23-0	F8L170249010	WHC1-D23-10	F8L170249011
WHC1-P03-13	F8L190190001	WHC1-P03-3	F8L190190010
WHC1-P03-3-FD	F8L190190011	WHC1-P04-10	F8L190190002
WHC1-P05-10	F8L190190006	WHC1-P14-0	F8L190153006
WHC1-P15-10	F8L190190003		

- The hexachlorobutadiene results for six soil samples (WHC1-BH01-0, WHC1-D01-0, WHC1-D02-10, WHC1-D06-0, WHC1-D07-10, and WHC1-P12-0) were qualified as estimated (UJ) due to recoveries below the acceptance criteria (50 to 105 percent).
- The molybdenum results for 33 soil samples were qualified as estimated (J+) due to recoveries above the acceptance criteria (78 to 122 or 80 to 119 percent). The affected samples are listed in Table 4-13.

TABLE 4-13: MOLYBDENUM SAMPLES ESTIMATED DUE TO LCS/LCSD RECOVERY EXCEEDANCES

Sample ID	Lab ID	Sample ID	Lab ID
WHC1-BK02-11	F8L190190008	WHC1-BK05-0	F8L130169001
WHC1-BK05-11	F8L130169002	WHC1-BL03-10	F8L190190007
WHC1-BL04-0	F8L190153001	WHC1-BM03-10	F8L190190005
WHC1-BM04-0	F8L190153002	WHC1-BM04-0-FD	F8L190153003
WHC1-BN03-0	F8L190153005	WHC1-BN03-10	F8L190190004
WHC1-BN04-0	F8L190153004	WHC1-BP06-0	F8L130169008
WHC1-BP06-10	F8L130169009	WHC1-D20-0	F8L130169003
WHC1-D20-10	F8L130169004	WHC1-D23-0	F8L170249010
WHC1-D23-10	F8L170249011	WHC1-D26-0	F8L130169005
WHC1-D26-10	F8L130169006	WHC1-D27-0	F8L130169013
WHC1-D27-0-FD	F8L130169014	WHC1-D27-10	F8L130169015
WHC1-D28-0	F8L130169007	WHC1-D28-10	F8L130169012
WHC1-D29-0	F8L130169010	WHC1-D29-10	F8L130169011
WHC1-P03-13	F8L190190001	WHC1-P03-3	F8L190190010
WHC1-P03-3-FD	F8L190190011	WHC1-P04-10	F8L190190002
WHC1-P05-10	F8L190190006	WHC1-P14-0	F8L190153006
WHC1-P15-10	F8L190190003		

4-19

- The silver results for four soil samples (WHC1-BL04-12, WHC1-BM04-10, WHC1-BN04-17, and WHC1-BN04-7) were qualified as estimated (J+) due to recoveries above the acceptance criteria (80 to 120 percent).
- The tungsten results for two soil samples (WHC2-BM06C-0 and WHC2-D16C-0) were qualified as estimated (J+) due to recoveries above the acceptance criteria (80 to 120 percent). The results were later qualified as UJ due to blank contamination.
- The benzyl alcohol result for one SPLP sample (WHC1-BM09-12) was qualified as estimated (UJ) due to a recovery below the acceptance criteria (37 to 88 percent).

In addition, five flux samples (1,1-dichloroethene, 1,1-dichloroethane, and vinyl chloride in samples WHC1-BM08, WHC1-BM09, WHC1-BM10, and WHC1-BN10R and tetrachloroethene in WHC1-P10) were qualified as estimated (UJ) based on LCS/LCSD recoveries below the acceptance limit (70 to 130 percent; note that the final qualifier for tetrachloroethene in WHC1-P10 was J, due to an additional qualification for holding time and surrogate recoveries).

As noted above, recoveries below the lower laboratory limits are of the most concern in terms of data usability. Appendix E, Table E-11 (included on the report CD in Appendix B) lists the samples and associated analytes exhibiting LCS/LCSD percent recoveries below the lower laboratory control limit. The data flagged as estimated based on low LCS/LCSD recoveries were subjected to further review in terms of data usability for the Site, as discussed in Section 4.6.2.3.

4.5.2.4 Qualifications Due to Sample/Field Duplicate Differences Outside Acceptance Criteria

The following 48 soil field duplicates were collected during the sampling activities:

- WH-AS_A0D
- WH-AS D7D
- WH-AS_J3D
- WH-AS L6D
- WH-AS_Q11D
- WH-AS R15D
- WHC1-BF04-0-FD
- WHC1-BH05-0-FD
- WHC1-BJ01SE-0-DUP
- WHC1-BJ03-0-FD
- WHC1-BM04-0-FD

- WH-AS_A6D
- WH-AS G1D
- WH-AS_J6D
- WH-AS P0D
- WH-AS_Q8D
- WH-AS T10D
- WHC1-BG02-0-FD
- WHC1-BH06-0-FD
- WHC1-BJ02-0-FD
- WHC1-BK01-0-FD
- WHC1-BM06-0-FD

- WHC1-BM08-0-FD
- WHC1-BN05-0-FD
- WHC1-BO01-0-FD
- WHC1-D03-0-FD
- WHC1-D24-0-FD
- WHC1-P01SW-0-DUP
- WHC1-P05-0-FD
- WHC1-P11-0-FD
- WHC1-P17-12-FD
- WHC2-BG03C-0 DUP
- WHC2-BM08C-0 DUP
- WHC2-D18C-0 DUP
- WHC6-BM06-DUP

- WHC1-BN02-0-FD
- WHC1-BN07SE-0-DUP
- WHC1-BP03-0-FD
- WHC1-D19-0-FD
- WHC1-D27-0-FD
- WHC1-P03-3-FD
- WHC1-P09-0-FD
- WHC1-P15NE-0-DUP
- WHC2-BF02C-0 DUP
- WHC2-BH06C-0 DUP
- WHC2-D03C-0 DUP
- WHC3-P11C-0-DUP
- WHD-AS-BL03-0-FD

In addition, five surface flux field duplicates were collected during the sampling activities: WHC1-BN01R, WHC1-BN10R, WHC1-BP03R, WHC1-BP06R, and WHC1-D23R.

Twenty-three field duplicates were collected for asbestos during the sampling activities:

- WHC1-A02-FD
- WHC1-BF04-FD
- WHC1-BH05-FD
- WHC1-BJ03-FD
- WHC1-BM09-FD
- WHC1-BO04-FD
- WHC1-BO09-FD
- WHC1-D01-FD
- WHC1-D20-FD
- WHC2-BM07-0-DUP
- WHC2-D18C-D-DUP
- WHC3-BP06SE-DUP

- WHC1-A09-FD
- WHC1-BG03-FD
- WHC1-BI02-FD
- WHC1-BK05-FD
- WHC1-BN08-FD
- WHC1-BO05-FD
- WHC1-BP01-FD
- WHC1-D10-FD
- WHC1-D27-FD
- WHC2-BM07C-0-DUP
- WHC2-D23-0-DUP

Field duplicate differences in excess of acceptance limits were noted in 28 of the 48 field duplicate pairs of soil samples, in three of five pairs of duplicate flux samples, and in eight of the 23 duplicate pairs for asbestos samples. The differences are presented in Appendix E, Table E-12 (included on the report CD in Appendix B). All associated data were flagged as estimated (J/UJ). No data were rejected on the basis of sample/field duplicate differences.

4.5.2.5 Qualifications Due to Sample/Laboratory Duplicate Differences Outside Acceptance Criteria

At least one duplicate analysis (LCSD, MSD, or laboratory replicate [LR]) was performed with each batch of environmental samples processed in the laboratory. The laboratory calculated the relative percent difference (RPD) between the two detected values for MSD and LR analyses. RPD values within the acceptable limits indicate both laboratory precision and minimal matrix heterogeneity of compounds detected in the samples.

RPDs for MS/MSD pairs, LCS/LCSD pairs, and LR pairs calculated by the laboratory were generally within the laboratory's acceptance criteria. No results were qualified due to MS/MSD RPDs or LCS/LCSD RPDs. Data qualified due to laboratory duplicate sample imprecision are presented in Table 2-11 of DVSR 54.

Of the samples representing post-remediation conditions (i.e., not including those data points associated with samples from soil intervals subsequently removed from the Site), results for the 95 soil samples (95 data points) identified in Table 4-14 (Tables section) had sample/laboratory duplicate differences greater than permissible values for radionuclides (i.e., absolute difference greater than 1 pCi/g) or for cation exchange capacity (i.e., RPD greater than 20 percent or absolute differences greater than the SQL). No other chemical analytes had sample/laboratory duplicate differences greater than permissible values.

The data flagged in Table 4-14 as estimated (J for detects; UJ for non-detects) based on sample/laboratory duplicate differences were subjected to further review in terms of data usability for the Site, as discussed in Section 4.6.2.3.

4.5.3 Internal Standards Outside Acceptance Criteria

Internal standards are prepared for certain organic gas chromatograph/mass spectrometry (GC/MS) and inductively coupled plasma/mass spectrometry analyses by adding compounds similar to target compounds of interest to sample aliquots. Internal standards are used in the quantitation of target compounds in the sample or sample extract. The evaluation of internal standards involved comparing the instrument response and retention time from the target compounds in the sample with the response and retention time of specific internal standards added to the sample extract prior to analysis.

Results for three VOC soil samples (WHC1-BG02-10, WHC1-D15-0, and WHC1-P11-0) were rejected (R) due to very low internal standard recovery.

As presented in the DVSRs, the following results were qualified as estimated (J/UJ) due to internal standard exceedances:

• PCB results for 11 soil samples were qualified as estimated (J/UJ) due to low or high internal standard recoveries if the percent recovery was below 25 percent or above 150 percent. Qualified samples are presented in Table 4-15.

TABLE 4-15: PCB SOIL SAMPLE RESULTS QUALIFIED DUE TO INTERNAL STANDARDS OUTSIDE ACCEPTANCE CRITERIA

Laboratory Data Package #	Sample ID
F8L020153	WHC1-BP02-0
F8K250122	WHC1-BG01-0
F8K220190	WHC1-BM05-0
F8K220190	WHC1-BN07-0
F8K220190	WHC1-BM05-0
F8L030154	WHC1-P06-0
F8L050133	WHC1-P09-0-FD
F8L090162	WHC1-BL03-0
F8L160178	WHC1-P04-0
F9L030474	WHC2-D01C-0
F9L050438	WHC2-BF04SW-0

• VOC results for 60 soil samples were qualified as estimated (J/UJ) because of internal standard recoveries below the area limit (below 50 percent). Qualified samples are presented in Table 4-16.

TABLE 4-16: VOC SOIL SAMPLE RESULTS QUALIFIED DUE TO INTERNAL STANDARDS OUTSIDE ACCEPTANCE CRITERIA

Laboratory Data Package #	Sample ID
F8K190190	WHC1-BL08-10
	WHC1-BM08-0
	WHC1-BM08-11
	WHC1-BM09-0
	WHC1-BM09-12
F8L200127	WHC1-BO03-12
	WHC1-BP04-12
	WHC1-P01-12

TABLE 4-16: VOC SOIL SAMPLE RESULTS QUALIFIED DUE TO INTERNAL STANDARDS OUTSIDE ACCEPTANCE CRITERIA

Laboratory Data Package #	ISIDE ACCEPTANCE CRITERIA Sample ID
F8K200234	WHC1-BO07-0
	WHC1-BO07-10
	WHC1-BP08-0
	WHC1-BP09-0
	WHC1-BP09-10
	WHC1-BP10-0
	WHC1-BP10-10
F8K250122	WHC1-BF01-0
	WHC1-BF01-12
	WHC1-BG01-11
	WHC1-BG02-10
F8L090162	WHC1-BM03-0
	WHC1-D11-0
	WHC1-P05-0-FD
	WHC1-P11-0
	WHC1-P11-0-FD
	WHC1-P15-0
F8L120182	WHC1-BH04-0
	WHC1-BH06-0
	WHC1-D15-0
	WHC1-D18-0
	WHC1-D19-0
F8L160178	WHC1-BK03-0
	WHC1-BO03-0
	WHC1-BO04-0
	WHC1-BP03-0
	WHC1-BP04-0
	WHC1-P17-0
F8L170249	WHC1-D21-0
	WHC1-D21-10
	WHC1-D22-0
	WHC1-D23-0
	WHC1-D24-0
	WHC1-D24-0-FD
	WHC1-D25-0
	WHC1-D25-10
F8L030154	WHC1-BJ02-0
	WHC1-BJ02-0-FD

TABLE 4-16: VOC SOIL SAMPLE RESULTS QUALIFIED DUE TO INTERNAL STANDARDS OUTSIDE ACCEPTANCE CRITERIA

Laboratory Data Package #	Sample ID
F8L060161	WHC1-D04-0
	WHC1-D06-0
F8L190153	WHC1-BM04-0
	WHC1-BM04-0-FD
	WHC1-BN03-0
	WHC1-BN04-0
	WHC1-P14-0
F8L190190	WHC1-BK03-12
	WHC1-BN03-10
	WHC1-P03-13
	WHC1-P03-3
	WHC1-P03-3-FD
	WHC1-P04-10
F8L110242	WHC1-D13-0

• Dioxins/furans results for 67 soil samples were qualified as estimated (J/UJ) due to low internal standard recoveries (below 40 percent). Qualified samples are presented in Table 4-17.

TABLE 4-17: DIOXINS/FURANS SOIL SAMPLE RESULTS QUALIFIED DUE TO INTERNAL STANDARDS OUTSIDE ACCEPTANCE CRITERIA

Laboratory Data Package #	Sample ID
160-373-1	WHC6-D15
	WHC6-D16
	WHC6-P10
160-396-1	WHC6-BM06
	WHC6-BM06-DUP
	WHC6-JE01
F2A070405	WHC4-D27S
F8K200234	WHC1-BP09-0
	WHC1-BP10-0
F8K210227	WHC1-BN06-0
	WHC1-BO05-0
	WHC1-BP07-0
F8K220190	WHC1-BL06-0
	WHC1-BN07-0
F8K250122	WHC1-BF01-0
	WHC1-BG01-0

Laboratory Data Package #	Sample ID
F8K260286	WHC1-BF03-0
	WHC1-BG05-0
F8L020153	WHC1-BN01-0
	WHC1-BN02-0
	WHC1-BN02-0-FD
	WHC1-BO02-0
	WHC1-BP01-0
	WHC1-BP02-0
	WHC1-P16-0
	WHC1-P18-0
F8L030154	WHC1-BL02-0
	WHC1-BO01-0
	WHC1-BO01-0-FD
	WHC1-P07-0
F8K190190	WHC1-BL08-0
	WHC1-BM09-0
F8L050133	WHC1-BJ03-0
	WHC1-BK04-0
	WHC1-P09-0-FD
F8L090162	WHC1-BL03-0
F9L020470	WHC2-BJ05C-0
	WHC2-BK05NE-0
	WHC2-BK05SC-0
	WHC2-BK05SW-0
F9L030474	WHC2-BG02NE-0
	WHC2-BG02SE-0
	WHC2-BP05NE-0
	WHC2-BP05NW-0
	WHC2-D01C-0
	WHC2-P12C-0
F9L040526	WHC2-BG06NE-0
	WHC2-BH06C-0
	WHC2-BH06C-0 DUP
	WHC2-BH06NW-0
	WHC2-D13SE-0
F8L040142	WHC1-BJ01-0
	WHC1-BK01-0-FD
	WHC1-P08-0

Laboratory Data Package #	Sample ID
F9L050438	WHC2-BF02C-0 DUP
	WHC2-BF04NE-0
	WHC2-BF04NW-0
	WHC2-BF04SE-0
	WHC2-BF04SW-0
	WHC2-BG03C-0
	WHC2-BG03C-0 DUP
	WHC2-BG03NE-0
	WHC2-BG03NW-0
	WHC2-BG03SE-0
	WHC2-BH05NW-0
	WHC2-P13C-0
	WHC2-P13SW-0

- PAH results in one soil sample (WHC1-BL01-0) as estimated (J/UJ) due to low internal standard recoveries (below 50 percent).
- Metals results for six soil samples were qualified as estimated (J/UJ) due to high internal standard recoveries (above 120 percent). Qualified samples and associated metals are presented in Table 4-18.

TABLE 4-18: METALS SOIL SAMPLE RESULTS QUALIFIED DUE TO INTERNAL STANDARDS OUTSIDE ACCEPTANCE CRITERIA

Laboratory		
Data Package #	Sample ID	Qualified Metals
F8L100188	WHC1-BH05-0	Lithium and Titanium
	WHC1-BH05-0-FD	
	WHC1-BI05-10	
	WHC1-D08-10	
	WHC1-D10-10	
F8K250122	WHC1-BG02-10	Manganese

• VOC results for 33 flux samples were qualified as estimated (J/UJ) due to low internal standard recoveries (below 60 percent). Qualified samples are presented in Table 4-19.

4-27

TABLE 4-19: VOC SURFACE FLUX SAMPLE RESULTS QUALIFIED DUE TO INTERNAL STANDARDS OUTSIDE ACCEPTANCE CRITERIA

Laboratory Data Package #	Sample ID
208610	WHC1-BL06
	WHC1-BM07
210327	OSC1-BO11
	OSC1-JP08
208601	WHC1-BJ01
	WHC1-BJ03
	WHC1-BK01
	WHC1-BM01
	WHC1-BM03
	WHC1-BN09
	WHC1-BN10
	WHC1-BO06
	WHC1-BO07
	WHC1-BO08
	WHC1-BO10
	WHC1-BP02
	WHC1-BP03R
	WHC1-BP04
	WHC1-BP09
	WHC1-BP10
	WHC1-D04
	WHC1-D08
	WHC1-D15
	WHC1-D17
	WHC1-D23
	WHC1-D27
	WHC1-P04
	WHC1-P06
	WHC1-P08
	WHC1-P09
	WHC1-P10
	WHC1-P13
	WHC1-P18

4.5.4 Surrogate Percent Recoveries Outside Laboratory Control Limit

As discussed in the DVSRs, surrogate spikes were added to each of the samples submitted for organic analysis to monitor potential interferences from the matrix. Results associated with

unacceptable surrogate recoveries were qualified as estimated (J+, J- or UJ). Generally, when surrogate recoveries are less than 10 percent, associated non-detect results are qualified as rejected (R) because false negatives are a possibility. No sample results were rejected due to surrogate recoveries. The soil samples listed in Table 4-20 were qualified due to surrogate recovery exceedances.

TABLE 4-20: RESULTS QUALIFIED DUE TO SURROGATE RECOVERIES OUTSIDE LABORATORY CONTROL LIMIT

Sample ID		Analysis	Recovery ¹	Acceptable Range
	Lab ID		· ·	
WHC1-BF02-0	F8K260286001	Organochlorine Pesticides	142	61-137
WHC1-BG02-0	F8K250122005	Organochlorine Pesticides	139	68-133
				72-140,
WHC1-BG02-0	F8K250122005	VOCs	61,132	80-125
				72-140,
				81-124,
WHC1-BG02-0	F8K250122005	VOCs	70,72	80-125
WHC1-BG04-0	F8L120182006	VOCs	144	80-125
WHC1-BG06-0	F8L110242004	Organochlorine Pesticides	556	61-137
WHC1-BH04-0	F8L120182010	VOCs	182	80-125
WHC1-BH05-0-FD	F8L100188008	Organochlorine Pesticides	208	61-137
WHC1-BH06-0	F8L120182003	Organochlorine Pesticides	514	61-137
WHC1-BH06-0	F8L120182003	VOCs	128	81-124
WHC1-BH06-0-FD	F8L120182004	Organochlorine Pesticides	389	61-137
WHC1-BJ02-0-FD	F8L030154015	Organochlorine Pesticides	28	70-124
WHC1-BJ05-0	F8L120182012	Organochlorine Pesticides	166	61-137
WHC1-BJ05-0	F8L120182012	VOCs	59	81-124
WHC1-BJ05-10	F8L120182015	VOCs	172	80-125
WHC1-BL05-0	F8K220190004	Organochlorine Pesticides	193	61-137
WHC1-BL06-0	F8K220190002	Organochlorine Pesticides	155	61-137
WHC1-BL06-11	F8K220190003	Organochlorine Pesticides	139	61-137
				61-137,
WHC1-BL08-0	F8K190190013	Organochlorine Pesticides	172,1020	70-124
WHC1-BL08-10	F8K190190014	Organochlorine Pesticides	158	61-137
		8		70-124,
WHC1-BM06-0	F8K220190013	Organochlorine Pesticides	134,365	61-137
WHC1-BM06-10	F8K220190001	Organochlorine Pesticides	142	61-137
		8		70-124,
WHC1-BM07-0	F8K210227011	Organochlorine Pesticides	142,235	61-137
		8	,	61-137,
WHC1-BM08-0-FD	F8K190190011	Organochlorine Pesticides	329,131	70-124
		8		61-137,
WHC1-BM08-11	F8K190190012	Organochlorine Pesticides	156,161	70-124
WHC1-BM09-0	F8K190190008	Organochlorine Pesticides	229	61-137
WHC1-BM09-12	F8K190190009	Organochlorine Pesticides	154	61-137
WHC1-BN05-0-FD	F8K210227019	Organochlorine Pesticides	126	70-124
WHC1-BN07-3	F8K220190009	VOCs	70	81-124
WHC1-BO06-10	F8K210227015	Organochlorine Pesticides	143	61-137
WHC1-D01-10	F8L060161008	Organochlorine Pesticides	141	61-137
WHC1-D02-0	F8L060161009	Organochlorine Pesticides	578	61-137
WHC1-D02-10	F8L060161010	Organochlorine Pesticides	161	70-124
111C1-D02-10	1 01.000101010	Organocinornic i esticides	101	/ U-1 24

TABLE 4-20: RESULTS QUALIFIED DUE TO SURROGATE RECOVERIES OUTSIDE LABORATORY CONTROL LIMIT

		SIDE LABORATORI		
Sample ID	Lab ID	Analysis	Recovery ¹	Acceptable Range
WHC1-D03-0	F8L060161011	Organochlorine Pesticides	127	70-124
WHC1-D03-0-FD	220743008	PAHs	45	50-150
WHC1-D03-0-FD	F8L060161012	Organochlorine Pesticides	136,213	70-24, 61-137
WHC1-D03-10	F8L060161013	Organochlorine Pesticides	151	70-124
WHC1-D06-10	F8L060161002	Organochlorine Pesticides	139	70-124
			128139 128,	70-124,
WHC1-D10-0	F8L090162011	Organochlorine Pesticides	<u>139</u>	61-137
WHC1-D11-10	F8L100188016	Organochlorine Pesticides	206	61-137
WHC1-D12-0	F8L110242002	Organochlorine Pesticides	236	61-137
WHC1-D13-0	F8L110242009	Organochlorine Pesticides	902	61-137
WHC1-D15-0	F8L120182001	VOCs	186	80-125
WHC1-D16-0	F8L110242008	Organochlorine Pesticides	503	61-137
				70-124,
WHC1-D17-0	F8L110242006	Organochlorine Pesticides	144, 19372	61-137
WHC1-D17-10	F8L110242007	Organochlorine Pesticides	218	61-137
				70-124,
WHC1-D18-0	F8L120182013	Organochlorine Pesticides	207,212	61-137
WHC1-D18-10	F8L120182014	VOCs	179	80-125
				70-124,
WHC1-D19-0	F8L120182016	Organochlorine Pesticides	148,230	61-137
				81-124,
WHC1-D19-0	F8L120182016	VOCs	156,126	80-125
				70-124,
WHC1-D20-0	F8L130169003	Organochlorine Pesticides	138, 141	61-137
WHC1-D21-0	F8L170249003	Organochlorine Pesticides	137	72-130
WHC1-D22-10	221414009	PAHs	43	50-150
WHC1-D23-10	221414007	PAHs	43	50-150
WHC1-D24-0	F8L170249007	Organochlorine Pesticides	179	61-150
WHC1-D25-0	F8L170249005	VOCs	151	79-115
WHC1-D27-0	F8L130169013	Organochlorine Pesticides	1730	61-137
WHC1-D27-0-FD	F8L130169014	Organochlorine Pesticides	230	61-137
WHC1-D27-10	F8L130169015	Organochlorine Pesticides	140	61-137
WHC1-D28-0	F8L130169007	Organochlorine Pesticides	167	61-137
				70-124,
WHC1-D28-10	F8L130169012	Organochlorine Pesticides	167, 206	61-137
WHC1-D29-0	F8L130169010	Organochlorine Pesticides	229	61-137
			163, 138,	72-140, 81-124,
WHC1-P11-0	F8L090162013	VOCs	139, 215	80-125, 47-150
WHC1-P12-0	F8L060161005	Organochlorine Pesticides	125,244	70-124, 61-137
WHC1-P12-11	F8L060161006	Organochlorine Pesticides	150	61-137
WHC2-D01-0	F0H100484001	Organochlorine Pesticides	892, 197	56-116, 49-150
WHC6-D05	160-373-4	Organochlorine Pesticides	152	52-127
WHC6-P11	160-373-11	Organochlorine Pesticides	369, 281	46-150; 52-127
			-4:	

^{1 –} Recoveries above the control limit resulted in data to be qualified as estimated "J+". Recoveries below the control limit resulted in data to be qualified as estimated "J-/UJ".

In addition, five flux samples (WHC1-BK01, WHC1-D21, WHC1-D25, WHC1-P10, and WHC1-P11) were qualified as estimated and biased high (J+) and one flux sample (WHC1-D23)

4-30

was qualified as estimated and biased low (J-/UJ) due to surrogate recovery exceedances, all below the acceptable range.

Several surrogate recoveries outside the acceptance criteria were lower than the lower laboratory control limit. Further review of surrogate recoveries resulting in a low bias is necessary in terms of data usability for the Site, as discussed in Section 4.6.2.3.

4.5.5 Calibrations Outside Laboratory Control Limits

Requirements for instrument calibration ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run. Continuing calibration checks document satisfactory maintenance and adjustment of the instrument on a day-to-day basis. As presented in the DVSRs, certain data were qualified due to initial or continuing calibration issues. Of specific concern, are analytes with a final qualifier indicating a low bias due to calibration. In the following tables, the percentage of analyte recovered is the percent of the actual continuing calibration concentration recovered. As the percentage decreases, the potential for false negatives increases.

Sulfate soil results in 11 samples (WHC1-BI02-13, WHC1-BI02-3, WCH1-BI03-0, WHC1-BI03-11, WHC1-BJ03-0, WHC1-BJ03-0-FD, WHC1-BJ03-12, WHC1-BJ04-0, WHC1-BJ04-11, WHC1-BK04-0, and WHC1-BK04-10) were qualified as estimated (J+) due to continuing calibration recoveries above the upper control limit (90 to 110 percent). All results were detects.

Table 4-21 summarizes the metal results that were qualified during the evaluation of the calibrations.

TABLE 4-21: SUMMARY OF METAL RESULTS QUALIFIED DUE TO CALIBRATIONS OUTSIDE LABORATORY CONTROL LIMIT

Analyte	# of Samples Qualified	Percent of Qualified Non-Detect	Percentage of Analyte Recovered during ICV or CCV
Beryllium	3	0	111.5%
Boron	1	0	118%

Note: The control limits are 90-110%. Detected results associated with calibration recoveries above the upper control limit were qualified as estimated (J+). Boron results were further qualified as non-detect (UJ).

Table 4-22 summarizes the SVOC results that were qualified as estimated (J/UJ) during the evaluation of the continuing calibrations.

TABLE 4-22: SUMMARY OF SVOC RESULTS QUALIFIED DUE TO CALIBRATIONS OUTSIDE LABORATORY CONTROL LIMIT

	# of Samples	Percent of Qualified	Percentage of Analyte
Analyte	Qualified	Non-Detect	Recovered during CCV
1,4-Dioxane	47	100%	57-72%
2,4-Dinitrophenol	33	100%	72-74%
2-Nitroaniline	54	100%	52-74.9%
4-Nitroaniline	32	100%	54-74%
4-Nitrophenol	30	100%	61-74%
Acetophenone	11	100%	74%
Benzenethiol	3	100%	74%
Benzoic acid	19	100%	65-74%
Benzyl alcohol	170	100%	42-74%
Carbazole	97	100%	52-74%
Dichloromethyl ether	16	100%	68-70%
Hexachlorocyclopentadiene	12	100%	48-72%
Hydroxymethyl phthalimide	46	100%	49-74%
Isophorone	13	100%	74%
Naphthalene	14	100%	74.98%
p-Chloroaniline	27	100%	60-71%
p-Chlorobenzenethiol	3	100%	72%
Phthalic Acid	76	82%	60-74.7%
Pyridine	77	100%	60-74%

Note: The control limits are 75-125% (%D \leq 25%). Detected and non-detect results associated with calibration recoveries below the lower control limit were qualified as estimated (J-/UJ).

Table 4-23 summarizes the organochlorine pesticide results that were qualified as estimated (J/UJ) due to continuing calibrations.

TABLE 4-23: SUMMARY OF ORGANOCHLORINE PESTICIDE RESULTS QUALIFIED DUE TO CALIBRATIONS **OUTSIDE LABORATORY CONTROL LIMIT**

Analyte	# of Samples Qualified	Percent of Qualified Non-Detect	Percentage of Analyte Recovered during CCV
2,4-DDD	9	0%	116-121%
2,4-DDE	18	0%	115.1-119%
4,4-DDD	8	0%	116-119%
4,4-DDE	25	0%	116-120%
4,4'-DDT	3	0%	116-126%
Alpha-BHC	2	0%	116-119%
Beta-BHC	13	0%	115.1-120%
Endrin aldehyde	2	0%	115.2-126%
Endrin ketone	1	0%	115%
Methoxychlor	3	0%	117-119%
Toxaphene	7	100%	84%

Note: The control limits are 85-115% (%D < 15%). Detected and non-detect results associated with calibration recoveries below the lower control limit were qualified as estimated (J-/UJ). Detected results associated with calibration recoveries above the upper control limit were qualified as estimated (J+).

Table 4-24 summarizes the VOC results that were qualified in soil samples due to continuing calibrations.

TABLE 4-24: SUMMARY OF VOC SOIL RESULTS QUALIFIED DUE TO CALIBRATIONS OUTSIDE LABORATORY CONTROL LIMIT

Analyte	# of Samples Qualified	Percent of Qualified Non-Detect	Percentage of Analyte Recovered during CCV
1,3,5-Trichlorobenzene	1	100%	69%
1-Nonanal	1	100%	69%
2,2,3-Trimethylbutane	6	100%	59%
2,2-Dimethylpentane	11	100%	72-74%
2,4-Dimethylpentane	8	100%	65%
3,3-Dimethylpentane	7	100%	58-73%
3-Methylhexane	6	100%	66-70%
Acetone	4	0%	126-131%
Bromomethane	7	100%	72%
Ethanol	34	100%	44-71%
Methyl iodide	7	100%	74%
Vinyl acetate	3	100%	66%

Note: The control limits are 75-125% (%D < 25%). Detected and non-detect results associated with calibration recoveries below the lower control limit were qualified as estimated (J-/UJ). Detected results associated with calibration recoveries above the upper control limit were qualified as estimated (J+).

In addition, low instrument response was noted for acetonitrile, ethanol, and methyl ethyl ketone as indicated by the relative response factor. The relative response factor did not meet the minimum response of 0.05. Associated results were qualified as estimated (J/UJ).

Table 4-25 summarizes the dioxins/furans results that were qualified in soil samples due to continuing calibrations.

TABLE 4-25: SUMMARY OF DIOXINS/FURANS SOIL RESULTS QUALIFIED DUE TO CALIBRATIONS OUTSIDE LABORATORY CONTROL LIMIT

Analyte	# of Samples Qualified	Percent of Qualified Non-Detect	Percentage of Analyte Recovered during CCV
Octachlorodibenzofuran	3	0%	138%
Octachlorodibenzodioxin	3	0%	138%
1,2,3,4,6,7,8- Heptachlorodibenzofuran	4	0%	144%
1,2,3,4,7,8,9- Heptachlorodibenzofuran	3	0%	144%
1,2,3,4,7,8- Hexachlorodibenzofuran	4	100%	79.6%
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	3	100%	79.9%
2,3,7,8-Tetrachlorodibenzofuran	4	0%	66%

Note: The control limits are 70-130% (%D \leq 30%) or 80-120% (%D <20%). Detected and non-detect results associated with calibration recoveries below the lower control limit were qualified as estimated (J-/UJ). Detected results associated with calibration recoveries above the upper control limit were qualified as estimated (J+).

Table 4-26 summarizes the VOC (TO-15) results that were qualified in surface flux samples due to continuing calibrations.

TABLE 4-26: SUMMARY OF VOC (TO-15) SURFACE FLUX SAMPLE RESULTS QUALIFIED DUE TO CALIBRATIONS **OUTSIDE LABORATORY CONTROL LIMIT**

	# of Samples	Percent of Qualified	Percentage of Analyte
Analyte	Qualified	Non-Detect	Recovered during CCV
1,2,3-Trichloropropane	6	83%	61-69%
1,2,4-Trichlorobenzene	3	100%	58-61%
1,2,4-Trimethylbenzene	4	25%	65-68%
1,2-Dichlorobenzene	15	87%	52-69%
1,3,5-Trimethylbenzene	4	25%	65-68%
1,3-Dichlorobenzene	6	100%	59-68%
1,4-Dioxane	3	100%	60-65%
2-Hexanone	29	93%	47-65%
4-Methyl-2-pentanone	27	81%	52-68%
Acetone	5	0%	40%
Acetonitrile	1	100%	65%
Bromoform	1	100%	65%
Carbon disulfide	13	85%	68%
Cymene	3	100%	63-67%
Ethanol	30	23%	51-69%
Freon 11	6	0%	130-155%
Freon 12	1	0%	138%
Isopropylbenzene	4	25%	66-67%
m&p-Xylene	29	76%	65-69%
Naphthalene	4	100%	33-55%
n-Butylbenzene	35	100%	52-69.6%
n-Propylbenzene	4	25%	67-68%
sec-Butylbenzene	1	100%	69%
Styrene	1	100%	69%
tert-Butylbenzene	76	89%	55-68%
trans-1,3-Dichloropropene	2	100%	65-69%
Vinyl acetate	18	61%	62-69.8%

Note: The control limits are 70-130% (%D ≤ 30%). Detected and non-detect results associated with calibration recoveries below the lower control limit were qualified as estimated (J-/UJ). Detected results associated with calibration recoveries above the upper control limit were qualified as estimated (J+).

Twenty-four results for TO-15 SIM were rejected due to calibration. Table 4-27 summarizes the VOC (TO-15 SIM) results that were qualified in surface flux samples due to continuing calibrations.

TABLE 4-27: SUMMARY OF VOC (TO-15 SIM) SURFACE FLUX SAMPLE RESULTS QUALIFIED DUE TO CALIBRATIONS OUTSIDE LABORATORY CONTROL LIMIT

Analyte	# of Samples Qualified	Percent of Qualified Non-Detect	Percentage of Analyte Recovered during CCV
1,1,2,2-Tetrachloroethane	17	76%	57-68%
1,2,4-Trichlorobenzene	63	100%	32-50%
Dibromochloropropane	73	97%	26-64%
1,2-Dichloroethane	48	25%	56-63%
1,4-Dichlorobenzene	70	16%	40-67%
Carbon tetrachloride	21	5%	56-153%
Chlorodibromomethane	10	100%	49-141%
Chloroform	24	8%	61-138%
Hexachlorobutadiene	66	94%	21-57%
Naphthalene	67	64%	24-61%

Note: The control limits are 70-130% (%D \leq 30%). Detected and non-detect results associated with calibration recoveries below the lower control limit were qualified as estimated (J-/UJ). Detected results associated with calibration recoveries above the upper control limit were qualified as estimated (J+).

4.5.6 Tentatively Identified Compounds

For the GC/MS methods, a list and estimated concentrations for tentatively identified compounds (TICs) were provided by the laboratory if detected. Most of the reported TICs were identified as "unknown" or "unknown aldol condensate." Others were as follows:

- (1R,2S,8R,8Ar)-8-acetoxy-1-(2-hydroxyeth
- .beta.-Sitosterol
- .gamma.-Tocopherol
- .psi.,.psi.-Carotene, 7,7',8,8',11,11',1
- 1,1,2,2-Tetrachloroethane
- 1,1-Difluoroethane
- 1,2,3,4-Tetrachlorobenzene
- 1,4-Bis(3-phthalimidopropyl)piperazine
- 1,4-Dichlorobenzene-d4
- 11,13-Dimethyl-12-tetradecen-1-ol acetat
- 13-Docosenamide, (Z)-
- 17-(1,5-Dimethylhexyl)-10,13-dimethyl-4-
- 18-Hydroxyprogesterone
- 1-Chloroeicosane
- 1H-Indene, 5-butyl-6-hexyloctahydro-
- 1-Nonadecene
- 1-Octadecene
- 1-Phenanthrenecarboxylic acid, 1,2,3,4,4
- 2,2-Bis(p-chlorophenyl)ethanol
- 2,2'-Dichlorostilbene

- Dinaphtho(1,2-b:1',2'-d)furan
- Dinaphtho(2,1-b:1',2'-d)furan
- D-Limonene
- Docosane
- Docosane, 11-butyl-
- Docosane, 9-butyl-
- Dodecane, 1-bromo-
- Dodecane, 2,6,10-trimethyl-
- Dodecane, 2,6,11-trimethyl-
- Dodecane, 5,8-diethyl-
- Eicosane
- Eicosane, 10-methyl-
- Erucylamide
- Ethanol, 2-(dodecyloxy)-
- Ethanone, 1-(3-ethylcyclobutyl)-
- Eucalyptol
- Furan, 2-(1,1-dimethylethyl)-4-methyl-
- Heneicosane
- Heneicosane, 11-decyl-
- Hentriacontane

- 2,4-DDD
- 2,4-DDE
- 2,4'-DDT
- 2,5-Furandione, 3-dodecyl-
- 2,6,10,14,18,22-Tetracosahexaene, 2,6,10
- 2,6,10,14-Tetramethylpentadecane
- 28-Nor-17.alpha.(H)-hopane
- 2-Acetylpyridine 4-(2-thiazolyl)-3-thios
- 2-Aminobenzoic acid, N-((2-nitrophenylox
- 2-Dodecen-1-yl(-)succinic anhydride
- 2-Hexene, 3,4,4-trimethyl-
- 2-Octanone
- 2-Pentanol
- 2-Pentene, 2,4,4-trimethyl-
- 2-Piperidinone, N-(4-bromo-n-butyl)-
- 3-(2,4-Dichlorophenyl)-2'-acrylonaphthon
- 3,5,6-Trimethyl-p-quinone, 2-(2,5-dioxot
- 4-(4-Chlorophenyl)-2,6-diphenylpyridine
- 4,4-DDD
- 4,4-DDE
- 4,4-DDT
- 4,4'-Dichlorobenzophenone
- 4,4'-Dichlorodiphenylsulphide
- 4,8,12,16-Tetramethylheptadecan-4-olide
- 4-Chlorophenyl methyl sulfone
- 4H-Imidazol-4-one, 2-amino-1,5-dihydro-
- 4-Pyrimidinamine, 2,6-dimethyl-
- 5,9-Dimethyl-2-(1-methylethylidene)-1-cy
- 5-alpha-Androstane
- 5-Benzyl-2-trityl-2H-tetrazole
- 5-Methyl-2-thiophenecarboxaldehyde thios
- 6-Isopropenyl-4,8a-dimethyl-4a,5,6,7,8,8
- 9,12-Octadecadienoic acid (Z,Z)-
- 9-Hexacosene
- 9-Octadecenamide, (Z)-
- 9-Tricosene, (Z)-
- Acetophenone, 2,2,2-triphenyl-
- alpha-BHC
- Androst-4-en-3-one, 17-hydroxy-, (17.bet
- Androstane
- Androstane, (5.beta.)-

- Heptacosane
- Heptacosane, 1-chloro-
- Heptadecane
- Heptadecane, 2,6,10,15-tetramethyl-
- Heptadecane, 9-octyl
- Hexacosane
- Hexadecanamide
- Hexadecane, 1-iodo-
- Hexadecane, 2,6,10,14-tetramethyl-
- Hexadecanoic acid
- Hexadecenoic acid, Z-11-
- Hexasiloxane, tetradecamethyl-
- Lanosterol
- Methane, oxybis(dichloro-
- Methanone, bis(2-chlorophenyl)-
- Methyl n-amyl ketone
- Naphthalene, 1,6-dimethyl-4-(1-methyleth
- Naphthalene, 2,3,6-trimethyl-
- Naphthalene-D8
- n-Decane
- n-Dodecane
- n-Hexadecane
- Nonacosane
- Nonadecane
- n-Tetradecane
- n-Tridecane
- Octacosane
- Octadec-9-enoic acid
- Octadecanamide
- Octadecane
- Octadecane, 1-chloro-
- Octadecane, 1-iodo-
- Octadecane, 2-methyl-
- Octadecanoic acid
- Octamethylcyclotetrasiloxane
- Octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,
- Oleic acid
- o-Terphenyl
- Oxirane, hexadecyl-
- PCB 11
- PCB 15

- Anthracene, 9,10-dichloro-
- Anthracene, 9-chloro-
- Azulene, 1,4-dimethyl-7-(1-methylethyl)-
- Azulene, 4,6,8-trimethyl-
- Behenic amide
- Behenyl chloride
- Benz(e)azulene-3,8-dione, 5-((acetyloxy)
- Benzamide, 3-chloro-N-(4-cyano-5-methyl-
- Benzene, 1,1'-(dichloroethenyliden
- Benzene, pentachloromethyl-
- Benzo(a)cyclopropa(cd)pentalene-1-carbox
- Benzo(c)phenanthrene
- bis(p-Chlorophenyl) sulfone
- Butane, 2-chloro-2-methyl-
- C(14a)-Homo-27-nor-14.beta.-gammaceran-3
- Caprolactam
- Chloroform
- Chloropropylate
- Clotrimazole
- Cycloheptasiloxane, tetradecamethyl-
- Cyclohexadecane
- Cyclohexasiloxane, dodecamethyl-
- Cyclohexene, 4-(4-ethylcyclohexyl)-1-pen
- Cyclononasiloxane, octadecamethyl-
- Cyclopentane, 1,1'-(3-(2-cyclopentylethy
- Cyclopentasiloxane, decamethyl
- Cyclopentene, 1,2,3,3,4-pentamethyl-
- Cyclopentene, 1,2,3,4,5-pentamethyl-
- Cyclotetradecane, 1,7,11-trimethyl-4-(1-
- Decanamide-
- D-Homoandrostane, (5.alpha.,13.alpha.)-
- Dibenzo(b,E)(1,4)dioxin, 2,7-dichloro-
- Z-14-Nonacosane
- Unknown aldol condensate

- PCB 28
- PCB 4
- p-Chlorobenzoylacrylic acid
- Pentacosane
- Pentadecane
- Pentadecane, 2,6,10-trimethyl-
- Phenol, 4-(3-methyl-2-butenyl)
- Phthalic acid, decyl isobutyl ester
- Phthalic acid, isobutyl nonyl ester
- Pregn-1,4,6-triene-3,20-dione,
- Propylene glycol
- p-Terphenyl, 2,5-dichloro-
- Pyridine-3-carboxamide, oxime, N-(2-trif
- Pyrrolidine
- Quebrachamine
- Silane, trichlorooctadecyl-
- Spiro(4.5)decan-7-one, 1,8-dimethyl-8,9-
- Stigmast-4-en-3-one
- Stigmastane
- TETRACOSANE
- Tetradecanamide
- Tetrapentacontane, 1,54-dibromo-
- Thiazole, 4,5-dimethyl-2-(4-methylphenyl
- Toluene
- Tributyl phosphate
- Tricosane
- Tridecane, 1-iodo-
- Tridecane, 7-propyl-
- Tridecanoic acid
- Trispiro(4.2.4.2.4.2.)heneicosane
- Undecane
- Undecane, 2,6-dimethyl-
- Z,E-2,13-Octadecadien-1-ol

Several are target analytes or substituted target analytes (generally substituted PAHs). In addition to the above, an unknown aldol condensate was also reported by the laboratory as being present in 280 samples; the reported concentrations were flagged "U" due to blank contamination. With the exception of beta-sitosterol, d-limonene, eucalyptol, hydroxylprogesterone, lanosterol, p-chlorobenzoylacrylic acid, and androstane, the above named compounds are indicative of

column breakdown and are not likely Site related. Beta-sitosterol is a plant sterol. D-Limonene is the major component of the oil extracted from a citrus rind. Eucalyptol is present in eucalyptus oil and other natural plant oils. Hydroxylprogesterone, lanosterol, and androstane are steroids. These constituents could be present due to some organic matter collected along with the soil sample.

4.5.7 Data Review Summary

For 10,735 of the 74,690 analytical results in the final HHRA dataset, quality criteria were not met and various data qualifiers were added to indicate limitations and/or bias in the data. The definitions for the data qualifiers, or data validation flags, used during validation are those defined in SOP-40 (BRC, ERM and MWH 2009) and the project QAPP (BRC and ERM 2009a). Sample results are rejected based on findings of significant deficiencies in the ability to properly collect or analyze the sample and meet QC criteria. Only rejected data are considered unusable for decision-making purposes, and rejected analytical results are not used in the HHRA.

As noted above, 119 soil sample and 24 flux sample results were rejected in the Site dataset and excluded from the HHRA for the reasons previously noted. Other data points were excluded from the risk assessment not due to data quality issues, but for one of the following reasons: (1) the sample was reanalyzed by the laboratory, or (2) the sample location was removed during a remedial action.

4.6 CRITERION VI – DATA QUALITY INDICATORS

DQIs are used to verify that sampling and analytical systems used in support of project activities are in control and the quality of the data generated for this project is appropriate for making decisions affecting future activities. The DQIs address the field and analytical data quality aspects as they affect uncertainties in the data collected for Site characterization and risk assessment. The DQIs include PARCC. The project QAPP provides the definitions and specific criteria for assessing DQIs using field and laboratory QC samples and is the basis for determining the overall quality of the dataset. Data validation activities included the evaluation of PARCC parameters, and all data not meeting the established PARCC criteria were qualified during the validation process using the guidelines presented in the National Functional Guidelines for Laboratory Data Review for Organics, Inorganics, and Dioxin/Furans (USEPA 1999, 2004d, 2005a, 2008).

4.6.1 Evaluation of Data Precision

Precision is a measure of the degree of agreement between replicate measurements of the same source or sample. Precision is expressed by RPD between replicate measurements. Replicate measurements can be made on the same sample or on two samples from the same source. Precision is generally assessed using a subset of the measurements made. The precision of the data was evaluated using several laboratory QA/QC procedures. Based on BRC's review of the results of these procedures, the overall level of precision for the Site data and the background data (BRC and ERM 2009b) does not limit the usability of a particular analyte, sample, method, or dataset as a whole.

4.6.2 Evaluation of Data Accuracy

Accuracy measures the level of bias that an analytical method or measurement exhibits. To measure accuracy, a standard or reference material containing a known concentration is analyzed or measured and the result is compared to the known value. Several QC parameters are used to evaluate the accuracy of reported analytical results, including:

- Holding times and sample temperatures;
- Calibration limits;
- LCS percent recovery;
- MS/MSD percent recovery;
- Spike sample recovery (inorganics);
- Surrogate spike recovery (organics); and
- Blank sample results.

Detailed discussions of specific exceedances to precision and accuracy (with tables) are provided in the DVSRs and data qualified as a result of this evaluation are presented with qualifiers in the data usability tables in Appendix E (included on the report CD in Appendix B). As presented in Section 4.5, 119 soil sample results and 24 flux sample results were rejected in the Site dataset and excluded from the HHRA. The remaining results were considered sufficiently accurate for risk assessment purposes, as discussed below.

4.6.2.1 Holding Time Exceedances/Sample Condition

There is a potential for analyte loss if the holding time for a sample is exceeded. As discussed in Section 4.5.1, holding times were exceeded in 12 soil samples for cyanide (less than 5 percent of the samples analyzed for that constituent), 68 soil samples for chromium (VI) analysis (29 percent of the samples analyzed), PAHs for four soil samples (less than 2 percent), SVOCs for 16 soil samples (6 percent of the samples), and two soil flux samples (1 percent of the samples). All of the samples were qualified as estimated.

As presented in the DVSRs, all but one Site samples with temperature requirements were received at the laboratory within the required range of 4°± 2° Celsius. Two samples for dioxins/furans, two for PCBs and four for organochlorine pesticides were qualified in less than 2 percent of Site samples due to temperature exceedances. Three radionuclide SPLP samples were qualified due to improper preservation (100 percent of SPLP samples). In addition, one sample was qualified in many analyses since it was not filtered immediately after SPLP extraction (33 percent of samples). No other sample results were qualified based on sample temperatures or due to lack of proper preservation.

4.6.2.2 Calibration Violations Indicating a Low Bias

The instrument calibration checks that resulted in a low bias are summarized in the tables presented in Section 4.5.6. Benzyl alcohol, hexachlorocyclopentadiene, hydroxymethyl phthalimide, and ethanol had recoveries below 50 percent in some samples. All analytes were non-detect in all qualified samples and most have never or seldom been detected at the Eastside property. Hydroxymethyl phthalimide was detected in one sample and ethanol was detected in two samples. Neither was selected as a COPC due to low concentrations relative to the BCLs and both are infrequently detected across the Eastside property. For the non-detect analytes with BCLs, the maximum SQLs were compared to the soil BCL. It is unlikely, even with a potential for a false negative, that the bias could affect the result to such a degree that the analyte is present at the Site in excess of the BCL.

There were three TO-15 surface flux analytes (acetone, 2-hexanone, and naphthalene) that had recoveries below 50 percent in some samples. 2-Hexanone was qualified in 36 percent of samples due to calibration violations. However, recoveries were not below 50 percent in all samples. There were six TO-15 SIM surface flux analytes (1,2,4-trichlorobenzene, dibromochloropropane, 1,4-dichlorobenzene, chlorodibromomethane, hexachlorobutadiene, and naphthalene) that had recoveries below 50 percent in some samples. Recoveries were not below

50 percent in all samples with the exception of 1,2,4-trichlorobenzene. 1,2,4-Trichlorobenzene was not detected in any samples. Dibromochloropropane was detected in 1 of 80 samples. 1,4-Dichlorobenzene was qualified in most samples, but was detected in 5 percent of all samples. Chlorodibromomethane was qualified in 12 percent of samples and was detected in two samples. Hexachlorobutadiene was qualified in most samples and was not detected in any samples. Naphthalene was qualified in most samples, but was detected in over 30 percent of samples. 1,2,4-Trichlorobenzene is discussed further in the uncertainty section.

4.6.2.3 MS/MSD or LCS/LCSD Recoveries below Acceptance Criteria

During the data usability review, results associated with MS/MSD and/or LCS/LCSD recoveries that were only slightly lower than the lower acceptance limit (i.e., 50 to 75 percent recoveries for inorganics) were accepted as usable without further evaluation. Samples with lower percent recoveries (i.e., recoveries lower than 50 percent for inorganics and one-half the lower limit or 30 percent, whichever is greater, for organics) were reviewed more closely to assess if it was appropriate to use them in the HHRA. Inorganic results with MS/MSD recoveries less than 50 percent²⁸ were as follows:

- Antimony results for 21 soil samples in TestAmerica data packages F8L020153 and F8K200234 (all results were non-detections);
- Chromium results for seven soil samples in TestAmerica data package F8L200127 (all results were detected);
- Mercury results for five soil samples in TestAmerica data packages F9L010465 and F9L020487 (most results were non-detections and one result was a detect); and
- Orthophosphate as P results for 15 soil samples in TestAmerica data package F8L020153 (most results were non-detections, those that were detected were further qualified as non-detect).

All results were qualified in 10 percent or fewer of the total number of samples. Given the limited number of samples qualified for the other inorganics, these data points are not likely to have a significant effect on the risk assessment.

²⁸ Only samples associated with MS/MSD results in which both recoveries were below 50 percent are listed.

-

As noted in Section 4.5.3, LCS/LCSD recoveries lower than the lower laboratory control limit were observed for the following:

- 1,2-Diphenylhydrazine in seven samples in GEL data package 221654 (all results were non-detected);
- 2,4-Dichlorophenol in seven samples in GEL data package 221654 (all results were non-detected);
- 2,4-Dimethylphenol in 13 samples in GEL data package 220022 (all results were nondetected);
- cis-1,2-Dichloroethene in one sample in TestAmerica data package F8K250122 (the result was non-detected); and
- Hexachlorobutadiene in six soil samples in GEL data package 220742 (all results were nondetected).

None of the analytes were detected in any samples. All of the recoveries were only slightly lower than the lower laboratory control limit; therefore, no concerns were identified regarding their usability.

4.6.2.4 Surrogate Percent Recoveries below Laboratory Control Limit

As noted in Section 4.5.5, surrogate recoveries lower than the lower laboratory control limit were observed in three samples for VOCs, one sample for organochlorine pesticides, and three samples for PAHs. Because the recoveries affected 2 percent of samples or less, no concerns were identified regarding their usability.

4.6.2.5 Blank Contamination

As noted in Section 4.5.2, certain detections were flagged during the data review as being non-detections or estimated with a high bias due to laboratory or field blank contamination. If the associated constituent qualified as being non-detection was, in fact, present in the samples related to the affected blank sample, revising its status to non-detect could result in risk underestimation. In the dataset for the Site, 1,355 results were censored due to blank contamination. Affected soil analytes are listed in Table 4-28.

TABLE 4-28: SUMMARY OF SOIL ANALYTES CENSORED **DURING BLANK SAMPLE EVALUATION**

DUKIN	IG DLAINK SAI
	# of
	Censored
Analyte	Results
Formaldehyde	29
2,3,7,8-TCDF	10
Bromide	3
Cyanide, Total	136
Nitrite	4
Orthophosphate as P	46
Ammonia (as N)	21
Total Kjeldahl Nitrogen	13
Antimony	6
Arsenic	2
Beryllium	5
Boron	6
Cadmium	27
Chromium (VI)	11
Mercury	68
Molybdenum	23
Sodium	1
Silver	4
Thallium	2
Tin	1
Tungsten	7
Anthracene	5
Benzo(a)anthracene	1
Benzo(a)pyrene	6
Benzo(b)fluoranthene	5
Benzo(k)fluoranthene	6
Chrysene	3
Dibenzo(a,h)anthracene	4

LE EVALUATION Analyte	# of Censored Results
Indeno(1,2,3-c,d)pyrene	1
Phenanthrene	6
Pyrene	4
PCB 105	5
PCB 118	10
PCB 156	1
Radium-226	32
Radium-228	15
Thorium-230	17
Uranium-233/234	16
Uranium-235/236	1
Uranium-238	1
Phthalic acid	2
Total Organic Carbon	134
1,2,4-Trimethylbenzene	80
1,2-Dichlorobenzene	20
1,3,5-Trimethylbenzene	1
Acetone	64
Dichloromethane	93
Ethylbenzene	52
M,p-Xylene	14
o-Xylene	8
Toluene	20
Total Organic Carbon (SPLP)	2
Thorium-230 (SPLP)	2
Boron (SPLP)	2
Lithium (SPLP)	2

In addition, there were several TICs qualified due to blank contamination. See discussion of TICs in Section 4.5.7. Affected surface flux analytes are listed in Table 4-29.

TABLE 4-29: SUMMARY OF SURFACE FLUX ANALYTES CENSORED DURING BLANK SAMPLE EVALUATION

	# of
A walkata	Censored
Analyte	Results
1,2,4-Trimethylbenzene	10
1,3,5-Trimethylbenzene	9
4-Methyl-2-Pentanone	7
Acetone	26
Acetonitrile	2
Benzene	71
Carbon disulfide	7
o-Xylene	9
Tert-Butylbenzene	4
Trichloroethene	9
1,1,2,2-Tetrachloroethane	3
1,4-Dichlorobenzene	61
Chloroform	1
Dibromochloropropane	3

	# of
	Censored
Analyte	Results
Ethanol	1
Ethylbenzene	6
Freon-11	1
Freon-12	3
Heptane	12
Isopropylbenzene	6
n-Propylbenzene	6
Styrene	1
Toluene	13
Xylenes	8
1,2-Dichloroethane	6
Carbon tetrachloride	5
Dibromochloromethane	1
Hexachlorobutadiene	4

The constituents for which this potential concern has the most bearing in risk assessment are those in soil samples for which the detections are close to or exceed either (1) background conditions, or (2) relevant human health comparison levels (e.g., NDEP BCLs). As determined during that evaluation, qualification of detections as non-detections based on blank contamination are not likely to have an appreciable effect on the risk estimates, as discussed below.

Censored results that are less than the maximum background concentration and one-tenth the residential soil BCL have a negligible impact on risk assessment findings. If a portion of the result reflects an actual Site concentration, then the uncertainty related to the censored result is low. However, data censored at values at or above background or greater than one-tenth the residential soil BCLs may pose a potential underestimation of human health risks. Therefore, censored results at values in excess of one-tenth the residential soil BCL (or the maximum background concentration, if higher) were evaluated further. Although some soil data for certain radionuclides and thallium were censored due to blank contamination at concentrations in excess of the BCLs, none exceeded background. Table 4-30 identifies the analytes that were censored with results greater than the BCLs.

TABLE 4-30: SUMMARY OF CHEMICAL RESULTS CENSORED AT VALUES ABOVE 1/10TH THE RESIDENTIAL BCL

Analyte	1/10 th BCL	Number of Samples Censored Above 1/10 th BCL	Range of Reported Concentrations
Arsenic	0.039 mg/kg	2	4.9-5.2 mg/kg
Radium-226	0.00071 pCi/g	32	0.358-1 pCi/g
Radium-228	0.0013 pCi/g	15	0.623-0.981 pCi/g
Thorium-230	0.32 pCi/g	17	0.62-0.986 pCi/g
Thorium-232	0.28 pCi/g	2	0.804-0.85 pCi/g
Uranium-233/234	0.42 pCi/g	16	0.601-0.997 pCi/g
Uranium-235/236	0.011 pCi/g	1	0.34 pCi/g
Uranium-238	0.046 pCi/g	1	0.99 pCi/g

Sample results censored above one-tenth the BCL are limited to seven radionuclides and arsenic. Generally, few samples for each analyte were affected. Arsenic was selected as COPCs. Arsenic had only two samples censored, therefore it is unlikely to have had an effect on the risk assessment results. None of the other analytes were selected as COPCs, as described in Section 5. Therefore, the censored results in soil that exceed one-tenth the BCL do not affect the results of the risk assessment.

Surface flux data are not comparable with BCLs. The majority of the censored results are attributable to benzene (71 samples) and 1,4-dichlorobenzene (61 samples). Neither were detected in groundwater and were not selected as a COPC.

4.6.2.6 Data Usability Summary

As discussed above, because the qualifications with the potential for low bias were small in number, the data usability evaluation determined it was unlikely that they could lead to significant risk underestimation. Furthermore, the amount of rejected data points does not represent a significant data gap in terms of risk assessment.

4.6.3 Evaluation of Data Representativeness

Representativeness is the degree to which data accurately and precisely represent a characteristic of the population at a sampling point or an environmental condition (USEPA 2002a). There is no standard method or formula for evaluating representativeness, which is a qualitative term. Representativeness is achieved through selection of sampling locations that are appropriate relative to the objective of the specific sampling task, and by collection of an adequate number of samples from the relevant types of locations. The sampling locations at the Site were based on

both systematic sampling with random point placement within each grid cell, as well as focused samples collected from specific areas to further investigate potential areas of concern.

The samples were analyzed for a broad spectrum of chemical classes across the Site. Samples were delivered to the laboratory in coolers packed with ice to minimize the loss of analytes. In a few instances, such as samples being analyzed slightly beyond the holding time or two samples affected by temperature exceedances, the representativeness of the associated data is in question; however, there were few instances of this, as noted in Section 4.5.1. Sample-specific results are discussed in the DVSRs. A discussion of representativeness for the background dataset is provided in each of the background investigation reports.

4.6.4 Evaluation of Data Completeness

Completeness is commonly expressed as a percentage of measurements that are valid and usable relative to the total number of measurements made. Analytical completeness is a measure of the number of overall accepted analytical results, including estimated values, compared to the total number of analytical results requested on samples submitted for analysis after review of the analytical data. Some of the data were eliminated due to data usability concerns. The percent completeness for the Site is 99.9 percent and includes the surface flux chamber data. The percent completeness for the soil only dataset is 99.9 percent. The percent completeness for the background dataset used in the HHRA is 98.8 percent.

4.6.5 Evaluation of Data Comparability

Comparability is a qualitative characteristic expressing the confidence with which one dataset can be compared with another. The desire for comparability is the basis for specifying the analytical methods; these methods are generally consistent with those used in previous investigations of the Site. The comparability goal is achieved through using standard techniques to collect and analyze representative samples and reporting analytical results in appropriate units. The ranges of detected sample results from the current investigation are generally comparable to recent results at the Eastside property, as well as to the Site background datasets (Section 5).

One exception may be uranium-235/236, which has reported activities that are slightly elevated compared to background and other reported isotopes of uranium. The laboratory that performed the Site radionuclide analysis has indicated that the activities for uranium-235/236 hover around the noise level of the instrument and secular equilibrium is still achieved. Therefore, activities at the noise level of the instrument may vary between the instruments used.

There are differences in SQLs among datasets that may affect data comparability for datasets comprised primarily of non-detect values. Examples of the differences in SQLs at the Site and in background soil for several analytes with low detection frequency are provided in Table 4-31.

TABLE 4-31: LOW DETECTION ANALYTES EXHIBITING SQL DIFFERENCES BETWEEN BACKGROUND AND SITE SAMPLES

	Background	Background	Site	Site
Analyte	Min SQL	Max SQL	Min SQL	Max SQL ²⁹
Antimony	0.1046	0.3298	0.225	2.7
Boron	2.284	3.2	16.5	56.5
Molybdenum	0.1046	0.1046	0.47	2.8
Selenium	0.1579	0.32	0.225	0.86
Silver	0.2609	0.2609	0.11	1.1
Thallium	0.2	0.5428	0.105	1.1
Tin	0.0526	0.187	0.75	1
Tungsten	0.0175	0.2	0.185	2.8

All results in units of mg/kg.

Cumulative probability plots and side-by-side boxplots for the background and Site datasets are included in Appendix G. For these datasets, left-censored data can result in difficulties in differentiating whether datasets are actually different or merely an artifact of detection limits. Note that for constituents with SQLs that meet project limit requirements, comparisons between Site and background may be less important as these left-censored data are likely to indicate conditions that pose an "acceptable" risk and further evaluation is not necessary.

4.7 DATA ANALYSIS

Data validation and usability evaluations tend to look at the data on a result by result basis. The data analysis step is intended to take a step back and look at the dataset as a whole. The intent of this is to identify any anomalies or unusual data trends that may indicate any potential laboratory issues. This is performed by reviewing summary statistics, cumulative probability plots and side-by-side boxplots, or other visual aids. The soil dataset used for the HHRA is summarized in tabular format in Table 3-4. While it is not feasible to present all the detected analytes in a graphical format, cumulative probability plots and side-by-side boxplots are provided in

²⁹ The SQLs reported here may differ from the detection limits reported elsewhere (e.g., background comparisons). Detection limits may be raised due to blank contamination.

Appendix G for the analytes included in the background comparisons (that is, metals and radionuclides). No anomalies in the dataset were identified.

As discussed in Section 4.5, the data validation process resulted in numerous sample results being qualified as estimated, with few results being rejected. Sample results qualified as estimated are likely to be quantitatively biased to some degree; estimated analytical results are used in the HHRA. Data qualified as anomalous, as defined in the DVSRs, refers to data that were qualified ("U") due to blank contamination, and are used in the HHRA. These data usability decisions follow the guidelines provided in the *Guidance for Data Usability in Risk Assessment (Part A)* (USEPA 1992a).

For the HHRA, all soil data associated with post-remediation conditions that were not rejected during data validation, replaced by reanalysis results, or removed during a soil remedial action were included. Some data were qualified as estimated due to recoveries being outside the acceptance criteria. In cases where the recoveries were higher than the acceptance criteria, the results have the potential of being similarly biased high, and using these data in the risk assessment could result in risks being calculated that are higher than would be associated with actual Site conditions. Of more concern for the HHRA is underestimation of risk, which could be associated with the use of data that are biased low. Results associated with the following QA/QC issues could lead to results that are biased low, and were subjected to further scrutiny during the data usability evaluation:

- Results associated with holding time exceedances;
- Detections qualified during the data review as being non-detections due to laboratory or field blank contamination:
- Results associated with calibration violations indicating a low bias;
- Results associated with MS/MSD or LCS/LCSD recoveries below acceptance criteria; and/or
- Results associated with surrogate percent recoveries below laboratory control limits.

Such data, which are listed above in Section 4.5, were evaluated during the data usability process to determine whether it was appropriate to use them in the risk assessment. The data usability evaluation determined that the estimated results listed in Section 4.5 were appropriate for use in the risk assessment and that the rejected data did not constitute significant data gaps and/or were not otherwise likely to lead to an underestimation of risk, as discussed in Section 4.6.2.

5.0 SELECTION OF CHEMICALS OF POTENTIAL CONCERN

The broad suite of analytes sampled for was the initial list of potential COPCs at the Site. However, to ensure that a risk assessment focuses on those substances that contribute the greatest to the overall risk (USEPA 1989); the following procedures were used to eliminate analytes as COPCs for quantitative evaluation in the risk assessment:³⁰

- Identification of chemicals with detected levels similar to background concentrations (where applicable) (Section 5.1);
- Chemicals that are considered essential nutrients (Section 5.2); and
- Chemicals with maximum concentrations below risk-based comparison levels (i.e., below one-tenth of the residential soil BCLs) (Section 5.3).

Following USEPA guidance (1989), compounds reliably associated with Site activities based on historical information were not eliminated from the risk assessment, even if the results of the procedures given in this section indicate that such elimination is possible. The procedures for evaluating COPCs relative to background conditions and further selection of COPCs based on the other procedures are presented below.

5.1 EVALUATION OF CONCENTRATIONS/ACTIVITES RELATIVE TO BACKGROUND CONDITIONS

Some chemicals at the Site, particularly metals and radionuclides, are known to be naturally occurring constituents of soils and groundwater. A risk assessment should consider the contribution of background concentrations to overall Site risks, as differentiated from those concentrations associated with historical Site operations or regional anthropogenic conditions. Therefore, it is necessary to establish Site-specific background conditions to support the risk assessment.

³⁰ Note that these procedures for selection of COPCs deviate somewhat from those presented in the *BRC Closure Plan*, but are consistent with discussions between BRC and NDEP and their consultants in a December 9, 2010, meeting. BRC will use these procedures for all subsequent risk assessments. BRC intends to revise the *BRC Closure Plan* accordingly to make it consistent with these procedures.

_

As indicated in the Background Soil Compilation Report (BRC and ERM 2010a), the Site is in an area of both McCullough and Mixed lithology (see Figure 12, Qh₁ label).³¹ Also, because background samples were collected well to the south of the Eastside property, and the Site is at the northern boundary of the Eastside property in proximity to the Las Vegas Wash, the alluvium lithologies pinch out at the Site as compared to where the background samples were collected. Therefore, both the shallow and deeper Qal McCullough and Mixed background dataset are considered most representative of background conditions for the Site. Thus, comparison of Siterelated soil concentrations to background levels was conducted using both the shallow and deeper Qal McCullough and Mixed background dataset presented in the Background Soil Compilation Report (BRC and ERM 2010a). The background dataset used is included in the dataset file on the enclosed report CD in Appendix B.

Background comparisons were performed using the Quantile test, Slippage test, the t-test, and the Wilcoxon Rank Sum test with Gehan modification. The Guided Interactive Statistical Decision Tools (GiSdT®) library (Neptune and Company 2009) run from within the R statistical computer software program was used to perform all background comparison statistics. A weightof-evidence approach is utilized to interpret the results of these analyses. If the detection frequency in both Site and background datasets is greater than 40 percent, then the following rationale is used for evaluation: (1) where one or two results fail one or more of the statistical tests, the remaining testing and statistical information (boxplots, summary statistics) are reviewed to support decision-making regarding whether or not the chemical should be considered consistent with background (as described by the rationale in the table below); and (2) where three or more statistical tests fail, the constituent is considered inconsistent with background. If the detection frequency is less than 40 percent in either the background or Site datasets, then the constituent is evaluated based on boxplots and summary statistics.

For samples with primary and field duplicate results, the Site sample and field duplicate³² are treated as independent samples and both are included in all subsequent data analyses, regardless of whether one or both are non-detect. This is considered appropriate because field duplicate samples represent a discrete and unique measurement of soil chemical conditions proximal to the primary sample (unlike split samples). The field duplicates were compared to the primary

Field duplicates are shown in Appendix B and indicated with the "FD" qualifier under the column entitled "Sample Type."

³¹ As noted in a letter dated September 17, 2012, from Greg Lovato, NDEP, to Mark Paris, BRC (NDEP 2012b), the 2003 soil background dataset collected by Environ for the City of Henderson is not used for background soil comparison purposes.

sample during the course of data validation. The variances were not out of the line with the variance in results across the Site. Therefore, as distinct soil chemical measurements, they are treated as unique samples in the analyses.

The Qal McCullough and Mixed background dataset was compared to the Site HHRA dataset as a whole. The results of the background comparison evaluation are presented in Table 5-1 (Tables section), and summarized in Table 5-2 below.

TABLE 5-2: SUMMARY OF STATISTICAL BACKGROUND COMPARISON EVALUATION

Chemical	Greater than Background?	Basis
Aluminum	NO	Multiple tests
Antimony	YES	WRS test
Arsenic	YES	Multiple tests
Barium	NO	Multiple tests
Beryllium	NO	Multiple tests
Boron	YES	Multiple tests
Cadmium	YES	Multiple tests
Calcium	YES	Multiple tests
Chromium	YES	Multiple tests
Chromium (VI)	YES	Quantile test
Cobalt	NO	Multiple tests
Copper	YES	Multiple tests
Iron	NO	Multiple tests
Lead	YES	Multiple tests
Lithium	NO	Multiple tests
Magnesium	NO	Multiple tests
Manganese	NO	Multiple tests
Mercury	YES	Multiple tests
Molybdenum	YES	Multiple tests
Nickel	YES	Multiple tests

TABLE 5-2: SUMMARY OF STATISTICAL BACKGROUND COMPARISON EVALUATION

Chemical	Greater than Background?	Basis
Potassium	YES	Multiple tests
Selenium	YES	Multiple tests
Silver	NO	Multiple tests
Sodium	YES	Multiple tests
Strontium	NO	Multiple tests
Thallium	YES	Multiple tests
Tin	YES	Multiple tests
Titanium	YES	Multiple tests
Tungsten	YES	Multiple tests
Uranium	NO	Multiple tests
Vanadium	YES	Multiple tests
Zinc	YES	Multiple tests
Radium-226	NO [*]	Multiple tests
Radium-228	NO [*]	Multiple tests
Thorium-228	NO [*]	Multiple tests
Thorium-230	NO [*]	Multiple tests
Thorium-232	NO [*]	Multiple tests
Uranium-233/234	NO [*]	Multiple tests
Uranium-235/236	NO [*]	All other radionuclides not greater than background; all results near noise level of instrument
Uranium-238	NO [*]	Multiple tests

*Note that after finalization of the report it was found that certain radionuclides were determined to be above their respective background levels. However, it was also determined that Site risks are equivalent to background risks (that is, both the Site and background radionuclide risks are 5×10^{-4}). Therefore no changes were made to the report based on this omission.

Cumulative probability plots and side-by-side boxplots³³ were also prepared and are included in Appendix G. These plots give a visual indication of the similarities and differences between the

³³ Site and background boxplots were segregated by depth (and all data). This is different than how the data were segregated in the development of exposure point concentrations as presented in Section 6.1.

Site and background datasets. The results of this comparison indicate that a number of metals are statistically significant (greater than) with respect to background levels. Due to the large number of sample data in both the Site and background datasets, even small differences between the two are identified as statistically significant. For example, although there were small differences in median concentrations, cobalt, copper, and uranium were found to be statistically greater than background, as shown in Table 5-3.

TABLE 5-3: EXAMPLE DIFFERENCES IN SITE AND BACKGROUND MEDIAN CONCENTRATIONS FOR CHEMICALS STATISTICALLY GREATER THAN BACKGROUND

Metal	Site Median	Background Median	Difference ¹
Copper	18	17	1 mg/kg
Nickel	17	15	2 mg/kg
Zinc	35	33	2 mg/kg

¹ These differences in median concentrations were small relative to both background median concentrations and residential soil BCLs.

It should be noted that statistically significant differences may not represent scientifically and technically relevant differences.

Secular Equilibrium for Radionuclides. For radionuclides, secular equilibrium exists when the quantity of a radioactive isotope remains constant because its production rate (due to the decay of a parent isotope) is equal to its decay rate. In theory, if secular equilibrium exists, the parent isotope activity should be equivalent to the activity of all daughter radionuclides. Pure secular equilibrium is not expected in environmental samples because of the effect of natural chemical and physical processes. However, approximate secular equilibrium is expected under background conditions (NDEP 2009d). Both the thorium-232 and uranium-238 chains were determined to be in approximate secular equilibrium following equivalence testing outlined in the NDEP's *Guidance for Evaluating Secular Equilibrium at the BMI Complex and Common Areas* (NDEP 2009d). The results of the equivalence testing for secular equilibrium are provided in Table 5-4.

TABLE 5-4: EQUIVALENCE TEST FOR SECULAR EQUILIBRIUM

	Equivalence Test		Secular	Mean Proportion			
Chain	Delta	<i>p</i> -value	Equilibrium?	Ra-226	Th-230	U-233/234	U-238
U-238	0.1	< 0.0001	Yes	0.2112	0.2849	0.2805	0.2233
				Ra-228	Th-228	Th-232	
Th-232	0.1	< 0.0001	Yes	0.296	0.390	0.314	

Therefore, since no radionuclides failed any background tests and all are in secular equilibrium, all radionuclides are considered to be similar to background. Radionuclides are therefore not evaluated further in the HHRA.

5.2 ESSENTIAL NUTRIENTS

An essential nutrient is a chemical required for normal body functioning that either cannot be synthesized by the body at all, or cannot be synthesized in amounts adequate for good health, and thus must be obtained from a dietary source. USEPA (1989) states that "Chemicals that are (1) essential human nutrients, (2) present at low concentrations (i.e., only slightly elevated above naturally occurring levels), and (3) toxic only at very high doses (i.e., much higher than those that could be associated with contact at the Site) need not be considered further in the quantitative risk assessment. Examples of such chemicals are calcium, iron, magnesium, potassium, and sodium." As discussed with and approved by the NDEP³⁴ and consistent with guidance and standard practices, no further quantitative evaluations are required for these essential nutrients.

5.3 COMPARISON TO RESIDENTIAL SOILS BASIC COMPARISON LEVELS

BCLs for residential soils are chemical-specific, risk-based concentrations in soils that are protective of a residential land use scenario (NDEP 2013). As discussed with and approved by the NDEP (see footnote 30), if the maximum detected concentration for a constituent is less than one-tenth of the residential soil BCL, then no further quantitative evaluation is required for that constituent. For those constituents with 100 percent non-detect values, if the maximum non-detect concentration soil BCL, no further evaluation will be conducted. If the maximum non-detect concentration is greater than

The non-detect value is equal to the SQL.

5-6

Meeting with NDEP on December 9, 2010.

one-tenth of the residential soil BCL, no further quantitative evaluation will be conducted; however, a discussion is provided in the Uncertainty Analysis (Section 7) for these constituents.

Consistent with the Closure Plan, if the TCDD TEQ concentrations do not exceed the NDEP worker BCL of 50 ppt for any sample within the Site, dioxins/furans are not retained as COPCs. Therefore, because this criterion is met for the Site, dioxins/furans are not considered COPCs, and are not evaluated further in the HHRA. Lead was also not evaluated further in the HHRA since all concentrations were below its target goal of 400 mg/kg for residential land use.

The results of comparisons to one-tenth of the residential soil BCL are presented in Table 5-5 (Tables section). Three organic compounds and seven inorganic/metals were found to exceed their respective one-tenth of the residential soil BCL (one inorganic chemical, asbestos, does not have BCLs, but does have relevant and available toxicity criteria).

5.4 SUMMARY OF SELECTION OF CHEMICALS OF POTENTIAL CONCERN

The procedures for COPC selection were discussed above. Results of the selection of COPCs, including the rationale for excluding chemicals as COPCs are presented in Table 5-6 (Tables section). The resulting COPCs for soil are summarized below.

- 4.4-DDE
- Ammonia
- Arsenic
- Asbestos
- Carcinogenic PAHs

- Cyanide
- Hexachlorobenzene
- Perchlorate
- Thallium
- Vanadium

These procedures apply to soil results. Ambient air exposures for VOCs are evaluated on a sample-by-sample basis, per NDEP requirements, using the surface flux data measurements. See Section 6.1.2 for selection of VOCs for further evaluation in the HHRA. Therefore, the maximum surface flux risk estimates are summed with the soil risk estimates to provide an upper-bound risk for each receptor.

6.0 HUMAN HEALTH RISK ASSESSMENT

This section presents the HHRA of all COPCs identified in Section 5 for all receptors of concern via all complete pathways. The methods used in the risk assessment follow standard USEPA guidance. Specifically, the methods used in the risk assessment followed basic procedures outlined in the USEPA's *Risk Assessment Guidance for Superfund: Volume I—Human Health Evaluation Manual* (USEPA 1989). Other guidance documents consulted include:

- Risk Assessment Guidance for Superfund: Volume I—Human Health Evaluation Manual. Supplemental Guidance: Standard Default Exposure Factors (USEPA 1991b).
- Guidelines for Exposure Assessment (USEPA 1992b).
- Soil Screening Guidance: Technical Background Document (USEPA 1996).
- Exposure Factors Handbook, Volumes I-III (USEPA 1997).
- Soil Screening Guidance for Radionuclides (USEPA 2000).
- Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (USEPA 2002b).
- Technical Support Document for a Protocol to Assess Asbestos-Related Risk. Final Draft (USEPA 2003b).
- Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) (USEPA 2004e).
- *Child-Specific Exposure Factors Handbook* (USEPA 2006).
- Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment) (USEPA 2009a).

Various NDEP guidance documents are also relied on for the HHRA. These include:

- Supplemental Guidance for Assessing Data Usability for Environmental Investigations at the BMI Complex and Common Areas in Henderson, Nevada (NDEP 2008a).
- Guidance for Evaluating Radionuclide Data for the BMI Plant Sites and Common Areas Projects (NDEP 2009a).

- Supplemental Guidance on Data Validation (NDEP 2009b,c).
- Guidance for Evaluating Secular Equilibrium at the BMI Complex and Common Areas (NDEP 2009d).
- Technical Guidance for the Calculation of Asbestos-Related Risk in Soils for the Basic Management Incorporated (BMI) Complex and Common Areas (NDEP 2011a).
- Workbook for the Calculation of Asbestos-Related Risk in Soils for the Basic Management Incorporated (BMI) Complex and Common Areas (NDEP 2011b).

The risk assessment is a deterministic risk assessment, meaning that single values based on conservative assumptions are used for all modeling, exposure parameters, and toxicity criteria. These conservative estimates compound each other so that the calculated risks likely exceed the true risks at the Site.

The method used in the risk assessment consists of several steps. The first step is the calculation of exposure point concentrations representative of the particular area, for each medium of concern. This step includes fate and transport modeling to predict concentrations that may be present when direct measurements are not available. The second step is the exposure assessment for the various receptors present in the particular areas. The next step is to define the toxicity values for each COPC. The final step is risk characterization where theoretical upper-bound cancer risks and non-cancer HIs are calculated.

6.1 DETERMINATION OF EXPOSURE POINT CONCENTRATIONS

A representative exposure concentration is a COPC-specific and media-specific concentration value. In risk assessment, these exposure concentrations are values incorporated into the exposure assessment equations from which potential baseline human exposures are calculated. As described below, the methods, rationale, and assumptions employed in deriving these concentration values follow USEPA guidance and reflect Site-specific conditions.

Chemical, physical, and biological processes may affect the fate and transport of chemicals in water, soil, and air. Chemical processes include solubilization, hydrolysis, oxidation-reduction, and photolysis. Physical processes include advection and hydrodynamic dispersion, volatilization, dispersion, and sorption/desorption to soil, sediment, and other solid surfaces. Biological processes include biodegradation, bioaccumulation, and bioconcentration. All of these processes are dependent upon the physical and chemical properties of the chemicals, the physical

and chemical properties of the soil and water, and other environmental factors such as temperature, humidity, and the conditions of water recharge and movement. The net effect of these environmental factors is a time-dependent reduction of chemical concentrations in water, soil, and air. The determination of exposure point concentrations for media other than soil take into account chemical-specific physical parameters and inter-media transfers as discussed below. All modeling input parameters, calculations, and results are presented in Appendix H (included on the report CD in Appendix B).

6.1.1 Soil

Due to the uncertainty associated with determining the true average concentration at a site, where direct measurements of the site average are infeasible and unavailable, the USEPA recommends using the lower of the maximum detected concentration or the 95 percent UCL as the concentration of a chemical to which an individual could be exposed over time (USEPA 1992b). For the 95 percent UCL concentration approach, the 95 percent UCL was computed to represent the area-wide exposure point concentrations. The 95 percent UCL is a statistic that quantifies the uncertainty associated with the sample mean. If randomly drawn subsets of Site data are collected and the UCL is computed for each subset, the UCL equals or exceeds the true mean roughly 95 percent of the time. The purpose for using the 95 percent UCL is to derive a conservative, upper-bound estimate of the mean concentration, which takes into account the different concentrations to which a person may be exposed at the Site. That is, an individual will be exposed to a range of concentrations that exist at an exposure area, from non-detect to the maximum concentration, over an entire exposure period.

A 95 percent UCL was calculated using the summary.stats() function in the GiSdT[®] package (Neptune and Company 2009) in R (R Core Team 2012). Section 5.1 outlines the treatment of sample locations with field duplicates prior to the 95 percent UCL statistical calculations described in this section. For these calculations, chemical non-detect results are assigned a value of one-half the SQL. The formulas for calculating the 95 percent UCL COPC concentration (as the representative exposure concentration) are presented in USEPA (1992c, 2002c) and GiSdT[®] (Neptune and Company 2009). Three UCL methods are employed in the GiSdT[®] library. They include the Student's t UCL, the bootstrap percentile UCL, and the bootstrap BCa UCL. The maximum UCL of these three methods was used as the exposure point concentration, unless the maximum UCL of the three methods was greater than the maximum detected concentration. In these cases, the maximum detected concentration was selected as the exposure point concentration.

The representativeness of the 95 percent UCLs for the exposure area, that is, a Site-wide mean concentration is valid for all receptors at the Site, is further supported by the intensity plot figures included in Appendix I. Figures for each of the COPCs are included in Appendix I (in addition to figures developed for all metals). A figure is also presented for TCDD TEQ. Although not COPCs for the Site, TCDD TEQ is a primary chemical of interest for the project.

Based on the results of the background comparison tests, a review of the probability plots, boxplots, and distribution and intensity plot figures, data across the Site are assumed to be uncorrelated, that is, there is no discernible spatial correlation. ³⁶ Although there may be spatial correlation of data across the Site, it has not been observed. There are several chemicals for which the plots indicate that soil concentrations may not be spatially representative of a single population. For example, lead concentrations in Western and Alpha ditches of the Site appear to differ slightly from those in the rest of the Site. However, future mixing of soil due to re-grading will likely lessen such spatial patterns. Thus, the assumption is made for statistical testing purposes that the data are not spatially correlated.³⁷ This results in lower p-values and hence a greater number of statistical differences than would be the case if spatial correlation were accounted for. Ignoring correlation therefore causes conservatism, and the need to further evaluate spatial correlation is not warranted. Therefore consistent with the project Statistical Methodology Report (NewFields 2006), each measurement is assumed to be equally representative for that chemical at any point in the Site and calculation of the 95 percent UCL is appropriate. The data were also reviewed for the presence of hot spots, and as discussed in Section 3.6, no potential hot spots were identified at the Site; therefore, separate exposure areas were not evaluated in the HHRA.

Representative exposure concentrations for soil are based on the potential exposure depth for each of the receptors. For all receptors, five different exposure depths are considered, based on the sample depth rules schematic presented in Section 3: all data (surface, subsurface, and fill); data classified as fill material only; data classified as fill material and/or surface soil; data classified as surface soil; and all data excluding data classified as fill material.

³⁷ Some variability of the data is expected, if there was perfect homogeneity, then only one sample would be needed to represent the Site. This natural variability is demonstrated by the background datasets for the project. As shown on the probability and boxplots in Appendix G, the data generally follow a normal distribution, and their variability are similar to the background data.

_

³⁶ Although the *Statistical Methodology Report* states that confirmation measurements of each chemical in a given soil layer will be used to compute variograms, as noted in the text above, this was not conducted for the Site, which is a deviation from the *BRC Closure Plan* methodology.

These different soil exposure classifications are considered to represent all possible exposure potential for all receptors, based on the future grade and use of Site soils. Ninety-five percent UCLs are calculated for each of these five different exposure depth scenarios. Although specific-receptors would not necessarily be exposed to all depth ranges (for example, residents and construction workers are considered to have potential exposures to 10 feet bgs, while commercial workers only to surface soils), to be conservative, the highest of the five values was used in the risk estimates for each COPC. The 95 percent UCL for each COPC is presented in Table 6-1 (Tables section). For indirect exposures, this concentration was used in fate and transport

The exposure point concentrations for asbestos (USEPA 2003b, NDEP 2011a) were based on the pooled analytical sensitivity of the dataset. The asbestos data and analytical sensitivities are presented in Table 6-2. Therefore, asbestos exposure point concentrations are determined differently than those for the other COPCs. The pooled analytical sensitivity is calculated as follows:

Pooled Analytical Sensitivity =
$$1/[\sum_{i}(1/analytical\ sensitivity\ for\ trial\ i)]$$

Two estimates of the asbestos concentration were evaluated, best estimate and upper bound, as defined in the draft methodology (USEPA 2003b). The best estimate concentration is similar to a central tendency estimate, while the upper bound concentration is comparable to a reasonable maximum exposure estimate. The pooled analytical sensitivity is multiplied by the number of chrysotile or amphibole structures to estimate concentration:

Estimated Bulk Concentration ($10^6 \text{ s/gPM}10$) = Long fiber count × Pooled analytical sensitivity

For the best estimate, the number of fibers measured across all samples is incorporated into the calculation above. The upper bound of the asbestos concentration was also evaluated. It is calculated as the 95 percent UCL of the Poisson distribution mean, where the Poisson mean was estimated as the total number of structures detected across all samples. In Microsoft Excel, the following equation may be employed to calculate this value:

95 percent UCL of Poisson Distribution Mean = CHIINV(1-upper confidence percentile, $2 \times (\text{Long fiber count} + 1))/2$

This value is then multiplied by the pooled analytical sensitivity to estimate the upper bound concentration. The intent of the risk assessment methodology is to predict the risk associated

modeling.

with airborne asbestos. In order to quantify the airborne asbestos concentration, the estimated dust levels or particulate emission factors (PEFs) were used:

Estimated Airborne Concentration (s/cm 3) = Estimated bulk concentration (10 6 s/gPM10) × Estimated dust level (ug/cm 3)

Further explanation of the asbestos risk calculations and estimates are provided in the NDEP's *Technical Guidance for the Calculation of Asbestos-Related Risk in Soils* (2011a) and *Workbook for the Calculation of Asbestos-Related Risk in Soils* (2011b).

6.1.2 Indoor Air

USEPA's 2002 Vapor Intrusion Guidance

BRC has reviewed USEPA's 2002 Vapor Intrusion Guidance (2002d), and believes that the approach used for the Site conforms to this guidance. The guidance recommends and BRC has followed a tiered approach to address vapor intrusion for each of the Eastside sub-areas, including the Western Hook-Development Sub-Area. First, in each of the sub-area SAPs, including that for the Site, BRC has identified each of the chemicals (VOCs and volatile SVOCs) to be evaluated further in each sub-area (that is, a Tier 1 assessment).

Second, BRC explicitly compared the existing groundwater data for wells that are located within (or adjacent to) that sub-area with the USEPA 2002 Tier 2 comparison values (provided in lookup tables in the guidance document). Thus, this Tier 2 assessment was done in the NDEP-approved SAPs for each of the sub-areas. The Tier 2 comparison table for the Site is provided in Appendix J (Table J-1; note that where possible, groundwater concentrations have been updated with the most recent groundwater monitoring event for VOCs in August 2012). As shown in this table, all VOCs and volatile SVOCs pass a Tier 2 assessment.

Third, BRC has conducted a site-specific HHRA for vapor intrusion using surface flux data on a sample-by-sample basis, per NDEP recommendations (that is, a Tier 3 assessment; see below). As noted in USEPA's 2002 guidance for a Tier 3 site-specific assessment: "If buildings are not available or not appropriate for sampling, for example in cases where future potential impacts need to be evaluated, other more direct measures of potential impacts, such as emission flux chambers or soil gas surveys, may need to be conducted in areas underlain by subsurface contamination." Thus flux measurements are allowed under USEPA's guidance.

Fourth, BRC has also evaluated the various factors pertaining to vapor intrusion, including depth to groundwater, the nature of the soil column from ground surface to groundwater (see Table 6-2A below), and, water quality (i.e., the constituents likely to be present in groundwater and which might pose any vapor intrusion concerns). BRC has performed a more detailed sitespecific evaluation of vapor intrusion potential at a comparison study area within the Eastside property. 38 Based on Site-specific conditions, including depth to groundwater, VOC concentrations in groundwater (which are generally less near the Site - for example, chloroform concentration in groundwater of 0.16 to 4.1 micrograms per liter [µg/L] at the Site versus 180 to 1,200 µg/L at the comparison study area), and expected similar soil physical property, the comparison study area presents a similar potential for vapor intrusion than the Site (and as shown below in Table 6-2A, in all cases, ILCRs and non-cancer HIs are at or below acceptable levels). See the table below for various parameters.

TABLE 6-2A: SOIL PROPERTIES RESULTS FOR SITE AND COMPARISON STUDY AREA

Parameter	Comparison Study Area	Western Hook- Development Sub-Area	Units
Particle Density ¹	2.7	2.7	g/cm ³
Gravimetric Soil Moisture ¹	4.46	6.29	percent
Porosity ¹	33.8	41.6	percent
Permeability ¹	0.0019	0.00079	cm/sec
Bulk Density ¹	1.8	1.6	g/cm ³
Organic Carbon Content ¹	1.1	6.0	percent
USCS Soil Types	SM/GM/GW/ML	SM/GM/GW/ML	
Depth to Groundwater	49 to 60	13 to 15 > <u>20</u>	feet bgs
Chloroform in Groundwater	180 to 1,200	0.16 to 4.1	μg/L

¹Values presented are averages for each area. For example, the range of permeabilities for the Site are 0.00012 to 0.0015 cm/sec, while those for the comparison study area are 0.00029 to 0.0065 cm/sec.

 $g/cm^3 = gram per cubic centimeter$ cm/sec = centimeter per second

BRC has performed a detailed evaluation of vapor intrusion risk assessments for chloroform at the comparison study area location, showing that risks were acceptable (residential indoor ILCRs

³⁸ Note that the comparison study was done pursuant to a work plan approved by the NDEP (December 19, 2009); however, a final report on this study was not submitted to the NDEP for approval.

ranged from 1×10^{-8} to 9×10^{-7} , and non-cancer HIs were well below 1.0).³⁹ The comparison study area risk estimate calculations are provided electronically in Appendix J (included on the report CD in Appendix B). Input parameters and results for the indoor air calculations for the comparison study area location are also provided in Appendix J (Tables J-2 through J-6).

Finally, BRC is aware of USEPA's recent *Review of the Draft 2002 Subsurface Vapor Intrusion Guidance* (USEPA 2010b). Issues and recommendations identified in this document, as well as the USEPA Office of Inspector General's *Evaluation Report—Lack of Final Guidance on Vapor Intrusion Impedes Efforts to Address Indoor Air Risks* (USEPA 2009b), focus primarily on Tier 1 and Tier 2 assessments, and ultimately will not affect how indoor air exposures have been evaluated for the Site.

Site-Specific Tier 3 Assessment

Concentrations of volatile constituents (VOCs and certain SVOCs) in soil and groundwater that may infiltrate buildings to be constructed at the Site through cracks in the foundations are estimated using USEPA surface emission isolation flux chamber (flux chamber) measurements collected at the Site in accordance with USEPA (1986) guidance and the Flux Chamber SOP-16 (BRC, ERM, and MWH 2009). The flux chamber is used to measure the emission rates from surfaces emitting gas species. Use of the flux chamber reduces the need for modeling surface flux rates, which potentially reduces the uncertainty in the air representative exposure concentrations and the risk characterization. Because the flux chamber measurements were conducted outdoors on open soil, an "infiltration factor" is applied to the outdoor surface flux data to generate data supporting the inhalation of indoor air exposure pathway. The infiltration factor is based on the factors found in the American Society for Testing and Materials (ASTM) Standard Guide for Risk-Based Corrective Action (2000). The indoor air concentrations are determined from the surface flux measurements using the following mixing equation:

$$C_a = \frac{J \times \eta}{L \times ER}$$

where:

 C_a = indoor air concentration (milligram per cubic meter [mg/m³])

³⁹ For comparison, chloroform residential indoor ILCRs for the Site were 7×10^{-9} to 2×10^{-5} and non-cancer HIs were well below 1.0; and vapor intrusion ILCRs for the Mohawk sub-area were 4×10^{-8} to 9×10^{-7} and non-cancer HIs were well below 1.0.

J = measured flux of chemical (milligram per square meter per minute)

 η = foundation crack fraction (unitless)

L = enclosed space volume/infiltration area ratio (meter)

ER = enclosed space air exchange rate (1/min)

Default parameter values from ASTM (2000) for residential and commercial buildings were used (as presented in Section 9 of the NDEP-approved *BRC Closure Plan* [BRC, ERM, and DBS&A 2007; Section 9 revised March 2010]). These default parameters are presented in the electronic indoor air calculation files in Appendix J (included on the report CD in Appendix B). As noted in Section 5.4, indoor air exposures are evaluated on a sample by sample basis, per NDEP requirements, using the surface flux data measurements.

Those VOCs and volatile SVOCs that did not pass the Tier 2 assessment (see above) are evaluated at each individual surface flux location. However, to be consistent with the selection of COPCs for soil; one-tenth of the groundwater Tier 2 comparison values were used. Based on this, only tetrachloroethene had groundwater concentrations greater than one-tenth Tier 2 comparison values. However, because chloroform is a VOC of particular concern in groundwater beneath the Eastside property, both tetrachloroethene and chloroform were evaluated further in the vapor intrusion Tier 3 assessment.

Indoor air concentrations based on the surface flux data measurements are shown in the electronic indoor air calculation files in Appendix H (included on the report CD in Appendix B) and are summarized in Table 6-3 (Tables section). In all cases, the maximum of the two flux chamber measurements (TO-15 full scan and TO-15 SIM) is used.

6.1.3 Outdoor Air

Long-term exposure to COPCs bound to dust particles is evaluated using the USEPA's PEF approach (USEPA 2002b). The PEF relates concentrations of a chemical in soil to the concentration of dust particles in the air. The Q/C (Site-Specific Dispersion Factor) values in this equation are for Las Vegas, Nevada (Appendix D of USEPA 2002b). The equation used is:

PEF = Q/C_{wind} x
$$\frac{3,600 \text{ sec/hr}}{0.036 \text{ x} (1 - \text{V}) \text{ x} (\text{U}_{\text{m}} / \text{U}_{\text{t}})^3 \text{ x} F(\text{x})}$$

6-9

where:

PEF = Particulate emission factor (cubic meter per kilogram [m³/kg])

 Q/C_{wind} = Inverse of the ratio of the geometric mean air concentration to the emission flux at

the center of a square source (g/m² -s per kg/m³)

V = Fraction of vegetative cover (unitless)

 U_m = Mean annual windspeed (m/s)

 U_t = Equivalent threshold value of windspeed at 7m (m/s)

F(x) = Function dependent on U_m/U_t derived using USEPA (1985) (unitless)

and

$$Q/C_{wind} = A \times \exp \frac{(\ln A_{site} - B)^2}{C}$$

where

 $A_{\text{site}} = \text{Source Area (acre)}$

A, B, C = Air Dispersion Constants for LV (unitless)

The dust model and parameters utilized to generate the PEF are presented in Table 6-4.

The USEPA guidance for dust generated by construction activities (USEPA 2002b) was used for assessing short-term construction worker exposures:

$$PEF = \frac{I}{\left(\left(\frac{I}{PEF_{sc}}\right) + \left(\frac{I}{PEF_{sc_road}}\right)\right)}$$

where:

PEF_{sc} = Subchronic particulate emission factor for construction activities (m 3 /kg) PEF_{sc road} = Subchronic particulate emission factor for unpaved road traffic (m 3 /kg)

Input soil concentrations for the model are the exposure point concentrations as described above. The construction dust model and all relevant equations and parameters utilized to generate the construction worker PEF from this guidance are provided in Table 6-5. Site-specific surface soil moisture data were collected in January-April and June-September. The average of the surface soil data is 6.0 percent. This is considered an adequate representation of the annual average; therefore, this value is used for the percent moisture in dry road surface parameter instead of the NDEP model default value.

In addition, for receptors with indoor exposures (i.e., residents, indoor commercial workers), a dilution factor is applied to obtain an indoor air concentration of dust particles, based on USEPA (2000).

The flux chamber measurements as described in Section 6.1.2 above are used for exposures to VOCs and volatile SVOCs in outdoor air if the chemical was present in the TO-15 analyte list. If the VOC or volatile SVOC was measured in soil, but not on the TO-15 analyte list, then the exposure point concentration was estimated using USEPA's volatilization factor. Outdoor surface flux data are divided by the dispersion factor for volatiles (Q/C_{vol} for Las Vegas; from USEPA 2002b) for use in the outdoor air exposure pathway. The same dispersion factor is used for all scenarios. The dispersion factor for the construction worker is not adjusted to account for soil intrusion activities. Outdoor air concentrations based on soil data for all receptors are shown in Table 6-6. Outdoor air concentrations based on the surface flux data measurements are shown in the electronic indoor air calculation files in Appendix H (included on the report CD in Appendix B) and are summarized in Table 6-3.

6.1.4 Homegrown Produce

Consistent with the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010) and USEPA guidance, the consumption of homegrown produce is an applicable exposure pathway for residential receptors. Representative exposure concentrations in plants were obtained using the soil 95 percent UCL for each COPC, multiplied by plant uptake factors. As per the Closure Plan, plant uptake factors were obtained from USEPA (2005b) and Baes et al. (1984). Plant uptake factors for inorganics were obtained from empirical data, where available. Plant uptake factors for organics are calculated based on the following equations (from USEPA 2005b):

Aboveground plant uptake factor:

$$log \ Br_{above} = 1.588 - 0.578 \ log \ K_{ow}$$

Belowground plant uptake factor:

$$Br_{below} = \frac{RCF}{Kd_s} \times VG$$

where:

 $Br_{above} \\$ aboveground plant uptake factor (mg/kg plant DW/mg/kg soil) belowground plant uptake factor (mg/kg plant DW/mg/kg soil) Br_{below} =

 K_{ow} octanol/water partitioning coefficient (unitless)

RCF root concentration factor (mg/g plant DW/mg/mL soil water) =

 Kd_s Soil-water partition coefficient (mL water/g soil)

VG empirical correction factor for belowground produce (unitless) (0.01 for COPCs

with a log K_{ow} greater than 4 and 1.0 for COPCs with a log K_{ow} less than 4)

Plant uptake factors are presented in Table 6-7. See Section 7.2.3 regarding plant uptake of perchlorate.

6.2 EXPOSURE ASSESSMENT

In a risk assessment, the possible exposures of populations are examined to determine if the chemicals at a site could pose a threat to the health of identified receptors. The risks associated with exposure to chemicals depend not only on the concentration of the chemicals in the media, but also on the duration and frequency of exposure to those media. For example, the risks associated with exposure to chemicals for 1 hour a day are less than those associated with exposure to the same chemicals at the same concentrations for 2 hours a day. Potential health impacts from chemicals in a medium can occur via one or more exposure pathways. The exposure assessment step of a risk assessment combines information regarding impacted media at a site with assumptions about the people who could come into contact with these media. The result is an estimation of a person's potential rate of contact with impacted media from the Site. The intake rates are evaluated in the risk characterization step to estimate the risks they could pose.

In this section, assumptions regarding people's activities, such as the frequency with which a person could come into contact with impacted media, are discussed. Finally, the daily doses at the points of potential human contact were estimated using these assumptions, the models described in Section 6.1, and the chemical concentrations reported for soil and surface flux samples collected from the Site.

6.2.1 **Exposure Parameters**

In this section, the assumptions regarding the extent of exposure are presented for each of the exposure pathways for each medium of concern at the Site. Tables 6-8 and 6-9 present each of the exposure parameters used in the risk assessment for each receptor and each pathway. Many

of the assumptions regarding the extent of exposure are default factors developed by USEPA's Superfund program. Default values were modified to reflect Site-specific conditions, where possible. The exposure parameters used in the risk assessment were those defined in Tables 9-2 through 9-5 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010).

6.2.2 Quantification of Exposure

In this section, the concentrations of COPCs at the points of potential human exposure are combined with assumptions about the behavior of the populations potentially at risk to estimate the dose of COPCs that may be taken in by the exposed individuals. Later, in the risk characterization step of the assessment, the doses are combined with toxicity parameters for COPCs to estimate whether the calculated intake levels pose a threat to human health.

The method used to estimate the average daily dose (ADD) for non-carcinogen COPCs via each of the complete exposure pathways is based on USEPA (1989, 1992b) guidance. For carcinogens, lifetime ADD (LADD) estimates are based on chronic lifetime exposure, extrapolated over the estimated average lifetime (assumed to be 70 years). This establishes consistency with cancer slope factors (CSFs), which are based on chronic lifetime exposures. For non-carcinogens, ADD estimates are averaged over the estimated exposure period. ADDs and LADDs were calculated for each exposure scenario using the following generic equation:

$$Dose = \frac{C \times IR \times ED \times EF}{BW \times AT \times 365 \, d/yr}$$

where:

Dose = ADD for non-carcinogens and LADD for carcinogens (in mg/kg-day)

C = chemical concentration in the contact medium (e.g., mg/kg soil)

IR = intake rate (e.g., mg/day soil ingestion and dermal contact [requires a conversion

factor of 10⁻⁶ kilograms per milligram];

ED = exposure duration (years of exposure)

EF = exposure frequency (number of days per year)

BW = average body weight over the exposure period (kilograms)

BIO = relative bioavailability (unitless)

AF = absorption fraction (percent)

AT = averaging time; same as the exposure duration for non-carcinogens and 70 years

(average lifetime) for carcinogens

Risk estimates for inhalation exposures follow USEPA's *Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment)* (USEPA 2009a). That is, the concentration of a chemical in air is used as the exposure metric (e.g., mg/m³), rather than inhalation intake of a chemical in air based on inhalation rate and body weight (e.g., mg/kg-day). The generic equation for calculating inhalation exposures is:

$$EC = \frac{C_{air} \times ET \times ED \times EF}{AT}$$

where:

EC = exposure concentration (in mg/m³)

 C_{air} = chemical concentration in air (in mg/m³)

ET = exposure time (hours per day)

ED = exposure duration (years of exposure)

EF = exposure frequency (number of days per year)

AT = averaging time; same as the exposure duration for non-carcinogens and 613,200 hours (i.e., 70 years; average lifetime) for carcinogens

Pathway-specific equations for calculating ADDs and LADDs are provided in Table 9-6 of the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010). For conservatism, the relative oral bioavailability of all COPCs was assumed to be 100 percent, except for arsenic. Consistent with the *BRC Closure Plan* (BRC, ERM, and DBS&A 2007; Section 9 revised March 2010), an arsenic oral bioavailability of 30 percent is used.

Chemical-specific dermal absorption values from USEPA guidance (USEPA 2004e [Part E RAGS]) were used in the risk assessment. USEPA does not recommend absorption factors for VOCs based on the rationale that VOCs from the soil are volatilized on skin and exposure is accounted for via inhalation routes. In addition, RAGS Part E (USEPA 2004e) states "For inorganics, the speciation of the compound is critical to the dermal absorption and there are too little data to extrapolate a reasonable default value." Therefore, dermal absorption factors are also not used for inorganics. The NDEP and its consultants have concurred with this decision.

Exposure levels of potentially carcinogenic and non-carcinogenic chemicals are calculated separately because different exposure assumptions apply (i.e., ADD for non-carcinogens and LADD for carcinogens). Exposure levels are estimated for each relevant exposure pathway (i.e.,

soil, air, and water), and for each exposure route (i.e., oral, inhalation, and dermal). Daily doses for the same route of exposure are summed. The total dose of each chemical is the sum of doses across all applicable exposure routes. As noted previously, radionuclides are consistent with background concentrations and are not addressed in this HHRA.

6.2.3 Asbestos

Although final USEPA guidance is unavailable at this time, USEPA recommends that sitespecific risk assessments be performed for asbestos (USEPA 2004f). Risks associated with asbestos in soil are evaluated using the NDEP's Technical Guidance for the Calculation of Asbestos-Related Risk in Soils (2011a) and Workbook for the Calculation of Asbestos-Related Risk in Soils (2011b), and the draft methodology proposed by USEPA (2003b). This methodology is an update of the method described in Methodology for Conducting Risk Assessments at Asbestos Superfund Sites-Part 1: Protocol and Part 2: Technical Background Document (Berman and Crump 1999a,b). Because the risk assessment methodology for asbestos is unlike that for other COPCs, asbestos risks are evaluated separately from other chemical risks.

The intent of the risk assessment methodology is to predict the amount of airborne asbestos, which causes an unacceptable risk to a human receptor. Asbestos concentrations are measured in soil, and are then used to predict airborne asbestos concentrations using a dust emissions model. Asbestos data are collected from the top 2 inches of soil. While asbestos might exist below the top 2 inches of soil due to soil turnover, the concentrations in the surface soil are likely to be greater than concentrations beneath the surface, and exposure to the top 2 inches of soil is the most likely point of contact for asbestos. Therefore, the "shallow" surface soils asbestos concentration estimate is used to represent the potential exposure to asbestos.

To interpret measurements of asbestos in soils, it is necessary to establish the relationship between the asbestos concentrations observed in soils and concentrations that will occur in air when such soil is disturbed by natural or anthropogenic forces. This is because asbestos is a hazard when inhaled (see, for example, Berman and Crump 2001; USEPA 2003b). Indeed, the Modified Elutriator Method (Berman and Kolk 2000), which was the method employed to perform the analyses presented in this report, was designed specifically to facilitate prediction of airborne asbestos exposures based on bulk measurements (see, for example, Berman and Chatfield 1990).

Briefly, the Modified Elutriator Method incorporates a procedure for isolating and concentrating asbestos structures as part of the respirable dust fraction of a sample, and analytical

measurements are reported as the number of asbestos structures per mass of respirable dust in the sample. This turns out to be precisely the dimensions required to combine such measurements with published dust emission and dispersion models to convert them to asbestos emission and dispersion models. These models can be combined with measurements from the Modified Elutriator Method to predict airborne exposures and assess the attendant risks.

6.3 TOXICITY ASSESSMENT

This section describes the toxicity of the COPCs at the Site. Numerical toxicity values were developed for use in the calculation of the hazard quotients (HQs; for non-carcinogens) and risks (for carcinogens).

6.3.1 Toxicity Values

Toxicity values, when available, are published by the USEPA in the on-line Integrated Risk Information System [IRIS]; USEPA 20142015). CSFs (in units of milligrams per kilogram per day [mg/kg-d]⁻¹) are chemical-specific and experimentally derived potency values that are used to calculate the risk of cancer resulting from exposure to potentially carcinogenic chemicals. Inhalation unit risks (IURs) represent the upper-bound excess lifetime cancer risk from continuous exposure to a chemical at a concentration of 1 microgram per cubic meter (μg/m³). A higher value implies a more potent carcinogenic potential. Reference dosages (RfDs) are experimentally derived "no-effect" levels used to quantify the extent of toxic effects other than cancer due to exposure to chemicals (in units of mg/kg-d). Similarly, a reference concentration (RfC) is the derived "no-effect" concentration for a lifetime of continuous inhalation exposure (in units of mg/m³). With RfDs or RfCs, a lower value implies a more potent toxicant. These criteria are generally developed by USEPA risk assessment work groups and listed in the USEPA risk assessment guidance documents and databases. Available toxicity values for all Site COPCs used in the risk assessment were obtained using the following hierarchy for selecting toxicity criteria (based on USEPA 2003c):

- 1. IRIS;
- 2. USEPA's Provisional Peer Reviewed Toxicity Values (PPRTVs);
- 3. National Center for Environmental Assessment (or other current USEPA sources);
- 4. Health Effects Assessment Summary Tables (HEAST);

- 5. USEPA Criteria Documents (e.g., drinking water criteria documents, drinking water Health Advisory summaries, ambient water quality criteria documents, and air quality criteria documents);
- 6. ATSDR toxicological profiles;
- 7. USEPA's Environmental Criteria and Assessment Office; and
- 8. Peer-reviewed scientific literature.

In addition, toxicity criteria and toxicological surrogates recommended by the NDEP are used in the risk assessment. Toxicity criteria are consistent with those used in the development of the NDEP's BCLs (NDEP 2013), unless newer values are available from USEPA. Toxicity criteria have not been developed by BRC for elements or compounds that do not have criteria published in the above sources.

Although USEPA has developed toxicity criteria for the oral and inhalation routes of exposure, it has not developed toxicity criteria for the dermal route of exposure. USEPA has proposed a method for extrapolating oral toxicity criteria to the dermal route in the Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) (USEPA 2004e). USEPA states that the adjustment of the oral toxicity factor for dermal exposures is necessary only when the oral-gastrointestinal absorption efficiency of the chemical of interest is less than 50 percent (due to the variability inherent in absorption studies). For COPCs to which dermal exposure might occur at the Site, the oral-gastrointestinal absorption efficiencies are greater than 50 percent, except for vanadium. Therefore, the USEPA-indicated adjustment of the oral toxicity criteria to generate dermal criteria was performed for this COPC.

Non-Carcinogenic Health Effects

For non-carcinogenic health effects, USEPA assumes that a dose threshold exists, below which adverse effects are not expected to occur. A chronic RfD or RfC of a chemical is an estimate of a lifetime daily dose to humans that is likely to be without appreciable deleterious noncarcinogenic health effects. To derive an RfD or RfC, a series of professional judgments is made to assess the quality and relevance of the human or animal data and to identify the critical study and the most critical toxic effect. Data typically used in developing the RfD or RfC are the highest no-observable-adverse-effect-levels (NOAELs) for the critical studies and effects of the non-carcinogen. For each factor representing a specific area of uncertainty inherent in the

extrapolation from the available data, an uncertainty factor is applied. Uncertainty factors generally consist of multiples of 10, although values less than 10 are sometimes used.

Four major types of uncertainty factors are typically applied to NOAELs in the derivation of RfDs or RfCs. Uncertainty factors of 10 are used to (1) account for the variability between humans; (2) extrapolate from animals to humans; (3) account for a NOAEL based on a subchronic study instead of a chronic study; and (4) extrapolate from a lowest-observed-adverse-effect-level (LOAEL) to a NOAEL, if necessary. In addition, a modifying factor can be used to account for adequacy of the database. Typically, the modifying factor is set equal to one.

To obtain the RfD or RfC, all uncertainty factors associated with the NOAEL are multiplied together, and the NOAEL is divided by the total uncertainty factor. Therefore, each uncertainty factor adds a degree of conservatism (usually one order of magnitude) to the RfD or RfC. An understanding of the uncertainties associated with RfDs or RfCs is important in evaluating the significance of the HIs calculated in the risk characterization portion of the risk assessment. When available, sub-chronic RfDs or RfCs were used to evaluate construction worker exposures. The COPCs in this assessment with USEPA-established oral/dermal and inhalation RfDs or RfCs are presented in Tables 6-10 and 6-11, for surface flux and soil COPCs, respectively.

6.3.3 Carcinogenic Health Effects

USEPA develops CSFs and IURs from chronic animal studies or, where possible, epidemiological data. Because animal studies use much higher doses over shorter periods of time than the exposures generally expected for humans, the data from these studies are adjusted, typically using a linearized multi-stage (LMS) mathematical model. To ensure protectiveness, CSFs/IURs are typically derived from the 95th percentile UCL of the slope, and thus the actual risks are unlikely to be higher than those predicted using the CSF/IUR, and may be considerably lower. The COPCs in this assessment with USEPA-established oral/dermal and inhalation CSFs/IURs are presented in Tables 6-10 and 6-12, for surface flux and soil COPCs, respectively.

6.3.4 Asbestos

Asbestos toxicity criteria were obtained from Table 8-1 of Berman and Crump's (2001) document and Tables 8-2 and 8-3 in the USEPA (2003b) guidance. The toxicity criteria vary based on fiber type, endpoint (lung cancer, mesothelioma, or combined) and percent of fibers longer than 10 micrometers (μ m) and less than 0.4 μ m in width. For this risk assessment, the toxicity criteria were based on a combined endpoint of lung cancer and mesothelioma averaged

over the smokers and non-smokers of the population, with the assumption that 50 percent of fibers are greater than 10 µm in length. The resulting unit risk factors (structures/cubic centimeter) are presented in Appendix H (included on the report CD in Appendix B). A complete discussion on issues associated with risk estimates for asbestos is presented in the NDEP's *Technical Guidance for the Calculation of Asbestos-Related Risk in Soils* (2011a).

6.4 RISK CHARACTERIZATION

In the last step of a risk assessment, the estimated rate at which a receptor intakes a chemical is compared with information about the toxicity of that COPC to estimate the potential risks posed by exposure to the COPC. This step is known as risk characterization. The methods used for assessing cancer risks and non-cancer adverse health effects are discussed below.

6.4.1 Methods for Assessing Cancer Risks

In the risk characterization, carcinogenic risk is estimated separately as the incremental probability of an individual developing cancer over a lifetime as a result of exposure to chemicals and asbestos. Carcinogenic risks for chemicals were evaluated by multiplying the estimated average exposure rate (i.e., LADD calculated in the exposure assessment) by the chemical's CSF or IUR. The CSF converts estimated daily doses averaged over a lifetime to incremental risk of an individual developing cancer. Because cancer risks are averaged over a person's lifetime, longer-term exposure to a carcinogen results in higher risks than shorter-term exposure to the same carcinogen, if all other exposure assumptions are constant. Theoretical risks associated with low levels of exposure in humans are assumed to be directly related to an observed cancer incidence in animals associated with high levels of exposure while the IUR converts estimated exposure concentrations averaged over a lifetime to incremental risk of an individual developing cancer. According to USEPA (1989), this approach is appropriate for theoretical upper-bound ILCRs of less than 1×10^{-2} . The following equations were used to calculate COPC-specific risks and total risks:

$$Risk = EC \times IUR \quad or \quad LADD \times CSF$$

where:

LADD = lifetime average daily dose (mg/kg-d)

EC = exposure concentration (mg/m^3) IUR = inhalation unit risk $(mg/m^3)^{-1}$

CSF = cancer slope factor $(mg/kg-d)^{-1}$

and:

Total Carcinogenic Risk = Σ Individual Risk

It is assumed that cancer risks for different chemicals and from multiple exposure routes are additive, which introduces a protective bias in the result of the cancer risk assessment. Carcinogenic risk estimates were compared to the USEPA acceptable, incremental risk range of 1 in $10,000 (10^{-4})$ and 1 in 1 million (10^{-6}) and the NDEP's acceptable, incremental level of 10^{-6} . If the estimated incremental risk falls within or below this risk range, the chemical is considered unlikely to pose an unacceptable carcinogenic risk to individuals under the given exposure conditions. A risk level of 1×10^{-5} (1 E-5) represents an incremental probability of one in 100,000 that an individual could develop cancer from exposure to the potential carcinogen under a defined set of exposure assumptions.

6.4.2 Methods for Assessing Non-Cancer Health Effects

Non-cancer adverse health effects are estimated by comparing the estimated average exposure rate (i.e., ADDs estimated in the exposure assessment) with an exposure level at which no adverse health effects are expected to occur for a long period of exposure (e.g., the RfDs or RfCs). ADDs (or exposure concentrations [ECs]) and RfDs (or RfCs) are compared by dividing the ADD by the RfD (or EC by the RfC) to obtain the ADD:RfD (EC:RfC) ratio, as follows:

$$HQ = \frac{EC}{RfC} or \frac{ADD}{RfD}$$

where:

HQ = hazard quotient

ADD = average daily dose (mg/kg-d)

EC = exposure concentration (mg/m^3)

RfD = reference dose (mg/kg-d)

RfC = reference concentration (mg/m^3)

The ADD-to-RfD (EC-to-RfC) ratio is known as an HQ. If a person's average exposure is less than the RfD or RfC (i.e., if the HQ is less than 1), the chemical is considered unlikely to pose a significant non-carcinogenic health hazard to individuals under the given exposure conditions. Unlike carcinogenic risk estimates, an HQ is not expressed as a probability. Therefore, while both cancer and non-cancer risk characterizations indicate a relative potential for adverse effects

to occur from exposure to a chemical, a non-cancer adverse health effect estimate is not directly comparable with a cancer risk estimate.

If more than one pathway is evaluated, the HQs for each pathway are summed to determine whether exposure to a combination of pathways poses a health concern. This sum of the HQs is known as an HI.

$$Hazard\ Index = \Sigma Hazard\ Quotients$$

Any HI less than 1.0 indicates the exposure is unlikely to be associated with a potential health concern. If the HI is greater than 1.0, then the HQs are summed by the specific target organs affected by a particular chemical or chemicals. This is also summed across pathways and chemicals. Target organs are identified primarily by the source of the toxicity criteria (e.g., IRIS). Since a chemical may affect more than one organ, in addition to the source of the toxicity criteria Oak Ridge National Laboratory's (ORNL) Risk Assessment Information System's toxicity profiles were also searched for target organ information (ORNL 20142015). The target organs for the COPCs are shown in Table 6-13 (Tables section).

6.4.3 Methods for Assessing Asbestos Risks

For assessing asbestos risks, Table 8-2 (Based on Optimum Risk Coefficients) of USEPA (2003b) was used. Table 8-2 presents best estimate risks optimized based upon separation of fiber type, size and endpoint (mesothelioma/lung cancer), thereby reducing apparent variation between the studies utilized. The values in Table 8-2 are used because they are the authors' "best" estimates of potency based upon all the available data (whereas the "conservative values" presented in Table 8-3 present only the most conservative, and best "behaved" data). As described in USEPA (2003b), because the asbestos risks to male and female smokers/non-smokers are different, population averaged risks are evaluated based on Equation 8-1 of USEPA (2003b):

$$URF = 0.5 \times ((0.786 \times (NSM + NSF)) + ((0.214 \times (SM + SF)) \times CF)$$

where:

URF = Population Averaged Unit Risk Factor (risk per fibers/cubic centimeter [cm³])

NSM = risk for male non-smokers

NSF = risk for female non-smokers

SM = risk for male smokers SF = risk for female smokers

CF = factor to convert risk from risk per 100,000 to risk per 1,000,000

This equation considers male smokers, male non-smokers, female smokers, and female non-smokers. In addition, because both chrysotile and amphibole have been detected at the BMI Common Areas, both amphibole and chrysotile fibers are evaluated in the risk assessments, regardless of if either was detected within an exposure area (as calculated using the 95 percent UCL of the mean of the assumed underlying Poisson distribution).

The basic equation for assessing inhalation cancer risk for asbestos is analogous to that recommended by USEPA for other inhalation carcinogens. As shown in Equation 11 of *Risk Assessment Guidance for Superfund, Part F* (USEPA, 2009a), inhalation cancer risk is the product of an IUR factor and an exposure concentration. The exposure concentration is a function of the asbestos air concentration, the length of time an individual is exposed, and the averaging time for which carcinogenic effects are evaluated for the unit risk factor. This calculation of asbestos-related risk (ARR) is also consistent with application of Berman and Crump (2003) to risk calculations described in Berman (2003a,b; 2005). The risk equation used in performing an asbestos inhalation risk assessment is:

$$ARR = \frac{C_{air} \times URF \times ET \times EF \times ED}{AT}$$

where:

 C_{air} = air concentration of asbestos (f/cm³) (fibers per centimeter cubed)

ET = exposure time (hours/day)

EF = exposure frequency (days/year)

ED = exposure duration (years)

AT = averaging time (hours)

URF = unit risk factor (risk per f/cm^3)

Asbestos risk estimates are compared to the USEPA acceptable, incremental risk range for carcinogens of 1 in 10,000 (10^{-4}) and 1 in 1 million (10^{-6}) and the NDEP's acceptable, incremental level of 10^{-6} , although the risk estimates represent the probability of death from mesothelioma or lung cancer rather than the probability of contracting cancer. If the estimated asbestos risk falls within or below this risk range, asbestos is considered unlikely to pose an unacceptable risk to individuals under the given exposure conditions. A risk level of 1×10^{-5} (1 E-5) represents a probability of one in 100,000 that an individual could die from contracting mesothelioma or lung cancer from exposure to asbestos under a defined set of exposure assumptions.

6.4.4 Risk Assessment Results

The calculation of theoretical upper-bound ILCRs and non-cancer health effects are presented by receptor in Tables 6-14 through 6-18 (Tables section) and are discussed in Section 8. These tables present the theoretical upper-bound ILCRs and non-cancer health effects calculations for residential (including background), construction worker, commercial (indoor) worker, and maintenance (outdoor) worker receptors. The risk of death from lung cancer or mesothelioma as a consequence of exposure to asbestos on a Site-wide basis is presented in Table 6-19 (Tables section). All calculation spreadsheets are provided in Appendix H (included on the report CD in Appendix B). As discussed in Section 8, based on the results of the HHRA, exposures to residual levels of chemicals in soil at the Western Hook-Development Sub-Area should not result in adverse health effects to any of the future receptors evaluated.

7.0 UNCERTAINTY ANALYSIS

Risk estimates are values that have uncertainties associated with them. These uncertainties, which arise at every step of a risk assessment, are evaluated to provide an indication of the uncertainty associated with a risk estimate. Risk assessments are not intended to estimate the true risk to a receptor associated with exposure to chemicals in the environment. In fact, estimating the true risk is impossible because of the variability in the exposed or potentially exposed populations. There are always gaps in knowledge because a true exposure for every individual human being cannot be measured. Therefore, risk assessment is a means of estimating the probability that an adverse health effect (e.g., cancer, impaired reproduction) will occur in a receptor to assist in decision-making regarding the protection of human health. The use of conservative values for a majority of the assumptions in risk assessments helps guard against the underestimation of risks.

Risk estimates are calculated by combining Site data, assumptions about individual receptor's exposures to impacted media, and toxicity data. The uncertainties in this HHRA can be grouped into four main categories that correspond to these steps:

- Uncertainties in environmental sampling and analysis;
- Uncertainties in fate and transport modeling (discussed in Section 9);
- Uncertainties in assumptions concerning exposure scenarios; and
- Uncertainties in toxicity data and dose-response extrapolations.

General uncertainties associated with the HHRA for the Site are summarized in Table 7-1. In this table, "Low," "Moderate," and "High" are qualitative indicators as to whether the source of uncertainty will likely have a small, medium, or large effect on the risk calculations, respectively. In general, the scenarios and parameters evaluated and used in this HHRA are considered conservative based on how the Site will be developed. This is a large source of potential conservative bias in this HHRA. Additional discussion on the uncertainties associated with the HHRA is provided below.

7.1 ENVIRONMENTAL SAMPLING

The HHRA for the Site was based on the sampling results obtained from investigations conducted from 2008 through 2014. Errors in sampling results can arise from the field sampling, laboratory analyses, and data analyses.

The environmental sampling at the Site is one source of uncertainty in the evaluation. However, the number of sampling locations and events is large, widespread and spatially distributed, with consistent analytical results (i.e., no hot spots), and sampling was performed using approved procedures; therefore, the sampling and analytical data are sufficient to characterize the impacts and the associated potential risks.

Because of the surface soil removal undertaken for certain chemicals, the new surface layer of the Site could have different chemical concentrations than those measured prior to soil removal. Because only the trigger constituents were reanalyzed for in the post-scrape samples, the original measured surface soil data at the Site for all other chemicals was retained for further evaluation. However, it is reasonable to assume that the concentrations are now lower for some chemicals (e.g., metals, if due to contamination), because of the removal of some soil.

The laboratory data are another potential source of uncertainty. Maximum SQLs for dichloromethyl ether and N-nitrosodi-n-propylamine exceeded one-tenth their residential soil BCL. These chemicals were not evaluated quantitatively in the HHRA as they were not detected in any Site samples. This may result in an underestimation of risk. Additional SQL exceedances occurred for arsenic, toxaphene, 1,2-diphenylhydrazine, 3,3-diphenylhydrazine, bis(2-chloroethyl)ether, hexachlorobenzene, nitrobenzene, p-chloroaniline, and pentachlorophenol. However, these are limited to one to two samples and don't represent a significant underestimation of risk.

A significant low bias was noted for 1,2,4-trichlorobenzene in the surface flux dataset. Calibration recoveries were below 50 percent associated with all samples. 1,2,4-Trichlorobenzene was not detected in any samples and risks due to 1,2,4-trichlorobenzene may be underestimated.

The types of analyses were chosen based on historical knowledge of the Site and BMI Common Areas. The data validation and data usability evaluations provided documentation that the HHRA database is adequate to support HHRA conclusions (Section 4 and Appendix E). Based on the data validation and data usability, the risk estimates are likely to be overestimated rather than underestimated.

NDEP has issued recent guidance regarding qualifying data due to blank contamination (NDEP 2011c). As noted in the guidance, NDEP requires that data validated before June 2011 and impacted by blank contamination be discussed in any report that uses such data. In so doing, a semi-quantitative comparison of the potential differences between approaches taken previously and the requirements specified in the guidance will be described and explained. The discussion below provides this semi-quantitative comparison for data impacted by blank contamination for the Site.

A majority of sample results for the Site were collected and validated prior to June 2011; therefore, these data were qualified using prior USEPA and NDEP guidance. The issue of blank contamination is not one that affects the typical primary risk drivers for the project, including those for the Site. The primary risk drivers for the Site are arsenic, thallium, and vanadium. Of these, arsenic and thallium had blank contamination issues. For both arsenic and thallium, only two samples (out of 392 and 243, respectively) had blank contamination issues. Both samples, in each case, were collected prior to June 2011. Because of the limited number of samples affected, this issue has no material effect on the results of the HHRA for the Site.

The following other metals had samples qualified due to blank contamination: antimony (six samples), beryllium (five samples), boron (six samples), cadmium (27 samples), chromium (VI) (11 samples), mercury (68 samples), molybdenum (23 samples), silver (four samples), sodium (one sample), tin (one sample), and tungsten (seven samples). Given the number of samples qualified due to blank contamination for a few of these, this may have an impact on the background comparison statistics. However, in all cases, the maximum detected concentrations for these metals are less than one-tenth their respective BCLs (and their maximum non-detect concentrations are also less than one-tenth their BCLs). Therefore, this issue has no material effect on the selection of COPCs and the results of the HHRA for the Site.

Uncertainties are also introduced into the risk assessment by assumptions that are made regarding the grading plan. As described in Section 3.1, the grading plan affects the interpretation of the data in terms of assigning samples to the surface or the subsurface. This was done to avoid the situation in which current surface samples might not be included in the evaluation of exposures to future surface soils. The data were subdivided by depth intervals as described in Section 3.1, and the maximum of the UCLs for the subsets of data was used as the exposure point concentration. There is some uncertainty in the choice of subsetting on the concentrations of interest, and there is a potential small overestimation of risk by choosing the

maximum of the UCLs as the exposure point concentration. The effects are likely to be small given the data, since there is not much variation in the different UCLs.

7.2 ESTIMATES OF EXPOSURE

The selection of exposure pathways is a process, often based on best professional judgment, which attempts to identify the most probable potentially harmful exposure scenarios. In a risk assessment, it is possible that risks are not calculated for all of the exposure pathways that may occur, possibly causing some underestimation of risk.

7.2.1 Aggregation of Exposure Areas

For the residential scenario that is evaluated, default exposure areas are one-eighth acre in size. However, sampling has not been performed at the frequency of guaranteeing at least one sample per every one-eighth acre exposure area. Instead, sampling has been performed at the scale of approximately once every 3 acres. This is considered sufficient if the concentration distribution for COPCs appears similar across the Site. To the extent that this assumption is not valid, the risk assessment might underestimate risks. However, considering the sampling protocols employed and the physical remediation activities performed, the risk estimates are considered both reasonable from this perspective and unlikely to have resulted in an underestimation of risk at the Site.

7.2.2 Types of Exposures Examined

In an evaluation, risks are sometimes not calculated for all of the exposure pathways that may occur, possibly causing some underestimation of risk. However, in this case, all principal potential exposure pathways were evaluated. In this assessment, risks were estimated for future on-site residents, and indoor and outdoor worker receptors. Risks for the most likely routes of exposure to these receptors were estimated. For example, risks to residents were estimated for soil ingestion, skin contact with soil, inhalation of outdoor air (including dust generation), inhalation of indoor air, and ingestion of homegrown produce. Although it is possible that other exposure routes could exist (e.g., downwind off-site residents), these exposures are expected to be lower than the risks associated with the pathways considered.

7.2.3 Intake Assumptions Used

The risks calculated depend largely on the assumptions used to calculate the rate of COPC intake. For this assessment, standard default values developed by USEPA are used for reasonable

maximum exposures frequency and exposure duration for all receptors. These estimates are conservative values, and the possibility that they underestimate the risk is low. The uncertainties associated with particular parameters used in this risk assessment are described below.

The amount of COPCs the human body absorbs may be different from the amount of a COPC contacted, and the percentage absorbed may vary from one person to another. In this HHRA, absorption of ingested and inhaled COPCs, with the exception of arsenic, is conservatively assumed to be 100 percent.

Current USEPA guidance (USEPA 2004e) states that, "There are no default dermal absorption values presented for volatile organic compounds nor inorganic classes of compounds. The rationale for this is that in the considered soil exposure scenarios, volatile organic compounds would tend to be volatilized from the soil on skin and should be accounted for via inhalation routes in the combined exposure pathway analysis. For inorganics, the speciation of the compound is critical to the dermal absorption and there are too little data to extrapolate a reasonable default value." While USEPA guidance does not specifically state that this pathway should be dismissed, consistent with the approach utilized in current USEPA guidance, the risk estimates in this HHRA do not include a dermal absorption value for VOCs or inorganics (unless a specific value has been identified). Thus, the risks presented in this assessment could be underestimated as a result.

While there have been numerous studies in recent years detailing the presence of perchlorate in vegetable and fruit produce, the homegrown exposure pathway was not evaluated for perchlorate in the HHRA. BRC has not been able to identify an appropriate soil-to-plant uptake factor for this pathway. The studies predominantly focus on water-to-plant uptake. Dr. W. Andrew Jackson at Texas Tech University has been studying perchlorate plant uptake and does not believe that the soil-to-plant pathway for a garden scenario is realistic for perchlorate (Jackson 2010). Perchlorate is extremely soluble and in surface soil would rapidly be flushed away due to application of irrigation water (Jackson 2010). In addition, laboratory experiments have demonstrated that perchlorate may be reduced to chloride in some plants (ATSDR 2008b). Also, concentrations of perchlorate in soils at this Site are quite low relative to risk levels of concern, so the contribution of perchlorate to risk is quite small. Adding the soil-to-plant component is unlikely to contribute significantly to the risk. Consequently, the effect on the risk assessment of excluding perchlorate from the soil-to-plant pathway is likely to be small.

Soil preparation for a backyard garden is not accounted for in the HHRA and would result in reduced soil concentrations. Las Vegas area soils are "...alkaline, clayish, caliche or hard and salty. [In addition,]...soils are lacking organic matter and nutrients" (Mills 2000). Therefore, residential gardening cannot occur in Site soils in its existing condition. For non-native vegetation to grow, soil amendments must be added. Recommended soil preparations for the area include thoroughly blending equal amounts of organic matter with the soil, as well as the addition of other soil amendments (e.g., fertilizers).

The construction activity dust emissions did not take into account dust control measures that would reduce the amount of dust generated to below those levels used in the HHRA. The Clark County Department of Air Quality and Environmental Management has dust control permitting requirements, and an inhalable particulate matter action level of $50~\mu\text{g/m}^3$. The construction activity dust emissions predicted and used in the HHRA exceeded this level. Therefore, dust suppression activities would need to be implemented, thus reducing dust levels and exposures.

The dispersion factor for the construction worker is not adjusted to account for soil intrusion activities. Because these activities may cause increased air concentrations than that evaluated, risks to VOCs in soil may be underestimated for this receptor. However, VOCs are primarily associated with groundwater; this potential underestimation is considered low.

Using a process similar to the selection of COPCs for soil, only those VOCs and volatile SVOCs that did not pass the Tier 2 assessment in Section 6.1.2 were evaluated at each individual surface flux location. Based on this, only two of the 67 chemicals analyzed for in surface flux samples were included in the cumulative risks associated with the inhalation of VOCs. Therefore, the cumulative risks associated with the inhalation of VOCs for all exposure scenarios are underestimated in the HHRA; however, this underestimation is considered low.

7.3 TOXICITY ASSESSMENT

The availability and quality of toxicological data is another source of uncertainty in the risk assessment. Uncertainties associated with animal and human studies may have influenced the toxicity criteria. Carcinogenic criteria are classified according to the amount of evidence available that suggests human carcinogenicity. In the establishment of the non-carcinogenic criteria, conservative safety factors, known as uncertainty and modifying factors, are used.

7.3.1 Chemicals of Potential Concern Lacking Toxicological Data

Toxicity criteria have not been established for some of the chemicals detected at the Site. These chemicals were not quantitatively evaluated in the HHRA. For example, potassium is an analyte for which no USEPA toxicity criteria have been established—, and non-cancer toxicity criteria for 4,4-DDE are lacking. The health effects and levels of concern for potassium (and non-cancer effects for 4,4-DDE) in soil are not known. While not including potassium (and non-cancer effects for 4,4-DDE) may have resulted in a low degree of underestimation of quantitative Site risk estimates, the available toxicological information suggests that this underestimation will not likely affect the decisions made relative to Site risks.

Because of the inconclusive nature of TICs as potentially SRCs, non-cancer surrogate toxicity criteria were not applied. Non-cancer surrogate toxicity criteria were not applied to the inorganic chemicals because of the complexity of ion and metal toxicity. A quantitative estimation of risk was not conducted for these COPCs. Thus, the risks presented in this assessment could be underestimated as a result.

7.3.2 Uncertainties in Animal and Human Studies

Extrapolation of toxicological data from animal tests is one of the largest sources of uncertainty in a risk assessment. There may be important, but unidentified, differences in uptake, metabolism, and distribution of chemicals in the body between the test species and humans. For the most part, these uncertainties are addressed through use of conservative assumptions in establishing values for RfDs, RfCs, CSFs, and IURs, which results in the likelihood that the risk is overstated.

Typically, test animals are administered high doses (e.g., maximum tolerated dose) of a chemical in a standard diet or in air. Humans are generally exposed to much lower doses in the environment, which may affect the toxicity of the chemical. In these studies, test animals, often laboratory rodents, are exposed daily to the chemical agent for various periods of time up to their 2-year lifetimes. Humans have an average 70-year lifetime and may be exposed either intermittently or regularly for an exposure period ranging from weeks to a full lifetime. Because of these differences, it is not surprising that extrapolation error is a large source of uncertainty in a risk assessment.

7.3.3 Non-Carcinogenic Toxicity Criteria

In the establishment of the non-carcinogenic criteria, conservative safety factors, known as uncertainty factors, are used. Most of the chronic non-carcinogenic toxicity criteria that were located in the IRIS database have uncertainty factors of 1,000. This means that the dose corresponding to a toxicological effect level (e.g., LOAEL) is divided by 1,000 to deem a safe, or "reference," dose. The purpose of the uncertainty factor is to account for the extrapolation of toxicity data from animals to humans and to ensure the protection of sensitive individuals.

7.3.4 Sub-Chronic Non-Carcinogenic Toxicity Criteria

Construction worker exposures are evaluated for an exposure duration of 1 year, which is more representative of a sub-chronic exposure rather than a chronic exposure. As such, where available, sub-chronic RfDs were used to characterize non-cancer effects for the construction worker. However, for many COPCs, a sub-chronic RfD was not available and the chronic RfD was used. This likely presented an overestimation of non-cancer health risks to the construction worker.

7.3.5 Carcinogenic Toxicity Criteria

Uncertainty due to extrapolation of toxicological data for potential carcinogens tested in animals to human response is commonly the case for potentially carcinogenic chemicals. USEPA frequently uses the LMS model, or other non-threshold low-dose extrapolation models, to extrapolate the toxicological data to estimate human response. These low-dose extrapolation models assume that there is no threshold for carcinogenic substances; that is, exposure to even one molecule, fiber, or picocurie of a carcinogen is sufficient to cause cancer. This is a highly conservative assumption, because the body has several mechanisms to protect against cancer.

The use of the LMS model to extrapolate is a well-recognized source of significant uncertainty in the development of carcinogenic toxicity criteria and, subsequently, theoretical carcinogenic risk estimates. At high levels of exposure, there may indeed be a risk of cancer regardless of whether or not the effect occurs via a threshold mechanism. An animal bioassay cannot determine what happens at low levels of exposure, however, which are generally typical of human exposure levels.

At low levels of exposure, the probability of cancer cannot be measured, but must be extrapolated from higher dosages. To do this, test animals are typically exposed to carcinogens at

levels that are orders of magnitude greater than those likely to be encountered by humans in the environment. It would be difficult, if not impossible, to perform animal experiments with a large enough number of animals to directly estimate the level of risk at the low exposure levels typically encountered by humans. Thus, to estimate the risk to humans exposed at low levels, dose-response data derived from animals given high dosages are extrapolated downward using mathematical models such as the LMS model, which assumes that there is no threshold of response. The dose-response curve generated by the model is known as the maximum likelihood estimate. The slope of the 95 percent lower confidence interval (i.e., upper-bound limit) curve, which is a function of the variability in the input animal data, is taken as the CSF. CSFs are then used directly in cancer risk assessment.

The U.S. federal government, including USEPA itself, has acknowledged the limitations of the high-to-low dose extrapolation models, particularly the LMS model (USEPA 1991c). In fact, this aspect of cancer risk assessment has been criticized by many scientists (including regulatory scientists) in recent years. USEPA has recently released revised cancer risk assessment guidelines (USEPA 2005b).

Even for genotoxic (i.e., non-threshold) substances, there are two major sources of bias embedded in the LMS model: (1) its inherent conservatism at low doses and (2) the routine use of the linearized form in which the 95 percent upper confidence interval is used instead of the unbiased maximum likelihood estimate. The inherent conservatism at low doses is due in part to the fact that the LMS model ignores all of the numerous biological factors that argue against a linear dose-response relationship for genotoxic effects (e.g., DNA repair, immunosurveillance, toxicokinetic factors).

Several other factors inherent in the LMS model result in overestimated carcinogenic potency: (1) any exaggerations in the extrapolation that can be produced by some high dose responses (if they occur) are generally neglected; (2) UCLs on the actual response observed in the animal study are used rather than the actual response, resulting in upper-bound low dose extrapolations, which can greatly overestimate risk; and (3) non-genotoxic chemicals (i.e., threshold carcinogens) are modeled in the same manner as highly genotoxic chemicals.

7.3.6 Uncertainties with the Asbestos Risk Assessment

For the risk assessment, asbestos concentrations were presented two ways, as a best estimate and upper bound based upon the UCL of the mean of the Poisson distribution. Asbestos risk estimates are highly dependent on the number of samples to increase or decrease the pooled

analytical sensitivity. That is, a larger number of non-detect samples with similar individual analytical sensitivity results in a lower pooled analytical sensitivity and subsequently a lower estimated ARR, whereas a smaller number of non-detect samples results in a higher ARR. Uncertainty is, thus, reduced as more samples are collected.

Also, it is notable that asbestos results for two samples: WHC6-BP06 (25 chrysotile fibers) and WHC6-BL05 (10 chrysotile fibers) are anomalous, as chrysotile detections in the remaining 131 samples ranged primarily between zero and 3 fibers with a single value as high as 5 fibers. The source of these chrysotile fibers is unknown, but may be residual from past Site activities. However, future mixing of soil due to re-grading will likely lessen such localized areas; as well as the ultimate placement of clean fill across the Site.

7.4 CUMULATIVE EFFECT OF UNCERTAINTIES

Uncertainties from different sources are compounded in the HHRA. For example, if a person's daily intake rate for a chemical is compared to an RfD to determine potential health risks, the uncertainties in the concentration measurements, exposure assumptions, and toxicities are all expressed in the result. Because the exposure assumptions and toxicity criteria are considered conservative, the risk estimates calculated in this HHRA are likely to overestimate rather than underestimate potential risks.

8.0 SUMMARY OF RESULTS

This HHRA has evaluated potential risks to human health associated with chemicals and asbestos detected in soil at the Western Hook-Development Sub-Area located within the BMI Common Areas in Clark County, Nevada. All calculation spreadsheets for this HHRA are presented in Appendix H (on the report CD in Appendix B), including calculations of chemical theoretical upper-bound ILCRs and non-cancer health effects and asbestos risk calculations.

The risk estimates are based on reasonable maximum exposure scenarios, which results in estimates of the potential reasonable maximum, or high-end, risks associated with the Site. The calculated chemical theoretical upper-bound ILCRs and HIs are presented in Tables 6-14 through 6-18 for residential (including background), construction worker, commercial (indoor) worker, and maintenance (outdoor) worker receptors, respectively. Asbestos estimated risk of death from lung cancer or mesothelioma on a Site-wide basis are presented in Table 6-19.

8.1 RESIDENTS

For chemical exposures, the total cumulative non-cancer HI for future residential receptors at the Site is 0.435 (including the surface flux air risk estimates⁴⁰) (Table 6-14), with metals (primarily arsenic, thallium, and vanadium) soil exposures via the oral ingestion and homegrown produce pathways being the primary contributors. The HI does not exceed the target HI of 1.0. Because the non-cancer HI does not exceed the target HI of 1.0, the potential for adverse health effects was not further evaluated by considering the target organs upon which each chemical could have an adverse effect.

The maximum theoretical upper-bound ILCR for future residential receptors at the Site is $\frac{12}{2} \times 10^{-5}$ (including the surface flux air risk estimates see Table 6-14). The theoretical upper-bound ILCR is above the risk goal of 1×10^{-6} , but within USEPA's acceptable risk range of 10^{-6} to 10^{-4} ; and is driven primarily by arsenic soil exposures). Because the theoretical upper-bound ILCR is above the risk goal of 1×10^{-6} and is driven primarily by metals, and as noted in USEPA guidance (1989), 'If background risk might be a concern, it should be calculated separately from site-related risk.' background risk estimates were also evaluated (Table 6-15). Background risk estimates are only evaluated for those metals selected as COPCs (arsenic, thallium, and vanadium) and evaluated in the HHRA. In addition, representative exposure concentrations for

⁴⁰ The minimum and maximum surface flux risk estimates are summed with the soil risk estimates to provide a range of cumulative risks. The minimum and maximum surface flux risk estimates are provided in Appendix H (included on the report CD in Appendix B) and the receptor-specific chemical risk summary tables. The risks shown are cumulative risks using the maximum surface flux risk estimate.

_

background are the 95 percent UCL concentrations based on the background dataset used in Section 5. The background theoretical upper-bound ILCR for future residential receptors at the Site for soil exposures only is 9×10^{-6} (Table 6-15).

The estimated risks for death from lung cancer or mesothelioma for asbestos exposures to future residential receptors were below 1×10^{-6} . For residential receptors, the best estimate and upper bound concentrations for chrysotile fibers are 3×10^{-8} and 4×10^{-8} ; and zero and 1×10^{-7} for amphibole fibers (Table 6-19). These estimated risks are below the low end of the risk goal of 1×10^{-6} . The upper-bound estimated risk of death from lung cancer or mesothelioma is estimated based on the 95 percent UCL of the count of the number of fibers detected, assuming a Poisson distribution for the count.

8.2 CONSTRUCTION WORKERS

For chemical exposures, the total cumulative non-cancer HI for construction worker receptors at the Site is 0.0921 (including the surface flux air risk estimates) (Table 6-16), with metals soil exposures via the oral ingestion pathway being the primary contributors. The HI does not exceed the target HI of 1.0. As a result, BRC did not evaluate background or target organ non-cancer HI values.

The maximum theoretical upper-bound ILCR for construction worker receptors at the Site is 2×10^{-7} (including the surface flux air risk estimates see Table 6-16) with arsenic soil exposures via the oral ingestion and dermal contact pathways the primary contributor. The theoretical upper-bound ILCRs are all below the low end of the risk goal of 1×10^{-6} .

The estimated risks for death from lung cancer or mesothelioma for asbestos exposures to construction workers were below 1×10^{-6} . For construction worker receptors, the best estimate and upper-bound concentrations for chrysotile fibers are 4×10^{-8} and 5×10^{-9} , and zero and 1×10^{-7} for amphibole fibers (Table 6-19). These estimated risks are at or below the low end of the risk goal of 1×10^{-6} .

8.3 COMMERCIAL (INDOOR) WORKERS

For chemical exposures, the total cumulative non-cancer HI for commercial (indoor) worker receptors at the Site is 0.01702 (including the surface flux air risk estimates) (Table 6-17), with metals soil exposures via the oral ingestion pathway being the primary contributors. The HI does not exceed the target HI of 1.0. As a result, BRC did not evaluate background or target organ non-cancer HI values.

The maximum theoretical upper-bound ILCR for commercial (indoor) worker receptors at the Site is 67×10^{-7} (including the surface flux air risk estimates see Table 6-17) with arsenic soil exposures via the oral ingestion and dermal contact pathways the primary contributor. The theoretical upper-bound ILCRs are all below the low end of the risk goal of 1×10^{-6} .

The estimated risks for death from lung cancer or mesothelioma for asbestos exposures to commercial (indoor) workers were below 1×10^{-6} . For commercial (indoor) worker receptors, the best estimate and upper-bound concentrations for chrysotile fibers are 7×10^{-9} and 8×10^{-9} , and zero and 2×10^{-8} for amphibole fibers (Table 6-19). These estimated risks are below the low end of the risk goal of 1×10^{-6} .

8.4 MAINTENANCE (OUTDOOR) WORKERS

For chemical exposures, the total cumulative non-cancer HI for maintenance (outdoor) worker receptors at the Site is 0.02503 (including the surface flux air risk estimates) (Table 6-18), with metals soil exposures via the oral ingestion pathway being the primary contributors. The HI does not exceed the target HI of 1.0. As a result, BRC did not evaluate background or target organ non-cancer HI values.

The maximum theoretical upper-bound ILCR for maintenance (outdoor) worker receptors at the Site is 1×10^{-6} (including the surface flux air risk estimates see Table 6-18) with the soil theoretical upper-bound ILCRs for arsenic via the oral ingestion and dermal contact pathways the primary contributors. The theoretical upper-bound ILCRs are at the low end of the risk goal of 1×10^{-6} .

The estimated risks for death from lung cancer or mesothelioma for asbestos exposures to maintenance (outdoor) workers were below 1×10^{-6} . For maintenance (outdoor) workers receptors, the best estimate and upper-bound concentrations for chrysotile fibers are 1×10^{-8} and 2×10^{-8} , and zero and 5×10^{-8} for amphibole fibers (Table 6-19). These estimated risks are below the low end of the risk goal of 1×10^{-6} .

9.0 DATA QUALITY ASSESSMENT

Sample size calculations were conducted for the selected COPCs for the Site,⁴¹ as well as TCDD TEQ. TCDD TEQ was included because it is a chemical of primary concern for the overall project.

The formula used here for calculation of sample size is based on a non-parametric test (the Wilcoxon signed rank test), and on simulation studies performed by Pacific Northwest National Laboratories (2009) that formed the basis for an approximate formula that is based on the normal distribution. Essentially, the formula is the one that would be used if a normal-based test were being performed, but an adjustment is made (multiply by 1.16) to account for the intent to perform a non-parametric test. The formula is as follows:

$$n = 1.16 \left[\frac{s^2}{\Delta^2} (z_{1-\alpha} + z_{1-\beta(\mu)})^2 + 0.5 z_{1-\alpha}^2 \right]$$

where:

n = number of samples

s = estimated standard deviation of concentrations/fibers

 Δ = width of the gray region (the difference between the threshold value stated in the null hypothesis and the point at which β is specified)

 α = significance level or Type I error tolerance

 $\beta(\mu)$ = Type II error tolerance; and

z = quantile from the standard normal distribution

For each chemical, inputs for the calculations include an estimate of the variance from the measured data, a desired significance level, and desired power of the test that must be specified at a concentration of interest (which determines the tolerable difference from the threshold value). For arsenic, the Site mean concentration exceeds its BCL based on the target cancer risk level of 10⁻⁶. It is not appropriate to apply this calculation where the threshold value is less than the mean concentration. Therefore, the maximum background concentration was used for its threshold value. The calculations provided here cover a range of Type I and Type II error

⁴¹ Note that benzo(a)pyrene was selected as a COPC based on exceeding the one-tenth BCL criteria. Other carcinogenic PAHs were also selected as COPCs because of benzo(a)pyrene. Therefore, sample size calculations were only performed for benzo(a)pyrene, as representative of PAHs.

-

tolerances, and the point at which the Type II error is specified. Results are presented in Table 9-1. In this table, various combinations of input values are used, including values of α of 5, 10, and 15 percent; values of β of 15, 20, and 25 percent; and a gray region of width 10, 20, and 30 percent of the threshold level. It is clear from Table 9-1 that the number of samples collected is adequate for the Site. That is, all calculated adequate sample numbers are less than those actually collected at the Site for use in the HHRA.

Note also that there are 133 samples collected for asbestos analysis. Because of the number of samples collected, the ARRs are all less than 1×10^{-6} . Consequently, sufficient samples have been collected to address ARRs.

10.0 SUMMARY

BRC has prepared this HHRA and Closure Report for the Site. The purpose of this report is to request an NFAD by the NDEP. The NDEP acknowledges that discrete portions of the Eastside may be issued an NFAD as remedial actions are completed for selected environmental media (NDEP 2006). The portion of the Eastside for which the NFAD is being requested based on this HHRA and Closure Report is shown in red on Figure 1. The legal description of the Site is provided in Appendix K.

The HHRA evaluated the potential for adverse human health impacts that may occur as a result of potential exposures to residual concentrations of chemicals in soil, groundwater, and air following remediation, and assessed whether any additional remedial actions are necessary in order to obtain an NFAD from the NDEP to allow redevelopment of the Site to proceed. The results of the risk assessment provide risk managers with an understanding of the potential human health risks associated with background conditions and additional risks associated with past Site activities.

Although the maximum theoretical upper-bound ILCR for future residential receptors at the Site exceeds the risk goal of 1×10^{-6} (but within USEPA's acceptable risk range of 10^{-6} to 10^{-4}), it is similar to the background ILCR for future residential receptors. Numerous removal actions were conducted at the Site. These removal actions were primarily driven by metals, asbestos, dioxins/furans/PCB congeners, radionuclides, organochlorine pesticides, and SVOCs. All removal actions have fully addressed the identifiable contamination at the Site.

Therefore, given the successful removal actions conducted at the Site, considering the concentrations of metals at the Site likely reflect naturally occurring levels, and the Site has been or will be covered with fill, further removal actions at the Site will not affect the risk estimates in this HHRA. Therefore, BRC requests that the incremental risk estimates be considered in any risk management decisions for the Site.

For human health protection, BRC's goal is to remediate the Site soils such that they are suitable for unrestricted residential uses. Human health risks are represented by estimated theoretical upper-bound cancer risks and non-cancer hazards derived in accordance with standard USEPA and NDEP methods. If the carcinogenic risks or non-cancer hazards exceed USEPA acceptable levels or NDEP risk goals, then remedial action alternatives must be considered. Findings of the HHRA are intended to support the Site closure process. The major findings of this report are the following:

- Data collected for use in the HHRA are adequate and usable for their intended purpose;
- All relevant and reasonable exposure scenarios and pathway have been evaluated; and
- Residential, construction worker, commercial (indoor) worker, and maintenance (outdoor) worker cancer and non-cancer risk estimates are within or below the risk goals for the project, and/or concentrations of metals are consistent with naturally occurring levels.

Following the Tiered approach from the USEPA 2002 Vapor Intrusion Guidance (2002d), BRC believes that it has demonstrated that there is no likelihood of adverse vapor intrusion into any indoor spaces that may be constructed in the Western Hook-Development Sub-Area. Therefore, based on the results of the HHRA, and the conclusions in this report, exposures to residual levels of chemicals in soil at the Western Hook-Development Sub-Area should not result in adverse health effects to all future receptors. Therefore, BRC concludes that an NFAD for the Western Hook-Development Sub-Area is warranted and requests that the NDEP issue the NFAD (see Appendix K for the legal description of the Site).

11.0 REFERENCES

- Agency for Toxic Substances and Disease Registry (ATSDR). 2008a. Update to the ATSDR Policy Guideline for Dioxins and Dioxin-Like Compounds in Residential Soil. U.S. Department of Health and Human Services, Public Health Service. November.
- ATSDR. 2008b. Toxicological Profile for Perchlorates. U.S. Department of Health and Human Services, Public Health Service. September.
- American Society for Testing and Materials (ASTM). 2000. Standard Guide for Risk-Based Corrective Action. E2081-00.
- Baes, C.F., III, R.D. Sharp, A.L. Sjoreen, and R.W. Shor. 1984. A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture, ORNL-5786, Health and Safety Research Division, Oak Ridge National Laboratory, Oak Ridge, TN.
- Basic Remediation Company (BRC). 2006. Corrective Action Plan for the Basic Remediation Company (BRC) Common Areas Remediation Project.
- BRC. 2007. Remedial Action Plan, BMI Common Areas (Eastside), Clark County, Nevada.
- BRC. 2008. Sampling and Analysis Plan for the Western Hook-Development Sub-Area, BMI Common Areas (Eastside), Clark County, Nevada.
- BRC. 2010. Technical Memorandum Correlation of Radon Activities in Indoor Air and Shallow Zone Groundwater, BMI Common Areas (Eastside) Site, Clark County, Nevada. August 30.
- BRC. 2011. BRC Comments on NDEP Blank Contamination Guidance. Technical Memorandum. Draft. August 15.
- BRC and Environmental Resources Management (ERM). 2009a. BRC Quality Assurance Project Plan. BMI Common Areas, Clark County, Nevada. May.
- BRC and ERM. 2009b. 2008 Supplemental Shallow Soil Background Report. BMI Common Areas (Eastside), Clark County, Nevada. September.

- BRC and ERM. 2010a. Background Soil Compilation Report, BMI Complex and Common Areas, Clark County, Nevada. April.
- BRC and ERM. 2010b. Data Validation Summary Report. Southern Ribs and Western Hook Sub-Area Soil Flux, Revised Data, October 2008 (Dataset 53c). BMI Common Areas (Eastside), Clark County, Nevada. October.
- BRC and ERM. 2010c. Data Validation Summary Report. Western Hook-Development Sub-Area Soil Investigations, October-December 2008; February 2009; August-September 2009; November-December 2009; February 2010 (Dataset 54). BMI Common Areas (Eastside), Clark County, Nevada. Revision 1. June.
- BRC and ERM. 2010d. Data Validation Summary Report. Western Hook-Open Space Sub-Area Soil Investigations, September-October 2009; January 2010 (Dataset 62). BMI Common Areas (Eastside), Clark County, Nevada. May.
- BRC and ERM. 2011a. Data Validation Summary Report. Eastside North Surface Flux Investigations (Remaining Sub-Areas), July through August 2010 (Dataset 71). BMI Common Areas (Eastside), Clark County, Nevada. Revision 1. July.
- BRC and ERM. 2011b. Data Validation Summary Report. Eastside North Confirmation Soil Investigations, December 2008 through October 2010 (Dataset 72b). BMI Common Areas (Eastside), Clark County, Nevada. May.
- BRC and ERM. 2012. Data Validation Summary Report. Western Hook/Eastside Main Supplemental Sampling Events, December 2011 through January 2012 (Dataset 72e). BMI Common Areas (Eastside), Clark County, Nevada. April.
- BRC and ERM. 2014a. Data Validation Summary Report. Eastside Confirmation/Supplemental Sampling Events – July 2012 through February 2014 (Dataset 72f). BMI Common Areas (Eastside), Clark County, Nevada. Revision 1. June.
- BRC and ERM. 2014b. Data Validation Summary Report. Eastside Confirmation/Supplemental Sampling Events – March 2014 through August 2014 (Dataset 72g). BMI Common Areas (Eastside), Clark County, Nevada. December.
- BRC, ERM, and Daniel B. Stephens & Associates, Inc. (DBS&A). 2007. BRC Closure Plan, BMI Common Areas, Clark County, Nevada. May. [Section 9 revised March 2010]

- BRC, ERM, and MWH. 2009. BRC Field Sampling and Standard Operating Procedures, BMI Common Areas, Clark County, Nevada. December.
- Berman D.W. 2003a. Analysis and Interpretation of Measurements for the Determination of Asbestos in Core Samples Collected at the Southdown Quarry in Sparta, New Jersey, November 12.
- Berman D.W. 2003b. Evaluation of Asbestos Measurements and Assessment of Risks Attendant to Excavation and Use of Soils Within the Proposed Borrow Area of the BRC Corrective Action Management Unit, Henderson, NV, November 25.
- Berman D.W. 2005. Draft Preliminary Evaluation of the Implications of Airborne Asbestos Exposure Concentrations Observed During Simulation of a Selected Set of Common, Outdoor Residential Activities Conducted at the North Ridge Estates Site, Klamath Falls, Oregon, February 18.
- Berman, D.W., and E.J. Chatfield. 1990. Interim Superfund Method for the Determination of Asbestos in Ambient Air. Part 2: Technical Background Document, Office of Solid Waste and Remedial Response, U.S. EPA, Washington, D.C., EPA/540/2-90/005b, May.
- Berman, D.W., and K. Crump. 1999a. Methodology for Conducting Risk Assessments at Asbestos Superfund Sites—Part 1: Protocol. Interim Version. Prepared for USEPA Region 9, February 15.
- Berman, D.W., and K. Crump. 1999b. Methodology for Conducting Risk Assessments at Asbestos Superfund Sites—Part 2: Technical Background Document. Interim Version. Prepared for USEPA Region 9, February 15.
- Berman, D.W., and K.S. Crump. 2001. Technical Support Document for a Protocol to Assess Asbestos-Related Risk. Prepared for Mark Raney, Volpe Center, U.S. Department of Transportation, 55 Broadway, Kendall Square, Cambridge, MA 02142. Under EPA Review.
- Berman D.W., and K.S. Crump. 2003. Final draft: Technical support document for a protocol to assess asbestos-related risk. Prepared for Mark Follensbee, Syracuse Research Corporation, Syracuse, NY, and the Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC. USEPA #9345.4-06. Limited revision draft.

- Berman, D.W., and A. Kolk. 2000. Modified Elutriator Method for the Determination of Asbestos in Soils and Bulk Material. May (Revision 1).
- <u>California Office of Environmental Health Hazard Assessment (OEHHA). 2015. OEHHA</u>
 Toxicity Criteria Database. http://www.oehha.ca.gov/risk/chemicalDB/index.asp.
- Carlsen, C.L., R.C. Lunnis, and D.E. Prudie. 1991. Changes in water levels and water quality in shallow groundwater, Pittman-Henderson Area, Clark County, Nevada, Resulting from diversion of industrial cooling water from ditch to pipeline in 1985. U.S. Geological Survey Water-Resources Investigation Report 89-4093. Carson City, Nevada.
- Clark County GIS Management Office. 2003. 5 Foot Contours for the Las Vegas Valley, Mesquite and Laughlin. Fall 2003 Flight of Clark County.
- Daniel B. Stephens & Associates, Inc. (DBS&A). 2009. Revised Technical Memorandum: Sources/Sinks and Input Parameters for Groundwater Flow Model, BMI Common Areas, Eastside Area.
- Environmental Resources Management (ERM). 1996a. Environmental Conditions Investigation Work Plan, BMI Common Areas, Henderson, Nevada. February.
- ERM. 1996b. Draft Environmental Conditions Investigation Report, BMI Common Areas, Henderson, Nevada. August.
- ERM. 1999. Sunset North Area IRM Work Plan. August
- ERM. 2000a. Remedial Alternatives Study for Soils and Sediments in the Upper and Lower Ponds at the BMI Complex. Henderson, Nevada. March 1.
- ERM. 2000b. Sunset North Area Interim Remedial Measure Completion Report, BMI Common Areas, Henderson, Nevada. August.
- ERM. 2006a. Data Validation Summary Report Common Areas Sampling Event #1a 1996 Environmental Conditions Investigation. August.
- ERM. 2006b. Data Validation Summary Report Common Areas Sampling Event #6c May/July 1996 Soil Sampling. July.

- ERM. 2006c. Data Validation Summary Report Common Areas Sampling Event #7b -Miscellaneous November 1999 – May 2000 Sunset Area Sampling Events. September.
- ERM. 2006d. Data Validation Summary Report Common Areas Sampling Event #7e -December 1999 PLF-05 Fill Sampling. October.
- ERM. 2006e. Data Validation Summary Report Common Areas Sampling Event #8a July 2000 Discrete/Composite Sampling Event. October.
- ERM. 2006f. Data Validation Summary Report Common Areas Sampling Event #8b -February/March 2000 Sunset North Area, Former Pond Sampling. September.
- ERM. 2006g. Data Validation Summary Report Common Areas Sampling Event #8c -October 2000 Sunset North Area, Former Pond Sampling. October.
- ERM. 2006h. Data Validation Summary Report Common Areas Sampling Event #20b -May 2001 Sunset North Soil Sampling Event. October.
- ERM. 2007. Data Validation Summary Report Common Areas Sampling Event #20c May/June 2001 Sunset North Supplemental Investigation. February.
- Dr. W. Andrew Jackson at Texas Tech University. 2010.
- Las Vegas Wash Coordination Committee. 2000. The Las Vegas Wash Comprehensive Adaptive Management Plan. http://www.lvwash.org/resources/docs/lvwcamp.html.
- Law Engineering Inc. 1993. Final Report of Phase I Environmental Condition Assessment, Titanium Metals Corporation (TIMET) - Henderson, Nevada.
- Montrose Chemical Company. 1997. Phase II Environmental Conditions Assessment. August 11.
- MWH. 2003. Hydrogeologic Characterization Work Plan, BMI Site. Basic Remediation Company. Henderson, Nevada. December.
- MWH. 2006a. Data Validation Summary Report, 2004 Hydrogeologic Characterization (Dataset 27), BMI Common Areas (Eastside), Clark County, Nevada. May.
- MWH. 2006b. Data Validation Summary Report 2006 Waste Characterization Investigation (Dataset 39), BMI Common Areas (Eastside), Clark County, Nevada. October.

- Mills, L. 2000. Prepare your garden for cool-season vegetables now. Las Vegas Review-Journal, January 30.
- Neptune and Company. 2009. Guided Interactive Statistical Decision Tools (GiSdT). www.gisdt.org.
- Neptune and Company. 2014. Data Validation Summary Report for Asbestos Data Associated with the Eastside Main Area at the BMI Site, Basic Remediation Company (BRC). Prepared for Nevada Division of Environmental Protection. March 21.
- Nevada Division of Environmental Protection (NDEP). 2001. Record of Decision, Remediation of Soils and Sediments in the Upper and Lower Ponds at the BMI Complex. Henderson, Nevada, November 2.
- NDEP. 2006. Settlement Agreement and Administrative Order on Consent: BMI Common Areas, Phase 3 (AOC3).
- NDEP. 2008a. Supplemental Guidance for Assessing Data Usability for Environmental Investigations at the BMI Complex and Common Areas in Henderson, Nevada. Bureau of Corrective Actions, Special Projects Branch. October 22.
- NDEP. 2008b. Detection Limits and Data Reporting. Bureau of Corrective Actions, Special Projects Branch. December 3.
- NDEP. 2009a. Guidance for Evaluating Radionuclide Data for the BMI Plant Sites and Common Areas Projects. February 6.
- NDEP. 2009b. Supplemental Guidance on Data Validation. March 19.
- NDEP. 2009c. Supplemental Guidance on Data Validation. April 13.
- NDEP. 2009d. Guidance for Evaluating Secular Equilibrium at the BMI Complex and Common Areas. BMI Plant Sites and Common Areas Projects, Henderson, Nevada. February 6.
- NDEP. 2010. letter dated November 9, 2010, from Greg Lovato, NDEP, to Mark Paris, BRC
- NDEP. 2011a. Technical Guidance for the Calculation of Asbestos-Related Risk in Soils for the Basic Management Incorporated (BMI) Complex and Common Areas. February.

- NDEP. 2011b. Workbook for the Calculation of Asbestos-Related Risk in Soils for the Basic Management Incorporated (BMI) Complex and Common Areas.
- NDEP. 2011c. July 2011 Guidance on Qualifying Data due to Blank Contamination. BMI Plant Sites and Common Areas Projects, Henderson, Nevada.
- NDEP. 2012a. Guidance on Data Validation for Asbestos Data in Soils. BMI Plant Sites and Common Areas Projects, Henderson, Nevada. July.
- NDEP. 2012b. September 17, 2012, from Greg Lovato, NDEP, to Mark Paris, BRC
- NDEP. 2013. User's Guide and Background Technical Document for Nevada Division of Environmental Protection (NDEP) Basic Comparison Levels (BCLs) for Human Health for the BMI Complex and Common Areas. August.
- NewFields Companies, LLC (NewFields). 2006. Statistical Methodology Report, BMI Common Areas (Eastside), Henderson, Nevada. August.
- Oak Ridge National Laboratory (ORNL). 20142015. Risk Assessment Information System (RAIS) Toxicity Profiles. http://rais.ornl.gov/tools/tox_profiles.html
- Pacific Northwest National Laboratory. 2009. Visual Sample Plan. http://vsp.pnl.gov.
- R Core Team. 2012. http://www.r-project.org.
- Scanlon, B.R., K.E. Keese, A.L. Flint, L.E. Flint, C.B. Gaye, W.M. Edmunds, and I. Simmers. 2006. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes Hydrol. Process. 20(15):3335–3370.
- Southern Nevada Water Authority. 1996. Extent and Potential Use of the Shallow Aquifer and Wash Flow in Las Vegas Valley, Nevada.
- Tetra Tech. 1998. Final Environmental Conditions Investigation Report. Prepared for TIMET. October 15.
- Umhoefer, P.J., L.S. Beard, and M.A. Lamb. eds. 2010. Miocene Tectonics of the Lake Mead Region, Central Basin and Range. Geological Society of America. Special Paper 463.

- U.S. Environmental Protection Agency (USEPA). 1985. Rapid Assessment of Exposure to Particulate Emissions From Surface Contamination Sites. EPA/600/8-85/002. Office of Health and Environmental Assessment. Washington, DC.
- USEPA. 1986. Measurement of Gaseous Emission Rates From Land Surfaces Using an Emission Isolation Flux Chamber, Users Guide. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, EPA Contract No. 68-02-3889, Radian Corporation, February.
- USEPA. 1989. Risk Assessment Guidance for Superfund: Volume I—Human Health Evaluation Manual (Part A). Interim Final. Office of Emergency and Remedial Response, Washington, DC. USEPA/540/1-89/002. December.
- USEPA. 1991a. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. Memorandum from D.R. Clay, Assistant Administrator, USEPA. OSWER Directive 9355.0-30, April.
- USEPA. 1991b. Risk Assessment Guidance for Superfund: Volume I—Human Health Evaluation Manual. Supplemental Guidance 'Standard Default Exposure Factors'. Office of Emergency and Remedial Response, Washington, DC. OSWER Directive 9285.3-03. March.
- USEPA. 1991c. Current Regulatory Issues in Risk Assessment and Risk Management. Executive Office of the President. Government Printing Office, Washington, DC. S/N 041 001 00354 1.
- USEPA. 1992a. Guidance for Data Usability in Risk Assessment. Part A. Office of Emergency and Remedial Response, Washington DC. Publication 9285.7-09A. PB92-963356. April.
- USEPA. 1992b. Guidelines for Exposure Assessment. Federal Register, 57(104):22888-22938. May 29.
- USEPA. 1992c. Supplemental Guidance to RAGS: Calculating the Concentration Term. Office of Emergency and Remedial Response, Washington, DC. Publication 9285.7-08I. May.
- USEPA. 1996. Soil Screening Guidance: Technical Background Document. Office of Emergency and Remedial Response, Washington, DC. USEPA/540/R-96/018. April.
- USEPA. 1997. Exposure Factors Handbook, Volumes I-III. Office of Research and Development, Washington DC. USEPA/600/P-95/002Fa-c. August.

- USEPA. 1999. National Functional Guidelines for Organic Data Review. EPA 540/R-99-008. OSWER 9240.1-05A-P. October.
- USEPA. 2000. Soil Screening Guidance for Radionuclides. Office of Radiation and Indoor Air, Washington, DC. USEPA/540-R-00-007 and USEPA/540-R-00-006.
- USEPA. 2002a. Guidance for Quality Assurance Project Plans. EPA QA/G-5. Office of Environmental Information, Washington, DC. December.
- USEPA. 2002b. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Solid Waste and Emergency Response, Washington, DC. OSWER 9355.4-24. December.
- USEPA. 2002c. Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. Office of Emergency and Remedial Response, Washington, DC. OSWER 9285.6-10. December.
- USEPA. 2002d. Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance) EPA 530-f-02-052. November.
- USEPA. 2003a. Contract Laboratory Program Statement of Work for Organic Analysis: Multimedia, Multi-concentration. OLM04.3. Office of Emergency and Remedial Response. March.
- USEPA. 2003b. Technical Support Document for a Protocol to Assess Asbestos-Related Risk. Final Draft. Office of Solid Waste and Emergency Response, Washington, DC.
- USEPA. 2003c. Memorandum on Human Health Toxicity Values in Superfund Risk Assessments, from Michael B. Cook, Director, Office of Superfund Remediation and Technology Innovation to Superfund Remediation Policy Managers, Regions 1 10, dated December 5. OSWER Directive 9285.7-53.
- USEPA. 2004a. Integrated Exposure Uptake Biokinetic Model for Lead in Children (IEUBK). Office of Solid Waste and Emergency Response.

- USEPA. 2004b. Contract Laboratory Program Statement of Work for Organic Analysis: Multimedia, Multi-concentration. SOM01.0. Office of Emergency and Remedial Response. October.
- USEPA. 2004c. Contract Laboratory Program Statement of Work for Inorganic Analysis: Multimedia, Multi-concentration. ILM05.3. Office of Emergency and Remedial Response. March.
- USEPA. 2004d. National Functional Guidelines for Inorganic Data Review. EPA 540-R-04-004. OSWER 9240.1-45. October.
- USEPA. 2004e. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. Office of Emergency and Remedial Response, Washington, DC. EPA/540/R/99/005. July.
- USEPA. 2004f. Memorandum on Clarifying Cleanup Goals and Identification of New Assessment Tools for Evaluating Asbestos at Superfund Cleanups, from Michael B. Cook, Director, Office of Superfund Remediation and Technology Innovation to Superfund Remediation Policy Managers, Regions 1-10, August. OSWER Directive 9345.4-05.
- USEPA. 2005a. National Functional Guidelines for Chlorinated Dioxin/Furan Data Review. EPA 540-R-05-001. OSWER 9240.1-51. September.
- USEPA. 2005b. Guidelines for Carcinogen Risk Assessment. Risk Assessment Forum, Washington, DC. March.
- USEPA. 2006. Child-Specific Exposure Factors Handbook. Interim Report. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. EPA/600/R/06/096A. September.
- USEPA. 2008. National Functional Guidelines for Superfund Organic Methods Data Review. EPA 540-R-08-01. OSWER 9240.1-48. June.
- USEPA. 2009a. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). EPA-540-R-070-002. http://www.epa.gov/oswer/ riskassessment/ ragsf/.
- USEPA. 2009b. Evaluation Report—Lack of Final Guidance on Vapor Intrusion Impedes Efforts to Address Indoor Air Risks. Office of Inspector General. December 14.

- USEPA. 2010a. Recommended Toxicity Equivalence Factors (TEFs) for Human Health Risk Assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dioxin-Like Compounds. Risk Assessment Forum, Washington, DC. EPA/600/R-10/005.
- USEPA. 2010b. Review of the Draft 2002 Subsurface Vapor Intrusion Guidance. Office of Solid Waste and Emergency Response. August.
- USEPA. <u>20142015</u>. Integrated Risk Information System. USEPA on-line database: http://www.epa.gov/iris/index.html.
- Western Regional Climate Center. 2008. Monthly average precipitation for Las Vegas. Desert Research Institute. http://www.wrcc.dri.edu/summary/Climsmnv.html.
- Weston. 1993. Site Conceptual Model, Stauffer/Pioneer/Montrose Site, Henderson, Nevada, September.

APPENDIX B

WESTERN HOOK-DEVELOPMENT SUB-AREA INVESTIGATION DATA TABLES

(Note that all report files, including the database, are on the report CD included in this appendix)

LIST OF TABLES (APPENDIX B)

Table B-1	Asbestos Results and Analytical Sensitivities
Table B-2	Soil Dioxins/Furans Data
Table B-3	Soil General Chemistry/Ions Data
Table B-4	Soil Metals Data
Table B-5	Soil Organochlorine Pesticides Data
Table B-6	Soil Polynuclear Aromatic Hydrocarbons (PAHs) Data
Table B-7	Soil Polychlorinated Biphenyls (PCBs) Data
Table B-8	Soil Radionuclides Data
Table B-9	Soil Aldehydes and Semi-Volatile Organic Compounds (SVOCs) Data
Table B-10	Soil Volatile Organic Compounds (VOCs) Data
Table B-11	Surface Flux Data
Table B-12	SPLP Data Summary

ASBESTOS RESULTS AND ANALYTICAL SENSITIVITIES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 6)

				Analytical		ntration tructures ⁽¹⁾			Numb Protocol St			
	Depth	Sample	Sample	Analytical Sensitivity	Chrysotile	Amphibole		Chrysotile			Amphibole	
Sample ID	(ft bgs)	Type	Date	$(10^6 \text{ s/gPM}_{10})$	$(10^6 \text{ s/gPM}_{10})$	$(10^6 \text{ s/gPM}_{10})$	Total	Long	Qualifier	Total	Long	Qualifier
OSC1-BM11	0	NORM	12/31/08	2.998	< 2.998 E+6	< 2.998 E+6	О	0		0	0	
OSC1-BN11	0	NORM	12/31/08	2.973	< 2.973 E+6	< 2.973 E+6	0	0		0	0	
OSC1-BO11	0	NORM	12/31/08	2.982	< 2.982 E+6	< 2.982 E+6	0	0		0	0	
OSC1-BP11	0	NORM	12/31/08	2.998	< 2.998 E+6	< 2.998 E+6	0	0		0	0	
WHC1-A01	0	NORM	02/20/09	2.981	< 8.912 E+6	< 8.912 E+6	0	0		0	0	
WHC1-A02	0	NORM	02/20/09	2.981	< 8.912 E+6	< 8.912 E+6	0	0	J	0	0	
WHC1-A02	0	FD	02/20/09	2.965	1.405 E+7	< 8.864 E+6	1	1	J	0	0	
WHC1-A03	0	NORM	02/20/09	2.975	< 8.896 E+6	< 8.896 E+6	0	0		0	0	
WHC1-A04	0	NORM	02/20/09	2.961	< 8.854 E+6	< 8.854 E+6	0	0		0	0	
WHC1-A05	0	NORM	02/20/09	2.965	< 8.864 E+6	< 8.864 E+6	0	0		0	0	
WHC1-A06	0	NORM	02/20/09	2.987	1.792 E+7	< 8.930 E+6	6	1		0	0	
WHC1-A07	0	NORM	02/20/09	2.969	< 8.877 E+6	< 8.877 E+6	0	0		0	0	
WHC1-A08	0	NORM	02/20/09	2.960	< 8.851 E+6	< 8.851 E+6	0	0		0	0	
WHC1-A09	0	NORM	02/20/09	2.959	3.847 E+7	1.174 E+8	13	9		2	1	
WHC1-A09	0	FD	02/20/09	2.987	1.794 E+8	< 8.930 E+6	3	1		0	0	
WHC1-A10	0	NORM	02/20/09	2.975	< 8.894 E+6	< 8.894 E+6	0	0		0	0	
WHC1-A11	0	NORM	02/20/09	2.959	1.403 E+7	< 8.848 E+6	1	1		0	0	
WHC1-A12	0	NORM	02/20/09	2.965	1.186 E+7	< 8.864 E+6	4	1		0	0	
WHC1-A13	0	NORM	02/20/09	2.969	< 8.877 E+6	< 8.877 E+6	0	0		0	0	
WHC1-A14	0	NORM	02/20/09	2.982	1.413 E+7	< 8.915 E+6	1	1		0	0	
WHC1-A15	0	NORM	02/20/09	2.985	2.314 E+7	< 8.926 E+6	3	1		0	0	
WHC1-A16	0	NORM	02/20/09	2.969	< 8.877 E+6	< 8.877 E+6	0	0		0	0	
WHC1-BF01	0	NORM	10/03/08	5.140	< 2.436 E+7	1.388 E+8	1	0		27	17	
WHC1-BF03	0	NORM	10/07/08	2.983	< 8.919 E+6	< 8.919 E+6	0	0		0	0	
WHC1-BF04	0	NORM	10/08/08	2.981	< 8.912 E+6	1.878 E+7	0	0		1	1	
WHC1-BF04	0	FD	10/08/08	2.991	< 8.944 E+6	< 8.944 E+6	0	0		0	0	
WHC1-BF05	0	NORM	10/08/08	2.975	< 8.896 E+6	< 8.896 E+6	0	0		0	0	
WHC1-BF06	0	NORM	10/08/08	2.972	< 8.887 E+6	2.303 E+7	0	0		3	1	
WHC1-BG01	0	NORM	10/03/08	2.999	8.097 E+7	< 8.967 E+6	27	16		0	0	
WHC1-BG02	0	NORM	10/03/08	2.998	1.421 E+7	< 8.963 E+6	1	1		0	0	
WHC1-BG03	0	NORM	10/08/08	2.987	< 8.930 E+6	< 8.930 E+6	0	0		0	0	
WHC1-BG03	0	FD	10/08/08	2.966	< 8.869 E+6	< 8.869 E+6	0	0		0	0	
WHC1-BG04	0	NORM	10/08/08	2.987	< 1.882 E+7	< 8.930 E+6	2	0		0	0	
WHC1-BG05	0	NORM	10/08/08	2.986	< 8.928 E+6	< 1.415 E+7	0	0		1	0	
WHC1-BG06	0	NORM	10/08/08	2.981	< 8.912 E+6	< 8.912 E+6	0	0		0	0	
WHC1-BH01	0	NORM	10/03/08	2.981	1.413 E+7	< 8.912 E+6	1	1		0	0	

ASBESTOS RESULTS AND ANALYTICAL SENSITIVITIES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 6)

						ntration Structures ⁽¹⁾				ber of tructures ⁽²⁾		
	Depth	Sample	Sample	Analytical Sensitivity	Chrysotile	Amphibole		Chrysotile	Protocol S	tructures	Amphibole	
Sample ID	(ft bgs)	Туре	Date	$(10^6 \text{ s/gPM}_{10})$	$(10^6 \text{ s/gPM}_{10})$	$(10^6 \text{ s/gPM}_{10})$	Total	Long	Qualifier	Total	Long	Qualifier
WHC1-BH03	0	NORM	10/08/08	2.975	< 8.894 E+6	< 8.894 E+6	0	0		0	0	
WHC1-BH04	0	NORM	10/08/08	2.961	< 8.854 E+6	< 8.854 E+6	0	0		0	0	
WHC1-BH05	0	NORM	10/08/08	2.969	< 8.876 E+6	< 8.876 E+6	0	0		0	0	
WHC1-BH05	0	FD	10/08/08	2.960	< 8.851 E+6	< 8.851 E+6	0	0		0	0	
WHC1-BH06	0	NORM	10/08/08	2.990	1.883 E+7	< 8.939 E+6	2	2		0	0	
WHC1-BI01	0	NORM	10/03/08	2.994	1.419 E+7	< 8.953 E+6	1	1		0	0	
WHC1-BI02	0	NORM	10/03/08	2.959	< 8.848 E+6	< 1.403 E+7	0	0	J	1	0	J
WHC1-BI02	0	FD	10/03/08	2.998	1.889 E+7	< 8.963 E+6	2	1	J	0	0	J
WHC1-BI03	0	NORM	10/09/08	2.981	< 8.912 E+6	< 8.912 E+6	0	0		0	0	
WHC1-BI04	0	NORM	10/08/08	2.979	< 8.908 E+6	< 8.908 E+6	0	0		0	0	
WHC1-BI05	0	NORM	10/08/08	2.998	< 1.888 E+7	< 8.963 E+6	2	0		0	0	
WHC1-BJ03	0	NORM	10/09/08	2.999	< 1.422 E+7	< 1.422 E+7	1	0	J	1	0	J
WHC1-BJ03	0	FD	10/09/08	2.990	< 8.939 E+6	< 8.939 E+6	0	0	J	0	0	J
WHC1-BJ04	0	NORM	10/09/08	2.777	2.152 E+7	< 8.303 E+6	3	3		0	0	
WHC1-BJ05	0	NORM	10/09/08	2.982	< 8.915 E+6	< 8.915 E+6	0	0		0	0	
WHC1-BK02	0	NORM	10/09/08	2.973	< 8.891 E+6	< 8.891 E+6	0	0		0	0	
WHC1-BK03	0	NORM	10/09/08	2.979	< 8.908 E+6	< 8.908 E+6	0	0		0	0	
WHC1-BK04	0	NORM	10/09/08	2.991	< 8.944 E+6	< 1.418 E+7	0	0		1	0	
WHC1-BK05	0	NORM	10/09/08	2.991	< 8.944 E+6	< 8.944 E+6	0	0	J	0	0	
WHC1-BK05	0	FD	10/09/08	2.981	1.878 E+7	< 8.912 E+6	2	1	J	0	0	
WHC1-BL02	0	NORM	10/03/08	2.969	< 8.877 E+6	< 8.877 E+6	0	0		0	0	
WHC1-BL03	0	NORM	10/09/08	2.975	< 8.894 E+6	< 8.894 E+6	0	0		0	0	
WHC1-BL04	0	NORM	10/09/08	2.961	< 8.854 E+6	< 8.854 E+6	0	0		0	0	
WHC1-BL05	0	NORM	10/06/08	2.999	1.200 E+8	< 8.967 E+6	40	9		0	0	
WHC1-BL06	0	NORM	10/06/08	2.987	1.195 E+7	< 8.930 E+6	4	3		0	0	
WHC1-BL07	0	NORM	10/06/08	2.987	5.077 E+7	2.315 E+7	17	6		3	3	
WHC1-BL08	0	NORM	10/06/08	2.987	2.315 E+7	< 8.930 E+6	3	1		0	0	
WHC1-BL11	0	NORM	10/06/08	2.982	< 1.878 E+7	< 8.915 E+6	2	0		О	0	
WHC1-BM01	0	NORM	10/03/08	2.979	< 8.908 E+6	< 8.908 E+6	0	0		0	0	
WHC1-BM03	0	NORM	10/09/08	2.898	< 8.666 E+6	< 8.666 E+6	0	0		0	0	
WHC1-BM04	0	NORM	10/09/08	2.991	< 1.418 E+7	< 8.944 E+6	1	0		0	0	
WHC1-BM05	0	NORM	10/06/08	2.975	< 1.410 E+7	< 8.894 E+6	1	0		0	0	
WHC1-BM06	0	NORM	10/06/08	2.991	2.318 E+7	< 8.944 E+6	3	3		0	0	
WHC1-BM07	0	NORM	10/07/08	2.991	9.573 E+7	< 8.944 E+6	32	8		0	0	
WHC1-BM08	0	NORM	10/06/08	2.966	< 8.869 E+6	1.869 E+7	0	0		2	1	
WHC1-BM09	0	NORM	10/06/08	2.975	1.190 E+7	< 8.894 E+6	4	3		0	0	J

ASBESTOS RESULTS AND ANALYTICAL SENSITIVITIES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 6)

						ntration tructures ⁽¹⁾			Numl Protocol S	ber of		
	Depth	Sample	Sample	Analytical Sensitivity	Chrysotile	Amphibole		Chrysotile	Protocol S	tructures	Amphibole	
Sample ID	(ft bgs)	Type	Date	$(10^6 \text{ s/gPM}_{10})$	$(10^6 \text{ s/gPM}_{10})$	$(10^6 \text{ s/gPM}_{10})$	Total	Long	Qualifier	Total	Long	Qualifier
WHC1-BM09	0	FD	10/06/08	2.979	1.490 E+7	< 1.412 E+7	5	2		1	0	J
WHC1-BM10	0	NORM	10/06/08	2.983	< 8.919 E+6	< 8.919 E+6	О	0		0	0	
WHC1-BN01	0	NORM	10/06/08	2.998	< 8.963 E+6	< 8.963 E+6	0	0		0	0	
WHC1-BN02	0	NORM	10/06/08	2.819	< 1.336 E+7	< 8.428 E+6	1	0		0	0	
WHC1-BN05	0	NORM	10/07/08	2.982	5.963 E+7	2.311 E+7	20	5		3	1	
WHC1-BN06	0	NORM	10/07/08	2.983	< 1.414 E+7	< 8.919 E+6	1	0		0	0	
WHC1-BN07	0	NORM	10/07/08	2.963	2.074 E+7	< 8.859 E+6	7	3		0	0	
WHC1-BN08	0	NORM	10/07/08	2.961	2.665 E+7	< 8.854 E+6	9	4		0	0	
WHC1-BN08	0	FD	10/07/08	2.991	2.393 E+7	< 8.944 E+6	8	1		0	0	
WHC1-BN09	0	NORM	10/06/08	2.965	< 8.864 E+6	< 1.405 E+7	0	0		1	0	
WHC1-BN10	0	NORM	10/06/08	2.943	< 8.799 E+6	< 1.395 E+7	0	0		1	0	
WHC1-BO01	0	NORM	10/06/08	2.993	< 8.950 E+6	< 8.950 E+6	0	0		0	0	
WHC1-BO02	0	NORM	10/06/08	2.991	< 8.944 E+6	< 8.944 E+6	0	0		0	0	
WHC1-BO03	0	NORM	10/06/08	2.998	< 8.963 E+6	< 8.963 E+6	0	0		0	0	
WHC1-BO04	0	NORM	10/06/08	2.973	< 8.888 E+6	< 8.888 E+6	0	0		0	0	
WHC1-BO04	0	FD	10/06/08	2.965	< 8.864 E+6	< 8.864 E+6	0	0		0	0	
WHC1-BO05	0	NORM	10/07/08	2.997	< 8.961 E+6	< 8.961 E+6	0	0	J	0	0	1
WHC1-BO05	0	FD	10/07/08	2.969	2.301 E+7	< 8.877 E+6	3	1	J	0	0	
WHC1-BO06	0	NORM	10/07/08	2.978	1.191 E+7	< 8.904 E+6	4	4		0	0	
WHC1-BO07	0	NORM	10/07/08	2.959	< 8.846 E+6	< 8.846 E+6	0	0		0	0	
WHC1-BO08	0	NORM	10/07/08	2.965	1.186 E+7	< 8.864 E+6	4	1		0	0	
WHC1-BO09	0	NORM	10/06/08	2.987	2.315 E+7	1.416 E+7	3	2		1	1	
WHC1-BO09	0	FD	10/06/08	2.966	1.187 E+7	< 1.406 E+7	4	2		1	0	
WHC1-BO10	0	NORM	10/06/08	2.991	< 8.944 E+6	< 8.944 E+6	0	0		0	0	
WHC1-BP01	0	NORM	10/06/08	2.960	< 8.851 E+6	< 8.851 E+6	0	0		0	0	
WHC1-BP01	0	FD	10/06/08	2.975	< 8.896 E+6	< 8.896 E+6	0	0		0	0	
WHC1-BP02	0	NORM	10/06/08	2.982	8.915 E+6	< 8.915 E+6	0	0		1	0	
WHC1-BP03	0	NORM	10/06/08	2.991	< 1.418 E+7	< 1.418 E+7	1	0		1	0	
WHC1-BP04	0	NORM	10/06/08	2.998	< 8.963 E+6	< 8.963 E+6	0	0		0	0	
WHC1-BP05	0	NORM	10/06/08	2.979	1.412 E+7	< 8.908 E+6	1	1		0	0	
WHC1-BP06	0	NORM	10/07/08	2.973	< 8.888 E+6	1.409 E+7	0	0		1	1	
WHC1-BP07	0	NORM	10/07/08	2.998	2.324 E+7	< 8.965 E+6	3	2		0	0	
WHC1-BP08	0	NORM	10/07/08	2.959	1.403 E+7	< 8.848 E+6	1	1		0	0	
WHC1-BP09	0	NORM	10/06/08	2.975	< 8.894 E+6	< 8.894 E+6	0	0		0	0	
WHC1-BP10	0	NORM	10/06/08	2.981	< 8.912 E+6	< 8.912 E+6	0	0		0	0	
WHC1-D01	0	NORM	10/07/08	2.999	< 8.967 E+6	< 8.967 E+6	0	0		0	0	

ASBESTOS RESULTS AND ANALYTICAL SENSITIVITIES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

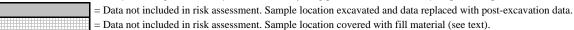
(Page 4 of 6)

						entration Structures ⁽¹⁾			Numb Protocol Str			
	Depth	Sample	Sample	Analytical Sensitivity	Chrysotile	Amphibole		Chrysotile	Trotocorst	luctures	Amphibole	
Sample ID	(ft bgs)	Type	Date	$(10^6 \text{ s/gPM}_{10})$	$(10^6 \text{ s/gPM}_{10})$	$(10^6 \text{ s/gPM}_{10})$	Total	Long	Qualifier	Total	Long	Qualifier
WHC1-D01	0	FD	10/07/08	2.938	< 8.785 E+6	6.464 E+7	0	0		22	17	
WHC1-D02	0	NORM	10/07/08	2.965	< 8.864 E+6	< 8.864 E+6	0	0		0	0	
WHC1-D04	0	NORM	10/07/08	2.960	< 8.851 E+6	< 8.851 E+6	0	0		0	0	
WHC1-D06	0	NORM	10/08/08	2.991	< 8.944 E+6	< 8.944 E+6	0	0		0	0	
WHC1-D07	0	NORM	10/08/08	2.983	2.088 E+7	< 8.919 E+6	7	6		0	0	
WHC1-D08	0	NORM	10/08/08	2.969	1.781 E+7	< 1.407 E+7	6	5		1	0	
WHC1-D10	0	NORM	10/08/08	2.898	2.898 E+7	< 8.666 E+6	10	5		0	0	
WHC1-D10	0	FD	10/08/08	2.965	1.779 E+7	< 8.864 E+6	6	3		0	0	
WHC1-D11	0	NORM	10/08/08	8.500	2.890 E+8	< 2.542 E+7	34	11		0	0	
WHC1-D13	0	NORM	10/08/08	2.969	< 8.877 E+6	< 8.877 E+6	0	0		0	0	
WHC1-D17	0	NORM	10/08/08	2.998	< 8.963 E+6	< 1.421 E+7	0	0		1	0	
WHC1-D18	0	NORM	10/08/08	2.959	8.582 E+7	2.071 E+7	29	18		7	6	
WHC1-D20	0	NORM	10/06/08	2.979	2.979 E+7	< 8.908 E+6	10	7		0	0	
WHC1-D20	0	FD	10/06/08	2.986	2.389 E+7	< 8.927 E+6	8	4		0	0	
WHC1-D21	0	NORM	10/06/08	2.991	2.991 E+7	1.418 E+7	10	4		1	1	
WHC1-D23	0	NORM	10/07/08	2.963	1.274 E+8	< 8.859 E+6	43	10		0	0	
WHC1-D24	0	NORM	10/07/08	2.981	1.413 E+7	< 8.912 E+6	1	1		0	0	
WHC1-D25	0	NORM	10/07/08	2.987	< 8.930 E+6	1.416 E+7	0	0		1	1	
WHC1-D26	0	NORM	10/07/08	2.966	2.299 E+7	< 8.869 E+6	3	1		0	0	
WHC1-D27	0	NORM	10/07/08	2.966	< 8.869 E+6	< 8.869 E+6	0	0		0	0	
WHC1-D27	0	FD	10/07/08	2.975	< 8.894 E+6	< 8.894 E+6	0	0		0	0	
WHC1-D28	0	NORM	10/07/08	2.991	< 1.418 E+7	< 8.944 E+6	1	0		0	0	
WHC1-D29	0	NORM	10/07/08	2.961	2.961 E+7	< 8.854 E+6	10	4		0	0	
WHC2-A09	0	NORM	06/23/10	2.960	< 8.840 E+6	8.840 E+6	0	0		2	1	
WHC2-A09C	0	NORM	12/08/09	3.000	< 8.960 E+6	< 8.960 E+6	2	0		0	0	
WHC2-BF01	0	NORM	06/23/10	2.960	< 8.860 E+6	< 8.860 E+6	0	0		0	0	1
WHC2-BF01C	0	NORM	12/02/09	2.990	< 8.940 E+6	< 8.940 E+6	0	0		0	0	
WHC2-BF04	0	NORM	06/23/10	3.000	< 8.960 E+6	< 8.960 E+6	0	0		0	0	
WHC2-BF06	0	NORM	06/23/10	2.960	< 8.850 E+6	< 8.850 E+6	0	0		0	0	1
WHC2-BF06C	0	NORM	12/03/09	2.980	< 8.910 E+6	< 8.910 E+6	0	0		0	0	1
WHC2-BF06NE	0	NORM	12/03/09	2.960	< 8.850 E+6	< 8.850 E+6	0	0		0	0	1
WHC2-BF06NW	0	NORM	12/03/09	2.980	< 8.910 E+6	< 8.910 E+6	0	0		0	0	1
WHC2-BF06SE	0	NORM	12/03/09	2.990	< 8.940 E+6	< 8.940 E+6	0	0		0	0	1
WHC2-BF06SW	0	NORM	12/03/09	2.970	< 8.870 E+6	< 8.870 E+6	0	0		0	0	
WHC2-BG01	0	NORM	08/09/10	2.990	1.790 E+7	< 8.940 E+6	6	3		0	0	1
WHC2-BL05	0	NORM	08/09/10	0.685	4.930 E+7	< 2.050 E+6	72	25		0	0	

ASBESTOS RESULTS AND ANALYTICAL SENSITIVITIES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 6)

						itration				ber of		
				Analytical	Protocol S	tructures ⁽¹⁾			Protocol S	tructures ⁽²⁾		
	Depth	Sample	Sample	Sensitivity	Chrysotile	Amphibole		Chrysotile			Amphibole	ļ
Sample ID	(ft bgs)	Type	Date	$(10^6 \text{ s/gPM}_{10})$	$(10^6 \text{ s/gPM}_{10})$	$(10^6 \text{ s/gPM}_{10})$	Total	Long	Qualifier	Total	Long	Qualifier
WHC2-BL07	0	NORM	08/09/10	2.990	< 8.940 E+6	< 8.940 E+6	0	0		0	0	
WHC2-BM07	0	NORM	06/23/10	2.970	< 8.890 E+6	< 8.890 E+6	0	0	J	0	0	
WHC2-BM07	0	FD	06/23/10	2.990	< 8.940 E+6	< 8.940 E+6	1	0	J	0	0	
WHC2-BM07C	0	NORM	11/30/09	2.980	< 8.900 E+6	< 8.900 E+6	0	0		0	0	
WHC2-BM07C	0	FD	11/30/09	2.970	< 8.870 E+6	< 8.870 E+6	0	0		0	0	
WHC2-BM08	0	NORM	06/23/10	2.990	< 8.950 E+6	< 8.950 E+6	0	0		0	0	
WHC2-BM08C	0	NORM	11/30/09	2.990	< 8.930 E+6	< 8.930 E+6	0	0		0	0	
WHC2-BN05	0	NORM	06/23/10	2.970	< 8.880 E+6	< 8.880 E+6	0	0		0	0	
WHC2-BN05C	0	NORM	12/08/09	2.960	< 1.180 E+7	< 8.850 E+6	4	0		1	0	
WHC2-BO09	0	NORM	06/23/10	2.970	< 8.890 E+6	< 8.890 E+6	0	0		0	0	
WHC2-BO09C	0	NORM	12/08/09	2.970	< 8.870 E+6	< 8.870 E+6	1	0		0	0	
WHC2-BP06	0	NORM	08/09/10	2.980	5.370 E+7	< 8.920 E+6	18	16		0	0	
WHC2-D01	0	NORM	08/09/10	2.970	< 8.870 E+6	2.970 E+7	0	0		10	2	
WHC2-D01C	0	NORM	12/08/09	3.430	< 1.020 E+7	1.100 E+8	0	0		32	18	
WHC2-D07	0	NORM	06/24/10	2.990	< 8.930 E+6	< 8.930 E+6	0	0		0	0	
WHC2-D08C	0	NORM	12/02/09	2.990	1.790 E+7	< 8.930 E+6	6	1		0	0	
WHC2-D11C	0	NORM	12/08/09	2.960	1.750 E+8	< 8.850 E+6	59	24		0	0	
WHC2-D18	0	NORM	06/24/10	2.800	8.39000 E+6	< 8.360 E+6	3	3		0	0	
WHC2-D18C	0	NORM	12/02/09	2.960	8.860 E+6	< 8.860 E+6	1	1	J	0	0	
WHC2-D18C	0	FD	12/02/09	2.970	< 8.870 E+6	< 8.870 E+6	0	0	J	0	0	
WHC2-D20	0	NORM	06/24/10	2.960	2.070 E+7	< 8.850 E+6	7	2		0	0	
WHC2-D21	0	NORM	06/24/10	3.000	8.960 E+6	< 8.960 E+6	2	1		0	0	
WHC2-D23	0	NORM	06/24/10	2.990	< 8.940 E+6	< 8.940 E+6	0	0		0	0	
WHC2-D23	0	FD	06/24/10	2.970	< 8.870 E+6	< 8.870 E+6	0	0		0	0	
WHC2-D25	0	NORM	06/24/10	2.980	2.080 E+7	< 8.900 E+6	7	3		0	0	
WHC3-A09N	0	NORM	01/06/12	3.000	< 8.960 E+6	< 8.960 E+6	0	0		0	0	
WHC3-A09S	0	NORM	01/06/12	2.990	< 8.940 E+6	< 8.940 E+6	0	0		0	0	
WHC3-A09W	0	NORM	01/06/12	2.980	8.910 E+6	< 8.910 E+6	1	1		0	0	
WHC3-BL05N	0	NORM	01/06/12	2.960	< 8.840 E+6	< 8.840 E+6	0	0		0	0	
WHC3-BL05S	0	NORM	01/06/12	2.970	< 8.900 E+6	< 8.900 E+6	0	0		0	0	
WHC3-BP06NE	0	NORM	01/06/12	2.980	< 1.190 E+7	< 8.900 E+6	4	0		0	0	
WHC3-BP06SE	0	NORM	01/06/12	3.000	8.990 E+6	< 8.960 E+6	3	1	J	0	0	
WHC3-BP06SE	0	FD	01/06/12	2.970	< 8.870 E+6	< 8.870 E+6	0	0	J	0	0	
WHC3-D11C	0	NORM	08/09/10	2.990	< 8.930 E+6	< 8.930 E+6	0	0		0	0	
WHC6-A09	0	NORM	08/01/12	2.990	8.930 E+6	< 8.930 E+6	1	1		0	0	
WHC6-BL05	0	NORM	08/01/12	2.970	8.010 E+7	< 8.870 E+6	27	10		0	0	


ASBESTOS RESULTS AND ANALYTICAL SENSITIVITIES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 6)

				Analytical	Concer Protocol S					Numb Protocol St	oer of tructures ⁽²⁾		
	Depth	Sample	Sample	Sensitivity	Chrysotile		Amphibole		Chrysotile		Amphibole		
Sample ID	(ft bgs)	Type	Date	$(10^6 \text{ s/gPM}_{10})$	$(10^6 \text{ s/gPM}_{10})$		$(10^6 \text{ s/gPM}_{10})$	Total	Long	Qualifier	Total	Long	Qualifier
WHC6-BP06	0	NORM	08/01/12	3.920	2.780 E+8	<	1.170 E+7	71	25	J	0	0	J
WHC6-D01	0	NORM	07/27/12	2.990	8.970 E+6	<	8.940 E+6	3	2		0	0	
WHC6-D11	0	NORM	07/27/12	2.970	< 8.870 E+6	<	8.870 E+6	0	0		0	0	

Ti)Fiber dimensions are presented in the respective analytical reports for each sample. Protocol structure concentrations are presented for informational purposes only.

 $^{^{(2)}}$ Protocol structures are $> 5 \mu m$ in length and $< 0.4 \mu m$ in width. Only long protocol structures ($>10 \mu m$) present a potential risk and are used for estimating asbestos risks.

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 20)

1								Dioxins/Furans				
				,3,4,6,7,8-HpCDF	.2,3,4,6,7,8-HpCDD	,4,7,8,9-HpCDF	Ľ	Ω	[1.	Ω	[1,	Q
				ĺpC	(pC	lpC	C	8	Ð	8	Ð	9
				Н-8	Н-8	9-H	,2,3,4,7,8-HxCDF	.2,3,4,7,8-HxCDD	2,3,6,7,8-HxCDF	2,3,6,7,8-HxCDD	.2,3,7,8,9-HxCDF	,2,3,7,8,9-HxCDD
				,7,	,7,	8,	∞,	8,	∞,	∞,	6,	-6,
	D 41	G 1	g ,	4,6	4,6	7,4,7	7,4,7	7,4	,6,7	,6,7	7,8	7,8
a	•	Sample	Sample	2,3,	2,3,	2,3,	2,3,	2,3,	2,3,	2,3,	2,3,	2,3,
Sample ID	(ft bgs)	Type	Date	1,	1	1,	1	1	1,	1,		1
OSC1-BM11	0	NORM	9/21/2009	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
OSC1-BN11 OSC1-BO11	0	NORM NORM	9/22/2009 9/16/2009	< 10 U < 5.2 U	< 10 U < 5.2 U	< 10 U < 5.2 U	< 10 U < 5.2 U	< 10 U < 5.2 U	< 10 U < 5.2 U	< 10 U < 5.2 U	< 10 U < 5.2 U	< 10 U < 5.2 U
OSC1-BO11	0	FD	9/16/2009	< 5.2 U	< 5.2 U	< 5.2 U	< 5.6 U	< 5.2 U	< 5.6 U	< 5.2 U	< 5.2 U	< 5.2 U
OSC1-BO11	0	NORM	9/16/2009	< 6.2 U	< 6.2 U	< 6.2 U	< 6.2 U	< 6.2 U	< 6.2 U	< 6.2 U	< 6.2 U	< 6.2 U
OSC1-DF11 OSC1-JP06	0	NORM	9/22/2009	< 12 U	< 12 U	< 12 U	< 12 U	< 12 U	< 12 U	< 12 U	< 12 U	< 12 U
OSC1-JP07	0	NORM	9/21/2009	<11 U	< 11 U	< 11 U	<11 U	< 11 U	< 11 U	< 11 U	< 11 U	< 11 U
OSC1-JP08	0	NORM	9/21/2009	< 12 U	< 12 U	< 12 U	< 12 U	< 12 U	< 12 U	< 12 U	< 12 U	< 12 U
OSC1-JS10	0	NORM	1/31/2010	480 J	59 J	210 J	420 J	6.7 J	180 J	12 J	25 J	9.9 J
OSC1-JS10	0	FD	1/21/2010	1700 J	140 J	740 J	1000 J	20 J	570 J	41 J	91 J	39 J
OSC2-JE01	0	NORM	4/26/2010	380	48	170	310	9.7	180	17	26	16
OSC2-JE02	0	NORM	4/26/2010	260	26	130	180	4.5 J	99	9.4	14	8
OSC2-JE03	0	NORM	4/26/2010	41	4.2 J	18	30	< 0.9 U	17	< 1.8 U	< 2.7 U	< 1.8 U
OSC2-JS10	0	NORM	8/16/2010	3.4 J	< 1.5 UJ	< 1.1 UJ	< 1.8 UJ	< 0.37 UJ	< 1.2 UJ	< 0.33 UJ	< 0.24 UJ	< 0.32 UJ
OSC2-JS10	0	FD	8/16/2010	3.8 J	< 1.2 UJ	< 1.5 UJ	2.7 J	< 0.24 U	< 1.4 U	< 0.22 U	< 0.7 U	< 0.22 U
OSC3-JE01	0	NORM	8/16/2010	440	49	290	430	14	260	29	54	22
OSC3-JE02	0	NORM	8/16/2010	67	7.5	41	75	< 2 U	33	3.4 J	5.9	< 2.5 U
OSC4-JE01N	0	NORM	1/6/2012	19 J	3.4 J	12 J	24	0.6 J	11	1.2 J	1.9 J	1,1 J
OSC4-JE01S	0	NORM	1/6/2012	5.3 J	0.68 J	4.3 J	5.3 J	< 0.18 UJ	2.1 J	0.17 J	0.41 J	0.17 J
OSC6-JE01	0	NORM	8/1/2012	1.9 J	< 0.55 UJ	< 0.56 UJ	1.3 J	< 0.37 U	0.59 J	< 0.3 U	< 0.41 U	< 0.27 U
WHC1-BF01	0	NORM	11/24/2008	11	6.6	4.5 J	6	< 0.48 U	3.2 J	< 0.43 U	< 0.64 U	< 0.52 U
WHC1-BF02	0	NORM	11/25/2008	150	15	92	130	< 2.2 U	52	4.5 J	9.7	2.8 J
WHC1-BF03	0	NORM	11/25/2008	< 0.64 U	< 1.1 UJ	< 0.75 U	< 0.41 U	< 0.65 U	< 0.36 U	< 0.58 U	< 0.41 U	< 0.59 U
WHC1-BF04	0	NORM	11/25/2008	77 J	10 J	48 J	56 J	< 1.7 UJ	27 J	3 J	4.8 J	< 1.2 UJ
WHC1-BF04	0	FD	11/25/2008	210 J	26 J	100 J	150 J	4 J	87 J	8.3 J	14 J	5.9
WHC1-BF05	0	NORM	11/25/2008	74 190	15	32 73	26 73	< 1.2 U	19 49	< 2.5 U	2.8 J	< 2.5 U
WHC1-BF06 WHC1-BG01	0	NORM NORM	12/10/2008 11/24/2008	190 57	36 41	28	38	< 1.4 U	19	5.3 3.3 J	5.8 3.4 J	4.7 J 2.5 J
WHC1-BG01 WHC1-BG02	0	NORM	11/24/2008	20 J	4.8 J	28 13 J	28 J	< 1.4 U	19 11 J	< 1.3 U	< 1.8 U	< 0.94 U
WHC1-BG02 WHC1-BG02	0	FD	11/24/2008	120 J	21 J	81 J	130 J	2.6 J	54 J	5.6 J	10 J	3.3 J
WHC1-BG03	0	NORM	12/11/2008	190 J	18 J	110 J	83	3.5 J	72	6.4	12	4.1 J
WHC1-BG04	0	NORM	12/11/2008	190	330	59	50	4.1 J	45	13	6.6	5.6
WHC1-BG05	0	NORM	11/25/2008	120 J	14 J	57 J	74 J	< 1.7 UJ	46 J	4.9 J	7.4 J	3.2 J
WHC1-BG06	0	NORM	12/10/2008	3100	310	1100	1100	41	790	83	77	77
WHC1-BH01	0	NORM	12/3/2008	18	7	6.5	11	< 1.3 U	5.8	< 1.2 U	< 1.1 U	< 1.2 U
WHC1-BH02	0	NORM	12/4/2008	140	14	49	54	< 1.2 UJ	44	3 J	4.7 J	2.9 J

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 20)

								Dioxins/Furans				
				<u></u>	D	<u></u>						
				,3,4,6,7,8-HpCDF	,2,3,4,6,7,8-HpCDD	3,4,7,8,9-HpCDF	DF	,2,3,4,7,8-HxCDD	DF	.2,3,6,7,8-HxCDD	DF	1,2,3,7,8,9-HxCDD
				Hp.	Hp.	Ήp	,2,3,4,7,8-HxCDF	xC]	,2,3,6,7,8-HxCDF	xC]	.2,3,7,8,9-HxCDF	xC]
				-8-,	-8,′	-6,8	H-9	H-9	H-8	Y-H	H-(Н-(
				,6,7	,6,7	3,7,8	3,7,	3,7,8	,7,8	3,7,8	2,8,	2,8,
	Depth	Sample	Sample	3,4	3,4	3,4	3,4	3,4	3,6	3,6	3,7	3,7
Sample ID	(ft bgs)	Type	Date	1,2,	1,2,	1,2,	1,2,	1,2,	1,2,	1,2,	1,2,	1,2,
WHC1-BH03	0	NORM	12/9/2008	200	18	82	130	2.9 J	66	5.3	27	5.6
WHC1-BH04	0	NORM	12/11/2008	120	15	47	43	< 2 U	36	3.8 J	5.2	2.8 J
WHC1-BH05	0	NORM	12/9/2008	18 J	4.5 J	5.9 J	8.5 J	< 1.3 UJ	5.5 J	< 1.1 UJ	< 1.4 UJ	< 0.85 UJ
WHC1-BH05	0	FD	12/9/2008	660 J	63 J	270 J	500 J	8.1 J	220 J	16 J	20 J	17 J
WHC1-BH06	0	NORM	12/11/2008	2500 J	230 J	1000 J	590 J	26 J	570 J	53 J	89 J	38 J
WHC1-BH06	0	FD	12/11/2008	1300 J	110 J	560 J	300 J	13 J	310 J	26 J	60	21 J
WHC1-BI01	0	NORM	12/3/2008	39	5.9	23	33	< 1.1 U	16	< 2.1 U	3 J	< 1.8 U
WHC1-BI02	0	NORM	12/4/2008	98	15	41	36	< 1.6 U	28	3 J	4 J	2.7 J
WHC1-BI03	0	NORM	12/4/2008	68	9.6	29	32	< 1.2 U	23	< 2.3 U	< 2.4 U	< 2.5 U
WHC1-BI04	0	NORM	12/8/2008	140	15	67	100	< 2 U	47	4.4 J	4.5 J	4.7 J
WHC1-BI05	0	NORM	12/9/2008	320	29	110	160	3.3 J	88	7.2	8.5	7.7
WHC1-BJ01	0	NORM	12/3/2008	6.5	7.1	2.8 J	4.4	< 1.4 U	3 J	< 1.3 U	< 1.3 U	< 1.3 U
WHC1-BJ02	0	NORM	12/2/2008	17 J	4.1 J	5.4	4.4 J	< 0.65 U	5.3	< 0.61 U	< 0.68 U	< 0.67 U
WHC1-BJ02	0	FD	12/2/2008	8.5 J	3.2 J	3.4 J	3.5 J	< 0.6 U	3.3 J	< 0.54 U	< 0.55 U	< 0.58 U
WHC1-BJ03	0	NORM	12/4/2008	38	4.8 J	21	18	< 1.7 U	14	< 1.3 U	< 1.7 U	< 1.3 U
WHC1-BJ03	0	FD	12/4/2008	38	5.5	20	19	< 1.4 U	15	< 1.2 U	< 1.5 U	< 1.2 U
WHC1-BJ04	0	NORM	12/4/2008	34	4.5 J	16	16	< 1.4 U	12	< 1 U	< 1.4 U	< 1.1 U
WHC1-BJ05	0	NORM	12/11/2008	240	25 24	84	97 2.9 J	< 3.6 U	75 < 0.93 U	7.4 J	11	< 4.7 U
WHC1-BK01 WHC1-BK01	0	NORM FD	12/3/2008 12/3/2008	5.1 J 4.8 J	24	< 1.6 U < 1.6 UJ	< 2.5 U	< 1.2 U < 1.4 U	< 0.93 U < 1.4 U	< 1.3 U < 1.6 U	< 1.1 U < 1.3 U	< 1.2 U < 1.3 U
WHC1-BK02	0	NORM	12/8/2008	16	< 2.3 U	7.2	8.3	< 0.76 U	5.7	< 0.8 U	< 0.63 U	< 0.65 U
WHC1-BK02 WHC1-BK03	0	NORM	12/8/2008	10	2.7 J	5 J	5.1 J	< 0.74 U	4.5 J	< 0.55 U	< 0.8 U	< 0.63 U
WHC1-BK03	0	NORM	12/4/2008	53	5.9	31	27	< 1.4 U	21	< 1.7 U	< 2.5 U	< 2.3 U
WHC1-BK05	0	NORM	12/12/2008	340	35	130	140	5.4	89	9.5	11	9.4
WHC1-BL01	0	NORM	12/3/2008	4.7 J	9.9	< 2.6 U	< 2.4 U	< 1.4 U	< 1.4 U	< 1.2 U	< 1.1 U	< 1.3 U
WHC1-BL02	0	NORM	12/2/2008	38 J	5.3 J	21 J	13	< 0.72 U	14	< 1.4 U	< 1.9 U	< 1.3 U
WHC1-BL03	0	NORM	12/8/2008	12 J	< 2.2 UJ	6.1 J	7.7	< 1.4 U	4.3 J	< 1 U	< 0.98 U	< 1.1 U
WHC1-BL04	0	NORM	12/17/2008	39	4.5 J	18	24 J-	< 0.89 U	15	< 1.8 U	< 2.3 U	< 1.7 U
WHC1-BL05	0	NORM	11/21/2008	16	< 1.5 U	9.8	21	< 0.39 U	6.3	< 0.73 U	< 1.1 U	< 0.5 U
WHC1-BL06	0	NORM	11/21/2008	70	11	69	200	< 1.6 U	34	< 2.1 U	4.8 J	< 0.94 U
WHC1-BL07	0	NORM	11/21/2008	< 0.82 U	< 0.76 U	< 0.47 U	< 1.8 U	< 1 U	< 0.68 U	< 0.85 U	< 0.88 U	< 0.86 U
WHC1-BL08	0	NORM	11/18/2008	< 1.1 UJ	< 1.3 U	< 1.3 UJ	< 0.9 U	< 1.2 U	< 0.79 U	< 1.1 U	< 0.91 U	< 1.1 U
WHC1-BL11	0	NORM	11/18/2008	10	< 1.2 U	9.2	28	< 1.1 U	5.1 J	< 0.95 U	< 0.82 U	< 0.95 U
WHC1-BM01	0	NORM	12/3/2008	14	5.4	6.5	6.9	< 1.2 U	4.7 J	< 1.1 U	< 0.88 U	< 1.1 U
WHC1-BM02	0	NORM	12/2/2008	5.2	< 2.2 U	< 2.5 U	3.1 J	< 0.84 U	2.6 J	< 0.74 U	< 0.76 U	< 0.75 U
WHC1-BM03	0	NORM	12/8/2008	25	7.4	13	15	< 0.68 U	10	< 1.6 U	< 2.3 U	< 1.8 U

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 20)

								Dioxins/Furans				
				.2,3,4,6,7,8-HpCDF	.2,3,4,6,7,8-НрСDD	.3,4,7,8,9-HpCDF	,2,3,4,7,8-HxCDF	.2,3,4,7,8-HxCDD	.2,3,6,7,8-HxCDF	.2,3,6,7,8-HxCDD	,2,3,7,8,9-HxCDF	,2,3,7,8,9-HxCDD
				8,	8,	-6,	H.	H	平	平	Ħ.	H
				,6,7	,6,7	7,8	7,8	7,8	7,8	7,8	2,8,	6,8,6
	Depth	Sample	Sample	3,4	3,4	3,4	3,4	3,4	3,6	3,6	3,7	3,7
Sample ID	(ft bgs)	Type	Date	1,2,	1,2,	1,2,	1,2,	,2,	2,	1,2,	,5,	1,2,
WHC1-BM04	0	NORM	12/17/2008	26 J	3.4 J	12	18 J-	< 0.89 U	10	< 0.91 U	< 1.3 U	< 1.3 U
WHC1-BM04	0	FD	12/17/2008	16 J	2.8 J	6.9	13 J-	< 0.69 U	6.8	< 0.52 U	< 1.4 U	< 0.76 U
WHC1-BM05	0	NORM	11/21/2008	3.4 J	< 0.6 U	< 2.3 U	6.7	< 0.34 U	< 1.5 U	< 0.28 U	< 0.25 U	< 0.28 U
WHC1-BM06	0	NORM	11/21/2008	140	16	120	380 J	4.1 J	59	4 J	7.5 J	< 1.5 U
WHC1-BM06	0	FD	11/21/2008	170	20	180	650 J	7	98	6.4	14 J	< 2.5 U
WHC1-BM07	0	NORM	11/20/2008	200 J	30 J	150 J	440	4.6 J	77	5.6	8.9	< 2.1 U
WHC1-BM08	0	NORM	11/18/2008	1100 J	150 J	670 J	1800 J	30 J	270 J	30 J	32 J	13 J
WHC1-BM08	0	FD	11/18/2008	5 J	< 1.8 UJ	3.3 J	8.4 J	< 1.6 UJ	< 1.6 UJ	< 1.4 UJ	< 1.1 UJ	< 1.4 UJ
WHC1-BM09	0	NORM	11/18/2008	< 1.9 U	< 2.2 U	< 1.6 U	< 2 U	< 1.7 U	< 1.1 U	< 1.5 U	< 1.3 U	< 1.5 U
WHC1-BM10	0	NORM	11/18/2008	9.1	< 1.6 U	5.4	14	< 0.86 U	2.6 J	< 0.76 U	< 0.7 U	< 0.77 U
WHC1-BN01	0	NORM	12/1/2008	30 J	180	14 J	21 J	< 2.6 UJ	14 J	5.3 J	4.6 J	< 2.3 UJ
WHC1-BN02	0	NORM	12/1/2008	30 J	4.2 J	13 J	20 J	< 0.85 U	13	< 1.5 U	< 2.1 U	< 1.3 U
WHC1-BN02	0	FD	12/1/2008	30 J	4 J	15 J	29 J	< 1.3 UJ	18 J	< 2.1 UJ	3.5 J	< 1.4 UJ
WHC1-BN03	0	NORM	12/17/2008	33	7.1	16	18	< 2 U	8.6	< 1.9 U	< 1.7 U	< 1.9 U
WHC1-BN04 WHC1-BN05	0	NORM	12/17/2008	6 14 J	< 1.4 U	< 2.4 U 7.2 J-	5.1 J- 19 J	< 0.83 U < 0.85 UJ	< 2.1 U 5.5 J	< 0.62 U	< 0.5 U < 0.81 UJ	< 0.65 U
WHC1-BN05	0	NORM FD	11/20/2008 11/20/2008	14 J 120 J	< 1.7 UJ 18 J	7.2 J- 62 J-	19 J 150 J	< 0.85 UJ < 2.3 UJ	5.5 J 53 J	< 0.83 UJ 5 J-	< 0.81 UJ 4.5 J-	< 0.86 UJ 4.5 J-
WHC1-BN06	0	NORM	11/20/2008	< 1.6 UJ	< 1.9 UJ	< 2 UJ	< 1.2 UJ	< 2.3 UJ	< 1.1 UJ	< 1.5 UJ	4.3 J- < 1.4 UJ	4.5 J- < 1.5 UJ
WHC1-BN07	0	NORM	11/20/2008	< 0.89 UJ	< 0.8 UJ	< 1.1 UJ	2.8 J	< 1.8 UJ < 1 U	< 1.1 UJ < 0.71 U	< 0.85 U	< 1.4 UJ < 0.92 U	< 0.86 U
WHC1-BN08	0	NORM	11/21/2008	12 J	< 2 UJ	8.2 J	16	< 0.65 U	4.1 J	< 0.73 U	< 0.92 U	< 0.6 U
WHC1-BN09	0	NORM	12/17/2008	75	17	44	83	< 1.9 U	30	3.6 J	6.5	3.8 J
WHC1-BN10	0	NORM	11/18/2008	< 1.3 UJ	< 2.7 UJ	< 1.5 UJ	< 1.4 U	<2 U	< 1.2 U	<1.8 U	< 1.4 U	< 1.8 U
WHC1-BO01	0	NORM	12/2/2008	3.8 J	< 3.8 UJ	2.7 J	< 1.8 UJ	< 1.5 UJ	< 1.1 UJ	< 1.3 UJ	< 1.3 UJ	< 1.3 UJ
WHC1-BO01	0	FD	12/2/2008	4.3 J	< 1.4 UJ	< 1.3 UJ	3.4 J	< 0.95 U	< 1.8 U	< 0.85 U	< 1.7 U	< 0.85 U
WHC1-BO02	0	NORM	12/1/2008	< 2.3 UJ	< 3.7 U	< 2.7 UJ	< 1.8 UJ	< 2.6 UJ	< 1.6 UJ	< 2.3 UJ	< 1.8 UJ	< 2.3 UJ
WHC1-BO03	0	NORM	12/15/2008	78	12	38	42	< 1.5 U	31	2.9 J	3.6 J	< 2.2 U
WHC1-BO04	0	NORM	12/15/2008	24	3.9 J	14	23	< 1.1 U	14	< 1.4 U	< 1.7 U	< 1.4 U
WHC1-BO05	0	NORM	11/20/2008	< 1.2 UJ	< 2.1 UJ	< 1.5 UJ	< 0.73 UJ	< 1.2 UJ	< 0.63 UJ	< 0.95 UJ	< 0.81 UJ	< 0.97 UJ
WHC1-BO06	0	NORM	11/20/2008	< 0.97 UJ	< 1.4 UJ	< 1.2 UJ	< 0.73 UJ	< 1.1 UJ	< 0.62 UJ	< 0.87 UJ	< 0.81 UJ	< 0.88 UJ
WHC1-BO07	0	NORM	11/19/2008	20	3.9 J	14	42	< 1 U	15	< 2.1 U	3 J	< 1.8 U
WHC1-BO08	0	NORM	11/20/2008	< 1.3 UJ	< 1.9 UJ	< 1.5 UJ	< 0.69 U	< 1.1 U	< 0.59 U	< 0.88 U	< 0.76 U	< 0.9 U
WHC1-BO08	0	FD	11/20/2008	< 0.84 UJ	< 1.2 UJ	< 1 UJ	< 0.83 U	< 1.1 U	< 0.7 U	< 0.86 U	< 0.91 U	< 0.88 U
WHC1-BO09	0	NORM	11/19/2008	8 J	< 3.2 UJ	6.2 J	18 J	< 1.5 UJ	4.7 J	< 1.3 UJ	< 1.1 UJ	< 1.3 UJ
WHC1-BO09	0	FD	11/19/2008	72 J	9.9 J	41 J	87 J	< 2.2 U	34 J	3.8 J	5.4	< 2 U
WHC1-BO10	0	NORM	11/19/2008	< 0.62 U	< 2.5 U	< 0.72 U	< 0.56 U	< 0.8 U	< 0.49 U	< 0.72 U	< 0.56 U	< 0.72 U
WHC1-BP01	0	NORM	12/1/2008	6.1 J+	36 J	< 2.1 U	2.9 J	< 0.89 U	< 1.5 U	< 2.2 U	< 0.67 U	< 1.6 U

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 20)

								Dioxins/Furans				
				.3,4,6,7,8-HpCDF	,3,4,6,7,8-HpCDD	.4,7,8,9-HpCDF	.2,3,4,7,8-HxCDF	.2,3,4,7,8-HxCDD	.2,3,6,7,8-HxCDF	.2,3,6,7,8-HxCDD	.2,3,7,8,9-HxCDF	,2,3,7,8,9-HxCDD
				6,7	6,7	7,8	7,8	7,8	7,8	7,8	6,8	6,8
	Depth	Sample	Sample	4,	4,	4,	4,	4,	,6,	,6,	7,1	3,7,
Sample ID	(ft bgs)	Туре	Date	,2,3	,2,3	,2,3,	2,3	,2,3	2,3	,2,3	2,3	,2,3
WHC1-BP02	(It bgs)	NORM	12/1/2008	32 J	13 J	18 J	27 J	< 2 UJ	16 J	3 J	3.7 J	< 2 UJ
WHC1-BP03	0	NORM	12/15/2008	65 J	16 J	41 J	34	< 1.2 U	24 J	3 J	4.9 J	3.4 J
WHC1-BP03	0	FD	12/15/2008	28 J	6.3 J	16 J	26	< 1.2 U	16 J	< 1.5 U	< 1.9 U	< 1.2 U
WHC1-BP04	0	NORM	12/15/2008	8.4	< 2.5 U	3.2 J	2.9 J	< 0.62 U	< 2.3 U	< 0.45 U	< 1.1 U	< 0.48 U
WHC1-BP05	0	NORM	12/15/2008	370	45	150	150	5.7	120	12	12	9.9
WHC1-BP06	0	NORM	12/12/2008	180	27	74	72	2.8 J	62	6	5 J	5.5
WHC1-BP07	0	NORM	11/20/2008	< 1.1 UJ	< 1.6 U	< 1.3 U	< 0.76 U	< 1.2 U	< 0.65 U	< 0.98 U	< 0.85 UJ	< 0.99 U
WHC1-BP08	0	NORM	11/19/2008	< 1.5 U	< 1.5 U	< 1.1 U	< 2 U	< 0.9 U	< 0.57 U	< 0.8 U	< 0.62 U	< 0.8 U
WHC1-BP09	0	NORM	11/19/2008	< 0.97 UJ	< 1.2 UJ	< 0.97 UJ	< 1 U	< 1.1 U	< 0.67 U	< 1 U	< 0.76 U	< 1 U
WHC1-BP10	0	NORM	11/19/2008	< 2.3 UJ	< 2.9 UJ	< 2 UJ	< 1.5 U	< 1.5 U	< 0.91 U	< 1.3 U	< 1 U	< 1.3 U
WHC1-D01	0	NORM	12/5/2008	1500	120	2000	4500 J	19	1100	26	190	12
WHC1-D02	0	NORM	12/5/2008	120	53	53	54	3.4 J	39	6.4	6.2	3.8 J
WHC1-D03	0	NORM	12/5/2008	150	58	74	83	2.8 J	56 J	6.9	8.1	4.8 J
WHC1-D03	0	FD	12/5/2008	200	44	110	130	4.4 J	86 J	8	13	7.9
WHC1-D04	0	NORM	12/5/2008	360	67	190	190	6.2	130	11	23	8
WHC1-D05	0	NORM	12/5/2008	140	18	66	61	< 2.2 U	47	4.4 J	8.4	3.2 J
WHC1-D06	0	NORM	12/5/2008	78	20	31	33	< 1.5 U	24	2.8 J	3.1 J	< 2.3 U
WHC1-D07	0	NORM	12/5/2008	60	13	27	36	< 1.4 U	23	< 2.3 U	3.3 J	< 1.5 U
WHC1-D08	0	NORM	12/8/2008	58	9.3	28	36	< 1.1 U	20	< 1.8 U	< 2.2 U	< 1.8 U
WHC1-D09	0	NORM	12/8/2008	130	28	70	110	3 J	51	5.7	7.5	5.1 J
WHC1-D10	0	NORM	12/8/2008	140	18	82	160	3 J 79 J	56 960	4.9 J	6.7	5.1 J 98 J
WHC1-D11 WHC1-D12	0	NORM	12/8/2008 12/10/2008	3400 7.1	440	2000	3100	< 1.2 U	2.8 J	110 J < 0.9 U	150	< 0.95 U
WHC1-D12	0	NORM NORM	12/8/2008	6900	< 1.2 U 600	< 2.3 U 2900	4.9 J 3500	110	2.8 J 1700	180	< 1 U 280	< 0.95 U
WHC1-D15	0	NORM	12/8/2008	350	61	110	92	4.3 J	98	10	11	6.5
WHC1-D16	0	NORM	12/11/2008	2700	230	1100	950	36	730	69	80	69
WHC1-D17	0	NORM	12/10/2008	300000	30000	130000	92000	5100	82000	9100	17000	8100
WHC1-D17 WHC1-D18	0	NORM	12/11/2008	310	34	180	270	6	130	11	18	6.1
WHC1-D19	0	NORM	12/11/2008	11000 J	930 J	6100 J	4700 J	130 J	3100 J	290 J	680 J	150 J
WHC1-D19	0	FD	12/11/2008	1700 J	94 J	990 J	2800 J	20 J	520 J	28 J	66 J	14 J
WHC1-D20	0	NORM	12/12/2008	280	35	140	210	5.3 J	92	8.3 J	11	7.1 J
WHC1-D21	0	NORM	12/16/2008	160	21	93	140	4.2 J-	58	5.9	8.3	4.4 J
WHC1-D22	0	NORM	12/16/2008	290	41	150	200	6.1 J-	110	9.6	15	8
WHC1-D23	0	NORM	12/16/2008	130	15	60	91	< 2.5 UJ	46	4.2 J	6.3	3.1 J
WHC1-D24	0	NORM	12/16/2008	280 J	32 J	140 J	200 J	6 J	86 J	9.2 J	12 J	4.2 J
WHC1-D24	0	FD	12/16/2008	760 J	110 J	380 J	540 J	16 J	310 J	29 J	35 J	23 J

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 20)

								Dioxins/Furans				
				Г	D	ഥ						
				,3,4,6,7,8-HpCDF	,3,4,6,7,8-HpCDD	,9-нрСDF	DF	,3,4,7,8-HxCDD	DF	,2,3,6,7,8-HxCDD	DF	,2,3,7,8,9-HxCDD
				Нр	Нр	Нр	xC]	xC]	xC]	, Ç	, Ç	xC]
				∞,	.8,	-6,1	Н-1	H	Н	H.	H-	H-1
				,6,7	,6,7	,4,7,8,	7,8	7,8	7,8	7,8	2,8,	6,8,
	Depth	Sample	Sample	3,4	3,4	4,6	,2,3,4,7,8-HxCDF	3,4	,2,3,6,7,8-HxCDF	3,6	.2,3,7,8,9-HxCDF	3,7
Sample ID	(ft bgs)	Type	Date	2,	,2,	,2,	,2,	2,	,2,	2,	2,	1,2,
WHC1-D25	0	NORM	12/16/2008	210	27 J	100	190	4 J-	70	6.9	10	3.3 J
WHC1-D26	0	NORM	12/12/2008	38	5.4 J	21	25	< 1.6 U	18	< 2 U	< 2.3 U	< 1.3 U
WHC1-D27	0	NORM	12/12/2008	580	55	330	260	12	190	20 J	33	19 J
WHC1-D27	0	FD	12/12/2008	900	77	470	360	15	270	27 J	45	25 J
WHC1-D28	0	NORM	12/12/2008	370	37	140	160	5.1 J	120	11	13	8.2
WHC1-D29	0	NORM	12/12/2008	470	39	260	150	5.9 J	120	11	18	8.7 J
WHC1-P01	0	NORM	12/15/2008	89	8.9	46	46	< 1.1 U	32	< 2.5 U	4.9 J	< 2.5 U
WHC1-P02	0	NORM	12/1/2008	47 J	7.5	23 J	42	< 1.5 U	24	< 2.3 U	3.8 J	< 1.6 U
WHC1-P03	0	NORM	12/15/2008	25	4.1 J	8.6	8.4	< 0.67 U	7.2	< 0.67 U	< 0.84 U	< 0.81 U
WHC1-P04	0	NORM	12/15/2008	32	9.7	11	12	< 1.1 U	8.8	< 1.4 U	< 1 U	< 0.92 U
WHC1-P05	0	NORM	12/8/2008	40 J	27 J	14 J	17 J	< 0.67 U	10 J	< 2.3 U	< 1.1 U	3.5 J
WHC1-P05	0	FD	12/8/2008	10 J	5.4 J	4.3 J	6.2 J	< 0.76 U	4.2 J	< 0.9 U	< 0.59 U	< 0.6 U
WHC1-P06	0	NORM	12/2/2008	13	6.2	3.8 J	5.1	< 1 U	4 J	< 0.9 U	< 1.3 U	< 0.91 U
WHC1-P07	0	NORM	12/2/2008	14	< 2.2 U	6.5	4.4 J 17 J	< 0.1 U	4.8 J	< 0.62 U	< 1.1 U	< 0.59 U
WHC1-P08 WHC1-P09	0	NORM NORM	12/3/2008 12/4/2008	29 J 64 J	7.6 5.7 J	14 J 20 J	17 J 18 J	< 2.5 U < 0.51 UJ	11 J 16 J	< 2.2 U < 1.3 U	< 2.5 UJ < 2 U	< 2.2 U < 1.4 U
WHC1-P09	0	FD	12/4/2008	210 J	23 J	71 J	69 J	< 2.3 UJ	62 J	5.1 J	6.4 J	4.9 J
WHC1-P10	0	NORM	11/25/2008	520	80	210	260	6.3	140	18	20	13
WHC1-P11	0	NORM	12/8/2008	3700 J	400 J	2200 J	2500 J	93 J	1000 J	130 J	200 J	100 J
WHC1-P11	0	FD	12/8/2008	1200 J	160 J	690 J	860 J	24 J	320 J	39 J	52 J	33 J
WHC1-P12	0	NORM	12/5/2008	230	21	160	250	4 J	110	7.2	20	4.5 J
WHC1-P13	0	NORM	12/9/2008	720	71	270	460	9.2	220	20	22	22
WHC1-P14	0	NORM	12/17/2008	140	37	65	69	< 2.6 U	37	6.3	6.3	7.5
WHC1-P15	0	NORM	12/8/2008	9.7	< 2.7 U	4.1 J	6.7	< 0.87 U	3.8 J	< 0.64 U	< 0.69 U	< 0.67 U
WHC1-P16	0	NORM	12/1/2008	56	7.8	25	36	< 1.1 U	24	< 2 U	4.1 J	< 2 U
WHC1-P17	0	NORM	12/15/2008	130	15	55	60	< 1.9 U	42	3.2 J	4.1 J	2.7 J
WHC1-P18	0	NORM	12/1/2008	< 2.1 UJ	< 3 UJ	< 2.4 UJ	< 1 UJ	< 1.5 UJ	< 0.92 UJ	< 1.3 UJ	< 1.1 UJ	< 1.3 UJ
WHC2-BF02C	0	NORM	12/4/2009	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U
WHC2-BF02C	0	FD	12/4/2009	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
WHC2-BF02NE	0	NORM	12/4/2009	50	5.1	23	34	< 4.9 U	17	< 4.9 U	2.7 J	< 4.9 U
WHC2-BF02NW	0	NORM	12/4/2009	19	3.4 J	8	12	< 5 U	6	< 5 U	< 5 U	< 5 U
WHC2-BF02SE	0	NORM	12/4/2009	7.6	< 5 U	3.8 J	5.8	< 5 U	3 J	< 5 U	< 5 U	< 5 U
WHC2-BF02SW	0	NORM	12/4/2009	8.9	2.6 J	3.9 J	6	< 5 U	3.1 J	< 5 U	< 5 U	< 5 U
WHC2-BF04C	0	NORM	12/4/2009	2.6 J	< 5.1 U	< 5.1 U	2.6 J	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U
WHC2-BF04NE	0	NORM	12/4/2009	< 5.2 UJ	< 5.2 UJ	< 5.2 UJ	< 5.2 U	< 5.2 U	< 5.2 U	< 5.2 U	< 5.2 U	< 5.2 U
WHC2-BF04NW	0	NORM	12/4/2009	< 5 UJ	< 5 U	< 5 UJ	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 20)

								Dioxins/Furans				
				.3,4,6,7,8-HpCDF	.3,4,6,7,8-HpCDD	.4,7,8,9-HpCDF	,2,3,4,7,8-HxCDF	2,3,4,7,8-HxCDD	.2,3,6,7,8-HxCDF	.2,3,6,7,8-HxCDD	.2,3,7,8,9-HxCDF	,2,3,7,8,9-HxCDD
				6,7	6,7	7,8	7,8	7,8	7,8	7,8	6,8	6,8
	Depth	Sample	Sample	4,	4,	4,	4,	4,	,,6,	,6,	,7,	,7,8
Sample ID	(ft bgs)	Type	Date	,2,3	,2,3	,2,3,	,2,3	,2,3	,2,3	,2,3	,2,3	,2,3
WHC2-BF04SE	(It bgs)	NORM	12/4/2009	16	< 5.1 U	7.7	12	< 5.1 U	7.4	< 5.1 U	< 5.1 U	< 5.1 U
WHC2-BF04SW	0	NORM	12/4/2009	< 4.9 UJ	< 4.9 UJ	< 4.9 UJ	< 4.9 UJ	< 4.9 UJ	< 4.9 UJ	< 4.9 UJ	< 4.9 UJ	< 4.9 UJ
WHC2-BG02C	0	NORM	12/2/2009	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U
WHC2-BG02NE	0	NORM	12/2/2009	15	< 5 U	6.4	10	< 5 U	6.2	< 5 U	< 5 U	< 5 U
WHC2-BG02NW	0	NORM	12/2/2009	69	6.8	34	99	< 5 U	34	< 5 U	4.4 J	< 5 U
WHC2-BG02SE	0	NORM	12/2/2009	8.2 J	< 5 UJ	5.1 J	15	< 5 U	7.2	< 5 U	< 5 U	< 5 U
WHC2-BG02SW	0	NORM	12/2/2009	93	17	49	120	< 4.8 U	43	2.9 J	4.6 J	< 4.8 U
WHC2-BG03C	0	NORM	12/4/2009	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U
WHC2-BG03C	0	FD	12/4/2009	< 5 U	2.9 J	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
WHC2-BG03NE	0	NORM	12/4/2009	< 5 UJ	< 5 U	< 5 UJ	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
WHC2-BG03NW	0	NORM	12/4/2009	< 4.9 UJ	< 4.9 UJ	< 4.9 UJ	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U
WHC2-BG03SE	0	NORM	12/4/2009	< 5 UJ	< 5 U	< 5 UJ	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
WHC2-BG03SW	0	NORM	12/4/2009	3.3 J	< 4.9 U	< 4.9 U	2.5 J	< 4.9 U				
WHC2-BG06C	0	NORM	12/3/2009	10	< 6.8 U	4.6 J	6.4 J	< 6.8 U	5.6 J	< 6.8 U	< 6.8 U	< 6.8 U
WHC2-BG06NE	0	NORM	12/3/2009	62 J	8 J	30 J	34	< 6.4 U	32	< 6.4 U	4.5 J	< 6.4 U
WHC2-BG06NW	0	NORM	12/3/2009	5.8 J	< 6 U	< 6 U	4.4 J	< 6 U	< 6 U	< 6 U	< 6 U	< 6 U
WHC2-BG06SE	0	NORM	12/3/2009	18	< 6.8 U	9.6	12	< 6.8 U	12	< 6.8 U	< 6.8 U	< 6.8 U
WHC2-BG06SW	0	NORM	12/3/2009	67	8.7	21	22	< 6.1 U	21	< 6.1 U	< 6.1 U	< 6.1 U
WHC2-BH03C	0	NORM	12/2/2009	20	< 5 U	8.3	9.1	< 5 U	7.8	< 5 U	< 5 U	< 5 U
WHC2-BH05C	0	NORM	12/4/2009	13	< 5.2 U	6.4	13	< 5.2 U	6.3	< 5.2 U	< 5.2 U	< 5.2 U
WHC2-BH05NE	0	NORM	12/4/2009	14	< 5.3 U	7.9	20	< 5.3 U	9.9	< 5.3 U	< 5.3 U	< 5.3 U
WHC2-BH05NW	0	NORM	12/4/2009	3.4 J	< 5 UJ	< 5 UJ	4.3 J	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
WHC2-BH05SE	0	NORM	12/4/2009	3.5 J	< 5.1 U	< 5.1 U	3 J	< 5.1 U				
WHC2-BH05SW	0	NORM	12/4/2009	34	4.5 J	15	25	< 5 U	14	< 5 U	< 5 U	< 5 U
WHC2-BH06C	0	NORM	12/3/2009	7 J	< 5.4 UJ	3.9 J	6.4	< 5.4 U	4.3 J	< 5.4 U	< 5.4 U	< 5.4 U
WHC2-BH06C	0	FD	12/3/2009	3.5 J	< 5.5 UJ	< 5.5 UJ	3.6 J	< 5.5 UJ	< 5.5 U	< 5.5 UJ	< 5.5 U	< 5.5 UJ
WHC2-BH06NE	0	NORM	12/3/2009	670	61 < 5.4 U	270	240	7.9	200	18	26	12 5 4 H
WHC2-BH06NW	0	NORM	12/3/2009 12/3/2009	< 5.4 U		< 5.4 U	< 5.4 U	< 5.4 U	< 5.4 U	< 5.4 U	< 5.4 U	< 5.4 U
WHC2-BH06SE WHC2-BH06SW	0	NORM NORM	12/3/2009	5.3 5.1 J	< 5.1 U < 5.4 U	< 5.1 U < 5.4 U	2.9 J 3.4 J	< 5.1 U < 5.4 U				
WHC2-BH06SW WHC2-BI05C	0	NORM	12/3/2009	3.1 J 16	< 5.4 U	7.2	3.4 J 12	< 5.4 U	< 5.4 U 6.8	< 5.4 U	< 5.4 U	< 5.4 U
WHC2-BJ05C	0	NORM	12/1/2009	6.1 J	< 5.1 UJ	7.2 3 J	6 J	< 5.1 UJ				
WHC2-BJ05NE	0	NORM	12/1/2009	25	< 5.1 UJ	12	20	< 5.1 UJ	< 3.1 UJ	< 5.1 UJ < 5 U	< 5.1 UJ < 5 U	< 5.1 UJ < 5 U
WHC2-BJ05NE WHC2-BJ05NW	0	NORM	12/1/2009	2.8 J	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U
WHC2-BJ05NW	0	NORM	12/1/2009	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U
WHC2-BJ05SW	0	NORM	12/1/2009	110	11	52	81	< 4.9 U	49	4.2 J	6.6	3.4 J
11 IC2-DJ035 W	U	TOKN	12/1/2007	110	11	JL	01	₹.,7 0	7/	7.∠ J	0.0	J. T J

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 7 of 20)

								Dioxins/Furans				
				Ŧ	- Q	ਜ						
				.3,4,6,7,8-HpCDF	,3,4,6,7,8-HpCDD	9-НрСDF	DF	,3,4,7,8-HxCDD	DF	.2,3,6,7,8-HxCDD	DF	,2,3,7,8,9-HxCDD
				ή	ήή	莳	.2,3,4,7,8-HxCDF	ХС	,8-HxCDF	[xC	.2,3,7,8,9-HxCDF	ľxC
				7,8	7,8	8,9	8-Н	Н-8	Н-8	8-Н	Н-6	Н-6
				1,6,	1,6,	,4,7,8,	1,7,	1,7,	5,7,	5,7,	8,	,8,
	Depth	Sample	Sample	,3,4	,3,4	κį	,3,4	3,4	,3,6,7,	,3,6	,3,7	,3,7
Sample ID	(ft bgs)	Type	Date	1,2,	1,2,	1,2	1,2	1,2,	1,2,	1,2	1,2	1,2
WHC2-BK05NE	0	NORM	12/1/2009	62 J	6.1 J	31 J	38	< 5 UJ	23	2.5 J	3.3 J	< 5 UJ
WHC2-BK05NW	0	NORM	12/1/2009	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
WHC2-BK05SC	0	NORM	12/1/2009	< 5.1 UJ	< 5.1 UJ	< 5.1 UJ	< 5.1 UJ	< 5.1 U	< 5.1 UJ	< 5.1 U	< 5.1 UJ	< 5.1 U
WHC2-BK05SE	0	NORM	12/1/2009	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U
WHC2-BK05SW	0	NORM	12/1/2009	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
WHC2-BM06C	0	NORM	11/30/2009	80	14	67	210	3.6 J	51	2.9 J	6	< 5.6 U
WHC2-BM07C	0	NORM	11/30/2009	2.8 J	< 5.2 U	< 5.2 U	5.2 J	< 5.2 U				
WHC2-BM08C	0	NORM	11/25/2009	< 5.2 U	< 5.2 U	< 5.2 U	4 J	< 5.2 U				
WHC2-BM08C	0	FD	11/25/2009	9.2	< 5.4 U	6.1	16 J	< 5.4 U	5.9	< 5.4 U	4.1 J	< 5.4 U
WHC2-BN05C	0	NORM	11/30/2009	2.8 J	< 4.9 U	< 4.9 U	3.4 J	< 4.9 U				
WHC2-BP05C WHC2-BP05NE	0	NORM NORM	12/2/2009 12/2/2009	2.9 J 4 J	< 5.1 U < 5 UJ	< 5.1 U < 5 UJ	< 5.1 U 2.7 J	< 5.1 U < 5 U				
WHC2-BP05NW	0	NORM	12/2/2009	3.4 J	< 5 UJ	< 5 UJ	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
WHC2-BP05NW WHC2-BP05SE	0	NORM	12/2/2009	3.4 J 12	< 5 U	5.8	5.7	< 5 U	5.6	< 5 U	< 5 U	< 5 U
WHC2-BP05SW	0	NORM	12/2/2009	4.5 J	< 5 U	< 5 U	3.4 J	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
WHC2-D01C	0	NORM	12/2/2009	66 J	72 J	28 J	34 J	< 5 UJ	24 J	4.7 J	< 5 UJ	3.6 J
WHC2-D02C	0	NORM	12/2/2009	58	9.4	29	55	< 5 U	28	2.7 J	4 J	< 5 U
WHC2-D03C	0	NORM	12/2/2009	53 J	4.9 J	24 J	46 J	< 5 U	16 J	< 5 U	< 5 U	< 5 U
WHC2-D03C	0	FD	12/2/2009	23 J	< 4.9 U	14 J	27 J	< 4.9 U	8.9 J	< 4.9 U	< 4.9 U	< 4.9 U
WHC2-D04C	0	NORM	12/2/2009	320	83	140	170	< 25 U	100	< 25 U	14 J	< 25 U
WHC2-D05C	0	NORM	12/2/2009	410	120	280	610	15 J	190	27	24 J	< 25 U
WHC2-D06C	0	NORM	12/2/2009	510	69	260	440	8.9	190	16	29	8.9
WHC2-D07C	0	NORM	12/2/2009	170	27	67	120	< 5 U	60	6.1	8.8	4.8 J
WHC2-D09C	0	NORM	12/2/2009	130	19	64	110	< 5 U	54	5 J	8.2	3.9 J
WHC2-D10C	0	NORM	11/30/2009	1200	140	640	1000	23 J	450	40	73	21
WHC2-D10C	0	FD	11/30/2009	1100	120	600	810	16 J	380	33	54	21
WHC2-D11C	0	NORM	12/2/2009	1300	160	820	960	29	560	62	330	28
WHC2-D13C	0	NORM	12/3/2009	< 7.2 U	< 7.2 U	< 7.2 U	< 7.2 U	< 7.2 U	< 7.2 U	< 7.2 U	< 7.2 U	< 7.2 U
WHC2-D13NE	0	NORM	12/3/2009	< 7.7 U	< 7.7 U	< 7.7 U	< 7.7 U	< 7.7 U	< 7.7 U	< 7.7 U	< 7.7 U	< 7.7 U
WHC2-D13NW	0	NORM	12/3/2009	5.3 J	< 5.8 U	2.9 J	4.9 J	< 5.8 U	2.9 J	< 5.8 U	< 5.8 U	< 5.8 U
WHC2-D13SE	0	NORM	12/3/2009	< 7.6 UJ	< 7.6 UJ	< 7.6 UJ	< 7.6 UJ	< 7.6 UJ	< 7.6 UJ	< 7.6 UJ	< 7.6 UJ	< 7.6 UJ
WHC2-D13SW	0	NORM	12/3/2009	59	5.8 J	28	24	< 7.2 U	22	< 7.2 U	< 7.2 U	< 7.2 U
WHC2-D14C	0	NORM	12/2/2009	< 5.3 U	< 5.3 U	< 5.3 U	< 5.3 U	< 5.3 U	< 5.3 U	< 5.3 U	< 5.3 U	< 5.3 U
WHC2-D15C	0	NORM	11/30/2009	3400 J	330	1400	1700	57	1300	110	190	100
WHC2-D16C	0	NORM	11/30/2009	570	48	240	260	6.3	180	13	27	10
WHC2-D17C	0	NORM	12/1/2009	2300 J	220	1100	1300	40	860	78	140	73

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 8 of 20)

								Dioxins/Furans				
)F	Oto O)F				•		
				3,4,6,7,8-HpCDF	,3,4,6,7,8-HpCDD	9-НрСDF	.2,3,4,7,8-HxCDF	,3,4,7,8-HxCDD	,8-HxCDF	.2,3,6,7,8-HxCDD	.2,3,7,8,9-HxCDF	,2,3,7,8,9-HxCDD
				Ψ̈́	-H _t	中	IxC	l XI	IxC	IxC	IXC	IxC
				7,8	7,8	8,9	8-F	8-F	8-F	8-F	4-6	9-F
				1,6,	1,6,	,4,7,8,	4,7,	1,7,	,3,6,7,	5,7,	7,8,	7,8,
	Depth	Sample	Sample	,3,4	,3,4	κį	,3,	,3,6	,3,0	,3,0	,3,	,3,
Sample ID	(ft bgs)	Type	Date	1,2,	1,2,	1,2	1,2	1,2,	1,2,	1,2	1,2	1,2
WHC2-D18C	0	NORM	12/1/2009	220 J	21 J	120 J	190	4.4 J	97	7.9 J	13 J	9.2 J
WHC2-D18C	0	FD	12/1/2009	540 J	52 J	280 J	270 J	8.5 J	150 J	16 J	27 J	18 J
WHC2-D19C	0	NORM	12/1/2009	17	< 5.1 U	9.1	13	< 5.1 U	6.6	< 5.1 U	< 5.1 U	< 5.1 U
WHC2-D20C	0	NORM	12/1/2009	370 J	40 J	180 J	340 J	6.7	140 J	12 J	18 J	13 J
WHC2-D20C	0	FD	12/1/2009	82 J	9.1 J	36 J	91 J	< 5 U	38 J	3.1 J	4.8 J	3 J
WHC2-D21C	0	NORM	12/1/2009	3.7 J	< 5.1 U	< 5.1 U	4.3 J	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U
WHC2-D22C	0	NORM	12/1/2009	20	2.6 J	12	27	< 4.9 U	9.9	< 4.9 U	< 4.9 U	< 4.9 U
WHC2-D23C	0	NORM	12/1/2009	41	2.7 J	23	37	< 5 U	22	< 5 U	3.6 J	< 5 U
WHC2-D24C	0	NORM	12/1/2009	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U
WHC2-D25C WHC2-D26C	0	NORM	12/1/2009	91 140	6.4	43 77	65 120	< 5 U 2.6 J	41 56	3 J 4.9 J	8.3	< 5 U 5.4
WHC2-D26C WHC2-D27C	0	NORM NORM	12/1/2009 12/1/2009	93	9.9	52	110	2.6 J 2.7 J	58	4.9 J 5.1	9.1	5.4 5 J
WHC2-D28C	0	NORM	11/30/2009	210	21	95	110	3.8 J	93	7.5	12	5.7
WHC2-D29C	0	NORM	11/30/2009	12	< 4.9 U	5.3	9.3	< 4.9 U	4.8 J	< 4.9 U	< 4.9 U	< 4.9 U
WHC2-JE01	0	NORM	4/26/2010	180	52	150	850	6.2	140	5.7	20	3.5 J
WHC2-JE02	0	NORM	4/26/2010	8	19	4.9 J	22	< 0.85 U	3.9 J	< 1.3 U	< 0.76 U	< 0.58 U
WHC2-P11C	0	NORM	12/1/2009	1500	130	890	2100 J	20	680	42	71	16
WHC2-P12C	0	NORM	12/2/2009	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U
WHC2-P13C	0	NORM	12/4/2009	5.5 J	< 6.9 U	< 6.9 U	4.2 J	< 6.9 U	< 6.9 U	< 6.9 U	< 6.9 U	< 6.9 U
WHC2-P13NE	0	NORM	12/4/2009	< 6.2 U	< 6.2 U	< 6.2 U	< 6.2 U	< 6.2 U	< 6.2 U	< 6.2 U	< 6.2 U	< 6.2 U
WHC2-P13NW	0	NORM	12/4/2009	< 6.4 U	< 6.4 U	< 6.4 U	< 6.4 U	< 6.4 U	< 6.4 U	< 6.4 U	< 6.4 U	< 6.4 U
WHC2-P13SE	0	NORM	12/4/2009	< 7.5 U	< 7.5 U	< 7.5 U	< 7.5 U	< 7.5 U	< 7.5 U	< 7.5 U	< 7.5 U	< 7.5 U
WHC2-P13SW	0	NORM	12/4/2009	3.5 J	< 5.7 UJ	< 5.7 UJ	< 5.7 UJ	< 5.7 U	< 5.7 UJ	< 5.7 U	< 5.7 UJ	< 5.7 U
WHC3-BM06C	0	NORM	8/9/2010	110	16	86	340	3.8 J	60	3.5 J	5.3	< 2.2 U
WHC3-D11C	0	NORM	6/24/2010	3500	250	2000	5300	41	1400	79	200	41
WHC3-D26C	0	NORM	8/9/2010	< 0.76 U	< 0.41 U	< 0.23 U	< 0.43 U	< 0.12 U	< 0.18 U	< 0.1 U	< 0.11 U	< 0.11 U
WHC3-D27C	0	NORM	8/9/2010	240	23	100	200	4.1 J	96	8.2	14	7.6
WHC3-D28C	0	NORM	8/9/2010	82	7.2	34	70	< 1.3 U	32	2.7 J	4.7 J	2.6 J
WHC3-JE01	0	NORM	8/9/2010	120	14	110	490	4.4 J	72	3.3 J	7	< 1.2 U
WHC3-P11C	0	NORM	8/9/2010	650	61	320	570	9.4	220	15	39	14
WHC3-P11C	0	FD	8/9/2010	810	72	350	650	12	270	20	33	17
WHC4-D27N	0	NORM	1/6/2012	110	9.8	47 J+	80	1.4 J	39	2.9 J	4.7 J	3.3 J
WHC4-D27S	0	NORM	1/6/2012	25	24	9.1 J+	17	0.33 J	7.6	1.1 J	1.1 J	0.92 J
WHC6-BG02SW	0	NORM	7/27/2012	240	29	130	260	3.5 J	79	5.1	9.2	5.5
WHC6-BG02SW	0	FD	7/27/2012	220	32	120	250	3.3 J	75 550	6.6	8.5	5.6
WHC6-BH06NE	0	NORM	7/27/2012	1700	200	660	880	23	550	50	61	52

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 9 of 20)

								Dioxins/Furans				
				.3,4,6,7,8-HpCDF	.2,3,4,6,7,8-HpCDD	.3,4,7,8,9-HpCDF	,2,3,4,7,8-HxCDF	,4,7,8-HxCDD	6,7,8-HxCDF	6,7,8-HxCDD	,2,3,7,8,9-HxCDF	,2,3,7,8,9-HxCDD
	•	Sample	Sample	,2,3,	2,3,	,2,3,	2,3,	,2,3,	,2,3,	,2,3,	2,3,	2,3,
Sample ID	(ft bgs)	Type	Date	1	1	1	1	1	1	1	1	
WHC6-BM06	0	NORM	8/1/2012	37 J	6.5 J	34 J	85	< 0.63 U	15	1.3 J	1.8 J	0.92 J
WHC6-BM06	0	FD	8/1/2012	55	7.3	48	130	1.2 J	24	2.1 J	2.6 J	1 J
WHC6-D04	0	NORM	7/27/2012	160 43	58 7.7	72	140 54	2.7 J < 0.77 U	53	6.1	5.1 J	4.6 J
WHC6-D05	0	NORM	7/27/2012	65	1.7	26 31	54 57	0.77 U	16 21	1.3 J 2.6 J	1.3 J 2 J	1.3 J 1.7 J
WHC6-D06 WHC6-D07	0	NORM	7/27/2012				- ,	****				
WHC6-D07 WHC6-D08	0	NORM NORM	7/27/2012 7/27/2012	8.6 3.3 J	1.7 J 0.81 J	3.4 J 1.5 J	6.7 4.3 J	< 0.49 U < 0.37 U	2.2 J 1.5 J	< 0.4 U < 0.31 U	< 0.41 U < 0.33 U	< 0.36 U < 0.28 U
WHC6-D08	0	NORM	7/27/2012	5.5 J	7.8	33	4.3 J 80	1.2 J	23	3.1 J	< 0.33 U	< 0.28 U
WHC6-D10	0	NORM	7/27/2012	550	52	370	910	9.1	220	3.1 J 17	19	1.7 J
WHC6-D11	0	NORM	7/27/2012	130	14	70	160	9.1 1.9 J	45	3.5 J	5.3	3.3 J
WHC6-D11	0	NORM	7/27/2012	32 J	4.1 J	17 J	15	0.46 J	9.8	0.81 J	1.6 J	0.82 J
WHC6-D16	0	NORM	7/27/2012	21	3 J	9.3	9.9	0.46 J	5.6	1.1 J	1.0 J	0.82 J 0.97 J
WHC6-D17	0	NORM	7/27/2012	450	52	220	250	7	170	14	21	15
WHC6-D17	0	NORM	7/27/2012	19000 J	2200 J	9700 J	10000 J	300	5500 J	590	960	570
WHC6-D18	0	NORM	8/1/2012	1100 J	110 J	620 J	720	15	350	28	51	26
WHC6-D27	0	NORM	8/1/2012	180	16	75	99	2.1 J	65	5.4	8.7	4.6 J
WHC6-JE01	0	NORM	8/1/2012	46 J	4.1 J	42 J	110	< 0.5 U	15	0.89 J	1.3 J	0.37 J
WHC6-P10	0	NORM	7/27/2012	50	8.6	20	26	0.74 J	17	1.8 J	1.7 J	1.2 J
WHC6-P11	0	NORM	7/27/2012	580	48	270	540	6.6	150	13	17	13
WHC7-BG02SW 3	0	NORM	3/20/2014	510	72	230	370	7.6 J	140	14	14	14
WHC7-BG02SW_3	0	FD	3/20/2014	460	70	200	330	5.1 J	120	12	13	11
WHC7-BG02SW 5	0	NORM	5/12/2014	200	23	73	120	3.1 J	51	5.7	6.2	5.9
WHC7-BH06NE 3	0	NORM	3/20/2014	74	9.8 J	28	33	1.1 J	21	2.3 J	1.9 J	2.2 J
WHC7-BH06NE 5	0	NORM	5/12/2014	26	3.3 J+	10	13	0.43 J	6.6	0.89 J	0.71 J	0.63 J
WHC7-D04 3	0	NORM	3/20/2014	180	58	79	180	2.6 J	60	7.2 J	4.1 J	6 J
WHC7-D04_5	0	NORM	5/12/2014	6.4 J	1.2 J	2.1 J	2.6 J	0.11 J	1.2 J	0.34 J	0.31 J	0.53 J
WHC7-D09_3	0	NORM	3/20/2014	840	92	410	810	12	280	22	22	23
WHC7-D09_5	0	NORM	5/12/2014	230	34	97	250	3.9 J	65	7.3	6.8	5.4
WHC7-D10_3	0	NORM	3/20/2014	1700	170	790	1600	26	430	40	40	33
WHC7-D10_5	0	NORM	5/12/2014	64	8.3	27	62	0.91 J	19	2 J	1.9 J	2 Ј
WHC7-D11_3	0	NORM	3/20/2014	110	14	39	46	1.6 J	27	3.4 J	2.2 J	3.5 J
WHC7-D11_5	0	NORM	5/12/2014	160	22	76	160	2.4 J	52	4.8 J	5.2	4.3 J
WHC7-D17_3	0	NORM	3/20/2014	8100 J	920	3100	3300	110	1800	210	230	220
WHC7-D17_5	0	NORM	5/12/2014	910	100	340	400	11	220	25	23	25
WHC7-D17_5	0	FD	5/12/2014	950	110 J+	400	430	15	220	26	26	28

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 10 of 20)

								Dioxins/Furans				
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,2,3,4,6,7,8-HpCDF	1,2,3,4,6,7,8-НрСDD	1,2,3,4,7,8,9-НрСDF	1,2,3,4,7,8-HxCDF	1,2,3,4,7,8-HxCDD	1,2,3,6,7,8-HxCDF	1,2,3,6,7,8-HxCDD	1,2,3,7,8,9-HxCDF	1,2,3,7,8,9-HxCDD
WHC7-D18_3	0	NORM	3/20/2014	20000	2100	8000	9900	280	5100	490	620	550
WHC7-D18_5	0	NORM	5/12/2014	530	54 J+	220	240	7.3	120	14	15	14
WHC7-D20_3	0	NORM	3/20/2014	1000	110	470	840	14	250	23	35	25
WHC7-D20_5	0	NORM	5/12/2014	1800	200 J+	870	1700	24 J	450	39	39	36
WHC7-P11_3	0	NORM	3/20/2014	22	3.4 J	7.4 J	13	0.41 J	8 J	0.76 J	0.47 J	0.96 J
WHC7-P11_5	0	NORM	5/12/2014	28	4.8 J+	9.7	13	0.53 J	6.4	1.2 J	0.72 J	1.1 J
WHC8-D09	0	NORM	6/27/2014	32	5.2 J	19	45	0.93 J	10 J	1.6 J	1.2 J	1.8 J
WHC8-D11	0	NORM	6/27/2014	14	1.9 J	5 J	5.5 J	0.39 J	2.8 J	0.48 J	0.32 J	0.46 J
WHC8-D17	0	NORM	6/27/2014	2.3 J	0.41 J	1.1 J	1.2 J	< 0.077 U	0.61 J	0.28 J	0.15 J	0.29 J
WHC8-D18	0	NORM	6/27/2014	42	4.1 J	19	19	0.6 J	8.8 J	1.1 J	1.4 J	1.5 J
WHC8-D20	0	NORM	6/27/2014	35	3.5 J	16	20	0.57 J	7.2 J	0.93 J	0.87 J	1 J

All units in pg/g.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 11 of 20)

								Dioxins/Furans				
				ſτ.	\circ	.6,7,8-HxCDF	ſτ.					
				<u>ī</u>	<u>a</u>	Κ̈́C	<u> </u>	ĽL	Ω			
				Pe(PeC	H-8	Pe(Ð	Ð			TEQ
				.3,7,8-PeCDF	,3,7,8-PeCDD	5,7,8	8,	T-:	T-		_	T
	Depth	Sample	Sample	,3,7	,3,7	,3,4,6	,3,4,7,8-PeCDF	3,7,8-TCDF	3,7,8-TCDD	DC	DF	DD
Sample ID	(ft bgs)	Type	Date	1,2,	1,2,	2,3	2,3	2,3	2,3	OCDD	OCDF	TCDD
OSC1-BM11	0	NORM	9/21/2009	<10 U	< 10 U	< 10 U	< 10 U	< 2.1 U	< 2.1 U	< 21 U	<21 U	12
OSC1-BN11	0	NORM	9/22/2009	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	< 2 U	< 20 U	< 20 U	12
OSC1-BO11	0	NORM	9/16/2009	< 5.2 U	< 5.2 U	< 5.2 U	< 5.2 U	0.57 J	< 1 U	< 10 U	< 10 U	6.1
OSC1-BO11	0	FD	9/16/2009	< 5.6 U	< 5.6 U	< 5.6 U	< 5.6 U	< 1.1 U	< 1.1 U	< 11 UJ	< 11 UJ	6.5
OSC1-BP11	0	NORM	9/16/2009	< 6.2 U	< 6.2 U	< 6.2 U	< 6.2 U	< 1.2 U	< 1.2 U	< 12 U	< 12 U	7.2
OSC1-JP06	0	NORM	9/22/2009	< 12 U	< 12 U	< 12 U	< 12 U	< 2.4 U	< 2.4 U	< 24 U	< 24 U	14
OSC1-JP07	0	NORM	9/21/2009	<11 U	< 11 U	< 11 U	<11 U	< 2.1 U	< 2.1 U	< 21 U	< 21 U	13
OSC1-JP08	0	NORM	9/21/2009	<12 U	< 12 U	< 12 U	< 12 U	< 2.4 U	< 2.4 U	< 24 U	< 24 U	14
OSC1-JS10	0	NORM	1/31/2010	180 J	13 J	45 J	88 J	130 J	3.8 J	270	1100 J	148
OSC1-JS10	0	FD	1/21/2010	510 J	37 J	160 J	230 J	300 J	10 J	210 J	3600 J	396
OSC2-JE01	0	NORM	4/26/2010	170	13	50	94	92	2.6	52	800	130
OSC2-JE02	0	NORM	4/26/2010	96	6.9	31	52	52	1.7	26	520	73
OSC2-JE03	0	NORM	4/26/2010	20	< 1.5 U	4.3 J	11	15	< 0.47 U	< 5.2 UJ	110 J	13
OSC2-JS10	0	NORM	8/16/2010	< 0.96 U	< 0.29 U	< 0.24 UJ	< 0.54 U	< 0.45 U	< 0.15 U	8.4 J	< 4.6 UJ	0.66
OSC2-JS10	0	FD	8/16/2010	< 1.3 U	< 0.23 U	< 0.6 U	< 0.65 U	0.83 J	< 0.11 U	6.4 J	6.8 J	0.91
OSC3-JE01	0	NORM	8/16/2010	320	30	64	170	190	8	33 J	670 J	222
OSC3-JE02	0	NORM	8/16/2010	46	3.4 J	7.3	23	36	1 J	11 J	130 J	32
OSC4-JE01N	0	NORM	1/6/2012	13	1 J	4 J	7.5	9	0.38 J	18 J	40 J	10
OSC4-JE01S	0	NORM	1/6/2012	2 J	0.13 J	0.73 J	1.J	1.3	< 0.077 U	4.7 J	15 J	1.7
OSC6-JE01	0	NORM	8/1/2012	0.82 J	< 0.47 U	< 0.37 U	< 0.6 U	< 0.49 U	< 0.24 U	9.7 J	5,1 J	0.81
WHC1-BF01	0	NORM	11/24/2008	3.4 J	< 0.67 U	< 0.85 U	< 2 U	2.8	< 0.39 U	60 J	43 J	3
WHC1-BF02	0	NORM	11/25/2008	60	3.5 J	13	32	69	1.9	30 J	650 J	51
WHC1-BF03	0	NORM	11/25/2008	< 0.44 U	< 0.66 U	< 0.4 U	< 0.46 U	< 0.29 U	< 0.45 U	< 3 UJ	< 3.6 UJ	0.96
WHC1-BF04	0	NORM	11/25/2008	28 J	< 2 U	6.9 J	13 J	20 J	0.75 J	25 J	250 J	21
WHC1-BF04	0	FD	11/25/2008	87 J	8.1 J	26 J	44 J	53 J	2.7 J	52 J	490 J 150	67
WHC1-BF05 WHC1-BF06	0	NORM	11/25/2008	15	< 1.4 U 3.8 J	5.7	8.8	7.7 17	0.55 J 1 J	91 180	150 440	13 33
WHC1-BF06 WHC1-BG01	0	NORM NORM	12/10/2008 11/24/2008	39 22	3.8 J < 1.5 U	13 4.8 J	15	22	0.84 J	180 190 J	440 270 J	20
WHC1-BG01 WHC1-BG02	0	NORM	11/24/2008	17 J	< 1.5 U	4.8 J 3.2 J	15 11 J	25 J	0.84 J 0.71 J	190 J 23 J	73 J	15
WHC1-BG02 WHC1-BG02	0	FD	11/24/2008	65 J	< 1.1 U	3.2 J 14 J	40 J	25 J 74 J	0.71 J 2.3 J	62 J	73 J 500 J	15 59
WHC1-BG02 WHC1-BG03	0	NORM	12/11/2008	69	5.2	14 J	36	34	1.3	62 J 22 J	450 J	48
WHC1-BG03 WHC1-BG04	0	NORM	12/11/2008	40	5.2	12	23	25	1.3	2600	450 J 470	48
WHC1-BG04 WHC1-BG05	0	NORM	11/25/2008	46 J	3.6 J	12 J	24 J	32	1.1 1.7 J	2000 22 J	290 J	35
WHC1-BG05 WHC1-BG06	0	NORM	12/10/2008	650	62	230	330	270	1.7 J	460	6200	517
WHC1-BG00	0	NORM	12/10/2008	5.3	< 1.9 U	< 1.5 U	2.6 J	3	< 0.61 U	32	39	5.2
WHC1-BH02	0	NORM	12/4/2008	3.3	< 1.9 U	< 1.3 U	18	18	0.63 J	29	320	25
WITC1-DHUZ	U	NOKW	12/4/2008	54	< 2.2 U	11	18	18	0.03 J	29	520	23

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 12 of 20)

								Dioxins/Furans				
Sample ID	Depth (ft bgs)	Sample	Sample Date	.2,3,7,8-PeCDF	.2,3,7,8-PeCDD	.3,4,6,7,8-HxCDF	2,3,4,7,8-PeCDF	2,3,7,8-TCDF	3,7,8-TCDD	ОСDD	OCDF	ТСВВ ТЕQ
WHC1-BH03	(It bgs)	Type NORM	12/9/2008	67	5.1	25 17	34	37	1.4	31	500	<u>F</u> 52
WHC1-BH04	0	NORM	12/11/2008	31	2.6 J	8.9	15	17	0.77 J	38	280	23
WHC1-BH05	0	NORM	12/9/2008	3.1 J	< 0.46 UJ	< 1.6 UJ	< 1.4 UJ	1.8 J	< 0.31 UJ	10 J	42 J	3
WHC1-BH05	0	FD	12/9/2008	160 J	13 J	49 J	77 J	100 J	2.9 J	110 J	1700 J	153
WHC1-BH06	0	NORM	12/11/2008	470 J	38 J	130 J	230 J	310 J	14	340 J	8700 J	360
WHC1-BH06	0	FD	12/11/2008	270 J	22 J	71 J	120 J	180 J	8.8	150 J	4200 J	198
WHC1-BI01	0	NORM	12/3/2008	18	< 1.4 U	5.1 J	8.8	17	< 0.87 U	19	120	14
WHC1-BI02	0	NORM	12/4/2008	28	< 1.8 U	6.8	16	15	1.1	68	250	20
WHC1-BI03	0	NORM	12/4/2008	26	< 1.6 U	5.3	14	16	< 0.93 U	42	150	16
WHC1-BI04	0	NORM	12/8/2008	44	3.8 J	14	27	33	1.3	21	330	39
WHC1-BI05	0	NORM	12/9/2008	71	5.8	21	35	37	1.2	56	760	60
WHC1-BJ01	0	NORM	12/3/2008	< 2.2 U	< 1.8 U	< 1.3 U	< 1.6 U	1.9	< 0.83 U	42 J	16 J	3.4
WHC1-BJ02	0	NORM	12/2/2008	4.6 J	< 0.65 U	< 1.2 U	< 2.5 U	2.9	< 0.48 U	19	43 J	3.2
WHC1-BJ02	0	FD	12/2/2008	3.6 J	< 0.77 U	< 0.81 U	< 1.9 U	2.8	< 0.51 U	16	20 J	2.7
WHC1-BJ03	0	NORM	12/4/2008	15	< 1.7 U	4 J	7.5	8.2	< 0.87 U	11 J	97 J	9.8
WHC1-BJ03	0	FD	12/4/2008	15	< 1.7 U	4.1 J	8.9	9.1	< 0.95 U	8.9 J	80	11
WHC1-BJ04	0	NORM	12/4/2008	13	< 1.8 U	3.5 J	7.2	8.3	< 0.82 U	9.4 J	80	9
WHC1-BJ05	0	NORM	12/11/2008	69	5.2 J	21	37	46	1.4 J	77	550	51
WHC1-BK01	0	NORM	12/3/2008	< 1.3 U	< 1.5 U	< 1 U	< 1.2 U	1.1	< 0.41 U	160	8.1 J	2.7
WHC1-BK01	0	FD	12/3/2008	< 1.3 U	< 1.5 U	< 1.2 U	< 1.3 U	1.1	< 0.45 U	160 J	7.9 J	2.5
WHC1-BK02	0	NORM	12/8/2008	5.4	< 1 U	< 1.5 U	< 2.2 U	2.8	< 0.45 U	14	34	3.5
WHC1-BK03	0	NORM	12/15/2008	4 J	< 0.88 U	< 1.2 U	< 2.1 U	2.7	< 0.44 U	9.5 J	21	3
WHC1-BK04	0	NORM	12/4/2008	24	2.6 J	5.8	13	15	< 0.88 U	7.9 J	130 J	16
WHC1-BK05	0	NORM	12/12/2008	81	7.7	26	44	38	2.2	49	730	65
WHC1-BL01	0	NORM	12/3/2008	< 1.1 U	< 1.4 U	< 1 U	< 1.1 U	0.92	< 0.54 U	84	9.6 J	2.1
WHC1-BL02	0	NORM	12/2/2008	11	< 0.85 U	3.7 J	6.7	6.2	< 0.69 U	13 J	110 J	8.1
WHC1-BL03	0	NORM	12/8/2008	4.6 J	< 1.2 U	< 1.2 U	< 1.6 U	2.3	< 0.54 U	8.1 J	24 J	3.5
WHC1-BL04	0	NORM	12/17/2008	16	< 1.1 U	4 J	9.1	8.5	< 0.56 U	6.8 J	72	10
WHC1-BL05	0	NORM	11/21/2008	7.3	< 0.58 U	< 1.2 U	3.4 J	4.7	< 0.3 U	< 2.7 U	26	5.5
WHC1-BL06	0	NORM	11/21/2008	40	< 1.3 U	2.8 J	12	23	< 0.54 U	14 J	260 J	35
WHC1-BL07	0	NORM	11/21/2008	< 0.52 U	< 1 U	< 0.78 U	< 0.53 U	< 0.31 U	< 0.51 U	< 1.4 U	< 1.6 U	1.3
WHC1-BL08	0	NORM	11/18/2008	< 0.8 U	< 1.2 U	< 0.87 U	< 0.83 U	< 0.2 U	< 0.7 U	< 2.4 UJ	< 2.2 UJ	1.8
WHC1-BL11	0	NORM	11/18/2008	4.7 J	< 1.5 U	< 0.8 U	< 1.1 U	3.1	< 0.85 U	< 1.5 U	19	5.7
WHC1-BM01	0	NORM	12/3/2008	5 J	< 1.6 U	< 1.4 U	< 1.5 U	4.2	< 0.55 U	36	42	3.9
WHC1-BM02	0	NORM	12/2/2008	2.8 J	< 1 U	< 0.73 U	< 1.5 U	1.9	< 0.65 U	17	12	2.3
WHC1-BM03	0	NORM	12/8/2008	9.6	< 0.48 U	< 2.5 U	5.5	6	< 0.24 U	47	72	6.8

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 13 of 20)

								Dioxins/Furans				
		a ,		.3,7,8-PeCDF	,3,7,8-PeCDD	3,4,6,7,8-HxCDF	2,3,4,7,8-PeCDF	.3,7,8-TCDF	3,7,8-TCDD	Q	H	тсрр тед
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	,2,3,	,2,3,	3,4,	3,4,	3,7,	,3,7,	OCDD	OCDF	[G]
WHC1-BM04	(It bgs)	NORM	12/17/2008	12	< 1.3 U	2.8 J	6.1	6.2 J	< 0.67 U	7.1 J	0 55 J	7.7
WHC1-BM04	0	FD	12/17/2008	8.2	< 1.1 U	< 1.4 U	4.1 J	4.8 J	< 0.58 U	12	33 J	5.6
WHC1-BM05	0	NORM	11/21/2008	< 1.7 U	< 0.43 U	< 0.7 U	< 1.5 U	2	< 0.29 U	< 1.3 U	8.4 J	1.8
WHC1-BM06	0	NORM	11/21/2008	74 J	< 1.4 U	5.6	27 J	100	0.87 J	30 J	450 J	75
WHC1-BM06	0	FD	11/21/2008	140 J	3.2 J	10	53 J	130	0.99 J	21	410	126
WHC1-BM07	0	NORM	11/20/2008	89	< 2 U	10	39	68	0.99 J	38 J	550 J	88
WHC1-BM08	0	NORM	11/18/2008	290 J	13 J	39 J	140 J	260 J	3.1 J	220 J	4300 J	355
WHC1-BM08	0	FD	11/18/2008	< 1.6 UJ	< 2.1 UJ	< 1.1 UJ	< 1.6 UJ	0.81 J	< 0.35 UJ	< 3.1 UJ	17 J	3.1
WHC1-BM09	0	NORM	11/18/2008	< 1.2 U	< 1.6 U	< 1.2 U	< 1.3 U	1.3	< 1 U	< 4.3 UJ	5.2 J	2.3
WHC1-BM10	0	NORM	11/18/2008	< 2.5 U	<1 U	< 0.68 U	< 0.94 U	2.3	< 0.7 U	< 3.2 U	39	3.4
WHC1-BN01	0	NORM	12/1/2008	16 J	< 2.4 UJ	4.4 J	7.4 J	6.8 J	< 0.56 UJ	870 J	58 J	13
WHC1-BN02	0	NORM	12/1/2008	14 J	< 1 U	3.8 J	6.8 J	7.6 J	< 0.46 U	14 J	85 J	8.9
WHC1-BN02	0	FD	12/1/2008	24 J	< 1.9 UJ	4.8 J	13 J	15 J	< 0.91 U	13 J	65 J	15
WHC1-BN03	0	NORM	12/17/2008	9.8	< 2.7 U	< 1.8 U	5.8	5.4	< 0.97 U	36 J+	69 J+	9
WHC1-BN04	0	NORM	12/17/2008	3.2 J	< 1 U	< 0.74 U	< 1.5 U	1.9	< 0.48 U	16	9.1 J	2.3
WHC1-BN05	0	NORM	11/20/2008	7.4 J	< 1.1 UJ	< 1.5 UJ	4.5 J	6.1 J	< 0.53 UJ	5.2 J	28 J	6.6
WHC1-BN05	0	FD	11/20/2008	54 J	3.3 J-	14 J-	33 J	34 J	0.92 J-	27 J	350 J	47
WHC1-BN06	0	NORM	11/20/2008	< 1.1 U	< 1.7 U	< 1.2 UJ	< 1.2 U	1.1	< 0.6 U	< 3.5 UJ	< 2.4 UJ	2.1
WHC1-BN07	0	NORM	11/21/2008	< 1.2 U	< 1.1 U	< 0.82 U	< 2.1 U	4	< 0.64 U	< 3 UJ	< 2.3 UJ	3.9
WHC1-BN08	0	NORM	11/20/2008	5.6	< 0.46 U	< 1.1 U	4.4 J	6.2	< 0.24 U	< 2.6 UJ	23 J	5.4
WHC1-BN09	0	NORM	12/17/2008	38	< 1.9 U	6.4	15	17	0.73 J	65 J+	100 J+	24
WHC1-BN10	0	NORM	11/18/2008	< 1.4 U	< 2 U	< 1.4 U	< 1.4 U	< 0.42 U	<1 U	< 4.3 UJ	< 4.7 UJ	2.5
WHC1-BO01	0	NORM	12/2/2008	< 0.83 U	< 0.97 U	< 1.3 UJ	< 0.86 U	0.68	< 0.57 U	34 J	8 J	1.7
WHC1-BO01	0	FD	12/2/2008	< 1.8 U	< 0.83 U	< 0.81 U	< 0.87 U	1.1	< 0.5 U	< 3.8 UJ	8.8 J	1.8
WHC1-BO02	0	NORM	12/1/2008	< 2 UJ	< 3 UJ	< 1.7 UJ	< 2 UJ	< 0.51 UJ	< 0.56 UJ	140 J	< 8.2 UJ	3.1
WHC1-BO03	0	NORM	12/15/2008	34	2.8 J	9.5	18	21	1 J	31	170	24
WHC1-BO04	0	NORM	12/15/2008	18	< 1.7 U	4.6 J	10	13	0.69 J	11	52	12
WHC1-BO05	0	NORM	11/20/2008	< 1 UJ	< 1.6 UJ	< 0.72 UJ	< 1 UJ	< 0.82 UJ	< 0.89 UJ	< 6 UJ	< 4.8 UJ	1.9
WHC1-BO06	0	NORM	11/20/2008	< 1 UJ	< 1.4 UJ	< 0.72 UJ	< 1 UJ	< 1 UJ	< 0.96 UJ	< 2 UJ	< 1.4 UJ	1.8
WHC1-BO07	0	NORM	11/19/2008	27	< 2 U	4.4 J	13	22 J-	0.84 J	7.2 J	23	17
WHC1-BO08	0	NORM FD	11/20/2008	< 0.82 U	< 1.4 U	< 0.68 U < 0.81 U	< 0.84 U	< 0.6 U	< 0.68 U < 0.62 U	< 3.1 UJ	< 2.7 UJ	1.6
WHC1-BO08	· ·	11177	11/20/2008	< 0.87 U	< 1.4 U		< 0.89 U	< 0.58 U		< 3.7 UJ	< 3 UJ	1.6
WHC1-BO09	0	NORM	11/19/2008	5 J 40 J	< 1 U 2.9 J	< 1.1 UJ 9.5 J	< 2.4 UJ 20 J	3.8 J 32 J	< 0.55 U	< 10 UJ	32 J 140 J	4.6
WHC1-BO09 WHC1-BO10	0	FD NORM	11/19/2008 11/19/2008	40 J < 0.53 U	2.9 J < 0.85 U	9.5 J < 0.54 U	< 0.55 U	< 0.32 U	< 0.56 U < 0.48 U	18 J 70	7 7 9 7	31
	, , , , , , , , , , , , , , , , , , ,								< 0.48 U < 0.59 U	480 J	< 5.1 U	
WHC1-BP01	0	NORM	12/1/2008	< 1.8 U	< 0.95 U	< 0.76 U	< 0.94 U	0.68 J	< 0.59 ∪	480 J	17 J	2.4

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 14 of 20)

								Dioxins/Furans				
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	,2,3,7,8-PeCDF	,2,3,7,8-PeCDD	,3,4,6,7,8-HxCDF	,3,4,7,8-PeCDF	,3,7,8-TCDF	,3,7,8-TCDD	осрр	OCDF	гсрр тед
WHC1-BP02	(10 0 5 3)	NORM	12/1/2008	17 J	< 2.4 UJ	4.5 J	8.5 J	7.7	< 0.42 UJ	56 J	69 J	12
WHC1-BP03	0	NORM	12/15/2008	22	< 1.8 U	8.2	9.7	12	0.53 J	59 J	110 J	16
WHC1-BP03	0	FD	12/15/2008	20	< 1.3 U	4.7 J	9.9	12	0.54 J	16 J	48 J	12
WHC1-BP04	0	NORM	12/15/2008	< 1.2 U	< 0.79 U	< 0.68 U	< 0.85 U	0.81 J	< 0.43 U	11	13	1.7
WHC1-BP05	0	NORM	12/15/2008	100	9.2	37	52	47	2.2	82	780	77
WHC1-BP06	0	NORM	12/12/2008	53	4.2 J	20	31	30	1.3	62	390	41
WHC1-BP07	0	NORM	11/20/2008	< 0.9 U	< 1.6 U	< 0.75 U	< 0.92 U	< 0.59 U	< 0.75 U	< 2.3 UJ	< 1.8 UJ	1.8
WHC1-BP08	0	NORM	11/19/2008	< 0.69 U	< 0.79 U	< 0.61 U	< 0.69 U	0.85 J-	< 0.51 U	37	< 5.1 U	1.3
WHC1-BP09	0	NORM	11/19/2008	< 0.68 U	< 0.91 U	< 0.74 U	< 0.66 U	0.72 J-	< 0.47 U	< 2.2 UJ	< 2.5 UJ	1.3
WHC1-BP10	0	NORM	11/19/2008	< 1.1 U	< 0.93 U	< 0.98 U	< 0.76 U	0.88 J-	< 0.48 U	< 7.4 UJ	< 8.5 UJ	1.5
WHC1-D01	0	NORM	12/5/2008	1100	13	98	340	1400 J	9.8	310	4000	951
WHC1-D02	0	NORM	12/5/2008	51	3.8 J	8.8	30	63	1.5	430	330	48
WHC1-D03	0	NORM	12/5/2008	70	4.6 J	12 J	41	110	1.8	360	450	64
WHC1-D03	0	FD	12/5/2008	100	6.5	19 J	54	140	2.1	230	640	85
WHC1-D04	0	NORM	12/5/2008	140	9.5	31	85	160	3	260	1100	171
WHC1-D05	0	NORM	12/5/2008	52	3.9 J	12	29	50	1.1	63	410	44
WHC1-D06	0	NORM	12/5/2008	24	< 1.7 U	7.2	15	21	0.59	110	200	22
WHC1-D07	0	NORM	12/5/2008	25	< 1.7 U	5.4	16	23	0.59 J	72	160	22
WHC1-D08	0	NORM	12/8/2008	25	< 1.8 U	5.9	15	27	0.6 J	25	130	20
WHC1-D09	0	NORM	12/8/2008	60	4.5 J	16	36	56	1.3	100	330	54
WHC1-D10	0	NORM	12/8/2008	90	4.2 J	13	44	170	1.5	50	400	69
WHC1-D11	0	NORM	12/8/2008	1200	68	190	1000	1900	34	1100	13000	1427
WHC1-D12	0	NORM	12/10/2008	< 1.6 U	< 1.6 U	< 0.95 U	< 1.2 U	0.72 J	< 0.79 U	< 1.3 U	12	2.7
WHC1-D13	0	NORM	12/8/2008	1700	140	440	840	710	43	690	16000	1321
WHC1-D15	0	NORM	12/11/2008	79	8.6	29	43	44	2.5	220	750	64
WHC1-D16	0	NORM	12/10/2008	690	63	190	340	410	24	300	6700	512
WHC1-D17	0	NORM	12/10/2008	67000	5900	20000	38000	30000	1900	32000	920000	53300
WHC1-D18	0	NORM	12/11/2008	150	7.2	27	77	170	3.2	59	900	121
WHC1-D19	0	NORM	12/11/2008	2400 Ј	180 J	900 J	1500 J	2800 J	40 J	1000 J	33000 J	2345
WHC1-D19	0	FD	12/11/2008	600 J	16 J	66 J	190 J	490 J	3.9 J	120 J	5500 J	525
WHC1-D20	0	NORM	12/12/2008	120	6.6 J	22	66	120	2.8	96	860	91
WHC1-D21	0	NORM	12/16/2008	89	4.2 J	12	47	99	2.1	43	540	64
WHC1-D22	0	NORM	12/16/2008	120	7.4	29	66	90	2.7	140	870	104
WHC1-D23	0	NORM	12/16/2008	62	3.5 J	10	31	56	1.4	31	370	42
WHC1-D24	0	NORM	12/16/2008	100 J	5 J	20 J	65 J	170 J	2.4 J	87 J	1100 J	92
WHC1-D24	0	FD	12/16/2008	360 J	19 J	63 J	210 J	440 J	8.6 J	430 J	2300 J	267

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 15 of 20)

								Dioxins/Furans				
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,2,3,7,8-PeCDF	1,2,3,7,8-PeCDD	2,3,4,6,7,8-HxCDF	2,3,4,7,8-PeCDF	2,3,7,8-TCDF	2,3,7,8-TCDD	осрр	OCDF	TCDDTEQ
WHC1-D25	0	NORM	12/16/2008	85	5.2 J	14	52	84	1.6	82 J	500 J	72
WHC1-D26	0	NORM	12/12/2008	20	< 2 U	6.7 J	11	15	< 0.97 U	18 J	60 J	15
WHC1-D27	0	NORM	12/12/2008	210	17 J	52	120	110	4.7 J	61	1300	148
WHC1-D27	0	FD	12/12/2008	310	24 J	74	170	140	7.7 J	80	2100	208
WHC1-D28	0	NORM	12/12/2008	110	8.4	33	53	47	3	86	820	78
WHC1-D29	0	NORM	12/12/2008	120	8.4	33	66	88	3.9	73	1500	90
WHC1-P01	0	NORM	12/15/2008	26	< 2.1 U	12	11	14	0.62 J	17	230	19
WHC1-P02	0	NORM	12/1/2008	32	< 1.7 U	5.9	16	14	< 0.75 U	12	99	18
WHC1-P03	0	NORM	12/15/2008	5.7	< 0.96 U	< 2 U	2.9 J	3.3	< 0.45 U	19	55	4.8
WHC1-P04	0	NORM	12/15/2008	6.8	< 1.4 U	< 2.2 U	3.2 J	3.3	< 0.8 U	64	69	5.9
WHC1-P05	0	NORM	12/8/2008	9.2	< 1.2 U	3.3 J	5.4	8.6 J	< 0.47 U	260 J	91 J	9.3
WHC1-P05	0	FD	12/8/2008	4 J	< 0.95 U	< 1.2 U	< 2.6 U	2.4 J	< 0.5 U	32 J	18 J	3.1
WHC1-P06	0	NORM	12/2/2008	4.2 J	< 1.1 U	< 1.2 U	< 1.4 U	2.6	< 0.74 U	33	37	3.1
WHC1-P07	0	NORM	12/2/2008	4.2 J	< 0.31 U	< 1.2 U	< 2.5 U	2.2	< 0.13 U	5.4 J	34 J	2.4
WHC1-P08	0	NORM	12/3/2008	9.5 J	< 3.3 UJ	4.3 J	< 4.2 UJ	5.9 J	< 1.1 UJ	42 J	60 J	8.7
WHC1-P09	0	NORM	12/4/2008	15 J	< 0.88 U	3.6 J	7.7 J	9.5 J	< 0.35 U	16 J	120 J	11
WHC1-P09	0	FD	12/4/2008	44 J	3.2 J	18 J	23 J	24 J	< 0.61 UJ	65 J	470 J	37
WHC1-P10	0	NORM	11/25/2008	110	10	35	55	67	3.2	170	1400	100
WHC1-P11	0	NORM	12/8/2008	1300 J	90 J	250 J	1200 J	1100 J	39 J	640 J	12000 J	1232
WHC1-P11	0	FD	12/8/2008	390 J	29 J	86 J	710 J	500 J	12 J	320 J	6800 J	608
WHC1-P12	0	NORM	12/5/2008	140	6.6	23	64	230	3.5	29	750	106
WHC1-P13	0	NORM	12/9/2008	190	16	53	93	110	4.4	140	1700	162
WHC1-P14	0	NORM	12/17/2008	28	< 2.2 U	10	20	21	< 0.6 U	240 J+	320 J+	37
WHC1-P15	0	NORM	12/8/2008	4.2 J	< 0.95 U	< 1 U	< 1.9 U	2.7	< 0.5 U	22	22	3.1
WHC1-P16	0	NORM	12/1/2008	22	< 2.1 U	6.7	13	12	< 0.61 U	22 J	140 J	16
WHC1-P17	0	NORM	12/15/2008	31	2.8 J	12	16	17	0.82 J	27	290	26
WHC1-P18	0	NORM	12/1/2008	< 0.58 U	< 0.92 U	< 1 UJ	< 0.61 U	< 0.32 U	< 0.43 U	14 J	< 8.9 UJ	1.4
WHC2-BF02C	0	NORM	12/4/2009	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U	< 0.97 U	< 0.97 U	< 9.7 U	< 9.7 U	5.6
WHC2-BF02C	0	FD	12/4/2009	< 5 U	< 5 U	< 5 U	< 5 U	0.56 J	< 1 U	< 10 UJ	< 10 UJ	5.8
WHC2-BF02NE	0	NORM	12/4/2009	15	< 4.9 U	3.5 J	8.3	13	< 0.98 U	11	160	15
WHC2-BF02NW	0	NORM	12/4/2009	5.5	< 5 U	< 5 U	3.1 J	6.8	< 1 U	15	57	8.9
WHC2-BF02SE	0	NORM	12/4/2009	3 J	< 5 U	< 5 U	< 5 U	2.4	< 1 U	< 10 U	22	6.5
WHC2-BF02SW	0	NORM	12/4/2009	2.7 J	< 5 U	< 5 U	< 5 U	3	< 0.99 U	20	24	6.9
WHC2-BF04C	0	NORM	12/4/2009	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	1.5	< 1 U	< 10 U	< 10 U	6
WHC2-BF04NE	0	NORM	12/4/2009	< 5.2 UJ	< 5.2 U	< 5.2 U	< 5.2 UJ	0.73 J	< 1 U	< 10 UJ	< 10 UJ	6.1
WHC2-BF04NW	0	NORM	12/4/2009	< 5 U	< 5 U	< 5 U	< 5 U	< 1 U	< 1 U	< 10 UJ	< 10 UJ	5.8

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 16 of 20)

1 1								Dioxins/Furans				
				ſτ.	\circ	6,7,8-HxCDF	ſτ.					
				.3,7,8-PeCDF	3,7,8-PeCDD	xC	,3,4,7,8-PeCDF	ſΤ	Ω			
				ЬеС	РеС	H-5	PeC	<u> </u>	Ā			Q
				.84	.84-1	3,7,8	<u>%</u>	-TC	-T			TEQ
	Depth	Sample	Sample	3,7	3,7	,4,6	7,4	7,8	3,7,8-TCDD	QQ	DF	ОС
Sample ID	(ft bgs)	Type	Date	1,2,	1,2,	2,3,	2,3,	2,3,7,8-TCDF	2,3,	OCDD	OCDF	TCDD'
WHC2-BF04SE	0	NORM	12/4/2009	7.1	< 5.1 U	< 5.1 U	3.7 J	4.6	< 1 U	< 10 UJ	28 J	8.5
WHC2-BF04SW	0	NORM	12/4/2009	< 4.9 UJ	< 4.9 UJ	< 4.9 UJ	< 4.9 UJ	0.78 J	< 0.99 U	< 9.9 UJ	< 9.9 UJ	5.8
WHC2-BG02C	0	NORM	12/2/2009	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	0.62 J	< 1 U	< 10 U	< 10 U	6
WHC2-BG02NE	0	NORM	12/2/2009	6.1	< 5 U	< 5 U	3.5 J	7.1	< 0.99 U	18 J	47 J	8.6
WHC2-BG02NW	0	NORM	12/2/2009	40	< 5 U	6.1	19	81	0.73 J	15	220	37
WHC2-BG02SE	0	NORM	12/2/2009	12	< 5 U	< 5 U	7.1	26	< 1 U	< 10 UJ	14 J	13
WHC2-BG02SW	0	NORM	12/2/2009	45	< 4.8 U	7.5	25	93	1.4	86 J	440 J	45
WHC2-BG03C	0	NORM	12/4/2009	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 0.98 U	< 0.98 U	< 9.8 UJ	< 9.8 UJ	5.7
WHC2-BG03C	0	FD	12/4/2009	< 5 U	< 5 U	< 5 U	< 5 U	< 1 U	< 1 U	22 J	< 10 UJ	5.8
WHC2-BG03NE	0	NORM	12/4/2009	< 5 U	< 5 U	< 5 U	< 5 U	< 1 U	< 1 U	< 10 UJ	< 10 UJ	5.8
WHC2-BG03NW	0	NORM	12/4/2009	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	0.86 J	< 0.98 U	< 9.8 UJ	< 9.8 UJ	5.8
WHC2-BG03SE	0	NORM	12/4/2009	< 5 U	< 5 U	< 5 U	< 5 U	< 1 U	< 1 U	< 10 U	< 10 U	5.8
WHC2-BG03SW	0	NORM	12/4/2009	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	1.7	< 0.99 U	21	27	5.9
WHC2-BG06C	0	NORM	12/3/2009	7.1	< 6.8 U	< 6.8 U	3.9 J	5	< 1.4 U	< 14 U	14	9.2
WHC2-BG06NE	0	NORM	12/3/2009	33 J	3.6 J	7.9	18 J	21	0.93 J	19 J	130 J	23
WHC2-BG06NW	0	NORM	12/3/2009	< 6 U	< 6 U	< 6 U	< 6 U	< 2.2 U	< 1.2 U	< 12 U	8.6 J	7.2
WHC2-BG06SE	0	NORM	12/3/2009	12	< 6.8 U	< 6.8 U	6.3 J	8	< 1.4 U	< 14 U	31	12
WHC2-BG06SW	0	NORM	12/3/2009	15	< 6.1 U	4.8 J	8	7.5	< 1.2 U	38	120	14
WHC2-BH03C	0	NORM	12/2/2009	6.6	< 5 U	< 5 U	3.5 J	4.8	< 1 U	< 10 U	43	8.1
WHC2-BH05C	0	NORM	12/4/2009	7.9	< 5.2 U	< 5.2 U	4.2 J	6.7	< 1 U	< 10 U	32	9
WHC2-BH05NE	0	NORM	12/4/2009	13	< 5.3 U	< 5.3 U	6.2	8.7	< 1.1 U	< 11 U	25	11
WHC2-BH05NW WHC2-BH05SE	0	NORM	12/4/2009 12/4/2009	< 5 U < 5.1 U	1.6 1.2	<1 U	< 10 UJ	< 10 UJ 5.1 J	6.1			
WHC2-BH05SE WHC2-BH05SW	0	NORM NORM	12/4/2009	< 3.1 U	< 5.1 U	< 5.1 U 4.1 J	7.5	1.2	< 1 U < 1 U	< 10 U 9.3 J	5.1 J 74	6.1
WHC2-BH05SW WHC2-BH06C	0	NORM	12/4/2009	5 J	< 5.4 U	< 5.4 U	< 5.4 U	< 3.6 U	< 1.1 U	< 11 UJ	13 J	7.1
WHC2-BH06C	0	FD	12/3/2009	3.1 J	< 5.4 U	< 5.4 U	< 5.4 U	< 2.5 U	< 1.1 U	< 11 UJ	< 11 UJ	6.6
WHC2-BH06NE	0	NORM	12/3/2009	170	14	40	88	110	5.8	140	1900	130
WHC2-BH06NW	0	NORM	12/3/2009	< 5.4 U	< 5.4 U	< 5.4 U	< 5.4 U	< 1.5 U	< 1.1 U	< 11 UJ	< 11 UJ	6.3
WHC2-BH06SE	0	NORM	12/3/2009	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	< 1.6 U	<1.1 U	< 10 U	12	6
WHC2-BH06SW	0	NORM	12/3/2009	< 5.4 U	< 5.4 U	< 5.4 U	< 5.4 U	< 1.9 U	< 1.1 U	< 11 U	11	6.4
WHC2-BI05C	0	NORM	11/30/2009	6.3	< 5 U	< 5 U	4 J	5.1	<1.1 U	< 10 U	39	8.7
WHC2-BJ05C	0	NORM	12/1/2009	3.8 J	< 5.1 U	< 5.1 UJ	< 5.1 U	3.1	< 1 U	< 10 UJ	14 J	6.6
WHC2-BJ05NE	0	NORM	12/1/2009	11	< 5 U	< 5 U	6.1	9.9	< 0.99 U	< 9.9 U	65	11
WHC2-BJ05NW	0	NORM	12/1/2009	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	1.3	< 0.99 U	< 9.9 U	6.7 J	5.8
WHC2-BJ05SE	0	NORM	12/1/2009	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	1.3	< 1 U	< 10 U	< 10 U	6
WHC2-BJ05SW	0	NORM	12/1/2009	46	4 J	9.8	22	34	1.4	31	250	36

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 17 of 20)

								Dioxins/Furans				
S. J. ID		Sample	Sample	.2,3,7,8-PeCDF	.2,3,7,8-PeCDD	3,4,6,7,8-HxCDF	3,4,7,8-PeCDF	3,7,8-TCDF	3,7,8-TCDD	осрр	OCDF	тСDD ТЕQ
Sample ID WHC2-BK05NE	(ft bgs)	Type	Date 12/1/2009		< 5 UJ	5.6	<u>√i</u> 13	<u>∼í</u> 16	<u>∕(</u> 1 J	0 9.8 J	0 170 J	<u> </u>
WHC2-BK05NE WHC2-BK05NW	0	NORM NORM	12/1/2009	< 5 U	< 5 U	< 5 U	< 5 U	0.72 J	< 1 U	9.8 J < 10 U	< 10 U	5.9
WHC2-BK05NW WHC2-BK05SC	0	NORM	12/1/2009	< 5.1 UJ	< 5.1 U	< 5.1 UJ	< 5.1 UJ	0.72 J 0.58 J	< 1 U	< 10 UJ	< 10 UJ	5.9
WHC2-BK05SE	0	NORM	12/1/2009	< 5.1 UJ	< 5.1 U	< 5.1 UJ	< 5.1 UJ	< 1 U	< 1 U	< 10 UJ	< 10 UJ	5.9
WHC2-BK05SE WHC2-BK05SW	0	NORM	12/1/2009	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	0.83 J	< 1 U	< 10 U < 10 UJ	< 10 U < 10 UJ	5.9
WHC2-BM06C	0	NORM	11/30/2009	65	< 5.6 U	4.8 J	21	76	0.72 J	39	300	51
WHC2-BM07C	0	NORM	11/30/2009	< 5.2 U	< 5.0 U	< 5.2 U	< 5.2 U	2.6	< 1 U	< 10 U	6.7 J	6.5
WHC2-BM07C	0	NORM	11/25/2009	< 5.2 U	< 5.2 U	< 5.2 U	< 5.2 U	0.93 J	< 1 U	< 10 U	< 10 U	6.2
WHC2-BM08C	0	FD	11/25/2009	5.2 J	< 5.4 U	< 5.4 U	< 5.4 U	4.6 J	< 1.1 U	< 11 U	16	9
WHC2-BN05C	0	NORM	11/30/2009	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	0.97 J	< 0.98 U	< 9.8 U	5.5 J	5.9
WHC2-BP05C	0	NORM	12/2/2009	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	0.63	< 1 U	< 10 U	7.7 J	6
WHC2-BP05NE	0	NORM	12/2/2009	< 5 U	< 5 U	< 5 U	< 5 U	1.2	< 1 U	< 10 UJ	7.6 J	5.9
WHC2-BP05NW	0	NORM	12/2/2009	< 5 U	< 5 U	< 5 U	< 5 U	0.8 J	< 1 U	< 10 UJ	6.4 J	5.9
WHC2-BP05SE	0	NORM	12/2/2009	4.8 J	< 5 U	< 5 U	2.6 J	2.4	< 1 U	< 10 U	30	6.9
WHC2-BP05SW	0	NORM	12/2/2009	< 5 U	< 5 U	< 5 U	< 5 U	1.6	< 0.99 U	< 9.9 U	10	6.1
WHC2-D01C	0	NORM	12/2/2009	19 J	< 5 UJ	4.9 J	12 J	17 J	0.69 J	480 J	160 J	22
WHC2-D02C	0	NORM	12/2/2009	35	< 5 U	5.7	22	67	0.97 J	20	160	33
WHC2-D03C	0	NORM	12/2/2009	17	< 5 U	2.8 J	8.2	29	< 1 U	14	190 J	17
WHC2-D03C	0	FD	12/2/2009	11	< 4.9 U	< 4.9 U	5.6	20	0.49 J	< 9.7 U	77 J	12
WHC2-D04C	0	NORM	12/2/2009	97	< 25 U	23 J	60	110	2.8 J	540	970	149
WHC2-D05C	0	NORM	12/2/2009	330	< 25 U	41	760	1000 J	13	340	1700	555
WHC2-D06C	0	NORM	12/2/2009	220	12	43	170	330 J	5.4	200	1600	219
WHC2-D07C	0	NORM	12/2/2009	62	3.8 J	12	32	62	1.3	53	430	51
WHC2-D09C	0	NORM	12/2/2009	60	3.8 J	12	36	77	1.7	51	430	56
WHC2-D10C	0	NORM	11/30/2009	470	23	76	300	720 J	12	270	5500 J	445
WHC2-D10C	0	FD	11/30/2009	410	21	80	280	720 J	11	240	5300 J	399
WHC2-D11C	0	NORM	12/2/2009	610	38	300	470	800 J	17	250	5100 J	636
WHC2-D13C	0	NORM	12/3/2009	< 7.2 U	< 7.2 U	< 7.2 U	< 7.2 U	< 1.4 U	< 1.4 U	< 14 U	< 14 U	8.4
WHC2-D13NE	0	NORM	12/3/2009	< 7.7 U	< 7.7 U	< 7.7 U	< 7.7 U	< 1.4 U	< 1.5 U	< 15 U	< 15 U	9
WHC2-D13NW	0	NORM	12/3/2009	3.6 J	< 5.8 U	< 5.8 U	< 5.8 U	< 2.4 U	< 1.2 U	< 12 U	12	7.1
WHC2-D13SE	0	NORM	12/3/2009	< 7.6 UJ	< 7.6 UJ	< 7.6 UJ	< 7.6 UJ	< 1.5 U	< 1.5 U	< 15 UJ	< 15 UJ	8.9
WHC2-D13SW	0	NORM	12/3/2009	18	< 7.2 U	5.6 J	10	12	< 1.4 U	13 J	150	17
WHC2-D14C	0	NORM	12/2/2009	< 5.3 U	< 5.3 U	< 5.3 U	< 5.3 U	1.7	< 1.1 U	< 11 UJ	<11 UJ	6.3
WHC2-D15C	0	NORM	11/30/2009	980	87	320	530	430	23	240	7600 J	781
WHC2-D16C	0	NORM	11/30/2009	130	10	43	70	66	3	48	1400	108
WHC2-D17C	0	NORM	12/1/2009	810	71	200	430	560 J	27	180	5800 J	624

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 18 of 20)

								Dioxins/Furans				
				.3,7,8-PeCDF	.3,7,8-PeCDD	3,4,6,7,8-HxCDF	2,3,4,7,8-PeCDF	DF	.8-TCDD			Q
				8-P	8-Р	7,8	8-Р	,8-TCDJ	.TC			TEQ
	Depth	Sample	Sample	3,7,	3,7,	4,6,	1,7,	7,8-	7,8-	ОС)F)D
Sample ID	(ft bgs)	Type	Date	,2,	,2,	2,3,4	,3,4	2,3,7,	2,3,7,	OCDD	OCDF	TCDD
WHC2-D18C	0	NORM	12/1/2009	110	7.4 J	19 J	61	93	2.8	39 J	630 J	83
WHC2-D18C	0	FD	12/1/2009	100 J	9.1 J	37 J	66 J	64 J	2.2 J	67 J	1700 J	106
WHC2-D19C	0	NORM	12/1/2009	8.1	< 5.1 U	< 5.1 U	4.8 J	7	< 1 U	< 10 U	54	9.4
WHC2-D20C	0	NORM	12/1/2009	150 J	8.5 J	25 J	78 J	180 J	2.5	66 J	1300 J	127
WHC2-D20C	0	FD	12/1/2009	59 J	3.2 J	6.4 J	30 J	85 J	1.5	21 J	230 J	44
WHC2-D21C	0	NORM	12/1/2009	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	2	< 1 U	< 10 U	9 J	6.3
WHC2-D22C	0	NORM	12/1/2009	13	< 4.9 U	< 4.9 U	7.1	14	< 0.98 U	6.2 J	58	14
WHC2-D23C	0	NORM	12/1/2009	21	< 5 U	4.4 J	11	17	0.59 J	< 10 U	110	18
WHC2-D24C	0	NORM	12/1/2009	< 5.1 U	< 5.1 U	< 5.1 U	< 5.1 U	0.98 J	< 1 U	< 10 U	5.8 J	6
WHC2-D25C	0	NORM	12/1/2009	42	2.5 J	8.5	23	24	0.92 J	7.2 J	220	29
WHC2-D26C	0	NORM	12/1/2009	61	3.9 J	11	33	53	1.6	45	420	49
WHC2-D27C	0	NORM	12/1/2009	73	5.4	11	38	43	1.5	13	180	49
WHC2-D28C WHC2-D29C	0	NORM NORM	11/30/2009	81 4.9	6.2 < 4.9 U	18 < 4.9 U	37 2.7 J	40 5	1.8 < 0.97 U	22 5.8 J	390 37	57 7.6
WHC2-JE01	0	NORM	4/26/2010	190	< 1.2 U	< 4.9 U	2.7 J	76	< 0.4 U	120	1100	139
WHC2-JE01 WHC2-JE02	0	NORM	4/26/2010	3.5 J	< 0.26 U	< 0.45 U	< 0.96 U	2.3	< 0.4 U	22	36	4
WHC2-P11C	0	NORM	12/1/2009	610	30	130	340	740 J	11	160	7300 J	594
WHC2-P12C	0	NORM	12/2/2009	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	0.56 J	< 0.97 U	< 9.7 UJ	< 9.7 UJ	6.7
WHC2-P13C	0	NORM	12/4/2009	< 6.9 UJ	< 6.9 U	< 6.9 U	< 6.9 UJ	1.6	< 1.4 U	< 14 U	13 J	8.3
WHC2-P13NE	0	NORM	12/4/2009	< 6.2 U	< 6.2 U	< 6.2 U	< 6.2 U	0.92 J	< 1.2 U	19	17	7.3
WHC2-P13NW	0	NORM	12/4/2009	< 6.4 U	< 6.4 U	< 6.4 U	< 6.4 U	0.8 J	< 1.3 U	< 13 U	< 13 U	7.5
WHC2-P13SE	0	NORM	12/4/2009	< 7.5 U	< 7.5 U	< 7.5 U	< 7.5 U	< 1.5 U	< 1.5 U	< 15 U	< 15 U	8.8
WHC2-P13SW	0	NORM	12/4/2009	< 5.7 UJ	< 5.7 UJ	< 5.7 UJ	< 5.7 UJ	1.1 J	< 1.1 U	< 11 UJ	7 J	6.7
WHC3-BM06C	0	NORM	8/9/2010	69	< 1.6 U	6.1	21	66	< 0.47 U	43	460	63
WHC3-D11C	0	NORM	6/24/2010	1000	51	210	600	1500	9.5	480	13000	1298
WHC3-D26C	0	NORM	8/9/2010	< 0.18 U	< 0.03 U	< 0.085 U	< 0.1 U	0.52 J	< 0.075 U	< 0.84 U	< 1.9 U	0.22
WHC3-D27C	0	NORM	8/9/2010	84	6.6	20	43	53	1.2	35	620	69
WHC3-D28C	0	NORM	8/9/2010	26	< 2.1 U	6.4	15	19	< 0.45 U	11	210	22
WHC3-JE01	0	NORM	8/9/2010	83	< 0.99 U	3.9 J	18	64	< 0.31 U	42	430	79
WHC3-P11C	0	NORM	8/9/2010	180 J	12 J	54	120 J	150 J	3.2 J	120 J	3600 J	188
WHC4-P27N	0	FD	8/9/2010	210	15	62	120	190	4.2	120	3200	208
WHC4-D27N	0	NORM	1/6/2012	34	2.2 J	11	18	16	0.66 J	14	330	28
WHC4-D27S	0	NORM	1/6/2012	8.4	0.49 J	2.3 J	4.2 J	5.3	0.21 J	420 J	100 J	6.6
WHC6-BG02SW WHC6-BG02SW	0	NORM FD	7/27/2012 7/27/2012	83 78	3.9 J 4.1 J	16 16	53 45	120 110	1.9 1.5	82 110	990 980	90 79
	0			420	4.1 J 41	150	230	110	1.5	260	3900	358
WHC6-BH06NE	0	NORM	7/27/2012	420	41	150	230	190	12	200	3900	338

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 19 of 20)

								Dioxins/Furans				
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,2,3,7,8-PeCDF	1,2,3,7,8-PeCDD	2,3,4,6,7,8-HxCDF	2,3,4,7,8-PeCDF	2,3,7,8-TCDF	2,3,7,8-TCDD	осрр	OCDF	TCDD TEQ
WHC6-BM06	0	NORM	8/1/2012	17	< 0.63 U	2 J	6.4	18	< 0.3 U	48 J	160 J	17
WHC6-BM06	0	FD	8/1/2012	24	< 0.55 U	3.7 J	8	21	0.25 J	34 J	250 J	24
WHC6-D04	0	NORM	7/27/2012	80	3.4 J	11	43	150	1.4	420	500	75
WHC6-D05	0	NORM	7/27/2012	26	< 0.69 U	3.3 J	15	67	< 0.31 U	45	150	23
WHC6-D06	0	NORM	7/27/2012	26	0.84 J	4.8 J	16	71	< 0.29 U	55	230	27
WHC6-D07	0	NORM	7/27/2012	2.3 J	< 0.58 U	0.78 J	1.6 J	5	< 0.29 U	17	30	2.7
WHC6-D08	0	NORM	7/27/2012	3.1 J	< 0.61 U	0.33 J	2.2 J	26	< 0.26 U	7.8 J	14	4.9
WHC6-D09	0	NORM	7/27/2012	84	1.8 J	4.8 J	47	290	1.6	18	220	63
WHC6-D10	0	NORM	7/27/2012	400	14	40	240	1000 J	5.1	78	1700	343
WHC6-D11	0	NORM	7/27/2012	58	2.4 J	8.5	28	110	1	24	520	51
WHC6-D15	0	NORM	7/27/2012	6.7	0.61 J	3.2 J	3.7 J	2.1	0.42 J	7.2 J	77 J	6.3
WHC6-D16	0	NORM	7/27/2012	4.1 J	0.51 J	1.8 J	2.2 J	1.2	< 0.15 U	6.7 J	50 J	4
WHC6-D17	0	NORM	7/27/2012	130	13	47	77	72	4.9	71	1200	113
WHC6-D18	0	NORM	7/27/2012	4200 J	390	1600	2500 J	2000 J	120	2100 J	62000 J	3941
WHC6-D20	0	NORM	8/1/2012	300	20	84	170	260	6.8	190 J	3800 J	271
WHC6-D27	0	NORM	8/1/2012	67	5.1 J	15	32	25	1.5	30	370	44
WHC6-JE01	0	NORM	8/1/2012	13	< 0.83 U	1.4 J	4.3 J	13	< 0.39 U	37 J	360 J	18
WHC6-P10	0	NORM	7/27/2012	13	1.2 J	4.2 J	7.7	6.9	0.39 J	26 J	110 J	11
WHC6-P11	0	NORM	7/27/2012	140	8.7	28	76	110	3	58	3000	138
WHC7-BG02SW_3	0	NORM	3/20/2014	120	7.1 J	34	70	130	3.4	270	1900	122
WHC7-BG02SW_3	0	FD	3/20/2014	110	6.7 J	35	62	120	2.8	410	1900	110
WHC7-BG02SW_5	0	NORM	5/12/2014	48	3.4 J+	13	28	46	0.94 J	83	1600	47
WHC7-BH06NE_3	0	NORM	3/20/2014	15	1.2 J	5.8 J	8.2 J	5.8	0.49 J	32	180	13
WHC7-BH06NE_5	0	NORM	5/12/2014	5 J	< 0.7 U	2.1 J	3.2 J	2.5	< 0.25 U	9 J	63	4.7
WHC7-D04_3	0	NORM	3/20/2014	75	3.5 J	14	39	100	1.5 J	570	600	61
WHC7-D04_5	0	NORM	5/12/2014	1.3 J	< 0.063 U	0.49 J	0.58 J	0.32 J	0.17 J	4.3 J	20 J	7.3
WHC7-D09_3	0	NORM	3/20/2014	230	14	60	130	230	5.3	210	2900	230
WHC7-D09_5	0	NORM	5/12/2014	130	4.2 J+	16	57	260	2.4	130	870	93
WHC7-D10_3	0	NORM	3/20/2014	490	23	100	330	840 J	16	340	8400 J	509
WHC7-D10_5	0	NORM	5/12/2014	26	1.1 J+	5.2	15	53	0.5 J	23	250	24
WHC7-D11_3	0	NORM	3/20/2014	19	1.1 J	7 J	9.9 J	9	0.7 J	36	490	17
WHC7-D11_5	0	NORM	5/12/2014	61	2.8 J+	10	30	94	0.99 J	79	550	52
WHC7-D17_3	0	NORM	3/20/2014	1400	130	540	790	610	35	2000	21000 J	1292
WHC7-D17_5	0	NORM	5/12/2014	160	14	67	83	95	4.3	200	2300	151
WHC7-D17_5	0	FD	5/12/2014	170	14	63	86	85	3.9	210	2400	155

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 20 of 20)

								Dioxins/Furans				
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,2,3,7,8-PeCDF	1,2,3,7,8-PeCDD	2,3,4,6,7,8-HxCDF	2,3,4,7,8-PeCDF	2,3,7,8-TCDF	2,3,7,8-TCDD	осрр	OCDF	тсрр тед
WHC7-D18_3	0	NORM	3/20/2014	3800	330	1400	2100	2000	95	3100	65000	3551
WHC7-D18_5	0	NORM	5/12/2014	96	7.7	34	52	49	2.5	70	1500	88
WHC7-D20_3	0	NORM	3/20/2014	240	15	62	120	160	4.8	260	3600	230
WHC7-D20_5	0	NORM	5/12/2014	350	20 J	93	170	300	5.4	430	6600	412
WHC7-P11_3	0	NORM	3/20/2014	3.9 J	0.35 J	1.7 J	2.3 J	1.7 J	0.2 J	7.8 J	51	4.5
WHC7-P11_5	0	NORM	5/12/2014	4.7 J	< 0.65 U	2.1 J	2.8 J	2.8	< 0.19 U	12	110	4.8
WHC8-D09	0	NORM	6/27/2014	25	0.85 J	1.9 J	11	93	0.5 J	14 J	130	22
WHC8-D11	0	NORM	6/27/2014	2.7 J	0.34 J	0.86 J	1.4 J	2.1 J	0.11 J	4.6 J	63	2.6
WHC8-D17	0	NORM	6/27/2014	0.82 J	< 0.072 U	0.1 J	0.31 J	0.7 J	< 0.065 U	1.1 J	6.2 J	0.64
WHC8-D18	0	NORM	6/27/2014	8.5 J	0.68 J	2.8 J	4.1 J	5.6	0.23 J	5.9 J	120	7.3
WHC8-D20	0	NORM	6/27/2014	7.2 J	0.53 J	1.6 J	3.7 J	5.9	0.19 J	7.5 J	120	6.7

All units in pg/g.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

TABLE B-3

SOIL GENERAL CHEMISTRY/IONS DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 9)

									Gener	al Chemisti	ry/Ions					
				Ammonia	ide	ate	ide	de (Total)	ide	e (as N)	e (as N)	Orthophosphate as P	Perchlorate	9	ə	Kjeldahl Nitrogen)
	Depth	Sample	Sample	йш	Bromide	Chlorate	Chloride	Cyanide	Fluoride	Nitrate	Nitrite	tho	rch	Sulfate	Sulfide	Total k (TKN)
Sample ID	(ft bgs)	Type	Date					<u>~</u>				<u>~</u>				
OSC1-BM11	0	NORM	9/21/2009	0.53	< 2.6 U	< 0.49 U	23.5	< 0.12 U	1.3	3.4	< 0.035 U	< 5.2 U	< 0.0105 U	48.2	< 0.87 U	251
OSC1-BM11	10	NORM	9/21/2009	23	< 0.31 U	0.71 J	62.9	< 0.13 U	1.5	< 0.059 U	< 0.039 U	< 0.59 U	< 0.0117 U	90	< 0.98 U	52.1 J
OSC1-BN11	0	NORM	9/22/2009	1.4	< 0.26 U	< 0.48 U	411	< 0.11 U	3.2	41.4	< 0.033 U	5.8	0.00237	7520	< 0.84 U	83.1
OSC1-BN11	5	NORM	9/22/2009	0.88	< 0.27 U	< 0.5 U	403	0.25 J	3	29.6	< 0.035 U	9.6	0.000858 J	9850	< 0.88 U	201
OSC1-BO11	0	NORM	9/16/2009	0.59	< 0.28 U	< 0.51 U	718 J	< 0.12 U	2.9	< 0.054 U	< 0.035 U	< 5.4 U	1.03 J	2360	< 0.89 U	67.5
OSC1-BO11	0	FD	9/16/2009	0.68	< 0.3 U	< 0.54 U	322 J	< 0.13 U	3.9	< 0.058 U	< 0.038 U	< 0.58 U	0.129 J	1980	< 0.95 U	107
OSC1-BO11	5	NORM	9/16/2009	0.9	0.42 J	< 0.6 U	1590	< 0.14 U	10	0.14 J	< 0.83 U	< 0.63 U	0.00424	1890	<1 U	72.8
OSC1-BP11	0	NORM	9/16/2009	0.73	< 0.33 U	< 0.59 U	1250	< 0.14 U	1.5	< 0.063 U	< 0.83 U	< 6.3 U	0.0353	2020	<1 U	79.3
OSC1-BP11	5	NORM	9/16/2009	0.74	< 0.35 U	< 0.64 U	2480	< 0.15 U	1.4	0.88	< 0.89 U	< 0.67 U	0.0484	6150	< 1.1 U	47 J
OSC1-JP06	0	NORM	9/22/2009	< 0.099 U	< 0.32 U	< 0.58 U	41.6	< 0.14 U	2.6	0.46	< 0.041 U	< 6.2 U	0.000607 J	107	<1 U	90.3
OSC1-JP06	5	NORM	9/22/2009	< 0.11 U	< 0.36 U	< 0.65 U	104	< 0.15 U	6	0.53	< 0.045 U	< 0.69 U	< 0.000581 U	272	< 1.1 U	51.9 J
OSC1-JP07	0	NORM	9/21/2009	< 0.54 U	< 0.28 U	< 0.51 U	56.9	< 0.54 U	3.5	0.32	< 0.035 U	< 5.4 U	< 0.0109 U	0.81 J	< 0.89 U	38.1 J
OSC1-JP07	5	NORM	9/21/2009	< 0.63 U	< 0.33 U	< 0.59 U	109	< 0.14 U	4.6	< 0.063 U	< 0.041 U	< 6.3 U	< 0.0127 U	213	< 1 U	38.8 J
OSC1-JP08	0	NORM	9/21/2009	< 0.59 U	< 0.31 U	< 0.56 U	882	< 0.13 U	4.2	1.1	< 0.039 U	< 0.59 U	0.0843	8070	< 0.98 U	159
OSC1-JP08	10	NORM	9/21/2009	1.7	< 0.32 U	< 0.58 U	94	< 0.14 U	3	0.6	< 0.041 U	< 0.62 U	< 0.0113 U	138	< 1 U	35 J
WHC1-BF01	0	NORM	11/24/2008	40.7 J	< 0.25 U	< 0.53 U	48.2	0.51	0.49 J	10.2	1.5	30.7	1.01 J-	675	< 1.8 U	338
WHC1-BF01	12	NORM	11/24/2008	< 0.82 U	1.3 J	< 0.55 U	929	< 0.52 U	1.2	19.1	< 0.42 U	< 0.52 U	0.265 J-	1680	< 1.9 U	< 52.4 U
WHC1-BF02	0	NORM	11/25/2008	8.9	< 0.25 U	< 0.53 U	42.1	< 0.51 U	0.69 J	9	1.2	5.9	0.232 J-	138	< 1.8 U	469 J-
WHC1-BF02	11	NORM	11/25/2008	< 0.81 U	1.9 J	3.1 J	712	< 0.52 U	1.9	12.5	< 0.42 U	0.98 J	0.55	15700	< 1.8 U	55 J-
WHC1-BF03	0	NORM	11/25/2008	4.6 J	10.7	< 0.54 U	3880	1.1	0.59 J	279	< 2 U	< 0.51 U	4.07	938	< 1.8 U	179 J-
WHC1-BF03	10	NORM	11/25/2008	< 0.81 U	3.1	< 0.55 U	773	< 0.52 U	1.1	32.5	< 2.1 U	< 0.52 U	0.165	1160	< 1.8 U	42.8 J-
WHC1-BF04	0	NORM	11/25/2008	2.5 J	1 J	< 0.54 U	1780	< 0.51 U	0.36 J	21.1 J	< 2 U	1.2 J	2.92	1800 J	< 1.8 U	246 J-
WHC1-BF04	0	FD	11/25/2008	< 0.84 U	< 0.27 U	< 0.57 U	1560	< 0.085 U	0.8 J	5.5 J	< 2.1 U	< 0.54 U	2.14	4320 J	< 1.9 U	218 J-
WHC1-BF04	10	NORM	11/25/2008	< 0.84 U	< 0.27 U	< 0.57 U	578	< 0.54 U	1.5	3.4	< 0.43 U	< 0.54 U	1.5	17100	< 1.9 U	58.7 J-
WHC1-BF05	0	NORM	11/25/2008	< 5.2 U	1.8 J	< 0.55 U	6320	< 0.082 U	1	105	< 4.1 U	< 5.2 U	2.81	8320	< 1.8 U	193 J+
WHC1-BF05	12	NORM	12/10/2008	< 1.1 U	< 0.36 U	< 0.75 U	773	< 0.11 U	6.7	9.3	< 0.029 U	< 0.71 U	2.56	1210	< 2.5 U	194 J+
WHC1-BF06	0	NORM	12/10/2008	< 5.2 U	3.7	< 0.55 U	2160	< 0.082 U	1	93.7	< 2.1 U	< 5.2 U	0.35	12700	< 1.8 U	176 J+
WHC1-BF06	10	NORM	12/10/2008	< 1.1 U	< 0.34 U	1.7 J	286	1.2	13.5	3.4	< 0.027 U	< 0.68 U	10.6	526	< 2.4 U	211 J+
WHC1-BG01	0	NORM	11/24/2008	4.5 J	< 0.25 U	< 0.53 U	285	< 0.5 U	0.44 J	132	< 0.02 U	4.2 J	1.02 J-	572	< 1.8 U	638
WHC1-BG01	11	NORM	11/24/2008	< 0.81 U	< 0.26 U	< 0.55 U	41.7	< 0.52 U	1.9	16.7	< 0.021 U	3.9 J	0.283 J-	185	< 1.8 U	96.9
WHC1-BG02	0	NORM	11/24/2008	2.2 J	< 0.25 U	< 0.54 U	19.9	< 0.51 U	0.31 J	15.5	< 0.02 U	3.5 J	0.237 J-	244	< 1.8 U	315
WHC1-BG02	0	FD	11/24/2008	1.9 J	< 0.26 U	< 0.54 U	16.3	< 0.51 U	0.59 J	10.9	< 0.02 U	2.4 J	0.255 J-	265	< 1.8 U	311 J-
WHC1-BG02	10	NORM	11/24/2008	0.9 J	0.84 J	< 0.55 U	793	< 0.52 U	1.2	33.7	< 0.21 U	< 0.52 U	0.676 J-	14000	< 1.8 U	163 J-
WHC1-BG03	0	NORM	12/11/2008	< 5.1 U	< 0.25 U	< 0.53 U	3.9	< 0.08 U	0.47 J	3.5	0.53	4 J	0.0733	14.2	< 1.8 U	329
WHC1-BG03	11	NORM	12/11/2008	< 0.8 U	< 0.26 U	< 0.54 U	54	< 0.081 U	5.4	0.5	< 2.1 U	< 0.51 U	0.204	477	< 1.8 U	< 51.5 U
WHC1-BG04	0	NORM	12/11/2008	< 5.1 U	< 0.25 U	< 0.53 U	60.1	1.9	< 0.1 U	7.2	2.5	12.8	0.557	38.6	< 1.8 U	607
WHC1-BG04	10	NORM	12/11/2008	< 1 U	< 0.33 U	< 0.7 U	384	0.51 J	2.8	2.3	7.1	< 0.66 U	0.213	2570	< 2.3 U	117

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 9)

									Gener	al Chemisti	ry/Ions					
								al)		_		ate as P				Fotal Kjeldahl Nitrogen (TKN)
	Depth	Sample	Sample	Ammonia	Bromide	Chlorate	Chloride	Cyanide (Total)	Fluoride	Nitrate (as N)	Nitrite (as N)	Orthophosphate	Perchlorate	Sulfate	Sulfide	Total Kjeldah (TKN)
Sample ID	(ft bgs)	Type	Date							[
WHC1-BG05	0	NORM	11/25/2008	3.7 J	< 25.6 U	< 0.54 U	30900	< 0.51 U	< 0.1 U	263	< 20.5 U	0.77 J	4.28	19400	< 1.8 U	197 J-
WHC1-BG05	10	NORM	11/25/2008	< 0.89 U	0.52 J	< 0.6 U	1980	< 0.57 U	1.6	27.1	< 4.6 U	1 J	1.12	18400	< 2 U	69.9 J-
WHC1-BG06	0	NORM	12/10/2008	< 0.81 U	< 0.26 U	< 0.55 U	1080	< 0.082 U	1.2	3.6	< 2.1 U	< 5.2 U	0.205	2570	< 1.8 U	211
WHC1-BG06	10	NORM	12/10/2008	< 0.98 U	< 0.32 U	0.74 J	194	< 0.1 U	9.3	1.3	< 0.025 U	< 6.3 U	5.12	344	< 2.2 U	84.3 J+
WHC1-BH01	0	NORM	12/3/2008	< 0.8 U	< 0.26 U	< 0.54 U	7.9	< 0.081 U	0.58	9.6	0.27	2.2	0.0429	40.6	< 1.8 U	271
WHC1-BH01	11	NORM	12/3/2008	< 0.81 U	< 0.26 U	< 0.55 U	6.6	< 0.082 U	1.5	1.5	< 0.021 U	< 0.52 U	0.0317 J	39.1	< 1.8 U	67.9
WHC1-BH02	0	NORM	12/4/2008	< 0.8 U	< 0.26 U	< 0.54 U	11	0.21 J	< 0.1 U	9.7	1.8	11.9	0.237	29.4	< 1.8 U	200
WHC1-BH02	10	NORM	12/4/2008	< 0.79 U	< 0.25 U	< 0.54 U	33.7	0.089 J	1.5	4	< 0.02 U	0.72 J	0.0585	89	< 1.8 U	134
WHC1-BH03	0	NORM	12/9/2008	1.1 J	< 0.26 U	< 0.54 U	5.8	< 0.51 U	< 0.1 U	3.8	0.72	6	0.0948	15.6	< 1.8 U	312
WHC1-BH03	10	NORM	12/9/2008	< 0.81 U	< 0.26 U	< 0.55 U	267	< 0.082 U	1.5	1.7	3	< 0.52 U	0.189	6230	< 1.8 U	62.1
WHC1-BH04	0	NORM	12/11/2008	< 5.1 U	< 0.25 U	< 0.54 U	5.4	< 0.08 U	0.57 J	2	0.43	1.9 J	1.56	22.7	< 1.8 U	352
WHC1-BH04	10	NORM	12/11/2008	< 0.81 U	< 0.26 U	< 0.55 U	50.3	0.9	1.5	0.29	0.65	< 0.52 U	0.148	4140	< 1.8 U	< 52.1 U
WHC1-BH05	0	NORM	12/9/2008	< 0.8 U	< 0.26 U	< 0.54 U	41.8 J	< 0.52 U	< 0.1 U	11.7 J	0.99	9.2	0.805 J	195 J	< 1.8 U	620
WHC1-BH05	0	FD	12/9/2008	< 0.81 U	< 0.26 U	4.5 J	101 J	< 0.52 U	< 0.1 U	31 J	1.2	6.4	0.39 J	1010 J	< 1.8 U	545
WHC1-BH05	10	NORM	12/9/2008	< 0.82 U	3.5	< 0.55 U	2830	< 0.52 U	0.75 J	15	31 J	< 0.52 U	0.83	17100	< 1.9 U	45.9 J
WHC1-BH06	0	NORM	12/11/2008	< 0.86 U	< 2.8 U	< 5.8 U	30900	< 0.087 U	< 1.1 U	16	486	< 5.5 U	< 0.0114 U	43400	< 2 U	393
WHC1-BH06	0	FD	12/11/2008	< 0.85 U	9.1	< 0.57 U	18600	< 0.086 U	< 0.11 U	18.8	295	7	< 0.0107 U	28000	< 1.9 U	327
WHC1-BH06	10	NORM	12/11/2008	< 0.89 U	< 0.29 U	< 0.61 U	244	< 0.091 U	2.1	0.34	4.3	< 0.57 U	0.108	1590	< 2 U	69.3
WHC1-BI01	0	NORM	12/3/2008	< 0.86 U	< 0.27 U	4.2	205	< 0.087 U	0.9	14.7	3.6	0.82	0.199	4780	< 1.9 U	113
WHC1-BI01	11	NORM	12/3/2008	< 0.82 U	< 0.26 U	< 0.55 U	145	< 0.083 U	1.3	2.7	1.3	< 0.52 U	0.149	5920	< 1.9 U	66.1
WHC1-BI02	0	NORM	12/4/2008	< 0.82 U	< 0.26 U	< 0.55 U	22	0.12 J	< 0.11 U	16.9	1.9	10.3	0.0879	195	< 1.9 U	527
WHC1-BI02	3	NORM	12/4/2008	< 0.8 U	1.6 J	< 0.54 U	467	< 0.081 U	1.3	1.7	< 1 U	< 0.51 U	0.148	4800 J+	< 1.8 U	142
WHC1-BI02	13	NORM	12/4/2008	< 0.8 U	1.9 J	< 0.54 U	694	< 0.081 U	2	1	< 1 U	< 0.51 U	0.0713	1180 J+	< 1.8 U	64.8
WHC1-BI03	0	NORM	12/4/2008	< 5.2 U	< 0.26 U	< 0.55 U	3.3	< 0.082 U	0.52 J	3.8	0.86	3 J	0.0211 J	19.6 J+	< 1.8 U	182
WHC1-BI03	11	NORM	12/4/2008	< 0.79 U	< 0.25 U	< 0.54 U	180	< 0.08 U	1.7	2	< 0.2 U	< 0.51 U	0.0765	179 J+	< 1.8 U	49.8 J
WHC1-BI04	0	NORM	12/8/2008	< 0.8 U	< 0.26 U	3.1 J	5	< 0.51 U	0.24 J	2.8	0.45	5.2	0.0931	15.2	< 1.8 U	169
WHC1-BI04	10	NORM	12/9/2008	< 0.82 U	< 0.26 U	< 0.56 U	159	< 0.53 U	2.2	0.75	1.9	< 0.53 U	0.242	1750	< 1.9 U	66.4
WHC1-BI05	0	NORM	12/9/2008	< 0.8 U	< 0.26 U	< 0.54 U	20.5	< 0.52 U	< 0.1 U	5.4	0.38	3.5 J	0.146	67.2	< 1.8 U	258
WHC1-BI05	10	NORM	12/9/2008	< 0.81 U	0.81 J	< 0.55 U	763	< 0.52 U	1.4	3.3	7.6 J	< 0.52 U	1.34	1440	< 1.9 U	46.1 J
WHC1-BJ01	0	NORM	12/3/2008	< 0.81 U	< 0.26 U	< 0.55 U	7	< 0.082 UJ	1.2	7.8	1.6	1.2	< 0.0104 U	564	< 1.8 U	159
WHC1-BJ01	3	NORM	12/3/2008	< 0.81 U	< 0.26 U	< 0.55 U	9.1	< 0.083 U	2	3.6	< 0.021 U	< 0.52 U	0.022 J	297	< 1.8 U	75.8
WHC1-BJ01	13	NORM	12/3/2008	< 0.83 U	< 0.27 U	< 0.56 U	7.2	< 0.084 U	2.3	2.1	< 0.021 U	< 0.53 U	0.0311 J	730	< 1.9 U	81.2
WHC1-BJ02	0	NORM	12/2/2008	< 5.2 U	< 0.26 U	< 0.55 U	5.9	< 0.52 U	0.41	8.4	0.25	3.4	0.0168 J	20.6	< 1.9 U	174
WHC1-BJ02	0	FD	12/2/2008	< 5.2 U	< 0.26 U	< 0.55 U	3.8	< 0.52 U	< 0.1 U	8.3	0.13	3.1	0.0208 J	19.3	< 1.8 U	192
WHC1-BJ02	12	NORM	12/2/2008	< 0.81 U	0.99	< 0.55 U	336	< 0.52 U	1.4	7	2.9	< 0.52 U	0.375	777	< 1.8 U	94.2
WHC1-BJ03	0	NORM	12/4/2008	5.1	< 0.26 U	< 0.54 U	24.8	< 0.081 U	0.85 J	2.1	1.8	2.4 J	0.0852 J	137 J+	< 1.8 U	174
WHC1-BJ03	0	FD	12/4/2008	5.9	< 0.26 U	< 0.54 U	18.6	0.1 J	0.86 J	2	1.2	2.4 J	0.0266 J	82.9 J+	< 1.8 U	178
	V	1.0	12/1/2000	5.7	. 0.20	. 0.5 1 0	10.0	0.13	0.003		1.2	2.13	5.02003	02.75	\ 1.0 0	170

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 9)

									Gener	al Chemisti	ry/Ions					
				nia	de	te	je Je	Cyanide (Total)	le	(as N)	(as N)	Orthophosphate as P	orate			Fotal Kjeldahl Nitrogen (TKN)
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Ammonia	Bromide	Chlorate	Chloride	yanic	Fluoride	Nitrate	Nitrite	rthop	Perchlorate	Sulfate	Sulfide	Total K (TKN)
WHC1-BJ03	12	NORM	12/4/2008	< 0.81 U	1.4 J	< 0.55 U	798	0.094 J	1.7	0.77	< 1 U	< 0.52 U	0.103	1190 J+	< 1.9 U	64.2
WHC1-BJ04	0	NORM	12/4/2008	< 5.1 U	< 0.25 U	< 0.54 U	3.7	< 0.08 U	0.45 J	1.5	0.3	3.3 J	0.0445	12.8 J+	< 1.8 U	166
WHC1-BJ04	11	NORM	12/4/2008	< 0.81 U	0.62 J	< 0.55 U	720	< 0.082 U	2	1	< 1 U	< 0.52 U	0.0439	1450 J+	< 1.8 U	78.5
WHC1-BJ05	0	NORM	12/11/2008	< 0.8 U	< 0.26 U	< 0.54 U	299	< 0.081 U	1.1	6.7	4.1	1.8 J	0.0756	8490 J+	< 1.8 U	101
WHC1-BJ05	10	NORM	12/11/2008	< 0.82 U	< 0.26 U	< 0.55 U	235	< 0.083 U	4.2	0.12 J	4.2	< 0.52 U	0.213	408	< 1.9 U	70.6
WHC1-BK01	0	NORM	12/3/2008	0.89	< 0.26 U	< 0.55 U	10	< 0.083 U	1.2	1.9	0.7	0.75	0.0502	10400	< 1.9 U	190
WHC1-BK01	0	FD	12/3/2008	< 0.82 U	< 0.26 U	< 0.55 U	16.4	< 0.083 U	1.1	3	0.9	< 0.53 U	0.0326 J	11800	< 1.9 U	172
WHC1-BK01	10	NORM	12/3/2008	< 0.82 U	< 0.26 U	< 0.56 U	1260	< 0.083 U	1.8	5.3	15.2	< 0.53 U	0.163	3810	< 1.9 U	82.8
WHC1-BK02	0	NORM	12/8/2008	< 0.8 U	< 0.26 U	< 0.54 U	38.1	< 0.081 U	0.53 J	10.3	0.45	< 5.1 U	0.0395 J	125	< 1.8 U	112
WHC1-BK02	11	NORM	12/18/2008	< 0.83 U	< 0.26 U	< 0.56 U	1030	< 0.084 U	0.88 J	1.2	19.6	< 0.53 U	0.0358 J	890	< 1.9 U	71.5
WHC1-BK03	0	NORM	12/15/2008	< 0.8 U	< 0.26 U	< 0.55 U	15	< 0.52 U	1	6.5	0.13 J	< 0.52 U	0.0214 J	288	< 1.8 U	350
WHC1-BK03	12	NORM	12/18/2008	< 0.82 U	< 0.26 U	< 0.56 U	333	< 0.083 U	1.2	1.8	5.2	< 0.53 U	0.0454	201	< 1.9 U	74.6
WHC1-BK04	0	NORM	12/4/2008	< 0.81 U	< 0.26 U	< 0.55 U	3.1	< 0.082 U	0.54 J	2.4	0.45	0.89 J	0.0404 J	5500 J+	< 1.8 U	126
WHC1-BK04	10	NORM	12/4/2008	< 0.81 U	0.93 J	< 0.55 U	854	< 0.083 U	2.6	3.5	< 2.1 U	< 0.52 U	0.285	13000 J+	< 1.9 U	48.5 J
WHC1-BK05	0	NORM	12/12/2008	1.5 J	0.64 J	< 0.54 U	56.5	0.87	< 0.1 U	2.9	0.44	< 5.1 U	0.149	220	< 1.8 U	287
WHC1-BK05	11	NORM	12/12/2008	< 0.81 U	< 0.26 U	< 0.55 U	118	< 0.082 U	2.4	0.5	< 0.021 U	< 5.2 U	0.283	99.2	< 1.8 U	34.6 J
WHC1-BL01	0	NORM	12/3/2008	< 0.81 U	< 0.26 U	< 0.55 U	9.6	< 0.082 U	1.7	1.5	0.43	0.75	0.0374 J	14800	< 1.8 U	174
WHC1-BL01	10	NORM	12/3/2008	< 0.81 U	2.7	< 0.55 U	814	< 0.082 U	1.6	42.2	7	< 0.52 U	0.0662	15800	< 1.8 U	179
WHC1-BL02	0	NORM	12/2/2008	< 0.8 U	< 0.26 U	< 0.55 U	7.9	< 0.082 U	0.57	8	0.77	2.1	0.194	44.3	< 1.8 U	168
WHC1-BL02	10	NORM	12/2/2008	< 0.84 U	2.5	< 0.57 U	1800	< 0.086 U	2.1	0.63	12.9	< 0.54 U	0.0557	1770	< 1.9 U	60.8
WHC1-BL03	0	NORM	12/8/2008	< 0.81 U	< 0.26 U	< 0.55 U	7.4	< 0.52 U	1.8	3.5	< 0.021 U	< 0.52 U	0.0272 J	1070	< 1.8 U	223
WHC1-BL03	10	NORM	12/18/2008	< 0.82 U	< 0.26 U	< 0.55 U	542	< 0.083 U	1.1	14.9	8	< 0.52 U	0.296	2020	< 1.9 U	112
WHC1-BL04	0	NORM	12/17/2008	< 0.82 U	< 0.26 U	< 0.56 U	1 J	< 0.53 U	0.84 J	1.3	< 0.021 U	< 0.53 U	0.0159 J	7.5	< 1.9 U	148
WHC1-BL04	12	NORM	12/22/2008	< 0.81 U	< 0.26 U	< 0.55 U	247	< 0.082 U	1.4	3.2	< 0.021 U	< 0.52 U	0.0562	297	< 1.8 U	72.6
WHC1-BL05	0	NORM	11/21/2008	< 0.79 U	< 0.25 U	< 0.54 U	5.1	< 0.51 U	1.6	1.5	< 0.02 U	< 0.51 U	0.0206 J	177	< 1.8 U	66.6
WHC1-BL05	10	NORM	11/21/2008	< 0.81 U	< 0.26 U	< 0.55 U	69.9	< 0.52 U	1.6	0.82	< 0.021 U	< 0.52 U	0.12	99	< 1.8 U	< 52.2 U
WHC1-BL06	0	NORM	11/21/2008	< 0.8 U	< 0.26 U	< 0.54 U	712	0.57	0.22 J	36.3	< 1 U	27.8	0.0774	128	< 1.8 U	84.4
WHC1-BL06	11	NORM	11/21/2008	< 0.82 U	< 0.26 U	< 0.56 U	128	0.61	4.3	6	< 0.021 U	102	0.0185 J	127	< 1.9 U	62
WHC1-BL07	0	NORM	11/21/2008	4.4 J	1.8 J	< 0.54 U	7700	< 0.51 U	1.4	130	< 2.1 U	8.1	0.523	1370	< 1.8 U	72.5
WHC1-BL07	10	NORM	11/21/2008	< 1 U	< 0.33 U	< 0.7 U	124	< 0.66 U	0.72 J	2.5	< 0.026 U	7.6	0.0283 J	262	< 2.3 U	< 65.9 U
WHC1-BL08	0	NORM	11/18/2008	< 0.82 U	< 0.26 U	12.1	4400	< 0.083 U	0.62 J	59.9	< 0.21 U	< 0.53 U	0.135	2690	< 1.9 U	45.8 J
WHC1-BL08	10	NORM	11/18/2008	< 0.82 U	< 0.26 U	< 0.56 U	192	< 0.084 U	1.2	4	< 0.021 U	< 0.53 U	0.0194 J	221	< 1.9 U	34 J
WHC1-BL11	0	NORM	11/18/2008	< 0.81 U	< 0.26 U	< 0.55 U	225	< 0.52 U		7.9	< 0.021 U	0.86 J	0.105	1220	< 1.8 U	68.1
WHC1-BL11	12	NORM	11/18/2008	< 0.83 U	< 0.27 U	< 0.56 U	47.3	< 0.53 U	0.89 J	0.6	< 0.021 U	< 0.53 U	< 0.0105 U	78.8	< 1.9 U	72.5
WHC1-BM01	0	NORM	12/3/2008	< 0.83 U	< 0.27 U	< 0.56 U	85	< 0.084 U	0.58	3.6	1.2	4	0.0708 J+	1130	< 1.9 U	1130
WHC1-BM01	10	NORM	12/3/2008	< 0.8 U	1	< 0.54 U	309	< 0.082 U	1.8	15.8	3.8	< 0.52 U	0.323	814	< 1.8 U	43
WHC1-BM02	0	NORM	12/2/2008	< 20.6 U	< 0.26 U	< 0.54 U	10.8	< 0.081 U	0.41	5.3	0.36	3.9	< 0.0108 U	34.8	< 1.8 U	121

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 9)

									Gener	al Chemisti	y/Ions					
				nia	le	te	le	Cyanide (Total)	e	(as N)	(as N)	Orthophosphate as P	orate			Fotal Kjeldahl Nitrogen (TKN)
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Ammonia	Bromide	Chlorate	Chloride	yanid	Fluoride	Nitrate	Nitrite	rthop	erchlorate	Sulfate	Sulfide	Total K (TKN)
WHC1-BM02	12	NORM	12/2/2008	< 0.83 U	< 0.27 U	< 0.56 U	9.1	< 0.084 U	0.93	1.2	< 0.021 U	< 0.53 U	< 0.0106 U	814	< 1.9 U	51.5
WHC1-BM03	0	NORM	12/8/2008	< 0.8 U	< 0.27 U	< 0.54 U	11.3	< 0.51 U	1.2	8.4	0.14 J	< 5.1 U	0.0521	174	< 1.8 U	274
WHC1-BM03	10	NORM	12/18/2008	< 0.84 U	< 0.27 U	< 0.57 U	42.6	< 0.085 U	1.8	0.93	0.52	< 0.54 U	0.0394 J	1810	< 1.9 U	< 53.7 U
WHC1-BM04	0	NORM	12/17/2008	< 5.2 U	< 0.26 U	< 0.55 U	44.8 J	< 0.52 U	< 0.1 U	23 J	1.5 J	< 5.2 U	1.3 J	69.7	< 1.8 U	153
WHC1-BM04	0	FD	12/17/2008	< 0.81 U	< 0.26 U	< 0.55 U	16.3 J	< 0.52 U	< 0.1 U	13.3 J	< 0.021 U	< 5.2 U	0.0639 J	48.6	< 1.8 U	207
WHC1-BM04	10	NORM	12/22/2008	< 0.81 U	< 0.26 U	< 0.55 U	350	< 0.52 U	1.1	1	< 0.021 U	< 0.52 U	0.185	331	< 1.8 U	73.4
WHC1-BM05	0	NORM	11/21/2008	1 J	< 0.25 U	3.1 J	12	< 0.5 U	< 0.1 U	1.5	< 0.02 U	1.2 J	0.0404 J	24.3	< 1.8 U	58.2
WHC1-BM05	10	NORM	11/21/2008	< 0.81 U	< 0.26 U	< 0.55 U	25.1	< 0.52 U	0.89 J	0.26	< 0.021 U	< 0.52 U	0.124	52.3	< 1.8 U	< 51.9 U
WHC1-BM06	0	NORM	11/21/2008	2 J	< 0.26 U	< 0.54 U	21 J	< 0.51 U	< 0.1 U	4.6 J	0.21	4.1 J	0.0175 J	29.4 J	< 1.8 U	73.2
WHC1-BM06	0	FD	11/21/2008	< 0.85 U	< 0.27 U	< 0.58 U	2.6 J	< 0.54 U	< 0.11 U	0.73 J	< 0.022 U	20.7 J	< 0.0107 U	8.5 J	< 1.9 U	71.6
WHC1-BM06	10	NORM	11/21/2008	< 0.81 U	< 0.26 U	< 0.55 U	15.6	< 0.52 U	4.9	0.96	< 0.021 U	167	0.1	37.5	< 1.8 U	< 51.9 U
WHC1-BM07	0	NORM	11/20/2008	< 0.8 U	< 0.26 U	43.1	3570	< 0.51 U	1	92.1	< 0.41 U	< 0.51 U	7.53 J-	5810	< 1.8 U	133
WHC1-BM07	11	NORM	11/20/2008	< 0.81 U	< 0.26 U	< 0.55 U	603	< 0.083 U	2.2	13.1	< 0.42 U	< 0.52 U	0.0423 J-	875	< 1.9 U	28.8 J
WHC1-BM08	0	NORM	11/18/2008	< 0.8 U	0.95 J	35.1 J	3310 J	0.57	0.24 J	93.7 J	< 0.21 U	< 0.52 U	1	8790 J	< 1.8 U	227 J
WHC1-BM08	0	FD	11/18/2008	< 0.9 U	< 0.29 U	5.3 J	798 J	< 0.58 U	< 0.12 U	9.3 J	< 0.23 U	< 0.58 U	0.825	1100 J	< 2 U	107 J
WHC1-BM08	11	NORM	11/18/2008	< 0.84 U	0.57 J	12.6	1230	< 0.54 U	0.48 J	37.3	< 0.22 U	< 0.54 U	< 0.0108 U	1350	< 1.9 U	78.8
WHC1-BM09	0	NORM	11/18/2008	1.1 J	1 J	< 0.55 U	5320	0.72	0.19 J	102	< 2.1 U	1.7 J	0.972	9220	< 1.8 U	158
WHC1-BM09	12	NORM	11/18/2008	< 0.81 U	1.6 J	< 0.55 U	3190	0.52 J	0.89 J	60.3	< 0.21 U	1 J		7350	< 1.9 U	43 J
WHC1-BM10	0	NORM	11/18/2008	< 0.82 U	< 0.26 U	2.1 J	42.4	< 0.53 U	1.4	0.65	< 0.021 U	1.5 J	< 0.0107 U	15300	< 1.9 U	37.7 J
WHC1-BM10	3	NORM	11/18/2008	< 0.84 U	< 0.27 U	< 0.57 U	52.1	< 0.54 U	6.7	0.22	< 0.021 U	< 0.54 U	1.13	233	< 1.9 U	67.8
WHC1-BM10	13	NORM	11/18/2008	<1 U	< 0.32 U	< 0.68 U	157	< 0.64 U	3.4	0.46	< 0.026 U	< 0.64 U	< 0.0121 U	232	< 2.3 U	43.5 J
WHC1-BN01	0	NORM	12/1/2008	< 0.82 U	< 0.26 U	< 0.56 U	73.5	< 0.53 U	2.4	3.4	< 0.21 U	< 0.53 UJ	0.247	484	< 1.9 U	145
WHC1-BN01	12	NORM	12/1/2008	< 0.81 U	< 0.26 U	< 0.55 U	1300	< 0.082 U	< 0.1 U	8.2	< 2.1 U	< 0.52 UJ	0.0771	9710	< 1.8 U	52.8
WHC1-BN02	0	NORM	12/1/2008	< 0.82 U	< 0.26 U	< 0.56 U	1.2 J	< 0.53 U	0.82 J	3.3 J	< 0.021 U	< 3.5 UJ	< 0.0106 UJ	8	< 1.9 U	210
WHC1-BN02	0	FD	12/1/2008	< 0.82 U	< 0.26 U	< 0.55 U	1.8 J	< 0.083 U	1	6.2 J	< 0.021 U	< 2.2 UJ	0.66 J	12.8	< 1.9 U	164
WHC1-BN02	11	NORM	12/1/2008	< 0.8 U	1 J	< 0.54 U	454	< 0.51 U	1.9	49.3	< 0.41 U	< 0.51 UJ	0.18	2630	< 1.8 U	83.1
WHC1-BN03	0	NORM	12/17/2008	< 0.83 U	< 0.26 U	< 0.56 U	13.4	< 0.53 U	0.93 J	9.7	< 0.021 U	< 5.3 U	0.0209 J	67.9	< 1.9 U	294
WHC1-BN03	10	NORM	12/18/2008	< 0.81 U	< 0.26 U	< 0.55 U	500	< 0.082 U	2.3	1.2	9.7	< 0.52 U	0.0614	453	< 1.8 U	67.3
WHC1-BN04	0	NORM	12/17/2008	< 0.81 U	< 0.26 U	< 0.55 U	5.6	< 0.52 U	< 0.1 U	1.2	< 0.021 U	< 5.2 U	0.0174 J	52.8	< 1.8 U	61.1
WHC1-BN04	7	NORM	12/22/2008	< 0.81 U	< 0.26 U	< 0.55 U	5.3	< 0.52 U	0.91 J	0.27	< 0.021 U	< 0.52 U	0.0528	84	< 1.8 U	82.9
WHC1-BN04	17	NORM	12/22/2008	< 0.82 U	< 0.26 U	< 0.56 U	7.6	< 0.53 U	1.6	0.29	< 0.021 U	< 5.3 U	0.0298 J	81.7	< 1.9 U	58.2
WHC1-BN05	0	NORM	11/20/2008	2 J	< 0.25 U	< 0.53 U	5.3 J	< 0.5 U	0.81 J	0.95 J	< 0.02 U	1.8 J	< 0.0103 UJ	30.5	< 1.8 U	80.4
WHC1-BN05	0	FD	11/20/2008	< 0.79 U	< 0.25 U	< 0.54 U	29.6 J	< 0.51 U	0.72 J	3.3 J	< 0.02 U	2.2 J	< 0.0103 UJ	50.5	< 1.8 U	99.9
WHC1-BN05	10	NORM	11/20/2008	< 0.82 U	4.8	< 0.55 U	90.3	< 0.083 U	1.6	0.75	< 0.021 U	< 5.2 U	0.121 J-	159	< 1.9 U	31 J
WHC1-BN06	0	NORM	11/20/2008	< 0.79 U	< 0.25 U	1.5 J	91.6	< 0.08 U	1.8	1	< 0.02 U	< 5.1 U	0.0386 J-	168	< 1.8 U	108
WHC1-BN06	10	NORM	11/20/2008	< 0.81 U	< 0.26 U	< 0.55 U	35.8	< 0.52 U	1.6	0.35	< 0.021 U	< 0.52 U		70	< 1.8 U	26.5 J
WHC1-BN07	0	NORM	11/21/2008	< 0.81 U	< 0.26 U	2.2 J	189	< 0.52 U	< 0.1 U	12.2	< 0.021 U	< 0.52 U	1.32	147	< 1.8 U	98.7

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 9)

									Gener	al Chemistr	y/Ions					
				nia	le	e e	le	le (Total)	le	(as N)	(as N)	Orthophosphate as P	Perchlorate			Kjeldahl Nitrogen)
	Depth	Sample	Sample	Ammonia	Bromide	Chlorate	Chloride	Cyanide	Fluoride	Nitrate	trite	hop	chlc	Sulfate	Sulfide	Total K (TKN)
Sample ID	(ft bgs)	Type	Date	An	Bro	Ch	Ch	Cy	Flu	Nït	Nït	Ort	Per	Su]	[nS	Tol (TI
WHC1-BN07	3	NORM	11/21/2008	< 0.81 U	< 0.26 U	3.1 J	145	< 0.52 U	0.56 J	2.6	< 0.021 U	4.9 J	0.956	62.1	< 1.8 U	60
WHC1-BN07	13	NORM	11/21/2008	< 0.81 U	< 0.26 U	< 0.55 U	79.2	< 0.52 U	1.1	2	< 0.021 U	< 0.52 U	0.105	81.1	< 1.8 U	54
WHC1-BN08	0	NORM	11/20/2008	< 0.79 U	< 0.25 U	< 0.54 U	411	< 0.51 U	1.5	18.7	< 0.41 U	< 0.51 U	0.34 J-	1620	< 1.8 U	110
WHC1-BN08	10	NORM	11/20/2008	< 0.8 U	< 0.26 U	< 0.54 U	292	< 0.51 U	2	8.1	< 0.02 U	< 5.1 U	0.0851 J-	335	< 1.8 U	112
WHC1-BN09	0	NORM	12/17/2008	< 0.82 U	< 0.26 U	6.4	987	< 0.53 U	2.4	14	17.8	6.3	0.326	920	< 1.9 U	71.1
WHC1-BN09	11	NORM	12/19/2008	< 0.86 U	< 0.28 U	< 0.58 U	277	< 0.087 U	7.5	0.6	< 0.022 U	< 5.5 U	< 0.0109 U	888	< 2 U	139
WHC1-BN10	0	NORM	11/18/2008	< 0.86 U	< 0.27 U	< 0.58 U	118	< 0.55 U	2.9	0.41	< 0.022 U	< 0.55 U	< 0.0114 U	405	< 1.9 U	113
WHC1-BN10	10	NORM	11/18/2008	< 0.94 U	< 0.3 U	< 0.64 U	105	< 0.095 U	3.8	< 0.029 U	< 0.024 U	< 0.6 U	< 0.0118 U	207	< 2.1 U	20.4 J
WHC1-BO01	0	NORM	12/2/2008	< 5.2 UJ	< 0.26 U	< 0.55 U	5.6 J	< 0.52 U	< 0.1 U	4.2	0.33 J	< 0.52 U	0.0208 J	141	< 1.8 U	92.7
WHC1-BO01	0	FD	12/2/2008	< 0.81 U	< 0.26 U	< 0.55 U	2.3 J	< 0.52 U	0.69	3	< 0.021 U	< 0.52 U	0.904	109	< 1.8 U	113
WHC1-BO01	4	NORM	12/2/2008	< 0.8 U	< 0.26 U	1.8	1290	< 0.51 U	1.6	64.9	10.7	< 0.51 U	0.303	1890	< 1.8 U	97.2
WHC1-BO01	14	NORM	12/2/2008	< 0.84 U	1.8	1.9	857	< 0.086 U	1.7	22.4	6	< 0.54 U	0.0271 J	18500	< 1.9 U	48.5
WHC1-BO02	0	NORM	12/1/2008	1.3 J	0.75 J	< 0.55 U	327	< 0.082 U	1.4	6.2	< 0.21 U	< 1.7 UJ	0.131	3840	< 1.8 U	122
WHC1-BO02	12	NORM	12/1/2008	< 0.81 U	2.3 J	< 0.55 U	1100	< 0.52 U	1.2	7.7	< 2.1 U	< 0.52 UJ	< 0.0104 U	19200	< 1.8 U	95.7
WHC1-BO03	0	NORM	12/15/2008	< 5.2 U	< 0.26 U	< 0.54 U	19.9	< 0.52 U	0.45 J	13.2	0.33	17.5	0.0728	33.1	< 1.8 U	712
WHC1-BO03	12	NORM	12/19/2008	< 0.81 U	2 J	< 0.55 U	535	< 0.52 U	1.8	16.7	< 0.021 U	< 5.2 U	< 0.0104 U	15500	< 1.8 U	78.2
WHC1-BO04	0	NORM	12/15/2008	< 0.83 U	< 0.27 U	< 0.56 U	9.4	< 0.53 U	0.42 J	6.8	< 0.021 U	5.8	0.0393 J	13.2	< 1.9 U	213
WHC1-BO04	12	NORM	12/19/2008	< 0.82 U	5	< 0.55 U	1210	< 0.52 U	0.58 J	1.1	< 0.021 U	< 5.2 U	< 0.0104 U	14600	< 1.9 U	44.5 J
WHC1-BO05	0	NORM	11/20/2008	< 0.89 U	< 0.28 U	< 0.6 U	361	< 0.57 U	0.65 J	17.9	< 0.23 U	< 0.57 U	0.0404 J-	343	< 2 U	40.9 J
WHC1-BO05	10	NORM	11/20/2008	< 0.9 U	< 0.29 U	< 0.61 U	65.8	< 0.091 U	0.56 J	0.49	< 0.23 U	< 0.58 U	0.0638 J-	114	< 2 U	25.5 J
WHC1-BO06	0	NORM	11/20/2008	< 0.86 U	0.86 J	1.4 J	1030	< 0.55 U	1.1	13.5	< 0.22 U	< 0.55 U	0.0356 J-	272	< 2 U	62.6
WHC1-BO06	10	NORM	11/20/2008	< 0.88 U	< 0.28 U	< 0.6 U	775	< 0.09 U	2.2	9	< 0.23 U	< 0.57 U	0.274 J-	567	< 2 U	80.6
WHC1-BO07	0	NORM	11/19/2008	< 0.79 U	1.8 J	< 0.54 U	3490	0.59	3.5	156	< 4.1 U	6.8	3.4	2490	< 1.8 U	205
WHC1-BO07	10	NORM	11/19/2008	< 0.81 U	< 0.26 U	< 0.55 U	523	< 0.52 U	1.7	16.4	< 0.41 U	3.8 J	0.0968	288	< 1.8 U	84.3
WHC1-BO08	0	NORM	11/20/2008	< 0.81 U	< 0.26 U	< 0.55 U	3600	< 0.52 U	1.2	33.8	214 J	< 0.52 U	0.606 J	9890	< 1.9 U	130
WHC1-BO08	0	FD	11/20/2008	< 0.8 U	< 0.26 U	< 0.55 U	2690	< 0.52 U	1.2	21.3	< 4.1 UJ	< 0.52 U	1.65 J	10800	< 1.8 U	82.1
WHC1-BO08	11	NORM	11/20/2008	< 0.81 U	< 0.26 U	< 0.55 U	162	< 0.52 U	4	1.4	< 0.021 U	< 0.52 U	0.0459 J-	152	< 1.8 U	66.6
WHC1-BO09	0	NORM	11/19/2008	< 0.81 U	0.87 J	< 0.55 U	1710	< 0.52 UJ	0.69 J	0.58 J	< 2.1 U	< 0.52 U	0.296 J	2700	< 1.9 U	122 J
WHC1-BO09	0	FD	11/19/2008	< 0.8 U	< 0.26 U	< 0.54 U	29.4	13.3 J	1.7 J	2.6 J	< 0.41 U	< 0.51 U	0.52 J	55.4	< 1.8 U	178 J
WHC1-BO09	6	NORM	11/19/2008	< 0.84 U	< 0.27 U	< 0.57 U	630	< 0.54 U	4	0.47	< 0.43 U	< 0.54 U	0.0953	302	< 1.9 U	92.4
WHC1-BO09	16	NORM	11/19/2008	< 0.81 U	< 0.26 U	< 0.55 U	833	< 0.52 U	4.2	1.2	< 1 U	< 0.52 U	0.234	1600	< 1.8 U	99.5
WHC1-BO10	0	NORM	11/19/2008	0.93 J	< 0.26 U	< 0.54 U	503	< 0.51 U	6.9	3.7	< 0.41 U	< 0.51 U	0.104	17400	< 1.8 U	83.1
WHC1-BO10	10	NORM	11/19/2008	< 0.81 U	< 0.26 U	< 0.55 U	686	< 0.52 U	5.1	2.5	< 0.42 U	< 0.52 U		8210	< 1.8 U	77.4
WHC1-BP01	0	NORM	12/1/2008	7.7	< 0.26 U	< 0.55 U	4.8	< 0.082 U	2.3	0.67	< 0.021 U	< 0.52 UJ	0.278	9610	< 1.8 U	97.4
WHC1-BP01	10	NORM	12/1/2008	< 0.81 U	0.88 J	< 0.55 U	1020	< 0.52 U	0.97 J	2.3	< 2.1 U	< 0.52 UJ	0.0584	17500	< 1.9 U	30.4 J
WHC1-BP02	0	NORM	12/1/2008	37	< 0.26 U	< 0.55 U	213	< 0.52 U	1.9	3.3	2.9	< 0.52 UJ	0.352	2580	< 1.9 U	255
WHC1-BP02	11	NORM	12/1/2008	< 0.83 U	< 0.27 U	< 0.56 U	984	< 0.53 U	1.5	2.2	< 2.1 U	< 0.53 UJ	0.0295 J	19900	< 1.9 U	51.5 J
1111C1 D1 02	11	1101111	12/1/2000	\ 0.05 U	\ 0.27 U	\ 0.50 U	707	\ 0.55 U	1.5	2.2	\ 2.1 U	\ 0.55 OJ	0.02/J J	17700	\ 1. <i>)</i> U	51.53

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 9)

									Gener	al Chemisti	y/Ions					
				nia	Je	te	je Je	le (Total)	le	(as N)	(as N)	Orthophosphate as P	Perchlorate			Fotal Kjeldahl Nitrogen TKN)
	Depth	Sample	Sample	Ammonia	Bromide	Chlorate	Chloride	Cyanide	Fluoride	Nitrate	Nitrite	thop	rchlc	Sulfate	Sulfide	Total K (TKN)
Sample ID	(ft bgs)	Type	Date		_			Ç	Flu		Ë	Orl			Su)
WHC1-BP03	0	NORM	12/15/2008	5.8 J+	< 0.25 U	< 0.54 U	7.3	< 0.51 U	0.38 J	2.9	0.72	< 5.1 U	0.0182 J	33.4	< 1.8 U	198
WHC1-BP03	0	FD	12/15/2008	< 5.1 U	< 0.26 U	< 0.54 U	6.5	< 0.51 U	0.31 J	2.2	0.54	5.1	0.0237 J	20.6	< 1.8 U	202
WHC1-BP03	11	NORM	12/19/2008	< 0.84 U	2.2 J	< 0.57 U	1580	< 0.54 U	1.2	0.97	< 2.2 U	< 0.54 U	0.0327 J	16300	< 1.9 U	102
WHC1-BP04	0	NORM	12/15/2008	< 5.1 U	< 0.26 U	< 0.54 U	96.6	< 0.51 U	1.6	3.9	< 0.021 U	14.6	0.0316 J	1280	< 1.8 U	82.2
WHC1-BP04	12	NORM	12/19/2008	< 0.81 U	1.7 J	< 0.55 U	1140	0.53	0.81 J	1.7	< 0.021 U	< 0.52 U	0.0187 J	2580	< 1.8 U	50.5 J
WHC1-BP05	0	NORM	12/15/2008	< 0.8 U	< 0.26 U	< 0.54 U	49.1	< 0.51 U	< 0.1 U	5.6	0.32	< 5.1 U	0.133	378	< 1.8 U	96.8
WHC1-BP05	10	NORM	12/19/2008	< 0.84 U	< 0.27 U	< 0.57 U	122	< 0.54 U	2.2	< 0.026 U	< 0.021 U	< 0.54 U	0.2	434	< 1.9 U	61.5
WHC1-BP06	0	NORM	12/12/2008	< 0.81 U	< 0.26 U	< 0.55 U	5.3	< 0.52 U	0.38 J	0.9	< 0.21 U	< 5.2 U	< 0.0103 U	5630	< 1.8 U	170
WHC1-BP06	10	NORM	12/12/2008	< 0.81 U	< 0.26 U	< 0.55 U	90.6	< 0.52 U	1.1	0.11 J	< 0.021 U	< 5.2 U	0.0305 J	112	< 1.8 U	58.6
WHC1-BP07	0	NORM	11/20/2008	< 0.87 U	< 0.28 U	< 0.59 U	3390	< 0.56 U	1.9	32	< 0.44 U	< 0.56 U	0.909 J-	3080	< 2 U	164
WHC1-BP07	3	NORM	11/20/2008	< 0.84 U	< 0.27 U	< 0.57 U	1700	< 0.085 U	1.6	3.2	< 2.2 U	< 0.54 U	0.463 J-	8670	< 1.9 U	56.5
WHC1-BP07	13	NORM	11/20/2008	< 0.86 U	< 0.27 U	< 0.58 U	264	< 0.087 U	1.1		< 0.22 U	< 0.55 U	0.0474 J-	726	< 1.9 U	42.7 J
WHC1-BP08	0	NORM	11/19/2008	< 0.82 U	12.8	< 0.56 U	8060	< 0.53 U	0.95 J	109	< 10.5 U	< 0.53 U	1.32	21100	< 1.9 U	224
WHC1-BP08	4	NORM	11/19/2008	< 0.85 U	3.3	< 0.58 U	2830	< 0.55 U	3.4	9.5	< 2.2 U	< 0.55 U	0.48	20000	< 1.9 U	77.2
WHC1-BP08	14	NORM	11/19/2008	< 0.82 U	< 0.26 U	< 0.56 U	86.9	< 0.53 U	1.4	0.24	< 0.21 U	< 0.53 U	0.16	180	< 1.9 U	42.4 J
WHC1-BP09	0	NORM	11/19/2008	< 0.79 U	< 0.25 U	< 0.54 U	136	< 0.51 U	2	3.5	< 0.2 U	< 0.51 U	0.0387 J	8010	< 1.8 U	137
WHC1-BP09	10	NORM	11/19/2008	< 0.83 U	< 0.27 U	< 0.57 U	227	< 0.54 U	3.4	0.1 J	< 0.21 U	< 0.54 U	0.178	1320	< 1.9 U	54.2
WHC1-BP10	0	NORM	11/19/2008	< 0.79 U	< 0.25 U	< 0.54 U	67.5	< 0.51 U	3.3	3.1	< 0.2 U	1.9 J	0.0675	905	< 1.8 U	105
WHC1-BP10	10	NORM	11/19/2008	< 0.8 U	< 0.26 U	< 0.54 U	266	< 0.51 U	4.4	1.3	< 0.2 U	< 0.51 U	0.131	300	< 1.8 U	29.8 J
WHC1-D01	0	NORM	12/5/2008	2.6 J	< 0.26 U	11	443	< 0.52 U	0.46 J	76.2	7.8	10	0.396	1360	< 1.8 U	651
WHC1-D01	10	NORM	12/5/2008	< 0.8 U	< 0.26 U	10	28.5	< 0.52 U	1.2	10.3	0.66	20.5	0.0402 J	137	< 1.8 U	111
WHC1-D02	0	NORM	12/5/2008	< 0.82 U	< 0.26 U	< 0.56 U	45.7	< 0.52 U	< 0.11 U	26.6	2.4	15.7	0.135	144	< 1.9 U	1270
WHC1-D02	10	NORM	12/5/2008	< 0.82 U	< 0.26 U	< 0.55 U	52.8	< 0.52 U	1.8	4	0.68	61.5	0.0731	92.2	< 1.9 U	48.8 J
WHC1-D03	0	NORM	12/5/2008	< 0.82 U	< 0.26 U	< 0.55 U	21.1 J	< 0.083 U	< 0.1 U	11.5	0.4	10.4	0.0724	55	< 1.9 U	539
WHC1-D03	0	FD	12/5/2008	< 0.82 U	< 0.26 U	< 0.55 U	41.6 J	< 0.52 U	< 0.1 U	16.5	0.58	9.7	0.0682	52.4	< 1.9 U	853
WHC1-D03	10	NORM	12/5/2008	< 0.81 U	< 0.26 U	< 0.55 U	23.9	< 0.52 U	0.64 J	5.3 J	0.29	27 J	0.0289 J	51.9 J	< 1.8 U	526
WHC1-D04	0	NORM	12/5/2008	< 0.83 U	< 0.27 U	< 0.56 U	22.1	< 0.53 U	< 0.11 U	8.8	< 0.021 U	10.7	0.0978	78.8	< 1.9 U	393
WHC1-D04	10	NORM	12/5/2008	< 0.8 U	< 0.26 U	< 0.54 U	103	< 0.081 U	2.4	9.1	< 0.21 U	3.4 J	0.525	310	< 1.8 U	175
WHC1-D05	0	NORM	12/5/2008	0.95 J	< 0.26 U	< 0.55 U	32.6	< 0.52 U	0.33 J	9.9	1.1	8.7	0.392	201	< 1.9 U	659
WHC1-D05	10	NORM	12/5/2008	< 0.8 U	< 0.26 U	< 0.54 U	322	< 0.081 U	1.1	9.8	< 0.21 U	1 J	0.984	503	< 1.8 U	51.8
WHC1-D06	0	NORM	12/5/2008	< 0.82 U	< 0.26 U	< 0.55 U	73.5	< 0.52 U	0.39 J	3.5	0.99 J	6.5	0.118	125	< 1.9 U	321
WHC1-D06	10	NORM	12/5/2008	< 0.81 U	< 0.26 U	< 0.55 U	136	< 0.52 U	1.5	2.8	1.3 J	36.8	0.0773	110	< 1.8 U	62.2
WHC1-D07	0	NORM	12/5/2008	1.2 J	< 0.26 U	< 0.54 U	10.6	< 0.51 U	0.29 J	2.1	0.39	3 J	0.133	23.3	< 1.8 U	248
WHC1-D07	10	NORM	12/5/2008	< 0.8 U	< 0.26 U	< 0.54 U	30.3	< 0.51 U	1.6	0.93	0.45	0.91 J	0.0546	56.7	< 1.8 U	229
WHC1-D08	0	NORM	12/8/2008	< 0.8 U	< 0.26 U	< 0.54 U	34.1	< 0.51 U	0.58 J	4.8	0.2 J	< 5.1 U	0.0729	63.9	< 1.8 U	146
WHC1-D08	10	NORM	12/9/2008	< 0.86 U	< 0.28 U	< 0.58 U	190	< 0.55 U	2.1	< 0.026 U	2.3	< 0.55 U	0.128	348	< 1.9 U	34.6 J
WHC1-D09	0	NORM	12/8/2008	< 0.81 U	< 0.26 U	< 0.55 U	50.6	0.55	0.42 J	3.1	0.82	5.8	0.0992	106	< 1.8 U	167

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 7 of 9)

									Gener	ral Chemisti	ry/Ions					
				nia	e	e	9	Cyanide (Total)	9	(as N)	(as N)	Orthophosphate as P	orate			Fotal Kjeldahl Nitrogen (TKN)
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Ammonia	Bromide	Chlorate	Chloride	Syanid	Fluoride	Nitrate	Nitrite	Orthop	Perchlorate	Sulfate	Sulfide	Total K (TKN)
WHC1-D09	11	NORM	12/9/2008	< 0.84 U	< 0.27 U	< 0.57 U	174	< 0.54 U	2.9	0.09 J	1.8 J	< 0.54 U	0.0504	221	< 1.9 U	25.2 J
WHC1-D10	0	NORM	12/8/2008	< 0.8 U	< 0.26 U	< 0.54 U	113	< 0.52 U	< 0.1 U	5.2	0.25	11.3	0.181	146	< 1.8 U	197 J+
WHC1-D10	10	NORM	12/9/2008	< 0.81 U	< 0.26 U	< 0.55 U	67	< 0.52 U	1.7	0.22	0.92 J	0.81 J	0.0859	111	< 1.8 U	47.7 J
WHC1-D11	0	NORM	12/8/2008	< 5.4 U	< 2.7 U	< 0.57 U	1880	0.63	0.35 J	247	< 2.2 U	12.8	6.29	1610	< 1.9 U	1620 J+
WHC1-D11	10	NORM	12/9/2008	< 0.82 U	< 0.26 U	< 0.55 U	47.6	< 0.083 U	2	0.49	0.62	< 0.52 U	0.566	97.7	< 1.9 U	37.7 J
WHC1-D12	0	NORM	12/10/2008	< 0.88 U	< 0.28 U	< 0.6 U	702	< 0.56 U	1.8	3	22.9	< 0.56 U	0.522	1300	< 2 U	73.3
WHC1-D12	10	NORM	12/10/2008	< 1.1 U	< 0.36 U	1.8 J	267	2.1	9.8	2.9	< 0.028 U	< 0.71 U	5.49	921	< 2.5 U	115
WHC1-D13	0	NORM	12/8/2008	< 0.82 U	< 0.26 U	< 0.56 U	190	< 0.084 UJ	1.6	39.7	< 0.021 U	18.7	0.285	7220	< 1.9 U	390 J+
WHC1-D13	10	NORM	12/8/2008	< 1 U	< 0.34 U	< 0.71 U	386	< 0.67 UJ	9.5	1.5	< 0.027 U	< 0.67 U	0.712	638	< 2.4 U	< 67.3 UJ
WHC1-D15	0	NORM	12/11/2008	7 J+	< 0.26 U	18 J	472	< 0.53 U	< 0.11 U	106	16.1	63.4	0.907	606	< 1.9 U	2810
WHC1-D15	10	NORM	12/11/2008	< 1 U	< 0.32 U	< 0.68 U	393	< 0.1 U	7.2	2.6	6.8	< 0.65 U	2.8	20000	< 2.3 U	84
WHC1-D16	0	NORM	12/10/2008	< 0.85 U	5.1 J	< 0.58 U	27800	< 0.087 U	4.1 J	14.6	< 21.9 U	15.2 J+	0.173 J+	24300	< 1.9 U	343 J+
WHC1-D16	10	NORM	12/10/2008	< 0.91 U	< 0.29 U	< 0.62 U	252	< 0.092 U	3.7	0.44	< 0.023 U	< 0.58 U	2.71	5730	< 2.1 U	63.1 J+
WHC1-D17	0	NORM	12/10/2008	< 0.85 U	3.3	< 0.58 U	14000	< 0.086 U	1.5	7.9	86.5 J	6.7	0.0702	36000	< 1.9 U	492 J+
WHC1-D17	10	NORM	12/10/2008	< 0.89 U	< 0.29 U	< 0.61 U	422	< 0.091 U	3	< 0.028 U	< 0.023 U	5.7	1.95	2250	< 2 U	< 57.3 UJ
WHC1-D18	0	NORM	12/11/2008	< 0.8 U	< 0.26 U	< 0.54 U	28.3	< 0.081 U	0.67 J	3.7	1.1	5 J	1.62	67.7	< 1.8 U	135
WHC1-D18	10	NORM	12/11/2008	< 0.81 U	< 0.26 U	< 0.55 U	75	< 0.082 U	3.9	0.18 J	< 2.1 U	< 0.52 U	0.518	171	< 1.8 U	< 51.7 U
WHC1-D19	0	NORM	12/11/2008	< 0.82 U	1.9 J	< 0.56 U	1160	0.12 J	< 0.11 U	5.6 J	< 21.1 U	1.2 J	0.214 J	899	< 1.9 U	258 J
WHC1-D19	0	FD	12/11/2008	< 0.8 U	0.97 J	< 0.54 U	1360	< 0.081 U	0.88 J	9.6 J	23.2	< 0.51 U	0.112 J	1350	< 1.8 U	95.4 J
WHC1-D19	10	NORM	12/11/2008	< 0.81 U	< 0.26 U	< 0.55 U	250	< 0.082 U	4	0.55	4	< 0.52 U	1.75	856	< 1.8 U	56.7
WHC1-D20	0	NORM	12/12/2008	< 0.8 U	< 0.26 U	< 0.55 U	94.6	< 0.52 U	< 0.1 U	1.1	< 0.021 U	< 5.2 U	0.215	250	< 1.8 U	221
WHC1-D20	10	NORM	12/12/2008	< 0.81 U	< 0.26 U	< 0.55 U	144	< 0.082 U	1.8	0.69	< 0.021 U	< 5.2 U	0.999	120	< 1.8 U	56.9
WHC1-D21	0	NORM	12/16/2008	< 0.83 U	< 0.27 U	< 0.56 U	149	< 0.53 UJ	< 0.11 U	1.4	2.9	2.2 J	0.0959	333	< 1.9 U	133
WHC1-D21	10	NORM	12/16/2008	< 0.82 U	< 0.26 U	< 0.55 U	244	< 0.52 UJ	2.5	0.12 J	3.8	< 0.52 U	0.0948	391	< 1.9 U	32.6 J
WHC1-D22	0	NORM	12/16/2008	< 0.95 U	< 0.3 U	< 0.64 U	126	< 0.61 UJ	0.87 J	15.4	< 0.024 U	18.5	0.0625	307	< 2.2 U	515
WHC1-D22	10	NORM	12/16/2008	< 0.84 U	< 0.27 U	< 0.57 U	311	< 0.54 UJ	4.6	0.13 J	5	< 0.54 U	0.153	1200	< 1.9 U	40 J
WHC1-D23	0	NORM	12/16/2008	< 0.82 U	< 0.26 U	< 0.56 U	257	< 0.083 UJ	< 0.11 U	0.83	3.9	2.1 J	0.23	532	< 1.9 U	203
WHC1-D23	10	NORM	12/16/2008	< 0.8 U	< 0.26 U	< 0.54 U	125	0.52 J-	2.4	0.11 J	2.3	< 0.51 U	0.033 J	174	< 1.8 U	48.1 J
WHC1-D24	0	NORM	12/16/2008	< 0.84 U	< 0.27 U	< 0.57 U	46.2 J	< 0.085 UJ	< 0.11 U	0.14 J	0.76 J	1.1 J	0.0353 J	184 J	< 1.9 U	200
WHC1-D24	0	FD	12/16/2008	< 0.84 U	< 0.27 U	< 0.57 U	26.9 J	< 0.086 UJ	< 0.11 U	0.15 J	0.37 J	< 0.54 U	0.0337 J	95.5 J	< 1.9 U	138
WHC1-D24	10	NORM	12/16/2008	< 0.82 U	< 0.26 U	< 0.56 U	85.4	< 0.53 UJ	2.7	0.14 J	1.4	< 0.53 U	0.0187 J	211	< 1.9 U	24 J
WHC1-D25	0	NORM	12/16/2008	< 0.83 U	< 0.27 U	< 0.56 U	76.7	< 0.53 UJ	< 0.11 U	2.2	1.4	1.4 J	0.0668	106	< 1.9 U	184
WHC1-D25	10	NORM	12/16/2008	< 0.82 U	< 0.26 U	< 0.56 U	145	< 0.53 UJ	1.9	0.12 J	1.9	1 J	0.0395 J	191	< 1.9 U	59
WHC1-D26	0	NORM	12/12/2008	0.99 J	< 0.26 U	< 0.55 U	4.4	0.9	0.32 J	2.4	0.27	< 5.2 U	< 0.0104 U	15.2	< 1.8 U	114
WHC1-D26	10	NORM	12/12/2008	1 J	< 0.28 U	< 0.59 U	21.8	< 0.56 U	1.4	< 0.027 U	< 0.022 U	< 0.56 U	0.0906	67	< 2 U	59.4
WHC1-D27	0	NORM	12/12/2008	< 0.82 U	< 0.26 U	< 0.56 U	17.8	0.99	0.48 J	5 J	< 0.021 U	< 5.3 U	0.0252 J	42.9	< 1.9 U	194
WHC1-D27	0	FD	12/12/2008	< 0.82 U	< 0.26 U	< 0.55 U	16.7	0.67	0.99 J	2.4 J	< 0.021 U	5.3	0.0239 J	62.3	< 1.9 U	211

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 8 of 9)

Sample Depth Sample Sample Sample Sample Sample Sample Date Sample Samp										Gener	al Chemistr	y/Ions					
WHC1-D27					а				(Total)		as N)		as	ate			eldahl Nitrogen
WHC1-D27		•	_	_	nmoni	omide	lorate	lloride	anide	ıoride		trite (a	thopho	rchlora	lfate	lfide	tal Kje KN)
WHCI-D28 0 NORM 12/12/2008 0.81 U c.02.6 U c.05.8 U 3.22 0.69 0.33 J 2.3 <0.021 U c.5.2 U 0.0277 J 60 <1.8 U 164 WHCI-D28 10 NORM 12/12/2008 0.081 U c.02.6 U c.05.5 U 5 <0.052 U 19 0.033 J 0.0081 c.02.2 U 0.017 J 33.1 <1.8 U 5.5 C WHCI-D29 0 NORM 12/12/2008 0.081 U c.02.6 U c.05.5 U 1.8 8 <0.082 U 0.48 J 1.5 <0.021 U c.5.2 U 0.017 J 33.1 <1.8 U 5.5 C WHCI-D29 10 NORM 12/12/2008 0.083 U c.02.7 U c.05.6 U 5.3 U 0.048 J 1.5 <0.021 U c.5.2 U 0.007 J 28.1 <1.9 U 102 WHCI-D10 10 NORM 12/15/2008 c.5.2 U <2.6 U <0.5 U 5.4 U 6.5 U 6.5 U 1.8 S <0.082 U 1.4 J 0.087 J <0.021 U c.5.3 U 0.024 J 40.1 J <1.9 U 102 WHCI-D10 12 NORM 12/15/2008 c.5.2 U <2.6 U <0.5 U 5.5 U 100 <0.052 U 1.6 2.3 C 0.021 U c.5.2 U 0.053 J 40.1 J <1.9 U 102 WHCI-D10 12 NORM 12/15/2008 c.5.2 U <0.058 U 1.7 J <0.055 U 1010 <0.052 U 1.6 2.3 C 0.021 U c.5.2 U 0.053 J 1070 <1.8 U 3.2 WHCI-D10 12 NORM 12/15/2008 c.0.8 U 0.020 U <0.5 U 0.044 J 4.7 C 0.5 U 0.043 J 4.7 C 0.05 C 0.5 U 0.044 J 4.7 C 0.05 U 0.045 J 4.7 C 0.05 U 0.044 J 4.7 C 0.05 U 0.044 J 4.7 C 0.05 U 0.045 J 4.7 C 0.05 U 0.044 J 4.7 C 0.05 U 0.045	_ •	, 0,	-				_		_		I				Su		
WHC1-P28																	
WHC1-D9																	
WHCL-PD 0 NORM 12/12/2008 C-83 U C-2,5 U C-5,5 U C-																	
WHCL-PDI 12 NORM 12/15/2008 C.5.2 U C.2.6 U C.0.5 U G.0.5 U		Ů															
WHCL-PO 12																	
WHCL-P02																	
WHC1-P02																	
WHCL-P03												0.00					
WHCL-P03																	
WHC1-P03																	
WHCI-P03															-		
WHCI-P04											0.49						
WHCI-P04		13	NORM	12/18/2008	< 0.81 U		< 0.55 U	4.3	< 0.082 U	2.8	1.2	< 0.021 U	< 0.52 U	0.023 J		< 1.8 U	< 52 U
WHC1-P05	WHC1-P04	-	NORM	12/15/2008	< 0.81 U	< 0.26 U	< 0.55 U	45.6	< 0.52 U	1.5	_	< 0.021 U	< 5.2 U	0.0573	441	< 1.8 U	148
WHC1-P05	WHC1-P04	10	NORM	12/18/2008	< 0.83 U	0.84 J	< 0.56 U	504	< 0.084 U	1.5	9.2	9.8	< 0.53 U	0.21	7480	< 1.9 U	< 53 U
WHC1-P05	WHC1-P05	0	NORM	12/8/2008	< 0.82 U	< 0.26 U	< 0.56 U	6.7	< 0.53 UJ	0.74 J	2.3	< 0.021 U	< 5.3 U	< 0.0105 U	27.1	< 1.9 U	143
WHC1-P06	WHC1-P05	0	FD	12/8/2008	< 0.81 U	< 0.26 U	< 0.55 U	7.6	1.3 J	0.74 J	3.2	< 0.021 U	5.2	< 0.0105 U	28.5	< 1.8 U	131
WHC1-P06 12 NORM 12/2/2008 <0.8 U <0.26 U <0.54 U 21.5 <0.081 U 1.2 4.4 <0.021 U <0.51 U 0.0569 39.1 <1.8 U 44.1 WHC1-P07 0 NORM 12/2/2008 <0.8 U <0.26 U <0.55 U 8.6 <0.52 U 1.3 6 0.45 <0.52 U 0.0295 J 245 <1.8 U 111 WHC1-P07 3 NORM 12/2/2008 <0.8 U <0.8 U <0.54 U 400 <0.51 U 1.7 3.4 3.2 <0.51 U 0.104 319 <1.8 U 55.7 WHC1-P07 13 NORM 12/2/2008 <0.81 U <0.26 U <0.55 U 513 <0.082 U 1.5 2.4 5.2 <0.52 U 0.0457 5060 <1.8 U 42.4 WHC1-P08 0 NORM 12/3/2008 <0.81 U <0.26 U <0.55 U 513 <0.082 U <0.1 U 194 7.7 <0.52 U <0.0102 U 885 <1.8 U 270 WHC1-P08 11 NORM 12/3/2008 <0.81 U 0.97 <0.55 U 504 <0.082 U <0.1 U 194 7.7 <0.52 U <0.0102 U 885 <1.8 U 270 WHC1-P09 0 NORM 12/4/2008 <0.8 U <0.26 U <0.55 U 504 <0.082 U <0.96 12.4 4.2 <0.52 U 0.0457 5060 <1.8 U 83.7 WHC1-P09 0 NORM 12/4/2008 <0.8 U <0.26 U <0.55 U 7.4 J 0.1 J 0.52 J 8 J 0.4 J 6 0.0357 J 28.2 J <1.9 U 318 WHC1-P09 10 NORM 12/4/2008 <0.8 U 0.45 J <0.54 U 535 <0.081 U 2 5.2 <0.04 U <0.52 U 0.128 440 <1.8 U 57.6 <0.04 U <0.05 U	WHC1-P05	10	NORM	12/18/2008	< 0.83 U	< 0.27 U	< 0.56 U	8.8	< 0.53 U	2.4	0.72	< 0.021 U	< 0.53 U	0.0194 J	288	< 1.9 U	< 53.5 U
WHC1-P07 0 NORM 12/2/2008 < 0.8 U < 0.55 U 8.6 < 0.52 U 1.3 6 0.45 < 0.52 U 0.0295 J 245 < 1.8 U 111 WHC1-P07 3 NORM 12/2/2008 < 0.8 U	WHC1-P06	0	NORM	12/2/2008	< 5.1 U	< 0.26 U	< 0.54 U	67.3	< 0.51 U	< 0.1 U	13.2	2.1	3.9	0.191	123	< 1.8 U	349
WHC1-P07 3 NORM 12/2/2008 <0.8 U 0.88 <0.54 U 400 <0.51 U 1.7 3.4 3.2 <0.51 U 0.104 319 <1.8 U 55.7	WHC1-P06	12	NORM	12/2/2008	< 0.8 U	< 0.26 U	< 0.54 U	21.5	< 0.081 U	1.2	4.4	< 0.021 U	< 0.51 U	0.0569	39.1	< 1.8 U	44.1
WHC1-P07 13 NORM 12/2/2008 < 0.81 U < 0.26 U < 0.55 U 513 < 0.082 U 1.5 2.4 5.2 < 0.52 U 0.0457 5060 < 1.8 U 42.4 WHC1-P08 0 NORM 12/3/2008 7.5 < 0.26 U	WHC1-P07	0	NORM	12/2/2008	< 0.8 U	< 0.26 U	< 0.55 U	8.6	< 0.52 U	1.3	6	0.45	< 0.52 U	0.0295 J	245	< 1.8 U	111
WHC1-P08 0 NORM 12/3/2008 7.5 < 0.26 U < 5.5 U 694 < 0.082 U < 0.1 U 194 7.7 < 0.52 U < 0.0102 U 885 < 1.8 U 270 WHC1-P08 11 NORM 12/3/2008 < 0.81 U	WHC1-P07	3	NORM	12/2/2008	< 0.8 U	0.88	< 0.54 U	400	< 0.51 U	1.7	3.4	3.2	< 0.51 U	0.104	319	< 1.8 U	55.7
WHC1-P08 11 NORM 12/3/2008 < 0.81 U 0.97 < 0.55 U 504 < 0.082 U 0.96 12.4 4.2 < 0.52 U 0.145 2250 < 1.8 U 83.7 WHC1-P09 0 NORM 12/4/2008 < 0.8 U	WHC1-P07	13	NORM	12/2/2008	< 0.81 U	< 0.26 U	< 0.55 U	513	< 0.082 U	1.5	2.4	5.2	< 0.52 U	0.0457	5060	< 1.8 U	42.4
WHC1-P09 0 NORM 12/4/2008 < 0.8 U < 0.26 U 0.55 J 15 J 0.18 J 0.51 J 15.7 J 1.3 J 6.1 0.166 J 54.8 J < 1.8 U 501 WHC1-P09 0 FD 12/4/2008 < 0.8 U	WHC1-P08	0	NORM	12/3/2008	7.5	< 0.26 U	< 5.5 U	694	< 0.082 U	< 0.1 U	194	7.7	< 0.52 U	< 0.0102 U	885	< 1.8 U	270
WHC1-P09 0 FD 12/4/2008 < 0.81 U < 0.26 U < 0.55 U 7.4 J 0.1 J 0.52 J 8 J 0.4 J 6 0.0357 J 28.2 J < 1.9 U 318 WHC1-P09 10 NORM 12/4/2008 < 0.8 U	WHC1-P08	11	NORM	12/3/2008	< 0.81 U	0.97	< 0.55 U	504	< 0.082 U	0.96	12.4	4.2	< 0.52 U	0.145	2250	< 1.8 U	83.7
WHC1-P09 10 NORM 12/4/2008 < 0.8 U 0.45 J < 0.54 U 535 < 0.081 U 2 5.2 < 0.41 U < 0.52 U 0.128 440 < 1.8 U 67.6 WHC1-P10 0 NORM 11/25/2008 7.1 4.9 < 0.54 U	WHC1-P09	0	NORM	12/4/2008	< 0.8 U	< 0.26 U	0.55 J	15 J	0.18 J	0.51 J	15.7 J	1.3 J	6.1	0.166 J	54.8 J	< 1.8 U	501
WHC1-P10 0 NORM 11/25/2008 7.1 4.9 < 0.54 U 6050 < 0.51 U 0.22 J 127 < 10.2 U 21 1.33 1640 < 1.8 U 2860 J- WHC1-P10 10 NORM 11/25/2008 < 0.95 U 8.7 < 0.64 U 5580 < 0.096 U 1.8 18.9 < 4.9 U 2.2 J 1.15 20900 < 2.2 U 138 J WHC1-P11 0 NORM 12/8/2008 < 5.2 U	WHC1-P09	0	FD	12/4/2008	< 0.81 U	< 0.26 U	< 0.55 U	7.4 J	0.1 J	0.52 J	8 J	0.4 J	6	0.0357 J	28.2 J	< 1.9 U	318
WHC1:P10 10 NORM 11/25/2008 < 0.95 U 8.7 < 0.64 U 5580 < 0.096 U 1.8 18.9 < 4.9 U 2.2 J 1.15 20900 < 2.2 U 138 J WHC1:P11 0 NORM 12/8/2008 < 5.2 U	WHC1-P09	10	NORM	12/4/2008	< 0.8 U	0.45 J	< 0.54 U	535	< 0.081 U	2	5.2	< 0.41 U	< 0.52 U	0.128	440	< 1.8 U	67.6
WHC1-P11 0 NORM 12/8/2008 < 5.2 U 1.2 J 6.1 13200 J < 0.52 U 0.89 J 203 < 10.5 U < 5.2 U 4870 < 1.9 U 130 J WHC1-P11 0 NORM 12/8/2008	WHC1-P10	0	NORM	11/25/2008	7.1	4.9	< 0.54 U	6050	< 0.51 U	0.22 J	127	< 10.2 U	21	1.33	1640	< 1.8 U	2860 J-
WHC1-P11 0 NORM 12/8/2008 < 5.2 U 1.2 J 6.1 13200 J < 0.52 U 0.89 J 203 < 10.5 U < 5.2 U 4870 < 1.9 U 130 J WHC1-P11 0 NORM 12/8/2008	WHC1-P10	10	NORM	11/25/2008	< 0.95 U	8.7	< 0.64 U	5580	< 0.096 U	1.8	18.9	< 4.9 U	2.2 J	1.15	20900	< 2.2 U	138 J-
WHC1-P11 0 NORM 12/8/2008		0	NORM			1.2 J	6.1		< 0.52 U		203	< 10.5 U	< 5.2 U		4870		
WHC1-P11 0 FD 12/8/2008 < 5.2 U < 0.26 U 3 J 6500 J < 0.52 U 0.76 J 149 < 10.3 U < 0.52 U 3240 < 1.8 U 215 J WHC1-P11 0 FD 12/8/2008		0												68.2			
WHC1-P11 0 FD 12/8/2008 85.2		0			< 5.2 U	< 0.26 U	3 J	6500 J	< 0.52 U	0.76 J	149	< 10.3 U	< 0.52 U		3240	< 1.8 U	215 J
WHC1-P11 10 NORM 12/9/2008 < 0.86 U < 0.27 U < 0.58 U 234 < 0.55 U 2 1 2.4 1.4 J 0.781 324 < 1.9 U 77.2 WHC1-P12 0 NORM 12/5/2008 0.96 J 0.68 J < 0.55 U														85.2			
WHC1-P12 0 NORM 12/5/2008 0.96 J 0.68 J < 0.55 U 801 < 0.52 U < 0.1 U 327 10.6 J 12.8 0.71 261 < 1.8 U 287		~							< 0.55 U		1		1.4 J			< 1.9 U	
	L										327						
(1711C1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WHC1-P12	11	NORM	12/5/2008	< 0.81 U	2.6	9.2	645	< 0.52 U	1.2 J	82.1	9.5 J	1 J	0.547	11700	< 1.8 U	203

TABLE B-3

SOIL GENERAL CHEMISTRY/IONS DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 9 of 9)

									Gener	al Chemisti	ry/Ions					
												Ь				ogen
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Ammonia	Bromide	Chlorate	Chloride	Cyanide (Total)	Fluoride	Nitrate (as N)	Nitrite (as N)	Orthophosphate as l	Perchlorate	Sulfate	Sulfide	Total Kjeldahl Nitrogen (TKN)
WHC1-P13	0	NORM	12/9/2008	0.97 J	2.9	7.7	11200	< 0.52 U	1	53.3	108	0.97 J	4.32	2500	< 1.8 U	177
WHC1-P13	10	NORM	12/9/2008	< 1.1 U	< 0.37 U	< 0.77 U	408	< 0.73 U	4.4	2.4	4.2	< 0.73 U	0.835 J	951 J	< 2.6 U	92.1
WHC1-P13	10	FD	12/9/2008	< 1 U	< 0.33 U	< 0.69 U	451	< 0.65 U	3.5	2.4	4.8	0.81 J	0.376 J	17700 J	< 2.3 U	92.3
WHC1-P14	0	NORM	12/17/2008	< 6 U	< 0.3 U	< 0.63 U	80.3	< 0.6 U	1.8	33.1	1.5	6.4	0.154	670	< 2.1 U	1130
WHC1-P15	0	NORM	12/8/2008	< 0.84 U	< 0.27 U	1.4 J	563	0.69	1.5	46.6	1.6 J	< 5.4 U	0.172 J-	8920	< 1.9 U	247
WHC1-P15	1.5	NORM	12/8/2008	< 0.84 U	< 0.27 U	< 0.57 U	161	< 0.54 U	1.7	19.8	< 0.022 U	< 5.4 U	0.364	2660	< 1.9 U	118
WHC1-P15	10	NORM	12/18/2008	< 0.82 U	1.5 J	< 0.56 U	674	< 0.083 U	1.2	3.1	12.8	< 0.53 U	0.0388 J	1050	< 1.9 U	< 52.7 U
WHC1-P16	0	NORM	12/1/2008	< 0.8 U	< 0.26 U	< 0.55 U	3.5	< 0.082 U	0.98 J	4.7	0.66	< 1.8 UJ	< 0.0101 U	12.3	< 1.8 U	288
WHC1-P16	11	NORM	12/1/2008	< 0.8 U	1.7 J	< 0.54 U	898	< 0.23 UJ	1.9	1.9	< 2 U	< 0.51 UJ	0.0223 J	4650	< 1.8 U	76.6
WHC1-P17	0	NORM	12/15/2008	< 0.81 U	< 0.26 U	< 0.55 U	4.1	< 0.52 U	0.61 J	4.4	< 0.021 U	7.9	0.018 J	10.8	< 1.8 U	247
WHC1-P17	12	NORM	12/19/2008	< 0.82 U	5.8 J	< 0.55 U	1790 J	< 0.52 U	1.4	4.7 J	< 2.1 U	< 5.2 UJ	0.0162 J	11500 J	< 1.9 U	36.9 J
WHC1-P17	12	FD	12/19/2008	< 0.81 U	2.5 J	< 0.55 U	716 J	< 0.52 U	0.84 J	17.5 J	< 0.021 U	17.6 J	0.0165 J	5900 J	< 1.8 U	91.3 J
WHC1-P18	0	NORM	12/1/2008	< 0.8 U	< 0.26 U	< 0.55 U	23.3	< 0.082 U	5.5	1.6 J+	< 0.021 U	< 0.52 UJ	1.93	426	< 1.8 U	104
WHC1-P18	12	NORM	12/1/2008	< 0.8 U	2.5 J	0.6 J	770	< 0.52 U	1.9	26.6	< 1 U	< 0.52 UJ	0.138	1980	< 1.8 U	82.2
WHC2-D14C	0	NORM	12/2/2009										0.888			
WHC2-P11C	0	NORM	12/1/2009										4.77			
WHD-AS-BG05	0	NORM	9/18/2009		< 0.28 U	1.1 J	1390		0.84 J	16	< 0.035 U	< 5.3 U		720	< 0.88 U	
WHD-AS-BG05	10	NORM	9/18/2009		< 0.31 U	< 0.56 U	128		1.5	1.7	< 0.24 U	< 5.9 U		12400	< 0.99 U	
WHD-AS-BH04	10	NORM	9/18/2009		< 0.27 U	< 0.48 U	5.2		0.32 J	1.5	< 0.034 U	< 5.1 U		17	< 0.85 U	
WHD-AS-BK03	12	NORM	9/21/2009		< 2.5 U	< 0.48 U	562		0.85 J	12.1	< 0.034 U	< 0.51 U		389	< 0.84 U	
WHD-AS-BL03	0	NORM	9/21/2009		< 0.28 U	< 0.52 U	182		2.3	54.3	< 0.036 U	< 5.5 U		4490	< 0.91 U	
WHD-AS-BL03	0	FD	9/21/2009		< 0.28 U	< 0.5 U	166		1.9	45.9	0.21	< 5.3 U		3510	< 0.88 U	
WHD-AS-BN01	12	NORM	9/21/2009		< 2.6 U	< 0.5 U	1260		0.75 J	0.25	< 0.7 U	< 0.53 U		1870	< 0.88 U	
WHD-AS-BN10	0	NORM	9/18/2009		1.8 J	< 0.5 U	4520		1.4	7.6	< 0.69 U	< 0.53 U		14800	< 0.87 U	
WHD-AS-BP03	11	NORM	9/21/2009		3.5	< 0.48 U	2320 J		0.56 J	0.51 J	< 0.67 U	< 0.51 U		7140	< 0.84 U	
WHD-AS-BP03	11	FD	9/21/2009		3.5	< 0.51 U	6660 J		0.41 J	0.27 J	< 0.71 U	< 5.4 U		6970	< 0.89 U	
WHD-AS-BP04	0	NORM	9/18/2009		2.9	< 0.48 U	1980		0.84 J	109	< 0.034 U	< 0.51 U		2150	< 0.84 U	
WHD-AS-BP08	0	NORM	9/18/2009		4.2	< 0.49 U	5990		< 0.1 U	97.1	< 0.69 U	< 5.2 U		12600	< 0.86 U	
WHD-AS-BP08	4	NORM	9/21/2009		< 2.5 U	< 0.48 U	1920		0.78 J	5.4	< 0.67 U	< 5.1 U		11200	< 0.84 U	
WHD-AS-P14	0	NORM	9/21/2009		2.6 J	< 0.48 U	1010		1.7	37.9	0.62	8.1		2280	< 0.85 U	

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 64)

							Me	etals			
				_							
				um	пу			Ħ		Ħ	u
	Depth	Sample	Sample	nin	mo	ınic	um	dlin d	u n	miu	iun
Sample ID	(ft bgs)	Туре	Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium
OSC1-BM11	0	NORM	9/21/2009	10300	< 0.225 UJ	13.4	 85.1 J	0.7	< 52.3 U	< 0.26 U	4110
OSC1-BM11	10	NORM	9/21/2009	8040	< 0.225 UJ	10.1	233 J	< 0.59 U	< 2.99 U	< 0.3 U	22200
OSC1-BN11	0	NORM	9/22/2009	5140 J	< 0.225 UJ	30.2	85.1 J-	< 0.51 U	< 50.7 U	< 0.25 U	65800 J
OSC1-BN11	5	NORM	9/22/2009	4930 J	< 0.225 UJ	12.6	99.4 J-	< 0.53 U	< 52.9 U	< 0.26 U	39300 J
OSC1-BN11N1	0	NORM	1/21/2010	7070 J	< 0.225 U	39.1 J+	106 J+	< 0.62 UJ	< 61.7 UJ	< 0.31 UJ	111000 J
OSC1-BN11N2	0	NORM	1/21/2010	8430 J	< 0.225 U	30.5 J+	127 J+	< 0.59 UJ	< 58.5 UJ	< 0.29 UJ	93300 J
OSC1-BN11S1	0	NORM	1/21/2010	7880 J	< 0.225 U	28 J+	129 J+	< 0.58 UJ	< 58 UJ	< 0.29 UJ	99700 J
OSC1-BN11S2	0	NORM	1/21/2010	7140 J	< 0.225 U	34.4 J+	110 J+	< 0.58 UJ	< 58.4 UJ	< 0.29 UJ	101000 J
OSC1-BO11	0	NORM	9/16/2009	5090	< 0.225 U	16.8	83.5	< 0.54 U	< 53.6 U	< 0.27 U	35100
OSC1-BO11	0	FD	9/16/2009	6940	< 0.225 U	22.8	68.3	< 0.58 U	< 57.5 U	< 0.29 U	48000
OSC1-BO11	5	NORM	9/16/2009	10200	< 0.225 U	18.3	135	< 0.63 U	< 63.1 U	< 0.32 U	32800
OSC1-BO11E1	0	NORM	1/21/2010	7000 J	< 0.225 U	67.3 J+	120 J+	< 0.59 UJ	185 J+	< 0.3 UJ	86100 J
OSC1-BO11E2	0	NORM	1/21/2010	9810 J	< 0.225 U	31.6 J+	195 J+	< 0.58 UJ	108 J+	< 0.29 UJ	70200 J
OSC1-BO11W1	0	NORM	1/21/2010	9620 J	< 0.225 U	35.9 J+	178 J+	< 0.6 UJ	92.3 J+	< 0.3 UJ	77200 J
OSC1-BO11W2	0	NORM	1/21/2010	10500 J	< 0.225 U	38.9 J+	127 J+	< 0.59 UJ	175 J+	< 0.29 UJ	60000 J
OSC1-BO11W2	0	FD	1/21/2010	9720 J	< 0.225 U	37.6 J+	124 J+	< 0.58 UJ	163 J+	< 0.29 UJ	61100 J
OSC1-BP11	0	NORM	9/16/2009	9080	< 0.225 U	24.7	49.3	< 0.63 U	< 62.5 U	< 0.31 U	73300
OSC1-BP11	5	NORM	9/16/2009	7480	< 0.225 U	20.6	65.6	< 0.67 U	< 67.3 U	< 0.34 U	60900
OSC1-BP11NE	0	NORM	1/21/2010	5960 J	< 0.225 U	22 J+	133 J+	< 0.57 UJ	< 56.8 UJ	< 0.28 UJ	116000 J
OSC1-BP11NW	0	NORM	1/21/2010	9700 J	< 0.225 U	51.3 J+	142 J+	< 0.65 UJ	< 65 UJ	< 0.33 UJ	136000 J
OSC1-BP11SE	0	NORM	1/21/2010	6810 J	< 0.225 U	25.1 J+	87.2 J+	< 0.56 UJ	106 J+	< 0.28 UJ	54200 J
OSC1-BP11SW	0	NORM	1/21/2010	8220 J	< 0.225 U	30.8 J+	106 J+	< 0.59 UJ	63.7 J+	< 0.29 UJ	76500 J
OSC1-JP06	0	NORM	9/22/2009	5910 J	< 0.225 UJ	11.3	58.2 J-	< 0.62 U	< 61.6 U	0.068 J	3220 J
OSC1-JP06	5	NORM	9/22/2009	5840 J	< 0.225 UJ	14.5	72.7 J-	< 0.69 U	< 68.9 U	< 0.04 U	36200 J
OSC1-JP07	0	NORM	9/21/2009	6560	< 0.225 UJ	5.9	68.5 J	< 0.54 U	< 53.6 U	< 0.04 U	3020
OSC1-JP07	5	NORM	9/21/2009	6670	< 0.225 UJ	12.6	89.7 J	< 0.63 U	< 62.5 U	< 0.31 U	55000
OSC1-JP08	0	NORM	9/21/2009	5440	< 0.225 UJ	42.6	139 J	< 0.59 U	< 59.2 U	< 0.3 U	67200
OSC1-JP08	10	NORM	9/21/2009	7120	< 0.225 UJ	10.7	83.4 J	< 0.62 U	< 2.99 U	< 0.31 U	3420
OSC1-JP08N1	0	NORM	1/21/2010	7680 J	< 0.225 U	35.6 J+	125 J+	< 0.6 UJ	< 59.6 UJ	< 0.3 UJ	84000 J
OSC1-JP08S1	0	NORM	1/21/2010	7160 J	< 0.225 U	26.7 J+	139 J+	< 0.6 UJ	< 60.1 UJ	< 0.3 UJ	132000 J
OSC1-JP08S2	0	NORM	1/21/2010	6810 J	< 0.225 U	36.7 J+	121 J+	< 0.63 UJ	71.5 J+	< 0.31 UJ	150000 J
OSC1-JS10	0	NORM	1/31/2010	11700 J	< 0.225 U	83.5 J+	270 J+	< 0.7 UJ	186 J+	< 0.35 UJ	169000 J
OSC1-JS10	0	FD	1/21/2010	12200 J	< 0.225 U	84.7 J+	293 J+	< 0.68 UJ	124 J+	< 0.34 UJ	196000 J
OSC2-BN11	0	NORM	8/16/2010	9640 J	< 0.83 UJ	30.6	105 J	0.46 J	96.9	0.085 J	52500 J
OSC2-BN11N1	0	NORM	8/16/2010	9240 J	< 0.83 UJ	22.4	105 J	0.44 J	51.4	0.1 J	55700 J
OSC2-BN11N2	0	NORM	8/16/2010	7400 J	< 0.84 UJ	20.9	84.6 J	0.37 J	< 51.2 U	0.1 J	61600 J
OSC2-BN11S1	0	NORM	8/16/2010	8120 J	< 0.84 UJ	24.6	91.1 J	0.42 J	163	0.069 J	71200 J
OSC2-BN11S2	0	NORM	8/16/2010	8670 J	< 0.83 UJ	20.4	113 J	0.42 J	65.5	0.089 J	46500 J
OSC2-BO11	0	NORM	8/16/2010	8790 J	< 0.84 UJ	22.4	108 J	0.41 J	< 51.1 U	0.095 J	52200 J
OSC2-BO11E1	0	NORM	8/16/2010	6710 J	< 0.83 UJ	15.6	108 J	0.35 J	< 50.8 U	0.089 J	48400 J

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 64)

							Me	etals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium
OSC2-BO11E2	0	NORM	8/16/2010	8500 J	< 0.83 UJ	21.2	113 J	0.43 J	54.5	0.094 J	53200 J
OSC2-BO11W1	0	NORM	8/16/2010	7530 J	< 0.83 UJ	21.8	103 J	0.39 J	< 50.7 U	0.1 J	61900 J
OSC2-BO11W2	0	NORM	8/16/2010	6750 J	< 0.84 UJ	15.5	99.6 J	0.36 J	< 51.2 U	0.075 J	48700 J
OSC2-BP11	0	NORM	8/16/2010	7740 J	< 0.84 UJ	25.9	68.9 J	0.42 J	< 51.3 U	0.13 J	86000 J
OSC2-BP11NE	0	NORM	8/16/2010	8180 J	< 0.84 UJ	19.2	69.4 J	0.44 J	< 51 U	0.077 J	42100 J
OSC2-BP11NW	0	NORM	8/16/2010	8110 J	< 0.84 UJ	22.6	107 J	0.46 J	77.1	0.11 J	91400 J
OSC2-BP11SE	0	NORM	8/16/2010	6130 J	< 0.83 UJ	21.6	90.5 J	0.33 J	67.3	0.11 J	67400 J
OSC2-BP11SW	0	NORM	8/16/2010	7310 J	< 0.83 UJ	25.2	101 J	0.41 J	< 50.7 U	0.1 J	63400 J
OSC2-JP06	0	NORM	8/10/2010	7420 J	< 0.85 UJ	16.7 J+	87 J+	< 0.52 U	< 51.9 U	< 0.057 U	21500 J
OSC2-JP06NE	0	NORM	8/10/2010	6950 J	< 0.85 UJ	15.1 J+	90.7 J+	< 0.52 U	< 51.7 U	< 0.057 U	3780 J
OSC2-JP06NW	0	NORM	8/10/2010	8790 J	< 0.86 UJ	56.1 J+	95.2 J+	< 0.53 U	< 52.5 U	0.081 J	130000 J
OSC2-JP06SE	0	NORM	8/10/2010	8880 J	< 0.88 UJ	14.5 J+	57.6 J+	< 0.53 U	< 53.4 U	0.059 J	21200 J
OSC2-JP06SW	0	NORM	8/10/2010	9660 J	< 0.84 UJ	16.7 J+	73.8 J+	< 0.51 U	< 51.3 U	0.09 J	43500 J
OSC2-JP07	0	NORM	8/10/2010	9980 J	< 0.85 UJ	62.1 J+	109 J+	< 0.52 U	< 51.7 U	0.12 J	113000 J
OSC2-JP07NW	0	NORM	8/10/2010	7940 J	< 0.85 UJ	39.7 J+	74.7 J+	< 0.52 U	< 51.6 U	0.069 J	56200 J
OSC2-JP07SW	0	NORM	8/10/2010	8920 J	< 2.6 UJ	56.8 J+	73.6 J	< 0.53 UJ	< 52.6 UJ	0.077 J	60500 J
OSC2-JP08	0	NORM	8/16/2010	6970	< 0.84 UJ	17.8	139	0.39 J	< 51.4 U	0.061 J	50500
OSC2-JP08N1	0	NORM	8/16/2010	7620	< 0.9 UJ	20.5	95.4	0.44 J	< 55.1 U	0.095 J	59000
OSC2-JP08S1	0	NORM	8/16/2010	6940	< 0.83 UJ	10.8	127	0.41 J	< 50.5 U	0.08 J	41800
OSC2-JP08S2	0	NORM	8/16/2010	6300	< 0.84 UJ	39.4	104	0.35 J	< 51.2 U	0.065 J	71200
OSC2-JS10	0	NORM	8/16/2010	6040 J	< 0.86 UJ	22	85.4 J	0.34 J	< 52.2 U	0.097 J	135000 J
OSC2-JS10	0	FD	8/16/2010	6590 J	< 0.87 UJ	22.5	157 J	0.38 J	< 53.1 U	0.1 J	133000 J
OSC6-JP07	0	NORM	8/1/2012	7500	< 0.91 UJ	29	110	0.59	34 J	0.17 J	41000
OSC6-JP07	0	FD	8/1/2012	8600	< 0.91 UJ	37	120	0.54 J	25 J	0.12 J	58000
OSC6-JP07NW	0	NORM	8/1/2012	6100	< 0.88 UJ	16	140	0.36 J	< 18 U	< 0.086 U	16000
OSC6-JP07SW	0	NORM	8/1/2012	7900	< 0.89 UJ	29	65	0.44 J	< 18 U	0.11 J	83000
WH-AS A0	0	NORM	1/4/2012			5.5					
WH-AS A0	0	FD	1/4/2012			5.9					
WH-AS A3	0	NORM	12/30/2011			7.4					
WH-AS A4	0	NORM	12/30/2011			6.9					
WH-AS_A5	0	NORM	12/30/2011			7					
WH-AS A6	0	NORM	12/30/2011			5.1					
WH-AS A6	0	FD	12/30/2011			3.9					
WH-AS A8	0	NORM	12/30/2011			6.4					
WH-AS B0	0	NORM	1/4/2012			5.7					
WH-AS B1	0	NORM	1/4/2012			6					
WH-AS B5	0	NORM	12/30/2011			5.1					
WH-AS B7	0	NORM	12/30/2011			5.1					
WH-AS B9	0	NORM	12/30/2011			4.1					
WH-AS C1	0	NORM	1/4/2012			7.8					
TIT AB_CI	U	TOKIVI	1/7/2012	==	==	7.0			==		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 64)

				Metals									
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium		
WH-AS_C5	0	NORM	12/30/2011			5.1							
WH-AS_C6	0	NORM	12/30/2011			6							
WH-AS_C9	0	NORM	12/30/2011			8.1							
WH-AS_D0	0	NORM	1/4/2012			5.6							
WH-AS_D1	0	NORM	1/4/2012			7							
WH-AS_D2	0	NORM	1/4/2012			4.7							
WH-AS_D4	0	NORM	12/30/2011			7							
WH-AS_D5	0	NORM	12/30/2011			5.6							
WH-AS_D6	0	NORM	12/30/2011			6.5							
WH-AS_D7	0	NORM	12/30/2011			5							
WH-AS_D7	0	FD	12/30/2011			4.8							
WH-AS_D9	0	NORM	12/30/2011			4.8							
WH-AS_E1	0	NORM	1/4/2012			5.1							
WH-AS E6	0	NORM	1/4/2012			3.5							
WH-AS F0	0	NORM	1/4/2012			5.7							
WH-AS F3	0	NORM	1/4/2012			5.5							
WH-AS F6	0	NORM	12/30/2011			5							
WH-AS F7	0	NORM	12/30/2011			4.9							
WH-AS_G1	0	NORM	1/4/2012			7.5							
WH-AS G1	0	FD	1/4/2012			7.7							
WH-AS G6	0	NORM	12/30/2011			5.9							
WH-AS_H3	0	NORM	1/4/2012			9.4							
WH-AS H5	0	NORM	12/30/2011			4.8							
WH-AS J0	0	NORM	1/4/2012			13.2							
WH-AS J1	0	NORM	1/4/2012			5.6							
WH-AS J2	0	NORM	1/4/2012			6.7							
WH-AS_J3	0	NORM	1/4/2012			8.2							
WH-AS_J3	0	FD	1/4/2012			8.3							
WH-AS_J4	0	NORM	1/4/2012			5.5							
WH-AS_J6	0	NORM	12/30/2011			7.6							
WH-AS_J6	0	FD	12/30/2011			7							
WH-AS K1	0	NORM	1/4/2012			6.3							
WH-AS_K4	0	NORM	12/30/2011			4.9							
WH-AS K5	0	NORM	12/30/2011			5							
WH-AS_K7	0	NORM	12/30/2011			5.7							
WH-AS L0	0	NORM	1/4/2012			10.7							
WH-AS L1	0	NORM	1/4/2012			2.4							
WH-AS L2	0	NORM	1/4/2012			5							
WH-AS L5	0	NORM	12/30/2011			5.9							
WH-AS L6	0		12/30/2011			7.7							
**************************************	U	1101011	12/30/2011		<u> </u>	7.7					1		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 64)

							Me	tals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium
WH-AS_L6	0	FD	12/30/2011			8.5					
WH-AS_M1	0	NORM	1/4/2012			8.2					
WH-AS_M4	0	NORM	12/30/2011			7.4	-			-	
WH-AS_M6	0	NORM	12/30/2011			5.3					
WH-AS_N1	0	NORM	1/4/2012			5.6					
WH-AS_N10	0		12/29/2011			6.3					
WH-AS_N18	0		12/28/2011			5.2 J+					
WH-AS_N19	0	NORM	12/28/2011			14.2 J+	++				
WH-AS_N3	0	NORM	1/4/2012			6.9					
WH-AS_N4	0	NORM	12/30/2011			3.3					
WH-AS_N5 WH-AS_N6	0	NORM NORM	12/30/2011			5.7 6.5					
WH-AS_N8	0	NORM	12/30/2011			13.4					
WH-AS_No	0	NORM	1/4/2012			6.3					
WH-AS_10	0	FD	1/4/2012			6.2					
WH-AS P11	0	NORM	12/29/2011			4.3					
WH-AS P12	0	NORM	12/29/2011			3.3					
WH-AS P14	0	NORM	12/29/2011			7					
WH-AS_P15	0	NORM	12/29/2011			9.9					
WH-AS_P16	0	NORM	12/29/2011			12.2					
WH-AS_P17	0	NORM	12/28/2011			36.9 J+					 -
WH-AS_P4	0	NORM	12/30/2011			5.6					
WH-AS_P5	0	NORM	12/30/2011			4.8					
WH-AS_P9	0	NORM	12/30/2011			5.2					
WH-AS_Q0	0	NORM	1/4/2012			7					
WH-AS_Q10	0	NORM	12/29/2011			4.9					
WH-AS_Q11	0	NORM	12/29/2011			4.9					
WH-AS_Q11	0	FD	12/29/2011			4.7					
WH-AS_Q12	0	NORM	12/29/2011			4					
WH-AS_Q13	0	NORM	12/29/2011			6					
WH-AS_Q15	0	NORM	12/29/2011			28.9					++
WH-AS_Q16	0	NORM	12/29/2011			30.8					
WH-AS_Q18	0	NORM	12/28/2011			24.6 J+					
WH-AS_Q3	0	NORM	1/4/2012			5.8					
WH-AS_Q4	0	NORM NORM	12/30/2011 12/30/2011			6 4.5					
WH-AS_Q5 WH-AS_Q6	0	NORM	12/30/2011			4.5					
WH-AS_Q6 WH-AS_O8	0	NORM	12/29/2011			5					
WH-AS_Q8	0	FD	12/29/2011			5.6					
WH-AS_Q8	0	NORM	1/4/2012			5.2					
11112V2 ⁻ IV1	U	NOKWI	1/4/2012			J.∠					

TABLE B-4

SOIL METALS DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 64)

							Me	etals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium
WH-AS R10	0	NORM	12/29/2011			4.3					
WH-AS R12	0	NORM	12/29/2011			3					
WH-AS R14	0	NORM	12/29/2011			12.5					
WH-AS_R15	0		12/29/2011			6.8					
WH-AS_R15	0	FD	12/29/2011			7.6					
WH-AS R3	0	NORM	1/4/2012			5					
WH-AS R7	0	NORM	12/30/2011			5.7					
WH-AS R9	0	NORM	12/29/2011			3.9					
WH-AS SO	0	NORM	1/4/2012			6.7					
WH-AS S10	0	NORM	12/29/2011			4.2					
WH-AS S11	0	NORM	12/29/2011			5.7					
WH-AS S13	0	NORM	12/29/2011		-	14					
WH-AS_S14	0	NORM	12/29/2011			7.5					
WH-AS S15	0	NORM	12/29/2011			7.8					
WH-AS S16	0	NORM	12/28/2011			30.8 J+					
WH-AS S17	0	NORM	12/28/2011			22.2 J+					
WH-AS S18	0	NORM	12/28/2011			24.4 J+					77
WH-AS S3	0	NORM	1/4/2012			5.9					
WH-AS_S8	0	NORM	12/30/2011			5.2					
WH-AS S9	0	NORM	12/29/2011			3.9					
WH-AS TO	0	NORM	1/4/2012			11					
WH-AS T10	0	NORM	12/29/2011			6					
WH-AS T10	0	FD	12/29/2011			6.1					
WH-AS T12	0	NORM	12/29/2011			9.1					
WH-AS T13	0	NORM	12/29/2011			14.3	**				
WH-AS_T15	0	NORM	12/29/2011			22.5			 -		
WH-AS_T17	0	NORM	12/28/2011		==	33.2 J+	***		==		
WH-AS_T2	0	NORM	1/4/2012			6.7					
WH-AS_T3	0	NORM	1/4/2012			5.2					
WH-AS_T5	0	NORM	1/4/2012			8.1					
WH-AS_T9	0	NORM	12/29/2011			4.5					
WH-AS_U12	0	NORM	12/29/2011			9.1					
WH-AS_U13	0	NORM	12/29/2011			10					
WH-AS_U14	0	NORM	12/28/2011			18.6 J					
WH-AS_U14	0	FD	12/28/2011			8.5 J					
WH-AS_U19	0	NORM	12/28/2011			24.8 J+					
WH-AS_U4	0	NORM	1/4/2012			5.4					
WH-AS_U6	0	NORM	1/4/2012			11.8					
WH-AS_U9	0	NORM	12/29/2011			5.4					
WH-AS_W11	0	NORM	12/29/2011			20.4					

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 64)

							Me	tals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium
WH-AS_W13	0	NORM	12/29/2011			7.5					
WH-AS_W16	0	NORM	12/28/2011			19.9 J+	**				++
WH-AS_W18	0	NORM	12/28/2011			37 J+		 -			
WHC1-BF01	0	NORM	11/24/2008	10400 J	< 0.315 UJ	7.3 J+	340 J	0.7 J+	< 16.5 U	< 0.25 UJ	46200
WHC1-BF01	12		11/24/2008	6550 J	< 0.315 UJ	14.1 J+	154 J	0.5 J+	< 16.5 U	< 0.26 UJ	101000
WHC1-BF02	0		11/25/2008	10500 J	< 2.5 UJ	7.7 J+	300 J	0.7 J+	< 16.5 U	0.25 J+	42200
WHC1-BF02	11		11/25/2008	7050 J	< 0.315 UJ	8.2 J+	158 J	0.53 J+	< 16.5 U	< 0.1 U	69100
WHC1-BF03	0		11/25/2008	8480 J	< 0.315 UJ	4.4 J+	182 J	0.59 J+	< 16.5 U	0.12 J+	34500
WHC1-BF03	10		11/25/2008	6690 J	< 0.315 UJ	11.9 J+	143 J	0.57 J+	< 16.5 U	0.12 J+	79100
WHC1-BF04	0		11/25/2008	9120 J	< 0.315 UJ	4.6 J+	155 J	0.67 J+	< 16.5 U	0.19 J+	36900
WHC1-BF04	0	FD	11/25/2008	9010 J	< 0.315 UJ	4.6 J+	234 J	0.68 J+	29.6 J+	0.13 J+	35800
WHC1-BF04	10		11/25/2008	6570 J	< 0.315 UJ	11.9 J+	154 J	0.47 J+	< 16.5 U	< 0.1 U	83100
WHC1-BF05 WHC1-BF05	12		11/25/2008	7080 9590	< 0.315 UJ	9.7	181 343	0.44 J	< 16.5 U	0.21 J	85200
WHC1-BF05 WHC1-BF06	0		12/10/2008	4880	< 0.315 UJ < 0.315 UJ	11.1 5.6	127	0.44 J 0.31 J	< 16.5 U < 16.5 U	0.34 J 0.14 J	147000 103000
WHC1-BF06	10		12/10/2008	4990	< 0.315 UJ	5.4 J	721	0.31 J 0.26 J	< 16.5 U	0.14 J	171000
WHC1-BG01	0	NORM	11/24/2008	7920 J	< 0.315 UJ	7.7 J+	198 J	0.62 J+	< 16.5 U	0.32 J+	65500
WHC1-BG01	11		11/24/2008	8140 J	< 0.315 UJ	5.9 J+	230 J	0.46 J+	< 16.5 U	< 0.26 UJ	53800
WHC1-BG02	0		11/24/2008	8130 J	< 0.315 UJ	5.1 J+	193 J	0.49 J+	< 16.5 U	< 0.25 UJ	34100
WHC1-BG02	0	FD	11/24/2008	8410 J	< 0.315 UJ	5.7 J+	188 J	0.69 J+	< 16.5 U	< 0.26 UJ	54800
WHC1-BG02	10	NORM	11/24/2008	7270 J	< 0.315 UJ	6 J+	148 J	0.58 J+	< 16.5 U	< 0.26 UJ	54300
WHC1-BG03	0	NORM	12/11/2008	9890	< 0.315 UJ	8.4 J+	216 J+	0.53	< 16.5 U	0.24 J+	47000
WHC1-BG03	11	NORM	12/11/2008	5440	< 0.315 UJ	9.5 J+	214 J+	0.37 J	< 16.5 U	0.12 J+	56100
WHC1-BG04	0	NORM	12/11/2008	7230	< 0.315 UJ	5.5 J+	228 J+	0.44 J	< 16.5 U	0.48 J+	26400
WHC1-BG04	10	NORM	12/11/2008	10700	< 0.315 UJ	10.7 J+	64.7 J+	0.52 J	< 16.5 U	< 0.1 U	65200
WHC1-BG05	0		11/25/2008	9030 J	< 0.315 UJ	12.6 J+	109 J	0.64 J+	36.5 J+	0.12 J+	80600
WHC1-BG05	10		11/25/2008	7720 J	< 0.315 UJ	22.2 J+	180 J	0.68 J+	23.5 J+	0.14 J+	163000
WHC1-BG06	0		12/10/2008	8460	< 0.315 UJ	3.9 J	206	0.5 J	< 16.5 U	0.12 J	26600
WHC1-BG06	10		12/10/2008	8140	< 0.315 UJ	7.8	26.1	0.42 J	< 16.5 U	< 0.1 U	13100
WHC1-BH01	0	NORM	12/3/2008	6280	< 0.315 UJ	5.8	134	0.43	< 16.5 U	0.13	42300
WHC1-BH01	11	NORM	12/3/2008	6910	< 0.315 UJ	7.2	120	0.45	< 16.5 U	< 0.1 U	36100
WHC1-BH02	0	NORM	12/4/2008	5530	< 0.315 UJ	5.3	136 J+	0.34 J	< 16.5 U	0.19 J+	28800
WHC1-BH02	10	NORM NORM	12/4/2008	4990	< 0.315 UJ	7.8	125 J+ 214 J+	0.29 J	< 16.5 U	< 0.1 U 0.19 J	41300 29000
WHC1-BH03 WHC1-BH03	10	NORM NORM	12/9/2008 12/9/2008	8450 6420	< 0.315 UJ < 0.315 UJ	5.6 10.2	214 J+ 145 J+	0.58 0.45 J	< 16.5 U < 16.5 U	0.19 J 0.16 J	70500
WHC1-BH03 WHC1-BH04	0		12/9/2008	11600	< 0.315 UJ < 0.315 UJ	8.7 J+	145 J+ 152 J+	0.45 J	< 16.5 U	0.16 J 0.23 J+	60600
WHC1-BH04	10	NORM	12/11/2008	5300	< 0.315 UJ	6.7 J+ 16 J+	150 J+	0.66 0.41 J	< 16.5 U	< 0.1 U	44900
WHC1-BH05	0	NORM	12/11/2008	8280	< 0.315 UJ	5.2	232 J+	0.48 J	< 16.5 U	0.21 J	27000
WHC1-BH05	0	FD	12/9/2008	7950	< 0.315 UJ	5 J	186 J+	0.47 J	< 16.5 U	0.16 J	24400
WHC1-BH05	10	NORM	12/9/2008	8410	< 0.315 UJ	36.1	125 J+	0.52 J	23.5 J	0.18 J	81100

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 7 of 64)

							Me	etals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium
WHC1-BH06	0	NORM	12/11/2008	6180	< 0.315 UJ	5.2 J+	132 J+	0.4 J	197 J	0.11 J+	75800
WHC1-BH06	0	FD	12/11/2008	7060	< 0.315 UJ	4 J+	143 J+	0.43 J	66.5 J	< 0.1 U	58100
WHC1-BH06	10	NORM	12/11/2008	5120	< 0.315 UJ	11.7 J+	125 J+	0.35 J	< 16.5 U	0.12 J+	79600
WHC1-BI01	0	NORM	12/3/2008	7680	< 0.315 UJ	6.4	183	0.48	< 16.5 U	0.13	55400
WHC1-BI01	11	NORM	12/3/2008	5550	< 0.315 UJ	7.4	141	0.39	< 16.5 U	0.12	47700
WHC1-BI02	0	NORM	12/4/2008	7560	< 0.315 UJ	5.3	170 J+	0.44 J	< 16.5 U	0.16 J+	29000
WHC1-BI02	3	NORM	12/4/2008	6570	< 0.315 UJ	6.3	139 J+	0.4 J	< 16.5 U	0.12 J+	38400
WHC1-BI02	13	NORM	12/4/2008	5800	< 0.315 UJ	6.8	112 J+	0.37 J	< 16.5 U	< 0.1 U	45600
WHC1-BI03	0	NORM	12/4/2008	7110	< 0.315 UJ	5 J	145 J+	0.42 J	< 16.5 U	0.16 J+	31000
WHC1-BI03	11	NORM	12/4/2008	7190	< 0.315 UJ	14	161 J+	0.53	< 16.5 U	0.12 J+	39700
WHC1-BI04	0	NORM	12/8/2008	7940	< 0.315 UJ	5.4 J+	189	0.45 J	< 16.5 U	0.19 J-	57600
WHC1-BI04	10	NORM	12/9/2008	6500	< 0.315 UJ	6.5	161 J+	0.41 J	< 16.5 U	< 0.1 U	33100
WHC1-BI05	0	NORM	12/9/2008	10700	< 0.315 UJ	53.3	17.2 J+	0.46 J	25.3 J	0.15 J	92900
WHC1-BI05	10	NORM	12/9/2008	5460	< 0.315 UJ	10.9	139 J+	0.37 J	< 16.5 U	< 0.1 U	53600
WHC1-BJ01	0	NORM	12/3/2008	7730	< 0.315 UJ	10.6	175	0.52	< 16.5 U	0.13	57700
WHC1-BJ01	3	NORM	12/3/2008	7000	< 0.315 UJ	8.8	162	0.51	< 16.5 U	0.13	46800
WHC1-BJ01	13	NORM	12/3/2008	5410	< 0.315 UJ	7.4	101	0.36	< 16.5 U	< 0.1 U	34000
WHC1-BJ01NE	0	NORM	2/1/2010			6.1					
WHC1-BJ01NW	0	NORM	2/1/2010			10					
WHC1-BJ01SE	0	NORM	2/1/2010			8.1					
WHC1-BJ01SE	0	FD	2/1/2010			9.8					
WHC1-BJ01SW	0	NORM	2/1/2010			9.2					
WHC1-BJ02	0	NORM	12/2/2008	5700	< 0.315 UJ	6.6	137 J+	0.43	< 16.5 U	0.13	29400
WHC1-BJ02	0	FD	12/2/2008	5690	< 0.315 UJ	6.9	134 J+	0.39	< 16.5 U	0.12	33500
WHC1-BJ02	12	NORM	12/2/2008	6120	< 0.315 UJ	7.7	148 J+	0.42	< 16.5 U	< 0.1 U	29600
WHC1-BJ03	0	NORM	12/4/2008	9970	< 0.315 UJ	7.2	140 J+	0.57	< 16.5 U	0.18 J+	44200
WHC1-BJ03	0	FD	12/4/2008	9300	< 0.315 UJ	6.6	181 J+	0.55	< 16.5 U	0.19 J+	41700
WHC1-BJ03	12	NORM	12/4/2008	7080	< 0.315 UJ	6.8	151 J+	0.45 J	< 16.5 U	0.11 J+	34800
WHC1-BJ04	0	NORM	12/4/2008	7100	< 0.315 UJ	4.8 J	148 J+	0.41 J	< 16.5 U	0.15 J+	26500
WHC1-BJ04	11	NORM	12/4/2008	6750	< 0.315 UJ	5.2 J	140 J+	0.44 J	< 16.5 U	0.13 J+	39800
WHC1-BJ05	0		12/11/2008	6830	< 0.315 UJ	6.1 J+	121 J+	0.41 J	< 16.5 U	0.18 J+	32400
WHC1-BJ05	10	NORM	12/11/2008	5690	< 0.315 UJ	7.6 J+	197 J+	0.42 J	< 16.5 U	0.16 J+	79300
WHC1-BK01	0	NORM	12/3/2008	7060	< 0.315 UJ	10.7	139	0.47	< 16.5 U	0.13	73400
WHC1-BK01	0	FD	12/3/2008	7040	< 0.315 UJ	11.5	131	0.43	< 16.5 U	0.13	76000
WHC1-BK01	10	NORM	12/3/2008	7150	< 0.315 UJ	11.8	136	0.48	< 16.5 U	< 0.1 U	60900
WHC1-BK02	0	NORM	12/8/2008	7680	< 0.315 UJ	7.5 J+	136	0.57	< 16.5 U	0.17 J-	40600
WHC1-BK02	11	NORM	12/18/2008	6400	< 0.315 U	8.8	113	0.38 J	< 16.5 U	< 0.1 U	24600
WHC1-BK03	0	NORM	12/15/2008	6760	< 0.315 U	8.5	124	0.42 J	< 16.5 U	0.14 J	66400
WHC1-BK03	12	NORM	12/18/2008	5840	< 0.315 U	12.9	123	0.51 J	< 16.5 U	< 0.1 U	51900
WHC1-BK04	0	NORM	12/4/2008	7750	< 0.315 UJ	4.5 J	138 J+	0.46 J	< 16.5 U	0.11 J+	29300

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 8 of 64)

							Me	tals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium
WHC1-BK04	10	NORM	12/4/2008	6780	< 0.315 UJ	8	138 J+	0.45 J	< 16.5 U	< 0.1 U	33000
WHC1-BK05	0	NORM	12/12/2008	8980	< 0.315 UJ	6.1	149	0.51 J	< 16.5 U	0.15 J+	33900
WHC1-BK05	11	NORM	12/12/2008	5450	< 0.315 UJ	10.5	137	0.4 J	< 16.5 U	0.11 J+	51500
WHC1-BL01	0	NORM	12/3/2008	6180	< 0.315 UJ	11.8	127	0.45	< 16.5 U	0.12	74700
WHC1-BL01	10	NORM	12/3/2008	6840	< 0.315 UJ	10.5	124	0.39	20.8 J+	0.15	61900
WHC1-BL02	0	NORM	12/2/2008	7900	< 0.315 UJ	6.3	157 J+	0.48	< 16.5 U	0.17	31700
WHC1-BL02	10	NORM	12/2/2008	6130	< 0.315 UJ	7.4	146 J+	0.43	< 16.5 U	< 0.1 U	30400
WHC1-BL03	0	NORM	12/8/2008	7380	< 0.315 UJ	12.9 J+	171	0.49 J	< 16.5 U	0.14 J-	71900
WHC1-BL03	10	NORM	12/18/2008	5680	< 0.315 U	7	135	0.38 J	< 16.5 U	0.11 J	47700
WHC1-BL04	0	NORM	12/17/2008	7300	< 0.315 U	6	121	0.51 J	< 16.5 U	0.13 J	36700
WHC1-BL04	12	NORM	12/22/2008	6280	< 0.315 UJ	8.2	159	0.44 J	< 16.5 U	0.14 J+	38200
WHC1-BL05	0	NORM	11/21/2008	5820	< 0.315 UJ	5.8	113 J+	0.46 J	< 16.5 U	0.16 J+	28800
WHC1-BL05	10	NORM	11/21/2008	4610	< 0.315 UJ	8	88.6 J+	0.44 J	< 16.5 U	0.14 J+	53800
WHC1-BL06	0	NORM	11/21/2008	3130	< 0.315 UJ	4.7 J	99.7 J+	0.19 J	< 16.5 U	< 0.1 U	1300
WHC1-BL06	11	NORM	11/21/2008	5900	< 0.315 UJ	9.4	136 J+	0.59	< 16.5 U	0.46 J+	46900
WHC1-BL07	0	NORM	11/21/2008	7340	< 0.315 UJ	10.5	267 J+	0.58	< 16.5 U	0.14 J+	58400
WHC1-BL07	10	NORM	11/21/2008	5490	< 0.315 UJ	14.2	97.4 J+	0.54 J	< 16.5 U	0.17 J+	118000
WHC1-BL08	0	NORM	11/18/2008	5200	< 0.315 U	11.8	129	0.43 J	< 16.5 U	0.29	114000
WHC1-BL08	10	NORM	11/18/2008	3790	< 0.315 U	9.7	98.1	0.31 J	< 16.5 U	< 0.27 U	92000
WHC1-BL08NE	0	NORM	2/2/2010			8.1					
WHC1-BL08NW	0	NORM	2/2/2010			5.4					
WHC1-BL08SE	0	NORM	2/2/2010			9.7					
WHC1-BL08SW	0	NORM	2/2/2010			6.7					
WHC1-BL11	0	NORM	11/18/2008	6220	< 0.315 U	13.3	140	0.43 J	23.7 J	< 0.26 U	100000
WHC1-BL11	12	NORM	11/18/2008	4140	< 0.315 U	8.6	130	0.31 J	< 16.5 U	< 0.27 U	105000
WHC1-BL11NE	0	NORM	2/2/2010			10.8					
WHC1-BL11NW	0	NORM	2/2/2010			13.1					
WHC1-BL11SE	0	NORM	2/2/2010	 -		10.2					++
WHC1-BL11SW	0	NORM	2/2/2010		==	12.3			==		
WHC1-BM01	0	NORM	12/3/2008	8180	< 0.315 UJ	7.5	208	0.47	< 16.5 U	0.19	37000
WHC1-BM01	10	NORM	12/3/2008	5880	< 0.315 UJ	8.4	113	0.41	< 16.5 U	0.11	53200
WHC1-BM02	0	NORM	12/2/2008	5460	< 0.315 UJ	4.5	195 J+	0.39	< 16.5 U	< 0.1 U	23200
WHC1-BM02	12	NORM	12/2/2008	5940	< 0.315 UJ	6.8	142 J+	0.39	< 16.5 U	< 0.1 U	23100
WHC1-BM03	0	NORM	12/8/2008	7060	< 0.315 UJ	8 J+	131	0.4 J	< 16.5 U	0.12 J-	41300
WHC1-BM03	10	NORM	12/18/2008	5610	< 0.315 U	7.7	152	0.4 J	< 16.5 U	< 0.1 U	44200
WHC1-BM04	0	NORM	12/17/2008	5530	< 0.315 U	5.7	96.6	0.34 J	< 16.5 U	< 0.1 U	24700
WHC1-BM04	0	FD	12/17/2008	5490	< 0.315 U	5.5	112	0.35 J	< 16.5 U	0.14 J	28600
WHC1-BM04	10	NORM	12/22/2008	6430	< 0.315 UJ	7.7	154	0.45 J	< 16.5 U	0.11 J+	26700
WHC1-BM05	0	NORM	11/21/2008	5040	< 0.315 UJ	5.5	128 J+	0.46 J	< 16.5 U	0.15 J+	66800
WHC1-BM05	10	NORM	11/21/2008	5800	< 0.315 UJ	9.4	115 J+	0.48 J	< 16.5 U	0.11 J+	63200

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 9 of 64)

	Ī						Me	tals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium
WHC1-BM06	0	NORM	11/21/2008	2790	< 0.315 UJ	15.6 J	163 J+	0.15 J	< 16.5 U	< 0.1 U	3210
WHC1-BM06	0	FD	11/21/2008	2370	< 0.315 UJ	6 J	179 J+	0.17 J	< 16.5 U	0.11 J+	2250
WHC1-BM06	10	NORM	11/21/2008	8390	< 0.315 UJ	12.3	115 J+	0.58	< 16.5 U	0.12 J+	32700
WHC1-BM07	0	NORM	11/20/2008	7440	< 0.315 UJ	4.1 J	129 J+	0.51 J+	< 16.5 UJ	< 0.26 UJ	24700
WHC1-BM07	11	NORM	11/20/2008	5630	< 0.315 UJ	11.2	60.3 J+	0.44 J+	< 16.5 UJ	< 0.26 UJ	95600
WHC1-BM08	0	NORM	11/18/2008	7330	< 0.315 U	4.6 J	174 J	0.53	< 16.5 U	< 0.1 U	3540 J
WHC1-BM08	0	FD	11/18/2008	7180	< 0.315 U	6.4	301 J	0.48 J	< 16.5 U	0.38	42600 J
WHC1-BM08	11	NORM	11/18/2008	5920	< 0.315 U	8.8	122	0.56	< 16.5 U	0.39	94900
WHC1-BM09	0	NORM	11/18/2008	7290	< 0.315 U	4.7 J	114	0.48 J	< 16.5 U	< 0.26 U	63900
WHC1-BM09	12	NORM	11/18/2008	3900	< 0.315 U	13.1	80.8	0.35 J	< 16.5 U	< 0.26 U	114000
WHC1-BM10	0	NORM	11/18/2008	4660	< 0.315 U	13.3	97.4	0.36 J	< 16.5 U	< 0.27 U	92200
WHC1-BM10	3	NORM	11/18/2008	7120	< 0.315 U	15	132	0.7	< 16.5 U	0.29	27600
WHC1-BM10	13	NORM	11/18/2008	7550	< 0.315 U	12.9	52.8	0.45 J	< 16.5 U	< 0.1 U	16900
WHC1-BN01	0	NORM	12/1/2008	10200	< 0.315 UJ	8	111 J	0.63	20.5 J+	0.17 J	49400
WHC1-BN01	12	NORM	12/1/2008	5990	< 0.315 UJ	14.2	139 J	0.35 J	19.4 J+	0.14 J	76400
WHC1-BN02	0	NORM	12/1/2008	9510	< 0.315 UJ	5.6	130 J	0.63	< 16.5 U	0.16 J	21000
WHC1-BN02	0	FD	12/1/2008	9220	< 0.315 UJ	5.7	127 J	0.6	< 16.5 U	0.21 J	22300
WHC1-BN02	11	NORM	12/1/2008	8360	< 0.315 UJ	8.6	117 J	0.53	< 16.5 U	< 0.1 U	31900
WHC1-BN03	0	NORM	12/17/2008	6630	< 0.315 U	6.9	137	0.41 J	< 16.5 U	0.11 J	38000
WHC1-BN03	10	NORM	12/18/2008	4920	< 0.315 U	10.2	112	0.35 J	< 16.5 U	0.13 J	82100
WHC1-BN04	0	NORM	12/17/2008	4190	< 0.315 U	5.3	116	0.35 J	< 16.5 U	0.11 J	32600
WHC1-BN04	7	NORM	12/22/2008	6050	< 0.315 UJ	8.4	146	0.5 J	< 16.5 U	0.15 J+	35200
WHC1-BN04	17	NORM	12/22/2008	5290	< 0.315 UJ	8.8	156	0.44 J	< 16.5 U	0.11 J+	24100
WHC1-BN05	0	NORM	11/20/2008	5000	< 0.315 UJ	4.7 J	134 J+	0.35 J+	< 16.5 UJ	0.26 J+	27300
WHC1-BN05	0	FD	11/20/2008	6540	< 0.315 UJ	6.1	138 J+	0.49 J+	< 16.5 UJ	< 0.25 UJ	25200
WHC1-BN05	10	NORM	11/20/2008	5130	< 0.315 UJ	9.7	54.1 J+	0.51 J+	< 16.5 UJ	< 0.26 UJ	69500
WHC1-BN06	0	NORM	11/20/2008	6840	< 0.315 UJ	5.3	149 J+	0.54 J+	< 16.5 UJ	< 0.25 UJ	32600
WHC1-BN06	10		11/20/2008	5700	< 0.315 UJ	15.1	90.5 J+	0.67 J+	< 16.5 UJ	< 0.26 UJ	84400
WHC1-BN07	0	NORM	11/21/2008	8610	< 0.315 UJ	9.4	164 J+	0.56	< 16.5 U	0.54 J+	45300
WHC1-BN07	3	NORM	11/21/2008	8270	< 0.315 UJ	11	149 J+	0.59	< 16.5 U	0.15 J+	66000
WHC1-BN07	13	NORM	11/21/2008	6220	< 0.315 UJ	8.4	154 J+	0.5 J	< 16.5 U	0.17 J+	87000
WHC1-BN07NE	0	NORM	2/2/2010			4.2					
WHC1-BN07NW	0	NORM	2/2/2010			4.9					
WHC1-BN07SE	0	NORM	2/2/2010			7.5					
WHC1-BN07SE	0	FD	2/2/2010			5.2					
WHC1-BN07SW	0	NORM	2/2/2010			3.6					
WHC1-BN08	0	NORM	11/20/2008	6440	< 2.5 UJ	15.2	222 J+	0.46 J+	23 J+	0.55 J+	37000
WHC1-BN08	10	NORM	11/20/2008	6460	< 0.315 UJ	12.3	128 J+	0.44 J+	< 16.5 UJ	< 0.26 UJ	32500
WHC1-BN08NE	0	NORM	2/2/2010			25.1	<u> </u>				
WHC1-BN08NW	0	NORM	2/2/2010		 -	13.1					

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 10 of 64)

							Me	etals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium
WHC1-BN08SE	0	NORM	2/2/2010			10.1					
WHC1-BN08SW	0	NORM	2/2/2010	**		8	++				**
WHC1-BN09	0	NORM	12/17/2008	6210	< 0.315 U	6.5	92.5	0.26 J	< 16.5 U	< 0.1 U	6290
WHC1-BN09	11	NORM	12/19/2008	5930	< 0.315 UJ	15.9	146	0.44 J	< 16.5 U	< 0.1 U	32000
WHC1-BN10	0	NORM	11/18/2008	7260	< 0.315 U	25.3	148	0.48 J	23.8 J	< 0.28 U	53300
WHC1-BN10	10	NORM	11/18/2008	5290	< 0.315 U	16	56	0.43 J	< 16.5 U	< 0.1 U	3240
WHC1-BN10NE	0	NORM	2/2/2010			21.8		·			
WHC1-BN10NW	0	NORM	2/2/2010			17	**	==	==		
WHC1-BN10SE	0	NORM	2/2/2010	 -		29					
WHC1-BN10SW	0	NORM	2/2/2010			24.8					
WHC1-BO01	0	NORM	12/2/2008	9560	< 0.315 UJ	7	135 J+	0.59	< 16.5 U	0.15	37100
WHC1-BO01	0	FD	12/2/2008	8960	< 0.315 UJ	5.7	146 J+	0.56	< 16.5 U	0.14	26900
WHC1-BO01	4	NORM	12/2/2008	9590	< 0.315 UJ	7.9	158 J+	0.58	< 16.5 U	0.12	29400
WHC1-BO01	14	NORM	12/2/2008	5150	< 0.315 UJ	14.6	106 J+	0.39	< 16.5 U	0.11	72200
WHC1-BO02	0	NORM	12/1/2008	6480	< 0.315 UJ	7.3	127 J	0.49 J	23.9 J+	< 0.1 U	23000
WHC1-BO02	12	NORM	12/1/2008	5040	< 0.315 UJ	12.4	113 J	0.49 J	< 16.5 U	< 0.1 U	29200
WHC1-BO03	0	NORM	12/15/2008	8870	< 0.315 U	6.3	157	0.56	< 16.5 U	0.19 J	30500
WHC1-BO03	12	NORM	12/19/2008	4620	< 0.315 UJ	10.5	84.1	0.44 J	< 16.5 U	< 0.1 U	49300
WHC1-BO04	0	NORM	12/15/2008	8900	< 0.315 U	5.9	157	0.52 J	< 16.5 U	0.15 J	37800
WHC1-BO04	12		12/19/2008	5410	< 0.315 UJ	8.4	101	0.45 J	< 16.5 U	< 0.1 U	45300
WHC1-BO05	0		11/20/2008	4060	< 0.315 UJ	5.8	89.5 J+	0.39 J+	< 16.5 UJ	< 0.29 UJ	38300
WHC1-BO05	10		11/20/2008	5430	< 0.315 UJ	8.1	131 J+	0.51 J+	< 16.5 UJ	< 0.29 UJ	43000
WHC1-BO06	0	NORM	11/20/2008	5750	< 0.315 UJ	5.5 J	109 J+	0.51 J+	< 16.5 UJ	< 0.28 UJ	37000
WHC1-BO06	10		11/20/2008	5300	< 0.315 UJ	9.3	134 J+	0.39 J+	< 16.5 UJ	< 0.28 UJ	45700
WHC1-BO07	0	NORM	11/19/2008	6900	< 0.315 UJ	10	88.2	0.46 J	< 16.5 U	< 0.25 U	46000
WHC1-BO07	10		11/19/2008	3910	< 0.315 UJ	5.1 J	58.2	0.27 J	< 16.5 U	< 0.1 U	36800
WHC1-BO08	0		11/20/2008	8480	< 0.315 UJ	13.4	143 J+	0.54 J+	17.9 J+	< 0.26 UJ	43100
WHC1-BO08	0	FD	11/20/2008	8000	< 0.315 UJ	10	131 J+	0.53 J+	19.2 J+	< 0.26 UJ	52700
WHC1-BO08	11		11/20/2008	6390	< 0.315 UJ	16.1	119 J+	0.44 J+	< 16.5 UJ	< 0.26 UJ	60400
WHC1-BO09	0	NORM	11/19/2008	6680	< 2.6 UJ	11.8	86.9	0.43 J	27.3 J	< 0.26 U	40000
WHC1-BO09	0	FD	11/19/2008	7330	< 0.315 UJ	16	92.3	0.48 J	25.8 J	< 0.26 U	40400
WHC1-BO09	6	NORM	11/19/2008	4740	< 0.315 UJ	16.4	125	0.38 J	< 16.5 U	0.28	139000
WHC1-BO09	16	NORM	11/19/2008	5610	< 0.315 UJ	17.4	107	0.39 J	< 16.5 U	< 0.26 U	94700
WHC1-BO10	0	NORM	11/19/2008	8490	< 0.315 UJ	30.3	69.9	0.53	26.5 J	< 0.26 U	54400
WHC1-BO10	10			5920	< 0.315 UJ	22.4	90.9	0.39 J	< 16.5 U	< 0.26 U	82100
WHC1-BP01	0	NORM	12/1/2008	5070	< 0.315 UJ	5.8	232 J	0.34 J	< 16.5 U	< 0.1 U	23000
WHC1-BP01	10	NORM	12/1/2008	4270	< 0.315 UJ	18.1	91 J	0.34 J	< 16.5 U	< 0.1 U	108000
WHC1-BP02	0	NORM	12/1/2008	9940	< 0.315 UJ	7.6	91 J 143 J	0.52 3	< 16.5 U	0.14 J	35900
WHC1-BP02	11	NORM	12/1/2008	4300	< 0.315 UJ	14.6	99.7 J	0.34 J	< 16.5 U	< 0.14 J	75000
WHC1-BP03	0		12/1/2008	6110	< 0.315 U	6.2	138	0.34 J	< 16.5 U	0.15 J	37300
W11C1-D1 03	U	NOKWI	12/13/2000	0110	< 0.515 €	0.2	130	0.56 J	< 10.5 U	U.13 J	31300

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 11 of 64)

					Metals								
	Depth	Sample	Sample	Aluminum	Antimony	nic	un	Beryllium	no	Cadmium	Calcium		
Sample ID	(ft bgs)	Туре	Date	Mur	Vnti	Arsenic	Barium	Bery	Boron	,'adı	alc		
WHC1-BP03	0	FD	12/15/2008	6280	< 0.315 U	5 J	141	0.38 J	< 16.5 U	0.12 J	24400		
WHC1-BP03	11	NORM	12/19/2008	6560	< 0.315 UJ	21.2	172	0.48 J	21.3 J	0.14 J+	109000		
WHC1-BP04	0	NORM	12/15/2008	6300	< 0.315 U	9.2	251	0.52	< 16.5 U	< 0.1 U	38000		
WHC1-BP04	12	NORM	12/19/2008	4650	< 0.315 UJ	9.6	97	0.47 J	< 16.5 U	0.12 J+	33100		
WHC1-BP05	0	NORM	12/15/2008	6730	< 0.315 U	5.9	117	0.49 J	< 16.5 U	0.12 J	30100		
WHC1-BP05	10	NORM	12/19/2008	4700	< 0.315 UJ	14.5	138	0.46 J	< 16.5 U	< 0.1 U	30700		
WHC1-BP06	0	NORM	12/12/2008	9850	< 0.315 UJ	8.6	148	0.64	< 16.5 U	0.16 J+	50600		
WHC1-BP06	10	NORM	12/12/2008	5460	< 0.315 UJ	9.3	121	0.35 J	< 16.5 U	0.11 J+	62500		
WHC1-BP07	0	NORM	11/20/2008	6790	< 0.315 UJ	8.7	108 J+	0.43 J+	35.9 J+	< 0.1 UJ	122000		
WHC1-BP07	3	NORM	11/20/2008	5720	< 0.315 UJ	30.7	92.1 J+	0.35 J+	30.1 J+	< 0.1 UJ	142000		
WHC1-BP07	13	NORM	11/20/2008	5250	< 0.315 UJ	10.2	48.7 J+	0.58 J+	< 16.5 UJ	< 0.28 UJ	48000		
WHC1-BP08	0	NORM	11/19/2008	5740	< 0.315 UJ	19.6	79.1	0.4 J	59.1	< 0.26 U	54800		
WHC1-BP08	4	NORM	11/19/2008	6090	< 0.315 UJ	33.2	111	0.43 J	27.6 J	< 0.1 U	34800		
WHC1-BP08	14	NORM	11/19/2008	4930	< 0.315 UJ	10.2	44.5	0.52 J	< 16.5 U	< 0.27 U	41100		
WHC1-BP09	0	NORM	11/19/2008	6500	< 0.315 UJ	9.6	119	0.46 J	23.7 J	< 0.26 U	71900		
WHC1-BP09	10	NORM	11/19/2008	5140	< 0.315 UJ	9.5	68.1	0.31 J	< 16.5 U	< 0.1 U	56800		
WHC1-BP10	0	NORM	11/19/2008	5520	< 0.315 UJ	10.1	72.6	0.42 J	< 16.5 U	< 0.26 U	58300		
WHC1-BP10	10	NORM	11/19/2008	4250	< 0.315 UJ	12.1	98.3	0.34 J	< 16.5 U	< 0.26 U	107000		
WHC1-D01	0	NORM	12/5/2008	7290	< 0.315 UJ	7.5	312 J+	0.49 J	< 16.5 U	0.22 J+	56200		
WHC1-D01	10	NORM	12/5/2008	7610	< 0.315 UJ	5.9	173 J+	0.58	< 16.5 U	0.25 J+	43400		
WHC1-D02	0	NORM	12/5/2008	9410	< 0.315 UJ	7.5	307 J+	0.55	< 16.5 U	0.37 J+	51300		
WHC1-D02	10	NORM	12/5/2008	7070	< 0.315 UJ	6.3	212 J+	0.6	< 16.5 U	0.17 J+	19900		
WHC1-D03	0	NORM	12/5/2008	5600	< 0.315 UJ	3.8 J	150 J+	0.42 J	< 16.5 U	0.24 J+	41500		
WHC1-D03	0	FD	12/5/2008	7320	< 0.315 UJ	4.4 J	201 J+	0.44 J	< 16.5 U	0.35 J+	66800		
WHC1-D03	10	NORM	12/5/2008	6940	< 0.315 UJ	5.2	142 J+	0.53	< 16.5 U	0.11 J+	16000		
WHC1-D04	0	NORM	12/5/2008	7940	< 0.315 UJ	6.7	229 J+	0.51 J	< 16.5 U	0.36 J+	34100		
WHC1-D04	10	NORM	12/5/2008	6050	< 0.315 UJ	9.3	203 J+	0.41 J	< 16.5 U	0.36 J+	124000		
WHC1-D05	0	NORM	12/5/2008	8130	< 0.315 UJ	4.2 J	189 J+	0.46 J	< 16.5 U	0.38 J+	27100		
WHC1-D05	10	NORM	12/5/2008	6620	< 0.315 UJ	4.6 J	193 J+	0.4 J	< 16.5 U	0.13 J+	36600		
WHC1-D06	0	NORM	12/5/2008	6130	< 0.315 UJ	5.1 J	220 J+	0.43 J	< 16.5 U	0.26 J+	41900		
WHC1-D06	10	NORM	12/5/2008	7540	< 0.315 UJ	7	194 J+	0.42 J	< 16.5 U	0.13 J+	22300		
WHC1-D07	0	NORM	12/5/2008	6380	< 0.315 UJ	4.6 J	178 J+	0.4 J	< 16.5 U	0.23 J+	37600		
WHC1-D07	10	NORM	12/5/2008	5870	< 0.315 UJ	7	157 J+	0.49 J	< 16.5 U	0.22 J+	44600		
WHC1-D08	0	NORM	12/8/2008	5720	< 0.315 UJ	5.6 J+	204	0.4 J	< 16.5 U	0.23 J-	29400		
WHC1-D08	10	NORM	12/9/2008	5220	< 0.315 UJ	10.5	81.6 J+	0.36 J	< 16.5 U	0.25 J	112000		
WHC1-D09	0	NORM	12/8/2008	6660	< 0.315 UJ	5.7 J+	231	0.37 J	< 16.5 U	0.29 J-	34900		
WHC1-D09	11	NORM	12/9/2008	5300	< 0.315 UJ	11.7	115 J+	0.44 J+	< 16.5 U	0.21 J	104000		
WHC1-D10	0	NORM	12/8/2008	6360	< 0.315 UJ	5.7 J+	232	0.47 J	< 16.5 U	0.21 J-	23400		
WHC1-D10	10	NORM	12/9/2008	6130	< 0.315 UJ	11.1	57.7 J+	0.48 J+	< 16.5 U	0.11 J	71900		
WHC1-D11	0	NORM	12/8/2008	10600	< 2.7 UJ	14.9 J+	702	0.74	22.2 J	1.3 J-	48000		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 12 of 64)

							Me	etals			
Sample ID	Depth (ft bgs)	Sample Type	e Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium
WHC1-D11	10	NORM	12/9/2008	5120	< 0.315 UJ	12.6	111 J+	0.46 J+	< 16.5 U	0.13 J	57500
WHC1-D12	0	NORM	12/10/2008	7450	< 0.315 UJ	24.1	148	0.49 J	< 16.5 U	0.14 J	94500
WHC1-D12	10	NORM	12/10/2008	9650	< 0.315 UJ	13.1	259	0.41 J	< 16.5 U	0.19 J	224000
WHC1-D13	0	NORM	12/8/2008	9520	< 0.315 UJ	8	212	0.65	24.9 J	0.51	46200
WHC1-D13	10	NORM	12/8/2008	6150	< 0.315 UJ	6.6 J	56.3	0.37 J	< 16.5 U	0.4	112000
WHC1-D15	0	NORM	12/11/2008	6610	< 0.315 UJ	5.5 J+	146 J+	0.4 J	39.5 J	0.23 J+	55900
WHC1-D15	10	NORM	12/11/2008	6750	< 0.315 UJ	8.6 J+	74.1 J+	0.32 J	< 16.5 U	< 0.1 U	101000
WHC1-D16	0	NORM	12/10/2008	6730	< 0.315 UJ	16.1	160	0.4 J	63.3	0.14 J	52500
WHC1-D16	10	NORM	12/10/2008	6160	< 0.315 UJ	13.1	159	0.33 J	< 16.5 U	< 0.1 U	65700
WHC1-D17	0	NORM	12/10/2008	7510	< 2.7 UJ	10.3	327	0.54 J	76.8	0.25 J	33700
WHC1-D17	10	NORM	12/10/2008	5410	< 0.315 UJ	11.8	188	0.34 J	< 16.5 U	< 0.1 U	54600
WHC1-D18	0	NORM	12/11/2008	5670	< 2.6 UJ	6.7 J+	263 J+	0.34 J	< 16.5 U	0.35 J+	28000
WHC1-D18	10	NORM	12/11/2008	4900	< 0.315 UJ	7.9 J+	115 J+	0.37 J	< 16.5 U	0.13 J+	79000
WHC1-D19	0	NORM	12/11/2008	8600	< 2.6 UJ	7.7 J+	599 J	0.63	17.8 J	0.18 J+	48600 J
WHC1-D19	0	FD	12/11/2008	8180	< 0.315 UJ	6 J+	198 J	0.53	< 16.5 U	0.13 J+	20500 J
WHC1-D19	10	NORM	12/11/2008	5650	< 0.315 UJ	9.7 J+	114 J+	0.43 J	< 16.5 U	0.21 J+	68200
WHC1-D20	0	NORM	12/12/2008	6280	< 2.6 UJ	6.2	309	0.37 J	< 16.5 U	0.42 J+	43700
WHC1-D20	10	NORM	12/12/2008	7210	< 0.315 UJ	7.3	184	0.42 J	< 16.5 U	0.16 J+	33900
WHC1-D21	0	NORM	12/16/2008	4670	< 2.7 UJ	6.3	175 J+	0.33 J	< 16.5 U	0.36 J+	23900
WHC1-D21	10	NORM	12/16/2008	6610	< 0.315 UJ	6.6	165 J+	0.42 J	< 16.5 U	0.13 J+	27300
WHC1-D22	0	NORM	12/16/2008	11400	< 0.315 UJ	9.5	397 J+	0.62	< 16.5 U	0.46 J+	57900
WHC1-D22	10	NORM	12/16/2008	7540	< 0.315 UJ	8	163 J+	0.51 J	< 16.5 U	< 0.1 UJ	34700
WHC1-D23	0	NORM	12/16/2008	4960	< 0.315 U	5.1 J	167	0.35 J	< 16.5 U	0.27	32400
WHC1-D23	10	NORM	12/16/2008	7260	< 0.315 U	7.3	169	0.41 J	< 16.5 U	0.26	45500
WHC1-D24	0	NORM	12/16/2008	6130	< 2.7 UJ	< 5.4 U	143 J+	0.38 J	< 16.5 U	0.29 J+	42800
WHC1-D24	0	FD	12/16/2008	5550	< 0.315 UJ	5.6	228 J+	0.42 J	< 16.5 U	0.32 J+	34000
WHC1-D24	10	NORM	12/16/2008	6560	< 0.315 UJ	6.2	150 J+	0.4 J	< 16.5 U	0.18 J+	29000
WHC1-D25	0	NORM	12/16/2008	5440	< 0.315 UJ	5.7	184 J+	0.33 J	< 16.5 U	0.23 J+	22000
WHC1-D25	10	NORM	12/16/2008	7360	< 0.315 UJ	6.7	168 J+	0.52 J	< 16.5 U	0.24 J+	35200
WHC1-D26	0	NORM	12/12/2008	6790	< 0.315 UJ	5.8	149	0.46 J	< 16.5 U	0.2 J+	29200
WHC1-D26	10	NORM	12/12/2008	6330	< 0.315 UJ	8.5	127	0.41 J	< 16.5 U	< 0.1 U	36800
WHC1-D27	0	NORM	12/12/2008	6300	< 0.315 UJ	6.4	130	0.42 J	< 16.5 U	0.16 J+	27100
WHC1-D27	0	FD	12/12/2008	5630	< 0.315 UJ	< 5.3 U	119	0.36 J	< 16.5 U	0.16 J+	26000
WHC1-D27	10	NORM	12/12/2008	6860	< 0.315 UJ	7.9	140	0.51 J	< 16.5 U	0.22 J+	34100
WHC1-D28	0	NORM	12/12/2008	5100	< 0.315 UJ	7.2	148	0.41 J	< 16.5 U	0.14 J+	33300
WHC1-D28	10	NORM	12/12/2008	6690	< 0.315 UJ	8.9	157	0.46 J	< 16.5 U	0.17 J+	40600
WHC1-D29	0	NORM	12/12/2008	6610	< 0.315 UJ	8.6	189	0.51 J	< 16.5 U	0.2 J+	33300
WHC1-D29	10	NORM	12/12/2008	6410	< 0.315 UJ	9.1	125	0.4 J	< 16.5 U	0.17 J+	57500
WHC1-P01	0	NORM	12/15/2008	9620	< 0.315 U	10.5	115	0.64	17.4 J	0.13 J	31800
WHC1-P01	12	NORM	12/19/2008	4110	< 0.315 UJ	6.4	97.6	0.36 J	< 16.5 U	< 0.1 U	33500

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 13 of 64)

							Me	etals			
Sample ID WHC1-P01NE	Depth (ft bgs)	Sample Type	Date 1 2/2/2010	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium
WHC1-P01NE	0	NORM	2/2/2010			6.1					
WHC1-P01NW	0	NORM	2/2/2010			4.8 J					
WHC1-P01SE	0	NORM	2/2/2010			7.7					
WHC1-P01SW	0	NORM	2/2/2010			8.2					
WHC1-P01SW	0	FD	2/2/2010			8.4					
WHC1-P02	0	NORM	12/1/2008	5910	< 0.315 UJ	5.3	147 J	0.41 J	< 16.5 U	0.14 J	23700
WHC1-P02	10	NORM	12/1/2008	5150	< 0.315 UJ	5.9	94.5 J	0.35 J	< 16.5 U	< 0.1 U	31800
WHC1-P03	0	NORM	12/15/2008	7020	< 0.315 U	7.4	157	0.47 J	< 16.5 U	0.18 J	54800
WHC1-P03	3	NORM	12/18/2008	5510	< 0.315 U	10.7	142	0.4 J	< 16.5 U	0.12 J	58300
WHC1-P03	3	FD	12/18/2008	5430	< 0.315 U	7.8	136	0.41 J	< 16.5 U	0.11 J	47300
WHC1-P03	13	NORM	12/18/2008	4740	< 0.315 U	7.4	111	0.29 J	< 16.5 U	< 0.1 U	36000
WHC1-P04	0	NORM	12/15/2008	8980	< 0.315 U	11.2	144	0.55	< 16.5 U	0.13 J	83500
WHC1-P04	10	NORM	12/18/2008	4870	< 0.315 U	10.2	76.8	0.37 J	< 16.5 U	< 0.1 U	50900
WHC1-P05	0	NORM	12/8/2008	6860	< 0.315 UJ	6.2 J+	180	0.47 J	< 16.5 U	0.21 J-	37600
WHC1-P05	0	FD	12/8/2008	6340	< 0.315 UJ	8.1 J+	141	0.4 J	< 16.5 U	0.13 J-	34700
WHC1-P05	10	NORM	12/18/2008	5150	< 0.315 U	8.7	87.5	0.38 J	< 16.5 U	< 0.1 U	27600
WHC1-P06	0	NORM	12/2/2008	6070	< 0.315 UJ	7.8	129 J+	0.45	< 16.5 U	0.12	38700
WHC1-P06	12	NORM	12/2/2008	5650	< 0.315 UJ	8.1	142 J+	0.46	< 16.5 U	< 0.1 U	28000
WHC1-P07	0	NORM	12/2/2008	7500	< 0.315 UJ	6.7	153 J+	0.5	< 16.5 U	0.13	37300
WHC1-P07	3	NORM	12/2/2008	5700	< 0.315 UJ	8.5	116 J+	0.44	< 16.5 U	< 0.1 U	24800
WHC1-P07	13	NORM	12/2/2008	5410	< 0.315 UJ	8.3	106 J+	0.37	< 16.5 U	< 0.1 U	36600
WHC1-P08	0	NORM	12/3/2008	7040	< 0.315 UJ	5.3	148	0.46	< 16.5 U	< 0.1 U	34800
WHC1-P08	11	NORM	12/3/2008	6920	< 0.315 UJ	5.6	148	0.46	< 16.5 U	< 0.1 U	49500
WHC1-P09	0	NORM	12/4/2008	7350	< 0.315 UJ	5.9	163 J+	0.47 J	< 16.5 U	0.19 J+	38100
WHC1-P09	0	FD	12/4/2008	7010	< 0.315 UJ	4.9 J	183 J+	0.44 J	< 16.5 U	0.15 J+	36100
WHC1-P09	10	NORM	12/4/2008	6260	< 0.315 UJ	6.1	145 J+	0.37 J	< 16.5 U	< 0.1 U	39900
WHC1-P10	0	NORM	11/25/2008	7140 J	< 0.315 UJ	5.9 J+	165 J	0.58 J+	109 J+	0.27 J+	85100
WHC1-P10	10	NORM	11/25/2008	8070 J	< 0.315 UJ	23.4 J+	189 J	0.64 J+	< 16.5 U	< 0.1 U	98200
WHC1-P11	0	NORM	12/8/2008	8700	< 2.6 UJ	17 J+	1670	0.76	24.3 J	4.3 J-	71600
WHC1-P11	0	FD	12/8/2008	7740	< 2.6 UJ	12.1 J+	1450	0.54	< 16.5 U	3 J-	43300
WHC1-P11	10	NORM	12/9/2008	5920	< 0.315 UJ	12.6	99.7 J+	0.44 J	< 16.5 U	0.3	111000
WHC1-P12	0	NORM	12/5/2008	6250	< 0.315 UJ	6.4	159 J+	0.53	< 16.5 U	0.21 J+	33000
WHC1-P12	11	NORM	12/5/2008	5790	< 0.315 UJ	7.3	138 J+	0.39 J	< 16.5 U	0.14 J+	55300
WHC1-P13	0	NORM	12/9/2008	10500	< 0.315 UJ	7	134 J+	0.65	35 J	0.2 J	39900
WHC1-P13	10	NORM	12/9/2008	16400	< 0.315 UJ	22.9 J	137 J	1	43.5 J	< 0.1 U	14700 J
WHC1-P13	10	FD	12/9/2008	14700	< 0.315 UJ	54 J	646 J	0.67	29.5 J	0.15 J	33900 J
WHC1-P14	0	NORM	12/17/2008	11600	< 0.315 U	12.1	275	0.65	< 16.5 U	0.29 J	83800
WHC1-P15	0	NORM	12/8/2008	9680	< 0.315 UJ	11.9 J+	176	0.73	29.2 J	0.15 J-	33600
WHC1-P15	1.5	NORM	12/8/2008	7660	< 0.315 UJ	8.9 J+	128	0.55	< 16.5 U	< 0.1 UJ	32400
WHC1-P15	10	NORM	12/18/2008	5380	< 0.315 U	6.7	100	0.35 J	< 16.5 U	< 0.1 U	30200

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 14 of 64)

							Me	etals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium
WHC1-P15NE	0	NORM	2/2/2010			9.8					
WHC1-P15NE	0	FD	2/2/2010			12.8					
WHC1-P15NW	0	NORM	2/2/2010			6.9					
WHC1-P15SE	0	NORM	2/2/2010			8					
WHC1-P15SW	0	NORM	2/2/2010			8					
WHC1-P16	0	NORM	12/1/2008	10400	< 0.315 UJ	7.4	162 J	0.54	< 16.5 U	0.2 J	38400
WHC1-P16	11	NORM	12/1/2008	6790	< 0.315 UJ	8.2	102 J	0.45 J	< 16.5 U	< 0.1 U	30900
WHC1-P17	0	NORM	12/15/2008	10600	< 0.315 U	7	137	0.66	< 16.5 U	0.16 J	31200
WHC1-P17	12	NORM	12/19/2008	4730	< 0.315 UJ	7.6	92.6	0.41 J	< 16.5 U	< 0.1 U	31200
WHC1-P17	12	FD	12/19/2008	7220	< 0.315 UJ	8.6	99.4	0.62	< 16.5 U	< 0.1 U	33100
WHC1-P18	0	NORM	12/1/2008	8600	< 0.315 UJ	6.1	138 J	0.6	< 16.5 U	0.11 J	25600
WHC1-P18	12	NORM	12/1/2008	6690	< 0.315 UJ	9.8	125 J	0.48 J	< 16.5 U	< 0.1 U	35000
WHC2-BF05C	12	NORM	12/3/2009	8070 J	< 0.225 U	20.3 J+	78.9 J	< 0.63 U	< 63.5 U	< 0.04 U	90100 J
WHC2-BF05NE	12	NORM	12/3/2009	5190	< 0.225 U	10.7	71.5	0.17	12	< 0.04 U	18500
WHC2-BF05NW	12	NORM	12/3/2009	4580	< 0.225 U	25.7	57.7	0.1	29.1	< 0.04 U	139000
WHC2-BF05SE	12	NORM	12/3/2009	9440	< 0.225 U	19	279	0.33	18.5	0.24	188000
WHC2-BF05SW	12	NORM	12/3/2009	8350	< 0.225 U	23.8	174	0.32	14.7	0.13	139000
WHC2-BG04C	10	NORM	12/4/2009	15500 J	< 0.225 UJ	20.4	51.2 J-	< 0.74 U	< 74.5 U	< 0.04 U	104000 J
WHC2-BG04NE	10	NORM	12/4/2009	5870 J	< 0.225 UJ	19	42.4 J-	< 0.66 U	< 65.8 U	< 0.04 U	182000 J
WHC2-BG04NW	10	NORM	12/4/2009	7880 J	< 0.225 UJ	15.1	161 J-	< 0.64 U	< 63.8 U	< 0.04 U	109000 J
WHC2-BG04SE	10	NORM	12/4/2009	10900 J	< 0.225 UJ	27.7	106 J-	< 0.68 U	< 68.4 U	< 0.04 U	140000 J
WHC2-BG04SW	10	NORM	12/4/2009	18400 J	< 0.225 UJ	24.5	134 J-	< 0.25 U	< 363 U	< 0.04 U	63200 J
WHC2-BG06C	10	NORM	12/3/2009	9180	< 0.225 U	13.5	118	0.29	< 14.95 U	< 0.04 U	98500
WHC2-BG06NE	10	NORM	12/3/2009	9780	< 0.225 U	13.2	128	0.33	9.5	0.065	81600
WHC2-BG06NW	10	NORM	12/3/2009	5830	< 0.225 U	15.4	74.7	0.22	7.5	0.077	185000
WHC2-BG06SE	10	NORM	12/3/2009	7270	< 0.225 U	12.4	213	0.15	< 14.95 U	< 0.04 U	160000
WHC2-BG06SW	10	NORM	12/3/2009	5440	< 0.225 U	12.7	104	0.17	< 2.99 U	< 0.04 U	73600
WHC2-BI05C	0	NORM	11/30/2009	9240 J	< 0.225 U	7.4 J+	226 J+	0.52	< 51.2 UJ	< 0.26 UJ	34800 J
WHC2-BL07	0	NORM	8/9/2010	12800	< 0.85 UJ	14.3	166	0.57	< 17.4 UJ	0.25 J	2930 J
WHC2-BM06C	0	NORM	11/30/2009	3590 J	< 0.225 U	9.5 J+	227 J+	< 0.51 U	< 51.4 UJ	< 0.04 U	4300 J
WHC2-BM10C	13		11/25/2009	9120 J	< 0.225 U	31.6 J+	40.9 J	< 0.65 UJ	< 64.8 U	< 0.04 U	152000 J
WHC2-BM10C	13	FD	11/25/2009	11900 J	< 0.225 U	22.4 J+	43.8 J	< 0.67 UJ	< 67 U	< 0.04 U	40700 J
WHC2-BM10NE	13	NORM	11/25/2009	6930 J	< 0.225 U	18.4 J+	142 J	< 0.58 UJ	< 57.6 U	< 0.29 UJ	135000 J
WHC2-BM10NW	13	NORM	11/25/2009	9340 J	< 0.225 U	22.5 J+	222 J	< 0.58 UJ	< 58.3 U	0.32 J+	109000 J
WHC2-BM10SE	13		11/25/2009	4710 J	< 0.225 U	15.2 J+	84.4 J	< 0.56 UJ	< 55.6 U	< 0.28 UJ	132000 J
WHC2-BM10SW	13	NORM	11/25/2009	5870 J	< 0.225 U	15.4 J+	128 J	< 0.56 UJ	< 55.9 U	< 0.28 UJ	117000 J
WHC2-BN09C	11	NORM	11/25/2009	8820 J	< 2.7 U	14 J+	142 J	< 0.54 UJ	< 54.3 U	< 0.27 UJ	37700 J
WHC2-BN09C	11	FD	11/25/2009	9870 J	< 2.7 U	19.3 J+	196 J	0.6 J+	< 54.4 U	< 0.27 UJ	32100 J
WHC2-BN09NE	11	NORM	11/25/2009	11300 J	< 0.225 U	16.2 J÷	191 J	0.65 J+	< 55.8 U	< 0.28 UJ	67400 J
WHC2-BN09NW	11		11/25/2009	10200 J	< 0.225 U	14.6 J+	190 J	0.61 J+	< 53.7 U	< 0.27 UJ	46000 J
IICE BITOTIV	1 1 1	TOTAL	11/25/2007	102003	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	17.03	1703	1 0.013	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.27 03	

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 15 of 64)

							Mo	etals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium
WHC2-BN09SE	11	NORM	11/25/2009	9920 J	< 0.225 U	18.9 J+	122 J	0.57 J+	< 55.1 U	< 0.28 UJ	45300 J
WHC2-BN09SW	11	NORM	11/25/2009	9840 J	< 0.225 U	13.7 J+	129 J	< 0.54 UJ	< 54.4 U	< 0.27 UJ	42200 J
WHC2-BN10	0	NORM	8/10/2010	7710 J	< 0.87 UJ	34.7 J+	128 J+	< 0.53 U	< 52.9 U	0.097 J	74100 J
WHC2-BN10NE	0	NORM	8/10/2010	9850 J	< 0.83 UJ	29.7 J+	179 J+	< 0.51 U	< 50.9 U	0.079 J	56200 J
WHC2-BN10SE	0	NORM	8/10/2010	8070 J	< 0.84 UJ	27.3 J+	146 J+	< 0.51 U	< 50.9 U	0.12 Ј	88500 J
WHC2-BN10SW	0	NORM	8/10/2010	7560 J	< 0.85 UJ	25.6 J+	154 J+	< 0.52 U	< 51.5 U	0.087 J	54700 J
WHC2-BO10C	0	NORM	11/25/2009	10000 J	< 0.225 U	41.1 J+	88.9 J+	0.56	< 51.1 UJ	< 0.04 U	53500 J
WHC2-BO10C	0	FD	11/30/2009	9660 J	< 0.225 U	31.9 J+	54.4 J+	< 0.52 U	< 51.5 UJ	< 0.04 U	23100 J
WHC2-BP07C	3	NORM	11/25/2009	8230 J	< 0.225 U	12.9 J+	149 J	< 0.51 UJ	< 51.2 U	< 0.04 U	22700 J
WHC2-BP07NE	3	NORM	11/25/2009	8690 J	< 0.225 U	12.5 J+	169 J	< 0.51 UJ	< 50.8 U	< 0.04 U	19900 J
WHC2-BP07NW	3	NORM	11/25/2009	8610 J	< 0.225 U	23.5 J+	145 J+	0.52	< 51.1 UJ	< 0.26 UJ	64800 J
WHC2-BP07SE	3	NORM	11/25/2009	9690 J	< 0.225 U	32.5 J+	144 J	< 0.53 UJ	< 53.3 U	< 0.27 UJ	75800 J
WHC2-BP07SW	3	NORM	11/25/2009	8320 J	< 2.6 U	7.6 J+	158 J+	< 0.52 U	< 51.8 UJ	< 0.04 U	34200 J
WHC2-BP08C	4	NORM	11/25/2009	7320 J	< 0.225 U	25.9 J+	105 J	< 0.53 UJ	54	< 0.27 UJ	107000 J
WHC2-BP08NE	4	NORM	11/25/2009	6860 J	< 0.225 U	20.1 J+	92.7 J	< 0.53 UJ	< 53.5 U	< 0.04 U	84100 J
WHC2-BP08NW	4	NORM	11/25/2009	5870 J	< 0.225 U	15.8 J+	77.9 J	< 0.51 UJ	< 51.2 U	< 0.04 U	53600 J
WHC2-BP08SE	4		11/25/2009	6670 J	< 0.225 U	21.1 J+	88 J	< 0.54 UJ	< 53.6 U	< 0.04 U	69000 J
WHC2-BP08SW	4	NORM	11/25/2009	6990 J	< 0.225 U	17.6 J+	117 J	< 0.54 UJ	< 53.7 U	< 0.27 UJ	43800 J
WHC2-D11C	0	NORM	12/2/2009	11300 J	< 2.5 UJ	10	350 J-	< 0.51 U	< 50.9 U	0.46	33400 J
WHC2-D13C	10	NORM	12/3/2009	6960	< 0.225 U	12.1	115	0.13	12.3	0.085	138000
WHC2-D13NE	10	NORM	12/3/2009	11700	< 0.225 U	11.9	72.9	0.34	16.5	< 0.04 U	109000
WHC2-D13NW	10	NORM	12/3/2009	6360	< 0.225 U	21.8	91.1	0.26	7.1	< 0.04 U	101000
WHC2-D13SE	10	NORM	12/3/2009	13500	< 0.225 U	12.3	28.9	0.43	18.2	0.12	106000
WHC2-D13SW	10	NORM	12/3/2009	6510	< 0.225 U	25.9	46.6	0.2	< 14.95 U	0.17	201000
WHC2-D14C	0	NORM	12/2/2009	6760 J	< 0.225 UJ	7.6	280 J-	< 0.53 U	< 52.5 U	< 0.26 U	83500 J
WHC2-D16C	0	NORM	11/30/2009	7140 J	< 0.225 U	17.6 J+	151 J+	< 0.56 U	< 56.5 UJ	< 0.28 UJ	92300 J
WHC2-D17C	0	NORM	12/1/2009	9460 J	< 0.225 U	10.5 J+	213 J	< 0.56 UJ	< 55.8 U	< 0.28 UJ	51300 J
WHC2-P07C	0	NORM	12/1/2009	4210 J	< 0.225 U	13.9 J+	124 J	0.36 J+	< 50.8 U	< 0.25 UJ	42900 J
WHC2-P11C	0	NORM	12/1/2009	6240 J	< 2.6 U	17.3 J+	654 J	< 0.52 UJ	< 51.8 U	0.82 J+	21900 J
WHC2-P11C	10	NORM	12/3/2009	10900	0.87	11.7	303	0.62	14.2	0.35	13100
WHC2-P13C	10	NORM	12/4/2009	10000 J	< 0.225 UJ	34.1	180 J-	< 0.7 U	< 69.8 U	< 0.04 U	30600 J
WHC2-P13NE	10	NORM	12/4/2009	14300 J	< 0.225 UJ	49.1	418 J-	0.7	< 63.8 U	< 0.04 U	18500 J
WHC2-P13NW	10	NORM	12/4/2009	12200 J	< 0.225 UJ	43.8	181 J-	< 0.65 U	< 65.1 U	< 0.04 U	38200 J
WHC2-P13SE	10	NORM	12/4/2009	22600 J	< 0.225 U	26.4	57.1	0.85	< 77.1 U	< 0.04 U	5450 J
WHC2-P13SW	10	NORM	12/4/2009	15900 J	< 0.225 UJ	33.1	402 J-	< 0.6 U	< 59.5 U	< 0.04 U	17300 J
WHC3-BO10C	0	NORM	8/16/2010	7400 J	< 0.83 UJ	22.2	93.6 J	0.37 J	< 16.8 U	0.13 J	79300 J
WHC3-D11C	0	NORM	6/24/2010	9210	1.2 J-	16.2	796	0.82	< 51.1 UJ	0.82	36700 J
WHC3-D14C	0	NORM	8/9/2010	5070	< 0.99 UJ	7.7	47.1	< 0.61 U	< 20.2 UJ	0.02 0.087 J	171000 J
WHC3-D14C	0	FD	8/9/2010	4980	< 1 UJ	7.8	39.8	< 0.61 U	< 20.2 UJ	0.087 J	167000 J
WHC3-P11C	0	NORM	8/9/2010	5270	< 0.86 UJ	8.9	162	< 0.52 U	< 17.5 UJ	0.13 0.16 J	3820 J
** 11CJ-1 11C	U	TOM	0/ // 2010	3210	< 0.00 €3	0.7	102	< 0.52 €	< 17.5 OJ	0.103	3020 J

SOIL METALS DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 16 of 64)

							Me	tals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium
WHC3-P11C	0	FD	8/9/2010	4480	< 0.89 UJ	13.4	222	< 0.54 U	< 18.1 UJ	0.24 J	6390 J
WHC7-D12	0	NORM	3/20/2014	8900	< 0.29 UJ	6.3	430	0.48	32 J	0.13 J	21000
WHC7-W11	0	NORM	3/20/2014	11000	7.3 J-	32	350	0.65	25 J	0.88	54000
WHC7-WA11	0	NORM	5/12/2014	12000	< 0.32 UJ	7.1	660 J-	0.71	23 J	0.17 J	26000
WHD-AS-BG05	0		9/18/2009			5.4					
WHD-AS-BG05	10		9/18/2009			23					
WHD-AS-BH04	10	NORM	9/18/2009			6.7					
WHD-AS-BK03	12	NORM	9/21/2009			10					
WHD-AS-BL03	0	NORM	9/21/2009			10.3					
WHD-AS-BL03	0	FD	9/21/2009			10.4					
WHD-AS-BN01	12		9/21/2009			17.5					
WHD-AS-BN10	0	NORM	9/18/2009			24.3					
WHD-AS-BP03	11	NORM				15					
WHD-AS-BP03	11	FD	9/21/2009			16.4				=======================================	
WHD-AS-BP04	0	NORM	9/18/2009			7					
WHD-AS-BP08	0	NORM				15					
WHD-AS-BP08	4	NORM				11.4					
WHD-AS-P14	0	NORM	9/21/2009			8					

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 17 of 64)

				Metals							
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chromium	Chromium (VI)	Cobalt	Copper	ron	Lead	Lithium	Magnesium
OSC1-BM11	0	NORM	9/21/2009	16.5	< 0.1 U	7.2	14	13600	6.8	19.3 J	9270
OSC1-BM11	10	NORM	9/21/2009	8.9	< 0.12 U	7	18.7	13900	10	11 J	7190
OSC1-BN11	0	NORM	9/22/2009	11.5	0.28 J	8.8 J	12.5	11500 J	10.9	20.1	10400 J
OSC1-BN11	5	NORM	9/22/2009	9.9	< 0.11 U	6.8 J	12.5	11100 J	7.8	11.3	6540 J
OSC1-BN11N1	0	NORM	1/21/2010	19.9 J+	0.15 J-	11.2 J+	15.1 J+	13800 J	13.9 J+	41.9 J+	17100 J
OSC1-BN11N2	0	NORM	1/21/2010	23.8 J+	0.14 J-	10.8 J+	15.2 J+	14300 J	11.8 J+	42 J+	18000 J
OSC1-BN11S1	0	NORM	1/21/2010	19 J+	< 0.12 UJ	10 J+	18 J+	17300 J	15.3 J+	27 J+	12300 J
OSC1-BN11S2	0	NORM	1/21/2010	18 J+	< 0.12 UJ	9.8 J+	15.7 J+	14800 J	14.3 J+	33.9 J+	15200 J
OSC1-BO11	0	NORM	9/16/2009	9.4	< 0.11 U	4.2	13.4	9340	7.8 J	27.7 J	12600
OSC1-BO11	0	FD	9/16/2009	13.8	< 0.46 U	3.6	8.8	8490	4.4 J	51.5 J	19900
OSC1-BO11	5	NORM	9/16/2009	31.2	< 0.5 U	5.3	14.6	12900	6.9	26.2	14400
OSC1-BO11E1	0	NORM	1/21/2010	16.9 J+	< 0.12 UJ	5.8 J+	18.7 J+	12600 J	23.1 J+	39.7 J+	17700 J
OSC1-BO11E2	0	NORM	1/21/2010	30.6 J+	< 0.12 UJ	8.7 J+	22.2 J+	15400 J	55.6 J+	47.6 J+	17400 J
OSC1-BO11W1	0	NORM	1/21/2010	23.7 J+	0.14 J-	8.5 J+	23.4 J+	16100 J	33.5 J+	51.8 J+	19300 J
OSC1-BO11W2	0	NORM	1/21/2010	20.4 J+	< 0.12 UJ	8.2 J+	21 J+	16100 J	10.7 J+	59.4 J+	18500 J
OSC1-BO11W2	0	FD	1/21/2010	20.3 J+	< 0.12 UJ	6.9 J+	17.8 J+	14000 J	11.6 J+	78.5 J+	19000 J
OSC1-BP11	0	NORM	9/16/2009	37.6	< 0.5 U	4.5	13.1	10600	4.7	59.4	24900
OSC1-BP11	5	NORM	9/16/2009	29	< 0.13 U	5.1	14.6	11300	7.4	35.2	14200
OSC1-BP11NE	0	NORM	1/21/2010	12.2 J+	< 0.11 UJ	8.6 J+	16.6 J+	14900 J	13.4 J+	18.9 J+	9230 J
OSC1-BP11NW	0	NORM	1/21/2010	26.9 J+	< 0.13 UJ	14.3 J+	18.9 J+	17800 J	17.2 J+	51.1 J+	20200 J
OSC1-BP11SE	0	NORM	1/21/2010	37.4 J+	0.13 J-	5.5 J+	15.5 J+	11200 J	10.6 J+	28.8 J+	12600 J
OSC1-BP11SW	0	NORM	1/21/2010	26.1 J+	1.7 J-	5.9 J+	15.5 J+	12600 J	13.2 J+	34.5 J+	15400 J
OSC1-JP06	0	NORM	9/22/2009	24.1	< 0.12 U	5.4 J	11.2	9510 J	10	29.3	5360 J
OSC1-JP06	5	NORM	9/22/2009	59.1	< 0.14 U	5 J	8	9230 J	4.7	31.9	9230 J
OSC1-JP07	0	NORM	9/21/2009	10.3	0.13 J	4.5	12.4	11600	6.8	15.6 J	4790
OSC1-JP07	5	NORM	9/21/2009	13.9	< 0.13 U	4.8	10.6	9320	5.3	24.6 J	11200
OSC1-JP08	0	NORM	9/21/2009	5.4 J	< 0.12 U	6.7	21.8	11300	4.9	24.2 J	17000
OSC1-JP08	10	NORM	9/21/2009	15.1	0.15 J	5.4	14.1	12400	9.6	12.8 J	4870
OSC1-JP08N1	0	NORM	1/21/2010	12.8 J+	< 0.12 UJ	9.3 J+	16.5 J+	12900 J	19.3 J+	38 J+	17500 J
OSC1-JP08S1	0	NORM	1/21/2010	11.5 J+	< 0.12 UJ	10 J+	16.8 J+	10800 J	16.8 J+	44.2 J+	17300 J
OSC1-JP08S2	0	NORM	1/21/2010	12 J+	0.15 J-	12.8 J+	17.2 J+	12000 J	32.8 J+	47 J+	19000 J
OSC1-JS10	0	NORM	1/31/2010	29.3 J+	0.17 J-	8.7 J+	21 J+	14100 J	50.8 J+	48.1 J+	31700 J
OSC1-JS10	0	FD	1/21/2010	31.7 J+	< 0.14 UJ	8.8 J+	21.9 J+	14500 J	56.7 J+	49.3 J+	32000 J
OSC2-BN11	0	NORM	8/16/2010	23.1	< 0.41 U	5.7	14.8	12500 J	7.9	58.4	15700 J
OSC2-BN11N1	0	NORM	8/16/2010	21.8	< 0.4 U	6.1	14.3	12100 J	8.1	69.3	17800 J
OSC2-BN11N2	0	NORM	8/16/2010	17.6	< 0.41 U	5.8	13.6	10600 J	10.1	44.4	14900 J
OSC2-BN11S1	0	NORM	8/16/2010	23.3	< 0.41 U	5.5	12.3	12600 J	6.2	33.3	20300 J
OSC2-BN11S2	0	NORM	8/16/2010	19.5	< 0.41 U	4.6	12.5	10600 J	6.1	90.4	17700 J
OSC2-BO11	0	NORM	8/16/2010	19.1	< 0.41 U	5.8	13.1	11500 J	6.7	42.3	14900 J
OSC2-BO11E1	0	NORM	8/16/2010	14.5	< 0.41 U	5.5	11.9	10000 J	7	28.1	10800 J

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 18 of 64)

				Metals									
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chromium	Chromium (VI)	Cobalt	Copper	Iron	Lead	Lithium	Magnesium		
OSC2-BO11E2	0	NORM	8/16/2010	18.6	< 0.41 U	5.7	13.5	12300 J	7.4	39.4	13300 J		
OSC2-BO11W1	0	NORM	8/16/2010	15.8	< 0.41 U	5.9	12.5	11300 J	10.5	36.2	13000 J		
OSC2-BO11W2	0	NORM	8/16/2010	14.5	< 0.41 U	5.3	11.9	10400 J	7.1	31.9	11400 J		
OSC2-BP11	0	NORM	8/16/2010	49.2	< 0.41 U	3.9	11.3	10900 J	8.1	41	16000 J		
OSC2-BP11NE	0	NORM	8/16/2010	49.3	< 0.41 U	4.1	13.3	13100 J	7.3	41	15000 J		
OSC2-BP11NW	0	NORM	8/16/2010	20	< 0.41 U	7.5	13.5	12000 J	6.4	34.2	16800 J		
OSC2-BP11SE	0	NORM	8/16/2010	18.9	< 0.41 U	4.7	12.3	10300 J	17.2	26.2	11300 J		
OSC2-BP11SW	0	NORM	8/16/2010	26.8	< 0.41 U	5.5	14.7	12500 J	11.1	29.4	13200 J		
OSC2-JP06	0	NORM	8/10/2010	18.1	0.15 J	5.8	14.3	12400 J	8	45.9	10600		
OSC2-JP06NE	0	NORM	8/10/2010	15.3	0.19 J	4.3	10.4	10700 J	9.3	24.5	4610		
OSC2-JP06NW	0	NORM	8/10/2010	14.3	0.15 J	5.5	12.2	9880 J	5.6	130	21700		
OSC2-JP06SE	0	NORM	8/10/2010	21.4	0.15 J	7.6	18.5	14000 J	9.1	46.2	11800		
OSC2-JP06SW	0	NORM	8/10/2010	17.6	0.14 J	8.1	15.6	14800 J	7.9	42.2	15300		
OSC2-JP07	0	NORM	8/10/2010	19.1	0.19 J	5.9	15.7	11700 J	7.2	91.3	23500		
OSC2-JP07NW	0	NORM	8/10/2010	12.9	< 0.1 U	5.6	13.8	10600 J	6.1	57.4	15300		
OSC2-JP07SW	0	NORM	8/10/2010	21.1	0.2 J	5.5	14.9	10700 J	6.7	86.9 J	19100		
OSC2-JP08	0	NORM	8/16/2010	9.6	< 0.1 U	5.6	12.8	10200	7.3	31.3	14200		
OSC2-JP08N1	0	NORM	8/16/2010	11	< 0.11 U	6.9	14.6	11100	7.6	31.2	15700		
OSC2-JP08S1	0	NORM	8/16/2010	11.3	< 0.1 U	6.7	13.2	11500	7.6	22.6	13100		
OSC2-JP08S2	0	NORM	8/16/2010	13.8	< 0.1 U	5.9	11.2	9110	5.8	82.4	21800		
OSC2-JS10	0	NORM	8/16/2010	36.8	< 0.42 U	4.6	9.2	9960 J	4.2	18.7	23300 J		
OSC2-JS10	0	FD	8/16/2010	34	< 0.43 U	5.5	8.8	9850 J	4.3	20.4	24900 J		
OSC6-JP07	0	NORM	8/1/2012	11	0.18 J	5.4	11	9600	7.3	52	13000		
OSC6-JP07	0	FD	8/1/2012	13	0.13 J	5.4	14	9400	6.4	67	16000		
OSC6-JP07NW	0	NORM	8/1/2012	6.3	< 0.11 U	3.2	12	8200	5.9	27	8000		
OSC6-JP07SW	0	NORM	8/1/2012	15	< 0.11 U	4.7	12	9000	5.9	57	15000		
WH-AS A0	0	NORM	1/4/2012										
WH-AS_A0	0	FD	1/4/2012										
WH-AS_A0	0		12/30/2011										
WH-AS_A3	0	NORM	12/30/2011										
WH-AS_A5	0		12/30/2011										
WH-AS A6	0	NORM	12/30/2011										
WH-AS_A6	0	FD	12/30/2011										
WH-AS_A6 WH-AS A8	0		12/30/2011										
WH-AS_A8 WH-AS B0	0	NORM	1/4/2012								+		
	0												
WH-AS_B1 WH-AS_B5	0	NORM NORM	1/4/2012										
WH-AS_B7	0	NORM	12/30/2011										
WH-AS_B9	0	NORM	12/30/2011										
WH-AS_C1	0	NORM	1/4/2012										

SOIL METALS DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 19 of 64)

				Metals								
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chromium	Chromium (VI)	Cobalt	Copper	Iron	Lead	Lithium	Magnesium	
WH-AS_C5	0		12/30/2011									
WH-AS_C6	0	NORM	12/30/2011									
WH-AS_C9	0	NORM	12/30/2011									
WH-AS_D0	0	NORM	1/4/2012									
WH-AS_D1	0	NORM	1/4/2012									
WH-AS_D2	0	NORM	1/4/2012									
WH-AS_D4	0	NORM	12/30/2011									
WH-AS_D5	0	NORM	12/30/2011									
WH-AS_D6	0	NORM	12/30/2011									
WH-AS_D7	0	NORM	12/30/2011									
WH-AS_D7	0	FD	12/30/2011									
WH-AS_D9	0	NORM	12/30/2011									
WH-AS_E1	0	NORM	1/4/2012									
WH-AS_E6	0	NORM	1/4/2012									
WH-AS_F0	0	NORM	1/4/2012									
WH-AS_F3	0	NORM	1/4/2012									
WH-AS_F6	0	NORM	12/30/2011									
WH-AS_F7	0	NORM	12/30/2011									
WH-AS_G1	0	NORM	1/4/2012									
WH-AS_G1	0	FD	1/4/2012									
WH-AS_G6	0	NORM	12/30/2011									
WH-AS_H3	0	NORM	1/4/2012									
WH-AS_H5	0	NORM	12/30/2011									
WH-AS_J0	0	NORM	1/4/2012									
WH-AS_J1	0	NORM	1/4/2012									
WH-AS_J2	0	NORM	1/4/2012									
WH-AS_J3	0	NORM	1/4/2012									
WH-AS_J3	0	FD	1/4/2012									
WH-AS_J4	0	NORM	1/4/2012									
WH-AS_J6	0	NORM	12/30/2011									
WH-AS_J6	0	FD	12/30/2011									
WH-AS_K1	0	NORM	1/4/2012									
WH-AS_K4	0	NORM	12/30/2011									
WH-AS_K5	0	NORM	12/30/2011									
WH-AS_K7	0	NORM	12/30/2011									
WH-AS_L0	0	NORM	1/4/2012									
WH-AS_L1	0	NORM	1/4/2012									
WH-AS_L2	0	NORM	1/4/2012									
WH-AS_L5	0	NORM	12/30/2011									
WH-AS_L6	0	NORM	12/30/2011									

SOIL METALS DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 20 of 64)

							Me	etals			
Sample ID WH-AS_L6	Depth (ft bgs)	Sample Type	_	Chromium	Chromium (VI)	Cobalt	Copper	Iron	Lead	Lithium	Magnesium
WH-AS_L6	0	FD	12/30/2011								
WH-AS_M1	0	NORM	1/4/2012								
WH-AS_M4	0	NORM	12/30/2011								
WH-AS_M6	0	NORM	12/30/2011								
WH-AS_N1	0	NORM	1/4/2012								
WH-AS_N10	0	NORM	12/29/2011								
WH-AS_N18	0	NORM	12/28/2011								
WH-AS_N19	0	NORM	12/28/2011				++				
WH-AS_N3	0	NORM	1/4/2012								
WH-AS_N4	0	NORM	12/30/2011								
WH-AS_N5	0	NORM	12/30/2011								
WH-AS_N6	0	NORM	12/30/2011								
WH-AS_N8	0	NORM	12/30/2011								
WH-AS P0	0	NORM	1/4/2012								
WH-AS P0	0	FD	1/4/2012								
WH-AS P11	0	NORM	12/29/2011								
WH-AS P12	0	NORM	12/29/2011								
WH-AS P14	0	NORM	12/29/2011								
WH-AS_P15	0	NORM	12/29/2011								
WH-AS P16	0	NORM	12/29/2011								
WH-AS P17	0	NORM	12/28/2011		- -						
WH-AS P4	0	NORM	12/30/2011								
WH-AS P5	0	NORM	12/30/2011								
WH-AS P9	0	NORM	12/30/2011								
WH-AS Q0	0	NORM	1/4/2012								
WH-AS Q10	0	NORM	12/29/2011								
WH-AS_Q11	0	NORM	12/29/2011								
WH-AS_Q11	0	FD	12/29/2011								
WH-AS Q12	0	NORM	12/29/2011								
WH-AS O13	0	NORM	12/29/2011								
WH-AS Q15	0	NORM	12/29/2011								
WH-AS Q16	0	NORM	12/29/2011								
WH-AS Q18	0	NORM	12/28/2011	++			+-	++			
WH-AS Q3	0	NORM	1/4/2012								
WH-AS Q4	0	NORM	12/30/2011								
WH-AS Q5	0	NORM	12/30/2011								
WH-AS_Q6	0	NORM	12/30/2011								
WH-AS_Q8	0	NORM	12/29/2011								
WH-AS O8	0	FD	12/29/2011								
WH-AS R1	0	NORM	1/4/2012								
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ü	1101011	1/7/2012					<u>l</u>		<u> </u>	

SOIL METALS DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 21 of 64)

				Metals							
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chromium	Chromium (VI)	Cobalt	Copper	Iron	Lead	Lithium	Magnesium
WH-AS R10	0	NORM	12/29/2011								
WH-AS R12	0	NORM	12/29/2011								
WH-AS R14	0	NORM	12/29/2011								
WH-AS R15	0		12/29/2011								
WH-AS_R15	0	FD	12/29/2011								
WH-AS R3	0	NORM	1/4/2012								
WH-AS R7	0	NORM	12/30/2011								
WH-AS R9	0	NORM	12/29/2011								
WH-AS SO	0	NORM	1/4/2012								
WH-AS S10	0	NORM	12/29/2011								
WH-AS S11	0	NORM	12/29/2011								
WH-AS S13	0	NORM	12/29/2011								
WH-AS S14	0										
WH-AS S15	0	NORM	12/29/2011								
WH-AS S16	0									<u>-</u>	+-
WH-AS S17	0	NORM	12/28/2011								
WH-AS S18	0	NORM	12/28/2011			<u> </u>					
WH-AS_S3	0	NORM	1/4/2012								
WH-AS S8	0	NORM	12/30/2011								
WH-AS S9	0										
WH-AS TO	0	NORM	1/4/2012								
WH-AS_T10	0		12/29/2011								
WH-AS T10	0	FD	12/29/2011								
WH-AS T12	0	NORM	12/29/2011								
WH-AS T13	0	NORM	12/29/2011								
WH-AS T15	0	NORM	12/29/2011								
WH-AS T17	0	NORM	12/28/2011								
WH-AS T2	0	NORM	1/4/2012								
WH-AS T3	0	NORM	1/4/2012								
WH-AS T5	0	NORM	1/4/2012								
WH-AS_T9	0	NORM	12/29/2011								
WH-AS U12	0	NORM	12/29/2011								
WH-AS_U12 WH-AS_U13	0	NORM	12/29/2011								
WH-AS U14	0	NORM	12/28/2011							<u> </u>	
WH-AS U14	0	FD	12/28/2011								++
WH-AS U19	0	NORM	12/28/2011			-					
WH-AS U4	0	NORM	1/4/2012								
WH-AS_U6	0	NORM	1/4/2012								
WH-AS_U9	0	NORM	12/29/2011								
WH-AS_U9	0		12/29/2011								
WH-AS_WII	U	NORW	12/29/2011								

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 22 of 64)

				Metals							
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chromium	Chromium (VI)	Cobalt	Copper	Iron	Lead	Lithium	Magnesium
WH-AS_W13	0	NORM	12/29/2011								
WH-AS_W16	0	NORM	12/28/2011								
WH-AS_W18	0	NORM	12/28/2011								***
WHC1-BF01	0	NORM	11/24/2008	14.9 J+	< 0.1 U	8.6 J+	26.2 J+	18100	24.3 J+	18.4 J+	14500
WHC1-BF01	12	NORM	11/24/2008	13.6 J+	< 0.1 U	6.7 J+	19.6 J+	15800	7.2 J+	15.8 J+	9690
WHC1-BF02	0	NORM	11/25/2008	16.9 J+	< 0.1 U	8.2 J+	22.5 J+	17400	34.4 J+	16.9 J+	12900 J
WHC1-BF02	11	NORM	11/25/2008	10.3 J+	0.2 J	6.5 J+	19.2 J+	12900	7.7 J+	16.2 J+	7820 J
WHC1-BF03	0	NORM	11/25/2008	8.1 J+	< 0.1 U	6.5 J+	17.6 J+	12200	9.6 J+	16.4 J+	9450 J
WHC1-BF03	10	NORM	11/25/2008	9.9 J+	< 0.1 U	6.9 J+	20.2 J+	14900	7.6 J+	20.5 J+	10100 J
WHC1-BF04	0	NORM	11/25/2008	13.1 J+	0.2 J	8.1 J+	21.4 J+	16900	26.3 J	16.4 J+	12100 J
WHC1-BF04	0	FD	11/25/2008	8.4 J+	0.21 J	8.2 J+	20.7 J+	13400	10.9 J	17.7 J+	8610 J
WHC1-BF04	10	NORM	11/25/2008	11 J+	< 0.11 U	5.9 J+	15.6 J+	10400	6.9 J+	20.6 J+	13900 J
WHC1-BF05	0	NORM	11/25/2008	8.5	0.12 J-	5.7	14.9 J-	9560	7.7	15.9	11800
WHC1-BF05	12	NORM	12/10/2008	27.2	0.16 J-	4.8	13.5 J-	9500	7.1	136	80700
WHC1-BF06	0	NORM	12/10/2008	8	0.22 J-	3.5	8.6 J-	6730	7	10.5	25900
WHC1-BF06	10	NORM	12/10/2008	43.4	< 0.14 UJ	3.3	5.1 J-	4500	7.2	43.7	121000
WHC1-BG01	0	NORM	11/24/2008	16.6 J+	0.19 J	8.1 J+	21.9 J+	16400	58.6 J+	16 J+	11100
WHC1-BG01	11	NORM	11/24/2008	17.8 J+	< 0.1 U	8.2 J+	23.5 J+	16400	9 J+	15.9 J+	9940
WHC1-BG02	0	NORM	11/24/2008	11.6 J+	0.15 J	8.2 J+	20.3 J+	14600	25.4 J+	12.2 J+	9840
WHC1-BG02	0	FD	11/24/2008	13 J+	< 0.1 U	8.3 J+	19.7 J+	16300	20.5 J+	16.4 J+	10400
WHC1-BG02	10	NORM	11/24/2008	13.4 J+	< 0.1 U	7 J+	19.6 J+	14500	14.7 J+	16.7 J+	9790
WHC1-BG03	0	NORM	12/11/2008	16.8 J+	0.14 J	7.9	22.1 J+	15800	30.2	16.6	13700
WHC1-BG03	11	NORM	12/11/2008	12.1 J+	< 0.1 U	6.1	18.3 J+	13900	8.1	13.5	6720
WHC1-BG04	0	NORM	12/11/2008	12.2 J+	0.14 J	7.3	19.6 J+	13300	62.9	12.4	9620
WHC1-BG04	10	NORM	12/11/2008	44.5 J+	0.19 J	4.7	11.5 J+	14800	8.2	143	38500
WHC1-BG05	0	NORM	11/25/2008	14 J+	< 0.1 U	7.1 J+	15.4 J+	13600	8.8 J+	14.2 J+	12800 J
WHC1-BG05	10	NORM	11/25/2008	14.7 J+	< 0.11 U	6.2 J÷	15.5 J+	13400	7.5 J+	28.8 J+	15600 J
WHC1-BG06	0	NORM	12/10/2008	8.4	< 0.1 UJ	6.6	17.2 J-	12500	9.6	12.5	8610
WHC1-BG06	10	NORM	12/10/2008	63.1	0.2 J-	6.9	8.7 J-	12100	4.6	67.7	25000
WHC1-BH01	0	NORM	12/3/2008	8.9	< 0.1 U	6.5	15.7	11600	9.8	12.2	9490
WHC1-BH01	11	NORM	12/3/2008	8	< 0.1 U	6.2	16.8	12900	6.5	12.9	7830
WHC1-BH02	0	NORM	12/4/2008	7.6 J+	0.29 J-	5.3	17.3 J+	10700	25.7	11.5	8420 J+
WHC1-BH02	10	NORM	12/4/2008	6.5 J+	0.29 J-	4.5	12.9 J+	9320	6.6	10.5	6020 J+
WHC1-BH03	0	NORM	12/9/2008	14.1	< 0.1 UJ	7.4	18.1	15300	20.6	11.5	9560
WHC1-BH03	10	NORM	12/9/2008	13.7	< 0.1 UJ	6.8	19.4	14400	6	14.1	7060
WHC1-BH04	0	NORM	12/11/2008	15.3 J+	< 0.1 U	8	23.8 J+	15800	17.5	21.1	13500
WHC1-BH04	10	NORM	12/11/2008	11 J+	< 0.1 U	5.3	15.4 J+	12900	6.9	15.1	6090
WHC1-BH05	0	NORM	12/9/2008	12.2	< 0.1 UJ	6.3	20.6	13200	23.2	14.2 J	11100
WHC1-BH05	0	FD	12/9/2008	11.6	< 0.1 UJ	6.5	15.7	12900	14	14.2 J	11000
WHC1-BH05	10	NORM	12/9/2008	13.9	< 0.1 UJ	4.8	11.5	12000	5.4	63.9	51000

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 23 of 64)

	1			Metals								
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chromium	Chromium (VI)	Cobalt	Copper	ron	Lead	Lithium	Magnesium	
WHC1-BH06	0	NORM	12/11/2008	10 J+	< 0.11 U	5.2	14.9 J+	10900	16.7 J	22.5	14500	
WHC1-BH06	0	FD	12/11/2008	11.3 J+	0.15 J	5.7	14.8 J+	12200	9.9 J	17.2	11400	
WHC1-BH06	10	NORM	12/11/2008	11.1 J#	< 0.11 U	4.2	10.7 J+	10200	5.8	20	9980	
WHC1-BI01	0	NORM	12/3/2008	7.8	< 0.11 U	5.9	15.4	10900	14.3	14.4	10500	
WHC1-BI01	11	NORM	12/3/2008	8.4	< 0.1 U	5.5	14.2	10200	9.6	11.8	7430	
WHC1-BI02	0	NORM	12/4/2008	11.4 J+	< 0.11 UJ	5.9	14.6 J+	12900	13.8	12.2	10900 J+	
WHC1-BI02	3	NORM	12/4/2008	9.3 J+	0.2 J-	6.3	15 J+	12500	9.1	12	8310 J+	
WHC1-BI02	13	NORM	12/4/2008	8.1 J+	< 0.1 UJ	5.7	14.6 J+	11400	6.4	11.4	7110 J+	
WHC1-BI03	0	NORM	12/4/2008	12 J+	< 0.1 UJ	6.3	16.9 J+	14000	15.4	11.9	9490 J+	
WHC1-BI03	11	NORM	12/4/2008	11.7 J+	< 0.1 UJ	7.8	20.2 J+	14600	6.9	12.4	7630 J+	
WHC1-BI04	0	NORM	12/8/2008	11.6	< 0.1 U	6.9	18.8	13400	17.4	14.4	9620	
WHC1-BI04	10	NORM	12/9/2008	13.7	< 0.11 UJ	6.4	18.1	14100	7.4	14.5	7350	
WHC1-BI05	0	NORM	12/9/2008	19.1	0.2 J-	4	13.2	9110	7.3	119	41400	
WHC1-BI05	10	NORM	12/9/2008	12.8	< 0.1 UJ	5.8	15.3	12000	5.6	16.1 J	6430	
WHC1-BJ01	0	NORM	12/3/2008	10.7	< 0.1 U	6.4	17.4	12800	8.6	16.6	10900	
WHC1-BJ01	3	NORM	12/3/2008	12.2	< 0.1 U	7.1	18	15600	7.8	13.5	8630	
WHC1-BJ01	13	NORM	12/3/2008	8.5	< 0.11 U	5.1	13	10400	5.9	13.3	7810	
WHC1-BJ01NE	0	NORM	2/1/2010									
WHC1-BJ01NW	0	NORM	2/1/2010									
WHC1-BJ01SE	0	NORM	2/1/2010									
WHC1-BJ01SE	0	FD	2/1/2010									
WHC1-BJ01SW	0	NORM	2/1/2010									
WHC1-BJ02	0	NORM	12/2/2008	11.4	0.2	7.8	19.2	13200	10.4	10.1	7390 J-	
WHC1-BJ02	0	FD	12/2/2008	11.5	0.15	6.9	18.5	13900	9.5	10.3	7280 J-	
WHC1-BJ02	12	NORM	12/2/2008	10.4	< 0.1 U	7.3	18.1	12800	6.6	13.8	7480 J-	
WHC1-BJ03	0	NORM	12/4/2008	15.8 J+	< 0.1 UJ	7.6	18.5 J+	17300	12.8	17.1	14000 J+	
WHC1-BJ03	0	FD	12/4/2008	14.3 J+	< 0.1 UJ	7.2	17.6 J+	16100	14.8	16.1	13200 J+	
WHC1-BJ03	12	NORM	12/4/2008	9.9 J+	0.45 J-	8.3	15.8 J+	13700	7.5	12.7	7680 J+	
WHC1-BJ04	0	NORM	12/4/2008	11.7 J+	0.24 J-	6.8	16.7 J+	14500	11.9	11.1	9920 J+	
WHC1-BJ04	11	NORM	12/4/2008	10.1 J+	< 0.1 UJ	6.1	14.2 J+	13500	8.8	10.7	9330 J+	
WHC1-BJ05	0	NORM	12/11/2008	11 J+	< 0.1 U	5.9	16.5 J+	11700	11.5	15.9	8660	
WHC1-BJ05	10	NORM	12/11/2008	18.1 J+	< 0.1 U	7.3	16.3 J+	12400	6.6	12.7	6640	
WHC1-BK01	0	NORM	12/3/2008	12.8	< 0.1 U	5.9	16.8	13200	7.8	18.6	12700	
WHC1-BK01	0	FD	12/3/2008	12.6	< 0.11 U	6.2	16.6	13400	8.5	19.2	12800	
WHC1-BK01	10	NORM	12/3/2008	13.6	< 0.11 U	6.4	16	14300	6.5	19.2	11000	
WHC1-BK02	0	NORM	12/8/2008	15.5	< 0.1 U	8.3	20	17100	10.6	17.1	9600	
WHC1-BK02	11	NORM	12/18/2008	9.2	< 0.11 U	6.6	17.3 J+	13500	7.8	14.3	7360 J+	
WHC1-BK03	0	NORM	12/15/2008	13.5	0.16 J-	7	16.3	14200	11.1	14.3	10000	
WHC1-BK03	12	NORM	12/18/2008	10	< 0.11 U	7.6	17.1 J+	15700	7.3	12.7	6500 J+	
WHC1-BK04	0	NORM	12/4/2008	10.6 J+	< 0.1 UJ	6.2	15.4 J+	13300	9.8	14.3	9930 J+	

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 24 of 64)

				Metals							
Correla ID	Depth (ft bgs)	Sample Type	Sample Date	Chromium	Chromium (VI)	Cobalt	Copper	ron	Lead	Lithium	Magnesium
Sample ID WHC1-BK04	10	NORM	12/4/2008	7.4 J+	< 0.1 UJ	<u>0</u>	16.3 J+	12100	7.5	<u>1</u>	≥ 7890 J+
WHC1-BK05	0	NORM	12/12/2008	23.3 J+	< 0.1 U	9.2	19.1	21500	16.1	17.9 J+	12100
WHC1-BK05	11	NORM	12/12/2008	12 J+	< 0.1 U	6.7	18.6	14200	6.4	13.7 J+	6450
WHC1-BL01	0	NORM	12/3/2008	10.1	< 0.1 U	8	19.7	12800	7.1	15.6	13000
WHC1-BL01	10	NORM	12/3/2008	11.6	< 0.1 U	6.4	16.9	12800	6.9	18.9	10800
WHC1-BL02	0	NORM	12/2/2008	15.9	3.9	7.4	17.1	15100	15.2	14	10800 J-
WHC1-BL02	10	NORM	12/2/2008	13.3	< 0.11 U	7.4	16.2	14700	7.4	12.1	7590 J-
WHC1-BL03	0	NORM	12/8/2008	12.6	< 0.11 U	7.4	15.8	13100	8.6	19.4	11200
WHC1-BL03	10	NORM	12/18/2008	7.9	< 0.1 U	5	13.8 J+	10400	6.4	13.1	7970 J+
WHC1-BL03	0		12/17/2008	12.1	< 0.11 U	7.6	16.4 J+	14200	8.3	13.1	10900 J+
WHC1-BL04	12		12/22/2008	16.6 J+	< 0.11 UJ	7.2	18 J+	14700	7.1	11 J+	7080 J-
WHC1-BL05	0		11/21/2008	12.4 J+	< 0.1 U	6.1	16.9 J+	12500	20.8 J+	11.8	7010
WHC1-BL05	10		11/21/2008	12.6 J+	< 0.1 U	5.2	14.5 J+	11700	5.9 J+	10.2	5360
WHC1-BL06	0	NORM	11/21/2008	24.2 J+	0.19 J	2.6	13.9 J+	11100	36.3 J+	4.8 J	2090
WHC1-BL06	11		11/21/2008	15.7 J+	0.67	6.8	18.4 J+	13800	8.9 J+	15.3	6500
WHC1-BL07	0		11/21/2008	13.9 J+	< 0.1 U	5.3	16.2 J+	12500	20.1 J+	13.6	8010
WHC1-BL07	10		11/21/2008	12 J+	< 0.13 U	5.6	15.9 J+	14800	9.8 J+	18.1	8800
WHC1-BL08	0		11/18/2008	14.9	< 0.11 U	5.1	11.9	10800	5.6	23.3	11600
WHC1-BL08	10	NORM	11/18/2008	11.1	< 0.11 U	4.3	11.8	11300	5.3	13.4	5420
WHC1-BL08NE	0	NORM	2/2/2010								
WHC1-BL08NW	0	NORM	2/2/2010								
WHC1-BL08SE	0	NORM	2/2/2010								
WHC1-BL08SW	0	NORM	2/2/2010								
WHC1-BL11	0	NORM	11/18/2008	18.9	< 0.1 U	5.5	16.3	12700	18.1	19.6	8700
WHC1-BL11	12	NORM	11/18/2008	16.6	< 0.11 U	4.8	13.6	11000	7.7	12.6	6430
WHC1-BL11NE	0	NORM	2/2/2010			+	+				++
WHC1-BL11NW	0	NORM	2/2/2010								
WHC1-BL11SE	0	NORM	2/2/2010						 		
WHC1-BL11SW	0	NORM	2/2/2010								
WHC1-BM01	0	NORM	12/3/2008	11.8	< 0.21 U	6.6	21.2	14300	13.5	14.3	11300
WHC1-BM01	10	NORM	12/3/2008	11.9	< 0.1 U	7.2	16.3	14200	6.3	13.8	8220
WHC1-BM02	0	NORM	12/2/2008	7	< 0.1 U	5.8	15.6	11300	7.8	9.6	6600 J-
WHC1-BM02	12	NORM	12/2/2008	8.6	0.21	5.8	15.9	12100	6.5	11.1	5610 J-
WHC1-BM03	0	NORM	12/8/2008	15.2	< 0.1 U	7.9	18.1	14000	9.2	16.9	9440
WHC1-BM03	10	NORM	12/18/2008	10.3	< 0.11 U	6.9	19.3 J+	12900	5.5	12.3	7430 J+
WHC1-BM04	0	NORM	12/17/2008	14.2	< 0.1 U	7.5	18 J+	16500	10.1	9.7	7830 J+
WHC1-BM04	0	FD	12/17/2008	10.8	0.25 J	7.6	18.8 J+	15000	11.8	8.9	7730 J+
WHC1-BM04	10	NORM	12/22/2008	14.1 J+	< 0.1 UJ	6.7	16.6 J+	13500	7.1	13 J+	7660 J-
WHC1-BM05	0	NORM	11/21/2008	9.4 J+	0.12 J	6.4	15.6 J+	12300	6.2 J+	12	7290
WHC1-BM05	10		11/21/2008	21.2 J+	< 0.1 U	6.7	17.8 J+	14500	7.1 J+	16.2	7400

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 25 of 64)

				Metals							
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chromium	Chromium (VI)	Cobalt	Copper	iron	Lead	Lithium	Magnesium
WHC1-BM06	0	NORM	11/21/2008	26.7 J	0.12 J	1.3 J	12.7 J+	19600	62 J+	7.1	3770
WHC1-BM06	0	FD	11/21/2008	14.3 J	< 0.11 U	3.3 J	12.7 J+	12100	50.8 J+	4 J	2270
WHC1-BM06	10	NORM	11/21/2008	27 J+	< 0.1 U	3.8	25.2 J+	11700	26.4 J+	9.8	3960
WHC1-BM07	0	NORM	11/20/2008	10.7 J+	0.17 J-	6.3	15.2 J+	11700	14.1 J+	14.9	8000
WHC1-BM07	11	NORM	11/20/2008	11.2 J+	R	4.6	12.4 J+	9740	5.3 J+	18.1	6950
WHC1-BM08	0	NORM	11/18/2008	24.6	< 0.1 U	4.6	25.2	13500	55.1	18.6	5760 J
WHC1-BM08	0	FD	11/18/2008	24.4	< 0.12 U	7.5	19.5	14100	57.8	18.8	10300 J
WHC1-BM08	11	NORM	11/18/2008	16.9	0.13 J	7.9	16.3	11700	20	19.8	10500
WHC1-BM09	0	NORM	11/18/2008	12.9	< 0.1 U	7.6	17.5	12800	8.3	19.6	10100
WHC1-BM09	12	NORM	11/18/2008	15.5	< 0.1 U	4	11.3	9190	5.3	16.7	6890
WHC1-BM10	0	NORM	11/18/2008	13.3	< 0.11 U	4.5	12.6	11100	6.7	19.5	7440
WHC1-BM10	3	NORM	11/18/2008	11.3	< 0.11 U	7.4	19.7	13700	10.6	24.9	8950
WHC1-BM10	13	NORM	11/18/2008	45.1	< 0.13 U	4.6	9.4	11700	6.9	30.2	7120
WHC1-BN01	0	NORM	12/1/2008	13.5	< 0.11 U	7.1	17.7	13000 J	9.7	21.2	12400 J
WHC1-BN01	12	NORM	12/1/2008	8.9	< 0.1 U	6	12.6	10300 J	6.8	17.3	9070 J
WHC1-BN02	0	NORM	12/1/2008	14.6	0.14 J	7.9	18.2	14800 J	13.8	18	10300 J
WHC1-BN02	0	FD	12/1/2008	14.3	0.14 J	7.7	20.6	14400 J	12.9	18.1	10700 J
WHC1-BN02	11	NORM	12/1/2008	12.5	0.14 J	7.4	18.7	13800 J	8.6	16.6	9250 J
WHC1-BN03	0	NORM	12/17/2008	11.1	0.15 J	6.7	16.9 J+	13500	9.8	13	9470 J+
WHC1-BN03	10	NORM	12/18/2008	8.6	< 0.1 U	5.2	14.2 J+	11800	6.2	11.4	6620 J+
WHC1-BN04	0	NORM	12/17/2008	4.6 J	< 0.1 U	7.3	16.7 J+	11300	7.4	8.8	5450 J+
WHC1-BN04	7	NORM	12/22/2008	14.9 J+	0.19 J-	8	18.4 J+	14300	7.8	12.4 J+	7620 J-
WHC1-BN04	17	NORM	12/22/2008	14.4 J+	< 0.11 UJ	6.9	16.6 J+	13500	6.6	11.9 J+	6900 J-
WHC1-BN05	0	NORM	11/20/2008	16.2 J+	0.14 J	6.5	18.7 J+	13500	55.5 J	10.4	7190
WHC1-BN05	0	FD	11/20/2008	13.6 J+	0.19 J	6.7	15.9 J+	14400	10.2 J	11.4	8270
WHC1-BN05	10	NORM	11/20/2008	12.2 J+	0.17 J-	5.6	17.8 J+	14300	7.7 J+	12.7	6170
WHC1-BN06	0	NORM	11/20/2008	12.9 J+	R	7.6	20.2 J+	14200	26.8 J+	19.7	10900
WHC1-BN06	10	NORM	11/20/2008	14.3 J+	0.12 J-	7.4	16.8 J+	14600	8.3 J+	13.3	15400
WHC1-BN07	0	NORM	11/21/2008	10.8 J+	0.3 J	7.3	16.4 J+	12400	32.4 J+	27.1	16200
WHC1-BN07	3	NORM	11/21/2008	9.5 J+	< 0.1 U	7.2	16.7 J+	12500	11.5 J+	28.9	15000
WHC1-BN07	13	NORM	11/21/2008	12.6 J+	< 0.1 U	5.9	13.7 J+	12000	8.5 J+	17.8	8120
WHC1-BN07NE	0	NORM	2/2/2010								
WHC1-BN07NW	0	NORM	2/2/2010								
WHC1-BN07SE	0	NORM	2/2/2010								
WHC1-BN07SE	0	FD	2/2/2010								
WHC1-BN07SW	0	NORM	2/2/2010								
WHC1-BN08	0	NORM	11/20/2008	22.9 J+	0.12 J-	7.8	25.2 J+	13100	125 J+	14.3	9560
WHC1-BN08	10	NORM	11/20/2008	13.3 J+	0.12 J-	5.8	16.5 J+	11500	26.7 J+	16.5	8550
WHC1-BN08NE	0	NORM	2/2/2010								
WHC1-BN08NW	0	NORM	2/2/2010								

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 26 of 64)

							Me	etals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chromium	Chromium (VI)	Cobalt	Copper	Iron	Lead	Lithium	Magnesium
WHC1-BN08SE	0	NORM	2/2/2010								
WHC1-BN08SW	0	NORM	2/2/2010								
WHC1-BN09	0	NORM	12/17/2008	11.5	< 0.11 U	4.6	19.7 J+	14300	30.5	13.4	5690 J+
WHC1-BN09	11	NORM	12/19/2008	23.7 J-	0.2 J-	6.2	16.9	12300	7.7	23.9	8040 J-
WHC1-BN10	0	NORM	11/18/2008	14.2	< 0.11 U	7.1	15	12300	6.9	40.9	13800
WHC1-BN10	10	NORM	11/18/2008	28.5	< 0.12 U	6.8	16.3	16700	8.1	14.9	4440
WHC1-BN10NE	0	NORM	2/2/2010								
WHC1-BN10NW	0	NORM	2/2/2010		==						
WHC1-BN10SE	0	NORM	2/2/2010								
WHC1-BN10SW	0	NORM	2/2/2010								
WHC1-BO01	0	NORM	12/2/2008	15.2	0.15	6.9	16.7	13700	9.6	18.2	11100 J-
WHC1-BO01	0	FD	12/2/2008	14	< 0.1 U	7.1	16.9	14200	9.9	15.1	9900 J-
WHC1-BO01	4	NORM	12/2/2008	13.3	< 0.1 U	7	18	14200	8.6	18.3	11300 J-
WHC1-BO01	14	NORM	12/2/2008	9.8	< 0.11 U	4.9	15.3	10400	5.7	17.2	9370 J-
WHC1-BO02	0	NORM	12/1/2008	10.7	0.19 J	5.9	14.4	11500 J	6.8	15.9	8870 J
WHC1-BO02	12	NORM	12/1/2008	10.9	< 0.1 U	7.9	19.2	13800 J	7.7	18.8	8460 J
WHC1-BO03	0	NORM	12/15/2008	13.4	< 0.1 UJ	7.1	18.3	15100	19.9	16.8	11900
WHC1-BO03	12	NORM	12/19/2008	8 J-	0.14 J-	6	17.3	11700	6.2	14	6550 J-
WHC1-BO04	0	NORM	12/15/2008	13.5	< 0.11 UJ	7.7	20.9	16300	13	15.8	11700
WHC1-BO04	12	NORM	12/19/2008	11.9 J-	0.14 J-	6.9	17.6	13200	6.5	16.9	7640 J-
WHC1-BO05	0	NORM	11/20/2008	9 J+	< 0.11 U	5.8	16 J+	11600	6.8 J+	9.5	5570
WHC1-BO05	10	NORM	11/20/2008	13.4 J+	< 0.12 U	5.3	18.9 J+	14100	7.2 J+	12.2	6920
WHC1-BO06	0	NORM	11/20/2008	13.1 J+	0.15 J-	6.1	16.4 J+	14100	9.6 J+	12.4	8070
WHC1-BO06	10		11/20/2008	11.4 J+	< 0.11 U	6.4	15.3 J+	11300	7.4 J+	15.6	6860
WHC1-BO07	0	NORM	11/19/2008	20.2	0.72 J	7.3	14.1	12700	7	24.3	12500
WHC1-BO07	10		11/19/2008	11	0.14 J	4.4	12.3	9330	5.3	11.6	5360
WHC1-BO08	0	NORM	11/20/2008	14.4 J+	R	7.7	18.3 J+	14200	11.6 J+	21.9	13800
WHC1-BO08	0	FD	11/20/2008	12 J+	0.12 J-	7.2	18.6 J+	13800	9.3 J+	19.1	12600
WHC1-BO08	11		11/20/2008	13 J+	< 0.1 U	6	17.3 J+	12500	6.8 J+	21.9	8940
WHC1-BO09	0	NORM	11/19/2008	14.2	0.14 J	6.2	15.9	12400	14.6	22.5	9590
WHC1-BO09	0	FD	11/19/2008	14.6	R	6.5	16.7	13100	11.3	23.2	10200
WHC1-BO09	6	NORM	11/19/2008	18.5	R	5.5	12.9	10400	5	19.9	9940
WHC1-BO09	16	NORM	11/19/2008	18.4	R	5.3	13	11400	6.7	24.8	9260
WHC1-BO10	0	NORM	11/19/2008	21.7	R	5.6	14.5	11900	6.4	69.9	15500
WHC1-BO10	10		11/19/2008	19.7	R	4.3	10.8	9410	5.2	34.7	10100
WHC1-BP01	0	NORM	12/1/2008	7.6	0.19 J	4.4	15	8680 J	12.9	9.7	5290 J
WHC1-BP01	10	NORM	12/1/2008	9.7	< 0.1 U	3.7	10.8	9850 J	5.2	19.6	7820 J
WHC1-BP02	0	NORM	12/1/2008	16.8	0.19 J	7.7	20.2	15200 J	12	17.4	10400 J
WHC1-BP02	11	NORM	12/1/2008	10.3	0.14 J	5.2	13.5	11200 J	6	18.1	7980 J
WHC1-BP03	0		12/15/2008	12	< 0.1 UJ	6.6	16.2	13500	15.5	11.2	9080
1111C1 D1 03	U	TOTAL	12/13/2000	12	V 0.1 U3	0.0	10.2	13300	13.3	11.2	7000

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 27 of 64)

				Metals							
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chromium	Chromium (VI)	Cobalt	Copper	ron	Lead	Lithium	Magnesium
Sample ID WHC1-BP03	(It bgs)	FD	12/15/2008	12.9	0.11 J-	6	14.7	14000	15.6	10.9	≥ 8530
WHC1-BP03	11	NORM	12/19/2008	30.4 J-	0.11 J	5.6	14.8	12600	6.3	32.2	15000 J-
WHC1-BP04	0	NORM	12/15/2008	8.8	< 0.1 UJ	5.9	19.7	12500	10.6	15.4	8580
WHC1-BP04	12		12/19/2008	6.9 J-	< 0.1 UJ	6.9	17.6	12400	6.2	12.7	6100 J-
WHC1-BP05	0		12/15/2008	14.6	0.16 J-	7.4	18	16200	10.1	12.7	8770
WHC1-BP05	10		12/19/2008	7.8 J-	0.14 J-	6	21	11400	6.6	12.6	5400 J-
WHC1-BP06	0	NORM	12/12/2008	14.5 J+	< 0.1 U	8.3	20	16800	10.8	19.9 J+	12300
WHC1-BP06	10	NORM	12/12/2008	25.1 J+	0.2 J	6.5	16.6	14900	6.1	13.8 J+	6620
WHC1-BP07	0	NORM	11/20/2008	13.1 J+	0.18 J-	6.8	13.5 J+	11900	5.7 J+	20.2	29400
WHC1-BP07	3	NORM	11/20/2008	12.3 J+	0.18 J-	5	12.9 J+	11200	5.3 J+	27.2	13500
WHC1-BP07	13	NORM	11/20/2008	10.1 J+	0.15 J	8.8	17.7 J+	13800	8.1 J+	14.9	6610
WHC1-BP08	0	NORM	11/19/2008	13.2	R	5.9	14.7	11900	8	22.3	11400
WHC1-BP08	4	NORM	11/19/2008	12.3	R	4.8	14.3	11500	5.5	35.6	12800
WHC1-BP08	14	NORM	11/19/2008	12.7	R	6.5	16.6	13500	4.9	11.8	5550
WHC1-BP09	0	NORM	11/19/2008	11.8	R	6.5	13.2	10600	9.7	29.4	11200
WHC1-BP09	10	NORM	11/19/2008	12.3	R	3.9	10.8	9000	4.2	15.6	6760
WHC1-BP10	0	NORM	11/19/2008	12	R	4.9	14.2	11000	5.7	24.6	7990
WHC1-BP10	10	NORM	11/19/2008	32.6	R	4.3	14.3	10500	4.4	14.7	6420
WHC1-D01	0	NORM	12/5/2008	13	0.13 J	6.5	21.2	12400	26	12.6	9790
WHC1-D01	10	NORM	12/5/2008	14.1	0.13 J	8	24.4	12900	19.8	16.8	8980
WHC1-D02	0	NORM	12/5/2008	15.2	< 0.11 U	7.9	28.9	13300	40.6	18.9	14600
WHC1-D02	10	NORM	12/5/2008	19	0.13 J	7.6	27	14000	31.7	13.7	6040
WHC1-D03	0	NORM	12/5/2008	7.3	< 0.1 U	5.5	20	10700	39.6	12.3	7740
WHC1-D03	0	FD	12/5/2008	9	0.18 J	7.7	23	12400	51.9	12.6	9490
WHC1-D03	10	NORM	12/5/2008	25.3	0.18 J	6.9	27.4	14100	25.3	13.9	6060
WHC1-D04	0	NORM	12/5/2008	12.7	< 0.11 U	7.3	24.5	12900	62.1	14.3	10500
WHC1-D04	10	NORM	12/5/2008	8.3	< 0.1 U	7.1	18.4	10400	10.6	11.4	7110
WHC1-D05	0	NORM	12/5/2008	11.7	< 0.1 U	6.8	20	13500	22.9	11.9	9550
WHC1-D05	10	NORM	12/5/2008	7.5	< 0.1 U	7	18	12300	8.5	10.7	6360
WHC1-D06	0	NORM	12/5/2008	9.5	0.41 J	7.4	19.4	10700	40	12.9	8950
WHC1-D06	10	NORM	12/5/2008	24.2	0.2 J	4.9	26	14500	36	9.4	5270
WHC1-D07	0	NORM	12/5/2008	10.3	0.18 J	8	22.9	13600	31	11.8	7910
WHC1-D07	10	NORM	12/5/2008	12.8	< 0.1 U	7.6	19.8	12700	26.8	14.7	7420
WHC1-D08	0	NORM	12/8/2008	6.4	< 0.1 U	5.9	18.5	10200	36.9	10.7	6020
WHC1-D08	10	NORM	12/9/2008	13.7	< 0.11 UJ	4.4	12.3	11900	6.6	11.5 J	5880
WHC1-D09	0	NORM	12/8/2008	11	< 0.1 U	6.3	19.1	9840	46.4	11.9	7670
WHC1-D09	11	NORM	12/9/2008	12.5	< 0.11 UJ	5.1	15.9	13900	7.1	11.4	6110
WHC1-D10	0	NORM	12/8/2008	19.3	< 0.1 U	8.1	22.8	15800	36.2	14	7200
WHC1-D10	10	NORM	12/9/2008	19.9	< 0.1 UJ	5.6	11.6	9780	5.2	17.9 J	9270
WHC1-D11	0	NORM	12/8/2008	43.8	< 0.11 U	11.4	38.9	15600	284	22.9	14800

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 28 of 64)

				Metals								
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chromium	Chromium (VI)	Cobalt	Copper	ron	Lead	Lithium	Magnesium	
WHC1-D11	10	NORM	12/9/2008	10.4	< 0.1 UJ	5.7	17.6	13100	6.7	11.7	6630	
WHC1-D12	0	NORM	12/10/2008	14.4	0.24 J-	7.7	16.1 J-	13700	8.8	24.7	14900	
WHC1-D12	10	NORM	12/10/2008	73.1	0.23 J-	4.1	7.1 J-	7060	4.8	177	94100	
WHC1-D13	0	NORM	12/8/2008	17.4	0.17 J-	7.3	24.4 J-	12800	49.2	28.7	16800	
WHC1-D13	10	NORM	12/8/2008	18.2	0.28 J-	2.5	7 J-	7770	5	51.3	79900	
WHC1-D15	0	NORM	12/11/2008	12.1 J+	0.39 J	4.6	17.4 J+	11600	13.8	15.9	13200	
WHC1-D15	10	NORM	12/11/2008	41.7 J#	< 0.13 U	3.4	8.2 J+	9440	4.9	87.6	35500	
WHC1-D16	0	NORM	12/10/2008	9.9	0.18 J-	5.9	36.2 J-	10500	22.7	21.9	13500	
WHC1-D16	10	NORM	12/10/2008	12.2	< 0.12 UJ	4.7	10.8 J-	10100	5.3	19.1	9920	
WHC1-D17	0	NORM	12/10/2008	21.3	0.49 J-	6.1	28 J-	13100	57.5	21	16800	
WHC1-D17	10	NORM	12/10/2008	11.1	< 0.11 UJ	5.6	12.1 J-	11200	6.7	18.5	9840	
WHC1-D18	0	NORM	12/11/2008	19.6 J+	< 0.1 U	6.7	19.3 J+	13100	63.4	10.1	6800	
WHC1-D18	10	NORM	12/11/2008	11.4 J+	0.15 J	5.7	14.2 J+	11900	5.4	10.5	6250	
WHC1-D19	0	NORM	12/11/2008	37.4 J	0.25 J	9.5	40 J	13100	155 J	18.3	10200	
WHC1-D19	0	FD	12/11/2008	12.8 J	< 0.1 U	6.2	18.1 J	13200	14.6 J	14.1	8460	
WHC1-D19	10	NORM	12/11/2008	13.3 J+	< 0.1 U	5.7	14.1 J+	12300	6.9	11.6	6240	
WHC1-D20	0	NORM	12/12/2008	17.2 J+	0.15 J	8.7	23.9	17500	72	14.1 J+	7330	
WHC1-D20	10	NORM	12/12/2008	15.3 J+	0.15 J	8.7	19	17000	12.2	14.8 J+	7110	
WHC1-D21	0	NORM	12/16/2008	10.3 J+	R	6.8	25.4	10500	65.1	9.9	6110 J+	
WHC1-D21	10	NORM	12/16/2008	11.4 J+	R	6.9	16.9	12700	12.6	13.3	7080 J+	
WHC1-D22	0	NORM	12/16/2008	21 J+	< 0.49 UJ	9	29.9	16400	74.8	22.4	17400 J+	
WHC1-D22	10	NORM	12/16/2008	12.9 J+	R	7	16.7	14000	7.2	18.2	7640 J+	
WHC1-D23	0	NORM	12/16/2008	6.7	< 0.42 UJ	6	18.6 J+	10100	43.4	9.9	5860	
WHC1-D23	10	NORM	12/16/2008	11.3	< 0.41 UJ	8.5	20.2 J+	14000	10.1	13.8	7640	
WHC1-D24	0	NORM	12/16/2008	9.3 J+	< 0.43 UJ	4.9	16.8	10100	35.7	9.3	5990 J+	
WHC1-D24	0	FD	12/16/2008	10.7 J+	0.96 J	6.1	21.6	12000	50.3	10.4	6500 J+	
WHC1-D24	10	NORM	12/16/2008	9.1 J+	< 0.42 UJ	7.2	19.1	13500	7.7	12.7	6410 J+	
WHC1-D25	0	NORM	12/16/2008	10.3 J+	< 0.43 UJ	5.1	18.6	10800	55.9	10.1	6890 J+	
WHC1-D25	10	NORM	12/16/2008	12.9 J+	R	8.8	19	15500	9.6	13.9	7530 J+	
WHC1-D26	0	NORM	12/12/2008	16.8 J+	0.2 J	7.9	19.5	17800	18.5	11.7 J+	7310	
WHC1-D26	10	NORM	12/12/2008	12.5 J+	0.16 J	7.8	19	16100	6.4	12.9 J+	6630	
WHC1-D27	0	NORM	12/12/2008	13.6 J+	< 0.11 U	8.3	20.3	15800	17.1	11.8 J+	7650	
WHC1-D27	0	FD	12/12/2008	12.9 J+	0.26 J	6.5	17.7	13200	21.8	11.4 J+	7030	
WHC1-D27	10	NORM	12/12/2008	15.2 J+	< 0.12 U	7.7	21.6	17600	44.6	12.9 J+	6810	
WHC1-D28	0	NORM	12/12/2008	9.6 J+	0.25 J	6.1	17.5	13600	12.2	12.5 J+	6180	
WHC1-D28	10	NORM	12/12/2008	17.5 J+	< 0.1 U	8.1	20.5	17500	13.7	12.6 J+	7010	
WHC1-D29	0	NORM	12/12/2008	19.4 J+	0.15 J	7	21.5	13900	23.3	15.3 J+	9010	
WHC1-D29	10	NORM	12/12/2008	15.2 J+	0.26 J	7.6	18.6	16200	8.3	12.5 J+	7070	
WHC1-P01	0	NORM	12/15/2008	13.1	< 0.1 UJ	7.9	18	15300	9.3	21.8	13700	
WHC1-P01	12	NORM	12/19/2008	6.7 J-	< 0.1 UJ	6.5	17.1	10900	6.6	12.3	5330 J-	

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 29 of 64)

				Metals									
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chromium	Chromium (VI)	Cobalt	Copper	íron	read	Lithium	Magnesium		
WHC1-P01NE	0	NORM	2/2/2010		<u> </u>								
WHC1-P01NW	0	NORM	2/2/2010										
WHC1-P01SE	0	NORM	2/2/2010										
WHC1-P01SW	0	NORM	2/2/2010										
WHC1-P01SW	0	FD	2/2/2010										
WHC1-P02	0	NORM	12/1/2008	12.8	0.19 J	6.7	14.7	13800 J	15.7	10.8	8360 J		
WHC1-P02	10	NORM	12/1/2008	8.1	< 0.1 U	6	14.6	10700 J	6.4	10.5	5830 J		
WHC1-P03	0	NORM	12/15/2008	13.9	< 0.1 UJ	7.7	19.9	15900	10.8	13.7	9420		
WHC1-P03	3	NORM	12/18/2008	10.1	< 0.1 U	7.9	19 J+	14300	6.4	12.1	7850 J+		
WHC1-P03	3	FD	12/18/2008	7.5	0.25 J	6.1	17.2 J+	11700	6.6	11	7660 J+		
WHC1-P03	13	NORM	12/18/2008	6.9	0.25 J	5.4	15.2 J+	11000	5.7	11.5	6710 J+		
WHC1-P04	0	NORM	12/15/2008	16.9	0.11 J-	8	18.8	16400	9.9	19.5	12800		
WHC1-P04	10	NORM	12/18/2008	7.1	< 0.11 U	5	16.6 J+	11300	5.6	14.1	7110 J+		
WHC1-P05	0	NORM	12/8/2008	9.1	< 0.11 U	6	16	11500	9.6	14.9	9410		
WHC1-P05	0	FD	12/8/2008	9	< 0.1 U	5.9	17.4	13100	9.7	12.8	8840		
WHC1-P05	10	NORM	12/18/2008	7.5	0.15 J	5.4	16.1 J+	11100	5.8	11.7	5800 J+		
WHC1-P06	0	NORM	12/2/2008	12.1	0.2	7.4	19.2	14900	8.8	12.7	7050 J-		
WHC1-P06	12	NORM	12/2/2008	8.9	< 0.1 U	7.3	18.3	13300	7.8	11.3	5850 J-		
WHC1-P07	0	NORM	12/2/2008	14.3	0.15	9.4	17.9	15200	9	13.1	8410 J-		
WHC1-P07	3	NORM	12/2/2008	12.9	< 0.1 U	6.8	16.2	13600	7	14.1	7520 J-		
WHC1-P07	13	NORM	12/2/2008	10.2	< 0.1 U	5.9	15.4	11900	6.5	14.1	7180 J-		
WHC1-P08	0	NORM	12/3/2008	12.9	0.19	7.3	15.5	15500	8.1	11.9	10200		
WHC1-P08	11	NORM	12/3/2008	12.1	< 0.1 U	6.9	19	14400	6.6	12	7720		
WHC1-P09	0	NORM	12/4/2008	13.7 J+	0.25 J-	7.1	19 J+	15700	13.2	11.5	9970 J+		
WHC1-P09	0	FD	12/4/2008	11.5 J+	0.3 J-	7.1	17.8 J+	14300	14.3	11.6	9820 J+		
WHC1-P09	10	NORM	12/4/2008	10.6 J+	0.15 J-	6.1	15.3 J+	12100	6.4	12.1	6820 J+		
WHC1-P10	0	NORM	11/25/2008	11.8 J+	0.19 J	6.4 J+	27.8 J+	12900	21.8 J+	22.5 J+	16000 J		
WHC1-P10	10	NORM	11/25/2008	14.3 J+	< 0.12 U	9.6 J+	21.9 J+	16600	12.7 J+	30.7 J+	15700 J		
WHC1-P11	0	NORM	12/8/2008	64	1.3	19.3	84	14700	692	29.4	15800		
WHC1-P11	0	FD	12/8/2008	46.5	1.8	16.5	67.3	12900	564	22.2	12900		
WHC1-P11	10	NORM	12/9/2008	13.9	< 0.11 UJ	5.8	11.9	12400	6.6	18.3	7270		
WHC1-P12	0	NORM	12/5/2008	9.7	0.23 J	5.9	18.4	10200	33.4	15.6	8410		
WHC1-P12	11	NORM	12/5/2008	9.9	0.2 J	6.5	18.4	10500	12.7	15.3	7890		
WHC1-P13	0	NORM	12/9/2008	13.6	< 0.1 UJ	7.6	22.2	15700	10.8	20.4	13200		
WHC1-P13	10	NORM	12/9/2008	23.7	< 0.15 UJ	10.6	20	17800	10.5	188	48800		
WHC1-P13	10	FD	12/9/2008	21.1	< 0.13 UJ	7.2	16.2	15800	7.2	290	49400		
WHC1-P14	0	NORM	12/17/2008	16.8	< 0.12 U	9	27.9 J+	15500	23.2	28.8	18500 J+		
WHC1-P15	0	NORM	12/8/2008	13.3	< 0.11 U	7.6	18.4	15300	9.6	21.8	10500		
WHC1-P15	1.5	NORM	12/8/2008	9.5	< 0.11 U	6.7	16.7	12900	8.2	23.4	10200		
WHC1-P15	10	NORM	12/18/2008	8.3	< 0.11 U	5.9	15.4 J+	11900	5.2	13.6	6780 J+		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 30 of 64)

				Metals								
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chromium	Chromium (VI)	Cobalt	Copper	Iron	Lead	Lithium	Magnesium	
WHC1-P15NE	0	NORM	2/2/2010									
WHC1-P15NE	0	FD	2/2/2010									
WHC1-P15NW	0	NORM	2/2/2010									
WHC1-P15SE	0	NORM	2/2/2010									
WHC1-P15SW	0	NORM	2/2/2010									
WHC1-P16	0	NORM	12/1/2008	17.4	0.19 J	8	19.9	15600 J	19	17.4	11900 J	
WHC1-P16	11	NORM	12/1/2008	11	< 0.1 U	6.1	14.8	11600 J	6.2	16.8	9240 J	
WHC1-P17	0	NORM	12/15/2008	14.4	0.11 J-	8.1	19.6	16400	14.8	20.7	13600	
WHC1-P17	12	NORM	12/19/2008	9.4 J-	0.19 J-	7.3	17.8	12700	6.4	14.8	6460 J-	
WHC1-P17	12	FD	12/19/2008	11.2 J-	0.24 J-	8.1	18.9	14200	8	20.5	10200 J-	
WHC1-P18	0	NORM	12/1/2008	15	0.14 J	7.8	18.2	14700 J	9.8	20.2	11000 J	
WHC1-P18	12	NORM	12/1/2008	12.5	< 0.1 U	6.5	16.1	13000 J	6.6	17.4	9160 J	
WHC2-BF05C	12	NORM	12/3/2009	20.7	0.18 J	4.8 J+	11.4 J+	9970 J	6.3 J	204	46600 J	
WHC2-BF05NE	12	NORM	12/3/2009	14.5	0.15	3.7	10.2	9670	6.1	28.8	12400	
WHC2-BF05NW	12	NORM	12/3/2009	7.8	0.18	3.3	9.2	6780	5.1	64.2	27100	
WHC2-BF05SE	12	NORM	12/3/2009	19.3	0.26	5.6	9.9	10500	7.4	167	70000	
WHC2-BF05SW	12	NORM	12/3/2009	19.4	< 0.13 U	4.6	10.9	10400	5.3	161	52900	
WHC2-BG04C	10	NORM	12/4/2009	21.1 J	< 0.15 U	8.5 J	14.6	15500 J	9.5	146 J	67300 J	
WHC2-BG04NE	10	NORM	12/4/2009	7.8	< 0.13 U	2.2	5.4 J	6340 J	2.9	101	143000 J	
WHC2-BG04NW	10	NORM	12/4/2009	6.5	< 0.51 U	5.8	16.2	9830 J	8.3	19.3	12800 J	
WHC2-BG04SE	10	NORM	12/4/2009	12.6	< 0.14 U	3.2	9	9960 J	4.6	168	44400 J	
WHC2-BG04SW	10	NORM	12/4/2009	22.9	< 0.15 U	9.4	19.9	17400 J	10.8	160	75400 J	
WHC2-BG06C	10	NORM	12/3/2009	66.1	0.33	5	11.6	10300	5.9	115	82900	
WHC2-BG06NE	10	NORM	12/3/2009	39.4	0.19	7.4	16	10500	9.3	112	60800	
WHC2-BG06NW	10	NORM	12/3/2009	23.7	0.18	4.2	10.9	7480	5.1	53.1	29800	
WHC2-BG06SE	10	NORM	12/3/2009	37.6	0.26	6.2	8.9	6630	3.7	186	105000	
WHC2-BG06SW	10	NORM	12/3/2009	5.6	< 0.13 U	5.7	13.3	9550	6.6	20.2	12100	
WHC2-BI05C	0	NORM	11/30/2009	6.9	< 0.41 U	6.9	17.2 J+	12900 J	14.2 J+	11.7	11000 J	
WHC2-BL07	0	NORM	8/9/2010	22.6	0.26 J-	6.7	29.2	25300	51.9	15.4	8070 J	
WHC2-BM06C	0	NORM	11/30/2009	10.9	< 0.41 U	2.4	14 J+	11500 J	40.6 J+	4.7 J	3470 J	
WHC2-BM10C	13		11/25/2009	37 J	< 0.13 U	5.7 J+	11.2 J+	9500 J	5.4 J+	146 J	32300 J	
WHC2-BM10C	13	FD	11/25/2009	82.4 J	0.17 J	6.3 J÷	13.4 J+	12600 J	5.7 J+	175 J	36900 J	
WHC2-BM10NE	13	NORM	11/25/2009	8.6 J+	0.26 J	5.4 J+	15.7 J+	10300 J	16.4 J+	20.7 J	10500 J	
WHC2-BM10NW	13	NORM	11/25/2009	16.4 J+	< 0.12 U	6.6 J÷	23.2 J+	12700 J	48 J+	24 J	13700 J	
WHC2-BM10SE	13		11/25/2009	6.1 J+	< 0.11 U	3.6 J+	9.4 J+	7280 J	6.9 J+	23.5 J	9700 J	
WHC2-BM10SW	13		11/25/2009	7.6 J+	< 0.11 U	4.3 J±	12.8 J+	9310 J	8.9 J+	25.3 J	11000 J	
WHC2-BN09C	11	NORM	11/25/2009	9.2 J+	0.3 J	7.2 J+	18.8 J+	12000 J	11.6 J+	27.9 J	12900 J	
WHC2-BN09C	11	FD	11/25/2009	13.5 J+	0.3 J	7.9 J+	20.5 J+	12000 J	12.5 J+	34.6 J	14100 J	
WHC2-BN09NE	11	NORM	11/25/2009	10.4 J+	0.3 J	9.1 J+	20.2 J+	14800 J	14.9 J+	26.5 J	16100 J	
WHC2-BN09NW	11		11/25/2009	9.3 J+	< 0.11 U	7.7 J+	19.1 J+	14200 J	10.7 J+	25.5 J	14600 J	
TITE 2-DITO/ITY	11	NOMM	11/23/2009).J J I	× 0.11 0	7.731	17.131	172003	10.73	4J.J.J	140003	

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 31 of 64)

				Metals							
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chromium	Chromium (VI)	Cobalt	Copper	Iron	Lead	Lithium	Magnesium
WHC2-BN09SE	11	NORM	11/25/2009	11.6 J+	0.46	7.2 J+	20.3 J+	13600 J	17.9 J+	29 J	14300 J
WHC2-BN09SW	11	NORM	11/25/2009	8.8 J+	< 0.11 U	7.5 J+	20.3 J+	13100 J	19.4 J+	25.1 J	12600 J
WHC2-BN10	0	NORM	8/10/2010	14.2	0.25 J	8.1	13.9	11900 J	6.4	57	27700
WHC2-BN10NE	0	NORM	8/10/2010	17.6	< 0.1 U	6.3	13.8	13600 J	8.2	56.8	14300
WHC2-BN10SE	0	NORM	8/10/2010	10.1	0.14 J	6.4	15.2	12800 J	7.5	40.3	14800
WHC2-BN10SW	0	NORM	8/10/2010	7.5	0.15 J	5.3	11.9	10500 J	7.6	30.2	10600
WHC2-BO10C	0	NORM	11/25/2009	29.2	< 0.41 U	6.3	16.2 J+	12900 J	8.4 J+	49.1	19300 J
WHC2-BO10C	0	FD	11/30/2009	41.8	< 0.41 U	5	14.6 J+	13100 J	8 J+	49.5	17600 J
WHC2-BP07C	3	NORM	11/25/2009	5.5 J+	0.28 J	5.5 J+	12.8 J+	10900 J	7.2 J+	17.8 J	9010 J
WHC2-BP07NE	3	NORM	11/25/2009	5.7 J+	0.13 J	5.5 J+	13.2 J+	11300 J	8 J+	15.3 J	8620 J
WHC2-BP07NW	3	NORM	11/25/2009	7.2	< 0.41 U	8.3	15.5 J+	12800 J	10.5 J+	13.1	17700 J
WHC2-BP07SE	3	NORM	11/25/2009	9 J+	0.19 J	8.4 J+	17.2 J+	14000 J	10.3 J+	27.5 J	21000 J
WHC2-BP07SW	3	NORM	11/25/2009	7.7	< 0.41 U	6.9	15.6 J+	13600 J	8.3 J+	17.5	13600 J
WHC2-BP08C	4	NORM	11/25/2009	6.5 J#	< 0.11 U	6.7 J+	13.8 J+	10900 J	8 J+	25.2 J	17700 J
WHC2-BP08NE	4		11/25/2009	6 J+	0.14 J	6 J+	15 J+	11200 J	9.7 J+	24.2 Ј	14000 J
WHC2-BP08NW	4	NORM	11/25/2009	< 5.1 UJ	< 0.1 U	5.5 J+	12.2 J+	9300 J	7.9 J+	19.7 J	13600 J
WHC2-BP08SE	4	NORM	11/25/2009	6 J+	< 0.11 U	6.1 J+	14.9 J+	10800 J	13.7 J+	24.6 J	16000 J
WHC2-BP08SW	4	NORM	11/25/2009	16.7 J+	< 0.11 U	6.4 J+	13.4 J+	11200 J	13.3 J+	33.5 J	13600 J
WHC2-D11C	0	NORM	12/2/2009	16.2	1.3	8.8	34	13300 J	53.7	20.9	19700 J
WHC2-D13C	10	NORM	12/3/2009	62.5	0.27	3.9	7.2	5670	5.4	174	128000
WHC2-D13NE	10	NORM	12/3/2009	103	0.27	5.1	11.5	10700	6.7	224	115000
WHC2-D13NW	10	NORM	12/3/2009	11.7	< 0.12 U	4.4	12.6	9650	5.5	30.7	21200
WHC2-D13SE	10	NORM	12/3/2009	184	0.22	5.8	9.9	11700	7.6	155	108000
WHC2-D13SW	10	NORM	12/3/2009	53.4	0.28	4.7	9.7	6350	5.5	100	89800
WHC2-D14C	0	NORM	12/2/2009	9.3	0.45	5.5	21.5	8810 J	16.4	15	16100 J
WHC2-D16C	0	NORM	11/30/2009	5.4 J	< 0.45 U	5.9	16.3 J+	11000 J	9.3 J+	15.1	13000 J
WHC2-D17C	0	NORM	12/1/2009	5.8	< 0.45 U	6.7	20.4 J+	13900 J	11.7 J+	23.8 J+	13500 J
WHC2-P07C	0	NORM	12/1/2009	8.1	< 0.41 U	7	21.7 J+	11200 J	6.7 J+	10.5 J+	6140 J
WHC2-P11C	0	NORM	12/1/2009	40.3	0.91	5.8	31 J+	18400 J	170 J+	12.2 J+	5630 J
WHC2-P11C	10	NORM	12/3/2009	56.3	0.63	7.9	42.2	13600	88.4	12.6	6100
WHC2-P13C	10	NORM	12/4/2009	9	< 0.56 U	6	15.8	10800 J	7.8	65.4	23300 J
WHC2-P13NE	10	NORM	12/4/2009	18.1 J	< 0.51 U	7.8 J	13.6	16100 J	8.8	148 J	45300 J
WHC2-P13NW	10	NORM	12/4/2009	15	< 0.52 U	7.3	16.6	13100 J	8.1	161	45800 J
WHC2-P13SE	10	NORM	12/4/2009	31.1 J	< 0.62 U	9.3 J	22.9	23200 J	11.8	175 J	51000 J
WHC2-P13SW	10	NORM	12/4/2009	22.5 J	< 0.48 U	7.1 J	18.1	16700 J	8.4	183 J	46400 J
WHC3-BO10C	0	NORM	8/16/2010	16.5	< 0.4 U	5.6	11.4	11100 J	6.4	35	12900 J
WHC3-D11C	0	NORM	6/24/2010	45.5	1.8 J-	9.7	34.9	14900	220	15.5	11200 J
WHC3-D14C	0	NORM	8/9/2010	13.6	< 0.12 UJ	2.6	5.7 J	5270	3.6	75.3	31200 J
WHC3-D14C	0	FD	8/9/2010	13.1	< 0.12 UJ	2.6	5.J	4770	3.6	87.5	37000 J
WHC3-P11C	0	NORM	8/9/2010	38.4	0.26 J-	4.1	16.6	17700	47.1	6.7	3680 J
	,	1,01011	3, 2, 2010	23.1	J.=U J		10.0	1,700	.,	J.,	20000

SOIL METALS DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 32 of 64)

					Metals									
Sample ID	Depth (ft bgs)	Sample Type	Date	Chromium	Chromium (VI)	Cobalt	Copper	Iron	Lead	Lithium	Magnesium			
WHC3-P11C	0	FD	8/9/2010	58	0.43 J-	3.8	19.3	17400	61.7	6.7	3570 J			
WHC7-D12	0	NORM	3/20/2014	11	< 0.1 U	6.5	13	14000	11	14	7000			
WHC7-W11	0	NORM	3/20/2014	43	< 0.1 U	22	680	47000	110	15	13000			
WHC7-WA11	0	NORM	5/12/2014	17	< 0.1 U	8.1	18	18000	16	18	8900			
WHD-AS-BG05	0	NORM	9/18/2009											
WHD-AS-BG05	10		9/18/2009											
WHD-AS-BH04	10	NORM	9/18/2009											
WHD-AS-BK03	12	NORM	9/21/2009											
WHD-AS-BL03	0	NORM	9/21/2009											
WHD-AS-BL03	0	FD	9/21/2009											
WHD-AS-BN01	12		9/21/2009											
WHD-AS-BN10	0	NORM	9/18/2009				++							
WHD-AS-BP03	11	NORM	9/21/2009											
WHD-AS-BP03	11	FD	9/21/2009											
WHD-AS-BP04	0	NORM	9/18/2009											
WHD-AS-BP08	0	NORM	9/18/2009											
WHD-AS-BP08	4	NORM	9/21/2009											
WHD-AS-P14	0	NORM	9/21/2009											

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 33 of 64)

Sample ID Depth Sample Graps Type Date Graps Type								Me	tals			
OSC-1-BMI1 0	Sample ID	•	•	-	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium
OSCI-BNI 0	OSC1-BM11	0	NORM	9/21/2009	184 J+	< 0.0349 U	< 2.6 U		3190 J+	< 0.225 U		
OKCI-BNI S	OSC1-BM11	10	NORM	9/21/2009	169 J+	< 0.0393 U	< 3 U	13.9	2100 J+	< 3 U	0.13 J	1620 J+
OSCI-BNIIN O NORM 121/2010 1560 < 0.0411 U < 3.1 U 23.81+ 3490 < 3.1 U < 1.2 U 3400	OSC1-BN11	0	NORM	9/22/2009	825 J	< 0.0338 U	< 2.5 U	15.6	2360 J	< 2.5 U	0.1 J	1290
OSCI-BNI INC. O NORM 12/12/100 11/70 < 0.039 U < 2.9 U 20.81+ 3340 < 2.9 U < 1.2 U 487	OSC1-BN11	5	NORM	9/22/2009	258 J	< 0.0352 U	< 2.6 U	12.2	1620 J	< 2.6 U	0.094 J	600
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OSC1-BN11N1	0	NORM	1/21/2010	1560 J	< 0.0411 U	< 3.1 UJ	23.8 J+	3490 J	< 3.1 UJ	< 1.2 UJ	3400 J
OSCI-BOIL OSCI	OSC1-BN11N2	0	NORM	1/21/2010	1170 J	< 0.039 U	< 2.9 UJ	20.8 J+	3340 J	< 2.9 UJ	< 1.2 UJ	487 J
OSCI-BOIL O NORM 9162009 146 < 0.0388 U < 2.7 U 8.4 2370 < 0.225 U 0.079 J 2850	OSC1-BN11S1	0	NORM	1/21/2010	749 J	< 0.0386 U	< 2.9 UJ	19.7 J+	3060 J	< 0.225 U	< 1.2 UJ	1200 J
OSCI-BOII O FD 9/16/2009 155 < 0.005 U < 2.9 U 8.8 2/100 < 0.225 U 0.07 J 1990	OSC1-BN11S2	0	NORM	1/21/2010	1010 J	< 0.0389 U	< 2.9 UJ	20.2 J+	3120 J	< 2.9 UJ	< 1.2 UJ	751 J
OSCI-BOILE 0 NORM 9/16/2009 174	OSC1-BO11	0	NORM	9/16/2009	146	< 0.0358 U	< 2.7 U	8.4	2370	< 0.225 U	0.079 J	2850
OSCI-BOILE O NORM 1/21/2010 286 J < 0.0393 U < 3 U 13 J 3310 J < 0.225 U < 1.2 U 4450 J OSCI-BOILE2	OSC1-BO11	0	FD	9/16/2009	155	< 0.005 U	< 2.9 U	8.8	2100	< 0.225 U	0.07 J	1990
OSCI-BOILE2 O NORM 1/21/2010 464 J < 0.0386 U < 2.9 UJ 19.8 J + 4690 J < 0.225 U < 1.2 UJ 14100 J OSCI-BOILW2 O NORM 1/21/2010 460 J < 0.0399 U < 3 UJ J 17.2 J + S870 J < 2.9 UJ < 1.2 UJ 30700 J OSCI-BOILW2 O NORM 1/21/2010 342 J < 0.039 U 3.4 J + 17.2 J + S870 J < 2.9 UJ < 1.2 UJ 30700 J OSCI-BOILW2 O FD 1/21/2010 342 J < 0.039 U 3.4 J + 14.2 J + S270 J < 2.9 UJ < 1.2 UJ 18500 J OSCI-BPII O NORM 916/2009 252 < 0.005 U < 3.1 U 13.1 2990 < 0.225 U < 0.11 J 2590 OSCI-BPII S NORM 916/2009 276 < 0.0449 U < 3.4 U 11.5 3400 < 3.4 U 0.11 J 2590 OSCI-BPIINW O NORM 1/21/2010 607 J < 0.0379 U < 2.8 UJ 16.7 J + 2250 J < 2.8 UJ < 1.1 UJ 891 J OSCI-BPIINW O NORM 1/21/2010 607 J < 0.0379 U < 2.8 UJ 16.7 J + 2250 J < 2.8 UJ < 1.1 UJ 891 J OSCI-BPIISE O NORM 1/21/2010 253 J < 0.0371 U 5.4 J + 12.1 J + 6240 J < 2.8 UJ < 1.1 UJ 4880 J OSCI-BPIO O NORM 1/21/2010 295 J < 0.0393 U < 2.9 UJ 5.2 J < 0.0393 U < 2.9 UJ < 1.2 UJ < 0.050 J	OSC1-BO11	5	NORM	9/16/2009	174	< 0.042 U	< 3.2 U	13.6	3290	< 3.2 U	0.11 J	3180
OSCI-BOILWI O NORM 1/21/2010 440 J < 0.0399 U < 3 UJ 19.2 J+ 4010 J < 3 UJ < 1.2 UJ 986 J OSCI-BOILW2 O NORM 1/21/2010 441 J < 0.0392 U 4.3 J+ 17.2 J+ 5870 J < 2.9 UJ < 1.2 UJ 30700 J OSCI-BOILW2 O FD 1/21/2010 342 J < 0.039 U 3.4 J+ 14.2 J+ 5270 J < 2.9 UJ < 1.2 UJ 30700 J OSCI-BPI1 O NORM 9/16/2009 252 < 0.005 U < 3.1 U 13.1 2990 < 0.0225 U 0.11 J 2590 OSCI-BPI1 S NORM 9/16/2009 276 < 0.0449 U < 3.4 U 11.1 S 3400 < 3.4 U 0.11 J 3496 OSCI-BPINE O NORM 1/21/2010 607 J < 0.0379 U < 2.8 UJ 16.7 J+ 2250 J < 2.8 UJ < 1.1 UJ 891 J OSCI-BPINE O NORM 1/21/2010 1920 J < 0.0433 U 3.4 J+ 12.1 J+ 6240 J < 2.8 UJ < 1.1 UJ 880 J OSCI-BPINS O NORM 1/21/2010 253 J < 0.0371 U 5.4 J+ 12.1 J+ 6240 J < 2.8 UJ < 1.1 UJ 4880 J OSCI-BPINS O NORM 1/21/2010 295 J < 0.0393 U < 2.9 UJ 13.2 J+ 3730 J < 2.9 UJ < 1.2 UJ 2280 J OSCI-BPINS O NORM 1/21/2010 295 J < 0.0393 U < 2.9 UJ 3.2 J+ 3730 J < 2.9 UJ < 1.2 UJ 2280 J OSCI-JP06 O NORM 9/21/2009 224 J < 0.005 U < 3.4 U 9.3 1900 J < 3.4 U 0.088 J 838 OSCI-JP07 O NORM 9/21/2009 212 J+ < 0.005 U < 3.1 U 1.3 1950 J+ < 3.1 U 0.088 J 838 OSCI-JP08 O NORM 9/21/2009 388 J+ < 0.005 U < 3.1 U 1.1 J	OSC1-BO11E1	0	NORM	1/21/2010	286 J	< 0.0393 U	< 3 UJ	13 J+	3310 J	< 0.225 U	< 1.2 UJ	4450 J
OSCI-BOIIW2	OSC1-BO11E2	0	NORM	1/21/2010	464 J	< 0.0386 U	< 2.9 UJ	19.8 J+	4690 J	< 0.225 U	< 1.2 UJ	14100 J
OSCI-BPI1 O NORM 9/16/2009 252 C C C C C C C C C C C C C C C C C C	OSC1-BO11W1	0	NORM	1/21/2010	460 J	< 0.0399 U	< 3 UJ	19.2 J+	4010 J	< 3 UJ	< 1.2 UJ	986 J
OSCI-BPI1 O NORM 9/16/2009 252 < 0.005 U < 3.1 U 13.1 2990 < 0.225 U 0.11 J 2590 OSCI-BPI1NE O NORM 9/16/2009 276 < 0.0449 U < 3.4 U 11.5 3400 < 3.4 U 0.11 J 4960 OSCI-BPINE O NORM 1/21/2010 607 J < 0.0379 U < 2.8 U 16.7 J 2250 J < 2.8 U < 1.1 U 891 J OSCI-BPINW O NORM 1/21/2010 1920 J < 0.0433 U 3.4 J 30.6 J 4970 J < 3.3 U < 1.3 U 4480 J OSCI-BPINW O NORM 1/21/2010 2253 J < 0.0371 U 5.4 J 12.1 J 6240 J < 2.8 U J < 1.1 U 4880 J OSCI-BPIISW O NORM 1/21/2010 2253 J < 0.0373 U < 2.9 U J 3.2 J 3.2 J 3.2 J 3.2 J OSCI-BPISW O NORM 1/21/2010 2253 J < 0.0393 U < 2.9 U J 3.2 J 3.3 U < 3.3 U < 1.3 U 4880 J OSCI-BPIO O NORM 9/22/2009 84.4 J < 0.0411 U < 3.1 U 6.7 2410 J < 3.1 U 0.079 J 1040 OSCI-JP06 O NORM 9/22/2009 224 J < 0.005 U < 3.4 U 9.3 1900 J < 3.4 U 0.088 J 838 OSCI-JP07 O NORM 9/21/2009 112 J < 0.005 U < 2.7 U 9.1 1900 J < 2.7 U 0.099 J 795 J OSCI-JP07 O NORM 9/21/2009 272 J < 0.005 U < 3.1 U 10.5 2170 J < 3.1 U 0.081 J 636 J OSCI-JP08 O NORM 9/21/2009 358 J < 0.005 U < 3.1 U 10.5 2170 J < 3.1 U 0.081 J 636 J OSCI-JP08 O NORM 9/21/2009 358 J < 0.005 U < 3.1 U 11.1 2170 J < 3.1 U 0.097 J 869 J OSCI-JP08 O NORM 9/21/2009 358 J < 0.0397 U < 3 U 11.3 1950 J < 3 U 0.081 J 3290 J OSCI-JP08 O NORM 9/21/2009 358 J < 0.0397 U < 3 U 11.3 1950 J < 3 U 0.025 U < 2.25 U 828 J OSCI-JP08 O NORM 9/21/2009 358 J < 0.0397 U < 3 U 11.3 3950 J < 3 U < 1.2 U 1860 J OSCI-JP08 O NORM 9/21/2009 368 J < 0.0397 U < 3 U 1.2 J 4830 J < 3 U < 1.2 U 1860 J OSCI-JP08 O NORM 9/21/2009 368 J < 0.0397 U < 3 U 1.2 J 4830 J < 3 U < 1.2 U 1860 J OSCI-JP08 O NORM 9/21/2009 368 J < 0.0397 U < 3 U 1.2 J 4830	OSC1-BO11W2	0	NORM	1/21/2010	441 J	< 0.0392 U	4.3 J+	17.2 J+	5870 J	< 2.9 UJ	< 1.2 UJ	30700 J
OSCI-BPI1 5 NORM 9/16/2009 276 < 0.0449 U < 3.4 U 11.5 3400 < 3.4 U 0.11 J 4960 OSCI-BPI1NE 0 NORM 1/21/2010 607 J < 0.0379 U	OSC1-BO11W2	0	FD	1/21/2010	342 J	< 0.039 U	3.4 J+	14.2 J+	5270 J	< 2.9 UJ	< 1.2 UJ	18500 J
OSCI-BPIINE 0 NORM 1/21/2010 607 J < 0.0379 U < 2.8 UJ 16.7 J+ 2250 J < 2.8 UJ < 1.1 UJ 891 J OSCI-BPIINW 0 NORM 1/21/2010 253 J < 0.0371 U	OSC1-BP11	0	NORM	9/16/2009	252	< 0.005 U	< 3.1 U	13.1	2990	< 0.225 U	0.11 J	2590
OSC1-BPI1NW 0 NORM 1/21/2010 1920 J < 0.0433 U 3.4 J+ 30.6 J+ 4970 J < 3.3 UJ < 1.3 UJ 4480 J OSC1-BP11SE 0 NORM 1/21/2010 253 J < 0.0371 U	OSC1-BP11	5	NORM	9/16/2009	276	< 0.0449 U	< 3.4 U	11.5	3400	< 3.4 U	0.11 J	4960
OSCI-BPIISE 0 NORM 1/21/2010 253 J < 0.0371 U 5.4 J+ 12.1 J+ 6240 J < 2.8 UJ < 1.1 UJ 48800 J OSCI-BPIISW 0 NORM 1/21/2010 295 J < 0.0393 U	OSC1-BP11NE	0	NORM	1/21/2010	607 J	< 0.0379 U	< 2.8 UJ	16.7 J+	2250 J	< 2.8 UJ	< 1.1 UJ	891 J
OSCI-BP11SW 0 NORM 1/21/2010 295 J < 0.0393 U < 2.9 UJ 13.2 J+ 3730 J < 2.9 UJ < 1.2 UJ 2280 J OSCI-JP06 0 NORM 9/22/2009 84.4 J < 0.0411 U	OSC1-BP11NW	0	NORM	1/21/2010	1920 J	< 0.0433 U	3.4 J+	30.6 J+	4970 J	< 3.3 UJ	< 1.3 UJ	4480 J
OSC1-JP06 0 NORM 9/22/2009 84.4 J < 0.0411 U < 3.1 U 6.7 2410 J < 3.1 U 0.079 J 1040 OSC1-JP06 5 NORM 9/22/2009 224 J < 0.005 U	OSC1-BP11SE	0	NORM	1/21/2010	253 J	< 0.0371 U	5.4 J+	12.1 J+	6240 J	< 2.8 UJ	< 1.1 UJ	48800 J
OSC1-JP06 5 NORM 9/22/2009 224 J < 0.005 U < 3.4 U 9.3 1900 J < 3.4 U 0.088 J 838 OSC1-JP07 0 NORM 9/21/2009 112 J+ < 0.005 U	OSC1-BP11SW	0	NORM	1/21/2010	295 J	< 0.0393 U	< 2.9 UJ	13.2 J+	3730 J	< 2.9 UJ	< 1.2 UJ	2280 J
OSC1-JP07 0 NORM 9/21/2009 112 J+ < 0.005 U < 2.7 U 9.1 1900 J+ < 2.7 U 0.099 J 795 J+ OSC1-JP07 5 NORM 9/21/2009 272 J+ < 0.005 U	OSC1-JP06	0	NORM	9/22/2009	84.4 J	< 0.0411 U	< 3.1 U	6.7	2410 J	< 3.1 U	0.079 J	1040
OSC1-JP07 5 NORM 9/21/2009 272 J+ < 0.005 U < 3.1 U 10.5 2170 J+ < 3.1 U 0.081 J 636 J+ OSC1-JP08 0 NORM 9/21/2009 358 J+ < 0.005 U	OSC1-JP06	5	NORM	9/22/2009	224 J	< 0.005 U	< 3.4 U	9.3	1900 J	< 3.4 U	0.088 J	838
OSC1-JP08 0 NORM 9/21/2009 358 J+ < 0.005 U < 3 U 11.3 1950 J+ < 3 U 0.08 J 2390 J+ OSC1-JP08 10 NORM 9/21/2009 164 J+ < 0.0413 U	OSC1-JP07	0	NORM	9/21/2009	112 J+	< 0.005 U	< 2.7 U	9.1	1900 J+	< 2.7 U	0.099 J	795 J+
OSC1-JP08 10 NORM 9/21/2009 164 J + < 0.0413 U < 3.1 U 11.1 2170 J + < 3.1 U 0.097 J 869 J + OSC1-JP08N1 0 NORM 1/21/2010 708 J < 0.0397 U	OSC1-JP07	5	NORM	9/21/2009	272 J+	< 0.005 U	< 3.1 U	10.5	2170 J+	< 3.1 U	0.081 J	636 J+
OSC1-JP08N1 0 NORM 1/21/2010 708 J < 0.0397 U < 3 UJ 19.8 J+ 3950 J < 3 UJ < 1.2 UJ 1860 J OSC1-JP08S1 0 NORM 1/21/2010 551 J < 0.04 U	OSC1-JP08	0	NORM	9/21/2009	358 J+	< 0.005 U	< 3 U	11.3	1950 J+	< 3 U	0.08 J	2390 J+
OSC1-JP08S1 0 NORM 1/21/2010 551 J < 0.04 U < 3 UJ 24.7 J+ 2850 J < 0.225 U < 1.2 UJ 828 J OSC1-JP08S2 0 NORM 1/21/2010 1070 J < 0.042 U	OSC1-JP08	10	NORM	9/21/2009	164 J+	< 0.0413 U	< 3.1 U	11.1	2170 J+	< 3.1 U	0.097 J	869 J+
OSC1-JP08S2 0 NORM 1/21/2010 1070 J < 0.042 U 3.8 J+ 32.6 J+ 3530 J < 3.1 UJ < 1.3 UJ 3220 J OSC1-JS10 0 NORM 1/31/2010 675 J < 0.0465 U	OSC1-JP08N1	0	NORM	1/21/2010	708 J	< 0.0397 U	< 3 UJ	19.8 J+	3950 J	< 3 UJ	< 1.2 UJ	1860 J
OSC1-JS10 0 NORM 1/31/2010 675 J < 0.0465 U < 3.5 UJ 21.2 J+ 4830 J < 3.5 UJ < 1.4 UJ 1300 J OSC1-JS10 0 FD 1/21/2010 666 J < 0.0453 U	OSC1-JP08S1	0	NORM	1/21/2010	551 J	< 0.04 U	< 3 UJ	24.7 J+	2850 J	< 0.225 U	< 1.2 UJ	828 J
OSC1-JS10 0 FD 1/21/2010 666 J < 0.0453 U < 3.4 UJ 21.9 J+ 4370 J < 3.4 UJ < 1.4 UJ 1020 J OSC2-BN11 0 NORM 8/16/2010 260 J 0.0075 J < 2.5 U	OSC1-JP08S2	0	NORM	1/21/2010	1070 J	< 0.042 U	3.8 J+	32.6 J+	3530 J	< 3.1 UJ	< 1.3 UJ	3220 J
OSC2-BN11 0 NORM 8/16/2010 260 J 0.0075 J < 2.5 U 11 4960 J < 2.5 U 0.05 J 8280 J+ OSC2-BN11N1 0 NORM 8/16/2010 304 J 0.0094 J < 2.5 U	OSC1-JS10	0	NORM	1/31/2010	675 J	< 0.0465 U	< 3.5 UJ	21.2 J+	4830 J	< 3.5 UJ	< 1.4 UJ	1300 J
OSC2-BN11N1 0 NORM 8/16/2010 304 J 0.0094 J < 2.5 U 11.6 5390 J < 2.5 U 0.042 J 1750 J+ OSC2-BN11N2 0 NORM 8/16/2010 386 J 0.0113 J < 2.6 U	OSC1-JS10	0	FD	1/21/2010	666 J	< 0.0453 U	< 3.4 UJ	21.9 J+	4370 J	< 3.4 UJ	< 1.4 UJ	1020 J
OSC2-BN11N2 0 NORM 8/16/2010 386 J 0.0113 J < 2.6 U 11.4 4290 J < 2.6 U 0.043 J 2590 J+ OSC2-BN11S1 0 NORM 8/16/2010 192 J < 0.0062 U	OSC2-BN11	0	NORM	8/16/2010	260 J	0.0075 J	< 2.5 U	11	4960 J	< 2.5 U	0.05 J	8280 J+
OSC2-BN11N2 0 NORM 8/16/2010 386 J 0.0113 J < 2.6 U 11.4 4290 J < 2.6 U 0.043 J 2590 J+ OSC2-BN11S1 0 NORM 8/16/2010 192 J < 0.0062 U	OSC2-BN11N1	0	NORM	8/16/2010	304 J	0.0094 J	< 2.5 U	11.6	5390 J	< 2.5 U	0.042 J	1750 J+
OSC2-BN11S2 0 NORM 8/16/2010 213 J 0.0107 J < 2.5 U 9.4 4920 J < 2.5 U 0.042 J 7000 J+ OSC2-BO11 0 NORM 8/16/2010 240 J 0.0061 J < 2.6 U	OSC2-BN11N2	0	NORM	8/16/2010	386 J	0.0113 J		11.4	4290 J	< 2.6 U	0.043 J	2590 J+
OSC2-BN11S2 0 NORM 8/16/2010 213 J 0.0107 J < 2.5 U 9.4 4920 J < 2.5 U 0.042 J 7000 J+ OSC2-BO11 0 NORM 8/16/2010 240 J 0.0061 J < 2.6 U	OSC2-BN11S1	0	NORM	8/16/2010	192 J	< 0.0062 U	< 2.6 U	10.8	4170 J	< 2.6 U	< 0.041 U	8490 J+
OSC2-BO11 0 NORM 8/16/2010 240 J 0.0061 J < 2.6 U 13.4 3950 J < 2.6 U 0.05 J 5400 J+	OSC2-BN11S2	0	NORM	8/16/2010	213 J	0.0107 J	< 2.5 U	9.4	4920 J	< 2.5 U	0.042 J	7000 J+
	OSC2-BO11	0	NORM	8/16/2010	240 J	0.0061 J	< 2.6 U	13.4	3950 J	< 2.6 U	0.05 J	5400 J+
OSC2-BO11E1	OSC2-BO11E1	0	NORM	8/16/2010	231 J	< 0.0061 U	< 2.5 U	9.3	3500 J	< 2.5 U	0.057 J	5670 J+

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 34 of 64)

				Metals								
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	
OSC2-BO11E2	0	NORM	8/16/2010	249 J	0.0066 J	< 2.5 U	10.9	4250 J	< 2.5 U	0.045 J	4760 J+	
OSC2-BO11W1	0	NORM	8/16/2010	465 J	< 0.0061 U	< 2.5 U	12.2	3820 J	< 2.5 U	0.048 J	6290 J+	
OSC2-BO11W2	0	NORM	8/16/2010	268 J	0.0078 J	< 2.6 U	9.7	3970 Ј	< 2.6 U	< 0.041 U	4490 J+	
OSC2-BP11	0	NORM	8/16/2010	198 J	< 0.0062 U	< 2.6 U	9.2	3580 J	< 2.6 U	0.048 J	8570 J+	
OSC2-BP11NE	0	NORM	8/16/2010	136 J	0.0173 J	< 2.6 U	9.7	3470 J	< 2.6 U	0.066 J	842 J+	
OSC2-BP11NW	0	NORM	8/16/2010	287 J	0.007 J	< 2.6 U	11.4	4570 J	< 2.6 U	< 0.041 U	7540 J+	
OSC2-BP11SE	0	NORM	8/16/2010	251 J	< 0.0061 U	2.6	9.4	4050 J	< 2.5 U	< 0.041 U	19200 J+	
OSC2-BP11SW	0	NORM	8/16/2010	288 J	0.0093 J	< 2.5 U	13.8	3600 J	< 2.5 U	0.054 J	6940 J+	
OSC2-JP06	0	NORM	8/10/2010	185	< 0.0346 U	< 2.6 U	9.7	3160 J+	< 2.6 UJ	< 0.042 U	2270 J+	
OSC2-JP06NE	0	NORM	8/10/2010	271	< 0.0345 U	< 2.6 U	7.4	3680 J+	< 2.6 UJ	< 0.041 U	3990 J+	
OSC2-JP06NW	0	NORM	8/10/2010	414	< 0.035 U	< 0.4 U	10.4	3080 J+	< 2.6 UJ	0.047 J	1440 J+	
OSC2-JP06SE	0	NORM	8/10/2010	381	< 0.0356 U	< 2.7 U	14.1	3650 J+	< 2.7 UJ	0.047 J	10100 J+	
OSC2-JP06SW	0	NORM	8/10/2010	196	< 0.0342 U	< 2.6 U	14.3	3730 J+	< 2.6 UJ	0.052 J	1490 J+	
OSC2-JP07	0	NORM	8/10/2010	279	< 0.0345 U	< 2.6 U	12	3630 J+	< 2.6 UJ	0.061 J	8540 J+	
OSC2-JP07NW	0	NORM	8/10/2010	233	< 0.0344 U	< 2.6 U	11.8	2870 J+	< 2.6 UJ	0.045 J	3980 J+	
OSC2-JP07SW	0	NORM	8/10/2010	210	< 0.0351 U	< 2.6 U	10.7	2990 J+	< 2.6 UJ	0.054 J	4990 J+	
OSC2-JP08	0	NORM	8/16/2010	244 J-	0.0077 J	< 2.6 U	10.3	4040 J+	< 2.6 U	< 0.041 U	4820	
OSC2-JP08N1	0	NORM	8/16/2010	448 J-	< 0.0066 U	< 2.8 U	13	4170 J+	< 2.8 U	< 0.044 U	1520	
OSC2-JP08S1	0	NORM	8/16/2010	314 J-	< 0.0061 U	< 2.5 U	11.5	3500 J+	< 2.5 U	< 0.04 U	3440	
OSC2-JP08S2	0	NORM	8/16/2010	197 J-	0.0085 J	< 0.39 U	10.2	3160 J+	< 2.6 U	0.055 J	5000	
OSC2-JS10	0	NORM	8/16/2010	97.5 J	< 0.0063 U	< 2.6 U	8.8	2320 Ј	3.3	< 0.042 U	1920 J+	
OSC2-JS10	0	FD	8/16/2010	98.9 J	< 0.0064 U	< 2.7 U	9.5	2760 J	< 2.7 U	< 0.043 U	2030 J+	
OSC6-JP07	0	NORM	8/1/2012	190 J-	< 0.012 U	< 0.69 U	11	2700 J+	2.6 J	< 0.13 UJ	1000	
OSC6-JP07	0	FD	8/1/2012	180 J-	< 0.012 U	< 0.69 U	10	3300 J+	2.1 J	0.23 J	1300	
OSC6-JP07NW	0	NORM	8/1/2012	110 J-	< 0.012 U	< 0.67 U	8.4	2000 J+	1.6 J	< 0.13 UJ	1500	
OSC6-JP07SW	0	NORM	8/1/2012	180 J-	< 0.012 U	< 0.67 U	8.9	2600 J+	2 J	< 0.13 UJ	940	
WH-AS A0	0	NORM	1/4/2012									
WH-AS A0	0	FD	1/4/2012									
WH-AS A3	0	NORM	12/30/2011									
WH-AS A4	0	NORM	12/30/2011									
WH-AS_A5	0		12/30/2011									
WH-AS A6	0		12/30/2011									
WH-AS_A6	0	FD	12/30/2011									
WH-AS A8	0	NORM	12/30/2011									
WH-AS B0	0	NORM	1/4/2012									
WH-AS B1	0	NORM	1/4/2012									
WH-AS B5	0	NORM	12/30/2011									
WH-AS B7	0		12/30/2011									
WH-AS B9	0	NORM	12/30/2011									
WH-AS C1	0	NORM	1/4/2012									

SOIL METALS DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 35 of 64)

							Me	etals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium
WH-AS C5	0	NORM	12/30/2011								
WH-AS_C6	0	NORM	12/30/2011								
WH-AS_C9	0	NORM	12/30/2011								
WH-AS_D0	0	NORM	1/4/2012								
WH-AS_D1	0	NORM	1/4/2012								
WH-AS_D2	0	NORM	1/4/2012								
WH-AS_D4	0	NORM	12/30/2011								
WH-AS_D5	0	NORM	12/30/2011								
WH-AS_D6	0	NORM	12/30/2011								
WH-AS_D7	0	NORM	12/30/2011								
WH-AS_D7	0	FD	12/30/2011								
WH-AS_D9	0	NORM	12/30/2011								
WH-AS_E1	0	NORM	1/4/2012								
WH-AS_E6	0	NORM	1/4/2012								
WH-AS_F0	0	NORM	1/4/2012								
WH-AS_F3	0	NORM	1/4/2012								
WH-AS_F6	0	NORM	12/30/2011								
WH-AS_F7	0	NORM	12/30/2011								
WH-AS_G1	0	NORM	1/4/2012								
WH-AS_G1	0	FD	1/4/2012								
WH-AS_G6	0	NORM	12/30/2011								
WH-AS_H3	0	NORM	1/4/2012								
WH-AS_H5	0	NORM	12/30/2011								
WH-AS_J0	0	NORM	1/4/2012								
WH-AS_J1	0	NORM	1/4/2012								
WH-AS_J2	0	NORM	1/4/2012								
WH-AS_J3	0	NORM	1/4/2012								
WH-AS_J3	0	FD	1/4/2012								
WH-AS_J4	0	NORM	1/4/2012								
WH-AS_J6	0	NORM	12/30/2011								
WH-AS_J6	0	FD	12/30/2011								
WH-AS_K1	0	NORM	1/4/2012								
WH-AS_K4	0	NORM	12/30/2011								
WH-AS_K5	0	NORM	12/30/2011								
WH-AS_K7	0	NORM	12/30/2011								
WH-AS_L0	0	NORM	1/4/2012								
WH-AS_L1	0	NORM	1/4/2012								
WH-AS_L2	0	NORM	1/4/2012								
WH-AS_L5	0	NORM	12/30/2011								
WH-AS_L6	0	NORM	12/30/2011								

SOIL METALS DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 36 of 64)

				Metals								
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	
WH-AS L6	0	FD	12/30/2011									
WH-AS M1	0	NORM	1/4/2012									
WH-AS M4	0	NORM	12/30/2011									
WH-AS M6	0	NORM	12/30/2011									
WH-AS_N1	0	NORM	1/4/2012									
WH-AS N10	0	NORM	12/29/2011									
WH-AS N18	0	NORM	12/28/2011				++				+	
WH-AS N19	0	NORM	12/28/2011								++	
WH-AS_N3	0	NORM	1/4/2012									
WH-AS N4	0	NORM	12/30/2011									
WH-AS N5	0	NORM										
WH-AS N6	0	NORM	12/30/2011									
WH-AS_N8	0	NORM	12/30/2011									
WH-AS P0	0	NORM	1/4/2012									
WH-AS PO	0	FD	1/4/2012									
WH-AS P11	0	NORM	12/29/2011									
WH-AS P12	0	NORM	12/29/2011									
WH-AS P14	0	NORM	12/29/2011									
WH-AS P15	0	NORM	12/29/2011									
WH-AS P16	0	NORM	12/29/2011									
WH-AS P17	0	NORM	12/28/2011						-			
WH-AS_P4	0	NORM	12/30/2011									
WH-AS P5	0	NORM	12/30/2011									
WH-AS_P9	0	NORM	12/30/2011									
WH-AS_Q0	0	NORM	1/4/2012									
WH-AS_Q10	0	NORM	12/29/2011									
WH-AS_Q11	0	NORM	12/29/2011									
WH-AS_Q11	0	FD	12/29/2011									
WH-AS_Q12	0	NORM	12/29/2011									
WH-AS_Q13	0	NORM	12/29/2011									
WH-AS_Q15	0	NORM	12/29/2011									
WH-AS_Q16	0	NORM	12/29/2011									
WH-AS_Q18	0	NORM	12/28/2011									
WH-AS Q3	0	NORM	1/4/2012									
WH-AS_Q4	0	NORM	12/30/2011									
WH-AS_Q5	0	NORM	12/30/2011									
WH-AS_Q6	0	NORM	12/30/2011									
WH-AS_Q8	0	NORM	12/29/2011									
WH-AS_Q8	0	FD	12/29/2011									
WH-AS_R1	0	NORM	1/4/2012									

SOIL METALS DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 37 of 64)

				Metals								
	Depth	Sample	Sample	Manganese	Mercury	Molybdenum	Nickel	Potassium	slenium	Silver	Sodium	
Sample ID WH-AS R10	(ft bgs)	Type NORM	Date 12/29/2011	Σ	Σ	Σ	<u>Z</u>	 <u>P</u>	Sel	Si.	 S	
WH-AS_R10 WH-AS R12	0	NORM	12/29/2011									
WH-AS_R12 WH-AS R14	0	NORM	12/29/2011									
WH-AS_R14 WH-AS_R15	0		12/29/2011									
WH-AS_R15	0	FD	12/29/2011									
WH-AS_R13 WH-AS R3	0	NORM	1/4/2012									
WH-AS_R3 WH-AS R7	0	NORM	12/30/2011									
WH-AS_R7 WH-AS R9	0	NORM	12/29/2011									
WH-AS_R9 WH-AS_S0	0	NORM	1/4/2012									
WH-AS_S0 WH-AS_S10	0	NORM	12/29/2011									
WH-AS_S10 WH-AS_S11	0	NORM	12/29/2011									
WH-AS S13	0	NORM	12/29/2011									
WH-AS S14	0											
WH-AS_S14 WH-AS_S15	0	NORM	12/29/2011									
WH-AS S16	0											
WH-AS_S10	0	NORM	12/28/2011									
WH-AS S18	0	NORM	12/28/2011		 -	-	<u>.</u>					
WH-AS_S3	0	NORM	1/4/2012									
WH-AS_SS WH-AS_S8	0	NORM	12/30/2011									
WH-AS_S6 WH-AS S9	0											
WH-AS_S9 WH-AS T0	0	NORM	1/4/2012								-	
WH-AS_T10	0											
WH-AS_T10 WH-AS_T10	0	FD	12/29/2011									
WH-AS_T10 WH-AS_T12	0	NORM	12/29/2011									
WH-AS_T12	0	NORM	12/29/2011									
WH-AS_T15	0	NORM	12/29/2011									
WH-AS_T17	0	NORM	12/28/2011									
WH-AS T2	0	NORM	1/4/2012									
WH-AS_12 WH-AS_T3	0	NORM	1/4/2012									
WH-AS_T5	0	NORM	1/4/2012									
WH-AS_T9	0	NORM	12/29/2011									
WH-AS_19	0	NORM	12/29/2011									
WH-AS_U12 WH-AS_U13	0	NORM	12/29/2011									
WH-AS_U14	0	NORM	12/28/2011									
WH-AS U14	0	FD	12/28/2011									
WH-AS_U19	0	NORM	12/28/2011								++	
WH-AS_U19 WH-AS U4	0	NORM	1/4/2012									
WH-AS_U4	0	NORM	1/4/2012									
WH-AS_U9	0	NORM	12/29/2011									
WH-AS_U9	0		12/29/2011									
W11-A3_W11	U	NORW	12/29/2011									

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 38 of 64)

Sample ID (ft bgs) WH-AS_W13 0 1 WH-AS_W16 0 1 WH-AS_W18 0 1 WHC1-BF01 0 1 WHC1-BF02 0 1 WHC1-BF02 11 1 WHC1-BF03 0 1 WHC1-BF03 10 1 WHC1-BF03 10 1 WHC1-BF04 0 1 WHC1-BF05 0 1 WHC1-BF05 12 1 WHC1-BF06 0 1 WHC1-BG01 0 1 WHC1-BG01 1 1 WHC1-BG02 0 1 WHC1-BG02 0 1 WHC1-BG03 0 1 WHC1-BG03 1 1	NORM NORM NORM NORM NORM NORM NORM NORM	Sample Date 12/29/2011 12/28/2011 12/28/2011 11/24/2008 11/25/2008 11/25/2008 11/25/2008 11/25/2008	98 98 98 98 98 98 98 98 98 98 98 98 98 9	 4. A. A.	unuəpqioo W	i i Nickel	Potassium	: Selenium	Silver	Sodium
WH-AS_W16 0 N WH-AS_W18 0 N WHC1-BF01 0 N WHC1-BF01 12 N WHC1-BF02 0 N WHC1-BF03 0 N WHC1-BF03 10 N WHC1-BF04 0 N WHC1-BF04 0 N WHC1-BF05 0 N WHC1-BF05 12 N WHC1-BF06 0 N WHC1-BF06 10 N WHC1-BG01 0 N WHC1-BG02 0 N WHC1-BG02 0 N WHC1-BG03 0 N	NORM NORM NORM NORM NORM NORM NORM NORM	12/28/2011 12/28/2011 11/24/2008 11/24/2008 11/25/2008 11/25/2008 11/25/2008 11/25/2008	517 J 239 J 735 J 321 J	< 0.0115 U < 0.0115 U						
WH-AS_W18 0 N WHC1-BF01 0 N WHC1-BF01 12 N WHC1-BF02 0 N WHC1-BF02 11 N WHC1-BF03 0 N WHC1-BF03 10 N WHC1-BF04 0 N WHC1-BF04 0 N WHC1-BF05 0 N WHC1-BF05 12 N WHC1-BF06 0 N WHC1-BF06 10 N WHC1-BG01 0 N WHC1-BG02 0 N WHC1-BG02 0 N WHC1-BG03 0 N WHC1-BG03 11 N	NORM NORM NORM NORM NORM NORM NORM NORM	12/28/2011 11/24/2008 11/24/2008 11/25/2008 11/25/2008 11/25/2008 11/25/2008	517 J 239 J 735 J 321 J	< 0.0115 U < 0.0115 U						
WHC1-BF01 0 N WHC1-BF01 12 N WHC1-BF02 0 N WHC1-BF02 11 N WHC1-BF03 0 N WHC1-BF03 10 N WHC1-BF04 0 N WHC1-BF04 0 N WHC1-BF05 0 N WHC1-BF05 12 N WHC1-BF06 0 N WHC1-BF06 10 N WHC1-BG01 0 N WHC1-BG02 0 N WHC1-BG02 0 N WHC1-BG03 0 N WHC1-BG03 11 N	NORM NORM NORM NORM NORM NORM FD	11/24/2008 11/24/2008 11/25/2008 11/25/2008 11/25/2008 11/25/2008	517 J 239 J 735 J 321 J	< 0.0115 U < 0.0115 U		 -				
WHC1-BF01 12 N WHC1-BF02 0 N WHC1-BF03 0 N WHC1-BF03 10 N WHC1-BF04 0 N WHC1-BF04 0 N WHC1-BF05 0 N WHC1-BF05 12 N WHC1-BF06 0 N WHC1-BF06 10 N WHC1-BG01 0 N WHC1-BG02 0 N WHC1-BG02 0 N WHC1-BG03 0 N WHC1-BG03 11 N	NORM NORM NORM NORM NORM NORM FD	11/24/2008 11/25/2008 11/25/2008 11/25/2008 11/25/2008	239 J 735 J 321 J	< 0.0115 U	< 2.5 UJ					
WHC1-BF02 0 N WHC1-BF02 11 N WHC1-BF03 0 N WHC1-BF03 10 N WHC1-BF04 0 N WHC1-BF04 0 N WHC1-BF05 0 N WHC1-BF05 12 N WHC1-BF06 0 N WHC1-BF06 10 N WHC1-BG01 0 N WHC1-BG02 0 N WHC1-BG02 0 N WHC1-BG03 0 N WHC1-BG03 11 N	NORM NORM NORM NORM NORM FD	11/25/2008 11/25/2008 11/25/2008 11/25/2008	735 J 321 J			18.4 J+	5340 J	< 0.4 U	0.27 J+	541 J+
WHC1-BF02 11 N WHC1-BF03 0 N WHC1-BF03 10 N WHC1-BF04 0 N WHC1-BF04 0 N WHC1-BF05 0 N WHC1-BF05 12 N WHC1-BF06 0 N WHC1-BF06 10 N WHC1-BG01 0 N WHC1-BG02 0 N WHC1-BG02 0 N WHC1-BG03 0 N WHC1-BG03 11 N	NORM NORM NORM NORM FD	11/25/2008 11/25/2008 11/25/2008	321 J	< 0.0337 U	< 2.6 UJ	20.1 J+	2060 J	< 0.4 U	0.18 J+	1130 J+
WHC1-BF03 0 N WHC1-BF03 10 N WHC1-BF04 0 N WHC1-BF04 0 N WHC1-BF05 0 N WHC1-BF05 12 N WHC1-BF06 0 N WHC1-BF06 10 N WHC1-BG01 0 N WHC1-BG02 0 N WHC1-BG02 0 N WHC1-BG03 0 N WHC1-BG03 11 N	NORM NORM NORM FD	11/25/2008 11/25/2008			< 2.5 UJ	18.3 J+	3740 J	< 0.4 U	0.19 J+	287 J+
WHC1-BF03 10 N WHC1-BF04 0 N WHC1-BF04 0 N WHC1-BF04 10 N WHC1-BF05 0 N WHC1-BF05 12 N WHC1-BF06 0 N WHC1-BF06 10 N WHC1-BG01 0 N WHC1-BG02 0 N WHC1-BG02 0 N WHC1-BG03 0 N WHC1-BG03 11 N	NORM NORM FD NORM	11/25/2008	202 I	< 0.0346 U	< 2.6 UJ	15.8 J+	2880 J	< 0.4 U	0.15 J+	1120 J+
WHC1-BF04 0 N WHC1-BF04 0 WHC1-BF04 10 N WHC1-BF05 0 N WHC1-BF05 12 N WHC1-BF06 0 N WHC1-BF06 10 N WHC1-BG01 0 N WHC1-BG02 0 N WHC1-BG02 0 N WHC1-BG03 0 N WHC1-BG03 11 N	NORM FD NORM		202 J	< 0.0339 U	< 2.5 UJ	12.2 J+	4560 J	< 0.4 U	0.13 J+	1320 J+
WHC1-BF04 0 WHC1-BF04 10 WHC1-BF05 0 WHC1-BF05 12 WHC1-BF06 0 WHC1-BF06 10 WHC1-BG01 0 WHC1-BG01 11 WHC1-BG02 0 WHC1-BG02 0 WHC1-BG03 0 WHC1-BG03 11 WHC1-BG03 11	FD NORM	11/05/0000	269 J	< 0.0115 U	< 2.6 UJ	17 J+	1970 J	< 0.4 U	0.15 J+	1050 J+
WHC1-BF04 10 N WHC1-BF05 0 N WHC1-BF05 12 N WHC1-BF06 0 N WHC1-BF06 10 N WHC1-BG01 0 N WHC1-BG02 0 N WHC1-BG02 0 N WHC1-BG02 10 N WHC1-BG03 0 N WHC1-BG03 11 N	NORM	11/25/2008	521 J	< 0.0115 U	< 2.5 UJ	16 J+	4080 J	< 0.4 U	0.16 J+	415 J
WHC1-BF05 0 N WHC1-BF05 12 N WHC1-BF06 0 N WHC1-BF06 10 N WHC1-BG01 0 N WHC1-BG01 11 N WHC1-BG02 0 N WHC1-BG02 0 N WHC1-BG03 0 N WHC1-BG03 11 N		11/25/2008	436 J	< 0.0115 U	< 2.7 UJ	14.1 J+	4360 J	< 0.4 U	0.14 J+	3210 J
WHC1-BF05 12 N WHC1-BF06 0 N WHC1-BF06 10 N WHC1-BG01 0 N WHC1-BG02 0 N WHC1-BG02 0 N WHC1-BG02 10 N WHC1-BG03 0 N WHC1-BG03 11 N	NORM	11/25/2008	310 J	< 0.0359 U	< 2.7 UJ	12.7 J+	2250 J	< 0.4 U	0.13 J+	901 J+
WHC1-BF06 0 N WHC1+BF06 10 N WHC1-BG01 0 N WHC1-BG01 11 N WHC1-BG02 0 N WHC1-BG02 0 N WHC1-BG03 0 N WHC1-BG03 11 N		11/25/2008	269	0.0145 J	1.2 J	11.8	2990	1.4 J	< 0.11 U	4180
WHC1-BF06 0 N WHC1+BF06 10 N WHC1-BG01 0 N WHC1-BG01 11 N WHC1-BG02 0 N WHC1-BG02 0 N WHC1-BG03 0 N WHC1-BG03 11 N	NORM	12/10/2008	273	< 0.0115 U	1.1 J	14.2	3280	< 0.4 U	< 0.11 U	1220
WHC1-BG01 0 N WHC1-BG01 11 N WHC1-BG02 0 N WHC1-BG02 0 N WHC1-BG02 10 N WHC1-BG03 0 N WHC1-BG03 11 N	NORM	12/10/2008	163	0.0189 J	0.68 J	9.3	1710	< 0.4 U	< 0.11 U	1470
WHC1-BG01 11 N WHC1-BG02 0 N WHC1-BG02 0 WHC1-BG02 10 N WHC1-BG03 0 N WHC1-BG03 11 N	NORM	12/10/2008	349	< 0.0115 U	< 0.47 U	9.6	1700	< 0.4 U	< 0.11 U	782
WHC1-BG02 0 N WHC1-BG02 0 N WHC1-BG02 10 N WHC1-BG03 0 N WHC1-BG03 11 N		11/24/2008	532 J	< 0.0337 U	< 2.5 UJ	19.4 J+	3640 J	< 0.4 U	0.19 J+	517 J+
WHC1-BG02 0 WHC1-BG02 10 N WHC1-BG03 0 N WHC1-BG03 11 N	NORM	11/24/2008	373 J	< 0.0115 U	< 2.6 UJ	17.2 J+	2710 J	< 0.4 U	0.18 J+	2970 J+
WHC1-BG02 0 WHC1-BG02 10 N WHC1-BG03 0 N WHC1-BG03 11 N	NORM	11/24/2008	502 J	< 0.0115 U	< 2.5 UJ	16.1 J+	3900 J	< 0.4 U	0.15 J+	304 J+
WHC1-BG03 0 N WHC1-BG03 11 N		11/24/2008	480 J	< 0.0115 U	< 2.6 UJ	16.5 J+	3800 J	< 0.4 U	0.15 J+	302 J+
WHC1-BG03 11 N	NORM	11/24/2008	349 J	< 0.0346 U	< 2.6 UJ	15.7 J+	3310 J	< 0.4 U	0.15 J+	667 J+
	NORM	12/11/2008	627	0.0214 J	0.97 J+	17	2930	< 0.4 U	0.13 J+	229
WHC1-BG04 0 N	NORM	12/11/2008	374	< 0.0115 U	0.59 J+	15	1580	< 0.4 U	0.12 J+	813
	NORM	12/11/2008	494	0.0412	0.91 J+	16.5	2290	< 0.4 U	< 0.11 U	276
WHC1-BG04 10 N	NORM	12/11/2008	188	0.0185 J	< 0.47 U	14.2	3630	< 0.4 U	< 0.11 U	1340
		11/25/2008	261 J	< 0.0115 U	< 2.6 UJ	14.9 J+	3490 J	< 0.4 U	0.13 J+	18200 J+
WHC1-BG05 10 N	NORM	11/25/2008	269 J	< 0.0115 U	< 2.9 UJ	16.4 J+	2670 J	< 0.4 U	0.17 J+	2970 J+
WHC1-BG06 0 N	NORM	12/10/2008	368	< 0.0115 U	0.7 J	12.3	3610	0.89 J	0.11 J	1760
		12/10/2008	195	< 0.0115 U	< 0.47 U	16.4	2640	< 0.4 U	< 0.11 U	1100
	NORM	12/3/2008	373	< 0.0115 U	0.52	15.4	2050	< 0.4 U	0.11	234
	NORM	12/3/2008	267	< 0.0115 U	< 0.47 U	14.7	2140	< 0.4 U	0.13	345
	NORM	12/4/2008	382	< 0.0115 U	0.66 J	12.1	2020 J+	< 0.4 U	< 0.11 U	181 J+
	NORM	12/4/2008	236	< 0.034 U	0.48 J	10.2	1670 J+	< 0.4 U	< 0.11 U	291 J+
	NORM	12/9/2008	493	0.0212 J	0.78 J	15.3	2410	< 0.4 U	0.11 J+	235
	NORM	12/9/2008	264	< 0.0115 U	0.84 J	18.2	1730	< 0.4 U	0.14 J+	1080
	NORM	12/11/2008	433	0.0154 J	0.9 J+	16.8	3830	< 0.4 U	< 0.11 U	277
WHC1-BH04 10 N	NORM	12/11/2008	195	0.0139 J	< 0.47 U	14.7	1550	< 0.4 U	0.13 J+	694
	NORM	12/9/2008	469	0.0186 J	1.5 J	14	3210	1.1 J	0.12 J+	353
WHC1-BH05 0		12/9/2008	407	0.0182 J	0.94 J	13.9	3230	< 0.4 U	< 0.11 U	373
WHC1-BH05 10 1	FD	12/9/2008	579	< 0.0115 U	1.9 J	14.5	2880	< 0.4 U	< 0.11 U	1570

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 39 of 64)

				Metals								
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	
WHC1-BH06	0	NORM	12/11/2008	374	0.0431	3.2 J+	11.9	5910	< 0.4 U	< 0.11 U	27300 J	
WHC1-BH06	0	FD	12/11/2008	302	0.0275 J	2.7 J+	12.5	5380	< 0.4 U	< 0.11 U	11400 J	
WHC1-BH06	10	NORM	12/11/2008	189	< 0.0115 U	0.81 J+	12.2	1750	< 0.4 U	< 0.11 U	769	
WHC1-BI01	0	NORM	12/3/2008	332	< 0.0115 U	0.65	12.4	3100	< 0.4 U	< 0.11 U	823	
WHC1-BI01	11	NORM	12/3/2008	295	< 0.0115 U	1.4	12.4	2060	< 0.4 U	< 0.11 U	537	
WHC1-BI02	0	NORM	12/4/2008	381	< 0.035 U	0.55 J	15.4	2300 J+	< 0.4 U	0.11 J+	198 J+	
WHC1-BI02	3	NORM	12/4/2008	354	< 0.0342 U	0.72 J	15.6	2090 J+	< 0.4 U	0.12 J+	476 J+	
WHC1-BI02	13	NORM	12/4/2008	278	< 0.0343 U	< 0.47 U	13.2	2080 J+	< 0.4 U	0.11 J+	633 J+	
WHC1-BI03	0	NORM	12/4/2008	382	< 0.0115 U	0.55 J	15.5	2020 J+	< 0.4 U	0.13 J+	241 J+	
WHC1-BI03	11	NORM	12/4/2008	355	< 0.034 U	0.82 J	18.1	2090 J+	< 0.4 U	0.15 J+	620 J+	
WHC1-BI04	0	NORM	12/8/2008	435	< 0.0115 U	0.72 J	15.2 J-	2240 J+	< 0.4 U	0.11 J+	288	
WHC1-BI04	10	NORM	12/9/2008	300	< 0.0115 U	0.52 J	15.1	1870	0.91 J	0.11 J+	531	
WHC1-BI05	0	NORM	12/9/2008	127	0.0216 J	< 0.47 U	14.5	3110	< 0.4 U	< 0.11 U	973	
WHC1-BI05	10	NORM	12/9/2008	206	< 0.0115 U	0.91 J	14.5	1580	< 0.4 U	< 0.11 U	1060	
WHC1-BJ01	0	NORM	12/3/2008	287	< 0.0115 U	0.56	19.2	2340	< 0.4 U	0.14	259	
WHC1-BJ01	3	NORM	12/3/2008	328	< 0.0115 U	0.71	17.8	2270	< 0.4 U	0.17	475	
WHC1-BJ01	13	NORM	12/3/2008	181	< 0.0115 U	< 0.47 U	12.9	1830	< 0.4 U	< 0.11 U	462	
WHC1-BJ01NE	0	NORM	2/1/2010									
WHC1-BJ01NW	0	NORM	2/1/2010									
WHC1-BJ01SE	0	NORM	2/1/2010									
WHC1-BJ01SE	0	FD	2/1/2010									
WHC1-BJ01SW	0	NORM	2/1/2010									
WHC1-BJ02	0	NORM	12/2/2008	373 J	< 0.0115 U	0.59	20.1	1810	< 0.4 U	0.11	253	
WHC1-BJ02	0	FD	12/2/2008	343 J	< 0.0115 U	0.56	17.5	1690	< 0.4 U	0.14	251	
WHC1-BJ02	12	NORM	12/2/2008	283 J	< 0.0345 U	0.68	22.1	2100	< 0.4 U	0.11	828	
WHC1-BJ03	0	NORM	12/4/2008	420	< 0.0115 U	0.68 J	19.1	3100 J+	< 0.4 U	0.14 J+	387 J+	
WHC1-BJ03	0	FD	12/4/2008	443	< 0.0342 U	0.74 J	18.9	3050 J+	< 0.4 U	0.14 J+	272 J+	
WHC1-BJ03	12	NORM	12/4/2008	465	< 0.0115 U	1 J	15.4	2490 J+	< 0.4 U	0.13 J+	714 J+	
WHC1-BJ04	0	NORM	12/4/2008	402	< 0.0115 U	0.57 J	16.3	1890 J+	< 0.4 U	0.12 J+	201 J+	
WHC1-BJ04	11	NORM	12/4/2008	327	< 0.0115 U	0.5 J	15.4	1880 J+	< 0.4 U	< 0.11 UJ	235 J+	
WHC1-BJ05	0	NORM	12/11/2008	290	< 0.0115 U	0.64 J+	12.4	3490	< 0.4 U	< 0.11 U	542	
WHC1-BJ05	10	NORM	12/11/2008	276	< 0.0115 U	< 0.47 U	17.1	1600	< 0.4 U	0.12 J+	1210	
WHC1-BK01	0	NORM	12/3/2008	344	< 0.0115 U	0.61	16.4	2240	< 0.4 U	0.14	307	
WHC1-BK01	0	FD	12/3/2008	259	< 0.0115 U	0.55	16.8	2270	< 0.4 U	0.15	292	
WHC1-BK01	10	NORM	12/3/2008	255	< 0.0115 U	0.74	17.8	2480	< 0.4 U	0.14	1240	
WHC1-BK02	0	NORM	12/8/2008	381	< 0.0342 U	0.68 J	22.1 J-	2280 J+	0.83 J	0.13 J+	325	
WHC1-BK02	11	NORM	12/18/2008	277	< 0.0353 UJ	0.51 J+	14.9	2190	< 0.4 U	< 0.11 U	977	
WHC1-BK03	0	NORM	12/15/2008	364	0.0331 J	0.59 J	18	2180	< 0.4 U	0.12 J	300	
WHC1-BK03	12	NORM	12/18/2008	197	< 0.0115 UJ	< 0.47 U	19.5	1540	< 0.4 U	0.11 J+	923	
WHC1-BK04	0	NORM	12/4/2008	374	< 0.0115 U	0.51 J	14.8	2550 J+	< 0.4 U	0.11 J+	191 J+	

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 40 of 64)

							Me	etals			
Sample ID	Depth (ft bgs)	Sample Type	Sample	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium
WHC1-BK04	10	NORM		307	< 0.0115 U	0.64 J	13	2760 J+	< 0.4 U	0.11 J+	1270 J+
WHC1-BK05	0	NORM	12/12/2008	390	< 0.0115 U	0.93 J+	20.8	2840 J+	< 0.4 U	0.11 J+	386
WHC1-BK05	11	NORM	12/12/2008	233	< 0.0115 U	1.1 J+	15	1700 J+	< 0.4 U	< 0.11 U	775
WHC1-BL01	0	NORM	12/3/2008	318	< 0.0347 U	0.53	18.8	1670	< 0.4 U	0.12	255
WHC1-BL01	10	NORM	12/3/2008	271	< 0.0115 U	1.1	16	1990	< 0.4 U	0.13	1450
WHC1-BL02	0	NORM	12/2/2008	393 J	< 0.0115 U	0.61	19.4	2170	< 0.4 U	0.15	240
WHC1-BL02	10	NORM	12/2/2008	294 J	< 0.0115 U	0.57	21	1840	< 0.4 U	0.14	526
WHC1-BL03	0	NORM	12/8/2008	426	< 0.0115 U	0.71 J	17.2 J-	1940 J+	< 0.4 U	0.12 J+	368
WHC1-BL03	10	NORM	12/18/2008	228	< 0.0115 UJ	0.53 J+	12.1	1810	< 0.4 U	< 0.11 U	576
WHC1-BL04	0	NORM	12/17/2008	334	< 0.0351 UJ	0.52 J+	17.4	2210	< 0.4 U	< 0.11 U	198
WHC1-BL04 WHC1-BL05	0	NORM NORM	12/22/2008	321 294 J+	< 0.0115 U < 0.034 U	0.74 J 0.76 J	17.2 17.1	2000 J 2090 J+	< 0.4 U < 0.4 U	0.17 J+ 0.15 J+	717 455
WHC1-BL05	10		11/21/2008	294 J+ 189 J+	< 0.034 U < 0.0115 U	0.76 J 0.56 J	15.2	2090 J+ 1460 J+	< 0.4 U	0.13 J+ 0.12 J+	763
WHC1-BL05 WHC1-BL06	0		11/21/2008	80.2 J+	< 0.0113 U	0.56 J	6.1	1520 J+	< 0.4 U	0.12 J+ 0.13 J+	1860
WHC1-BL06	11		11/21/2008	172 J+	0.0738	0.57 J	23.6	1630 J+	< 0.4 U	0.19 J+	1730
WHC1-BL07	0		11/21/2008	204 J+	< 0.0343 U	0.65 J	15.6	1990 J+	< 0.4 U	0.17 J+	1790
WHC1-BL07	10		11/21/2008	192 J+	< 0.0439 U	0.64 J	17.9	1830 J+	< 0.4 U	0.19 J+	462
WHC1-BL08	0	NORM	11/18/2008	194	0.0312 J	< 0.47 U	17.6	1630	< 0.4 U	0.22 J	2140
WHC1-BL08	10	NORM	11/18/2008	153	0.0215 J	0.54 J	14	1390	< 0.4 U	0.15 J	502
WHC1-BL08NE	0	NORM	2/2/2010								
WHC1-BL08NW	0	NORM	2/2/2010								
WHC1-BL08SE	0	NORM	2/2/2010		1		-				
WHC1-BL08SW	0	NORM	2/2/2010								
WHC1-BL11	0	NORM	11/18/2008	224	0.0293 J	1.4 J	16.2	2200	< 0.4 U	0.2 J	1420
WHC1-BL11	12	NORM	11/18/2008	161	0.0144 J	0.93 J	15	1380	< 0.4 U	0.16 J	673
WHC1-BL11NE WHC1-BL11NW	0	NORM NORM	2/2/2010 2/2/2010					-	-		
WHC1-BL11NW WHC1-BL11SE	0	NORM	2/2/2010								
WHC1-BL11SU	0	NORM	2/2/2010				77				
WHC1-BM01	0	NORM	12/3/2008	424	< 0.0115 U	0.52	17.7	3680	< 0.4 U	0.14	351
WHC1-BM01	10	NORM	12/3/2008	280	< 0.0344 U	0.72	18.7	1900	< 0.4 U	0.12	697
WHC1-BM02	0	NORM	12/2/2008	257 J	< 0.0115 U	< 0.47 U	16.3	1550	< 0.4 U	0.13	215
WHC1-BM02	12	NORM	12/2/2008	263 J	< 0.0115 U	0.55	16.4	1600	< 0.4 U	0.13	394
WHC1-BM03	0	NORM	12/8/2008	329	< 0.0115 U	1.2 J	19.2 J-	2380 J+	< 0.4 U	0.12 J+	312
WHC1-BM03	10	NORM	12/18/2008	256	< 0.0115 UJ	0.99 J+	21.6	1500	< 0.4 U	< 0.11 U	1150
WHC1-BM04	0	NORM	12/17/2008	334	< 0.0115 UJ	0.52 J+	22.7	1470	< 0.4 U	< 0.11 U	233
WHC1-BM04	0	FD	12/17/2008	397	< 0.0347 UJ	0.51 J+	19.1	1760	< 0.4 U	< 0.11 U	257
WHC1-BM04	10	NORM	12/22/2008	269	< 0.0115 U	0.59 J	16	2010 J	< 0.4 U	0.17 J+	542
WHC1-BM05	0	NORM	11/21/2008	462 J+	< 0.0337 U	0.98 J	16.1	1460 J+	< 0.4 U	0.18 J+	547
WHC1-BM05	10	NORM	11/21/2008	174 J+	< 0.0346 U	1.7 J	16.5	1670 J+	< 0.4 U	0.16 J+	1020

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 41 of 64)

				Metals									
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium		
WHC1-BM06	0		11/21/2008	49.8 J	< 0.0341 U	0.51 J	3.9 J	1440 J+	< 0.4 U	0.19 J+	2580 J		
WHC1-BM06	0	FD	11/21/2008	88.8 J	< 0.0115 U	1.4 J	7.2 J	1380 J+	< 0.4 U	0.25 J+	280 J		
WHC1-BM06	10	NORM	11/21/2008	79.3 J+	0.0452	0.88 J	10.7	1330 J+	< 0.4 U	0.2 J+	2050		
WHC1-BM07	0	NORM	11/20/2008	295	< 0.034 U	0.58 J+	13.5	3160 J+	< 0.4 U	0.15 J+	6010		
WHC1-BM07	11	NORM	11/20/2008	172	< 0.0115 U	< 0.47 U	13.5	1840 J+	< 0.4 U	0.11 J+	2270		
WHC1-BM08	0	NORM	11/18/2008	132 J	0.0253 J	0.75 J	11.8 J	3340	< 0.4 U	0.55 J	2630		
WHC1-BM08	0	FD	11/18/2008	307 J	0.0426	2 J	20.9 J	2650	< 0.4 U	0.43 J	3770		
WHC1-BM08	11	NORM	11/18/2008	269	0.035 J	0.78 J	20.3	2210	< 0.4 U	0.24 J	2360		
WHC1-BM09	0	NORM	11/18/2008	275	0.0239 J	0.64 J	15.6	3420	< 0.4 U	0.16 J	2390		
WHC1-BM09	12	NORM	11/18/2008	151	0.0132 J	< 0.47 U	13.7	1350	< 0.4 U	0.14 J	1180		
WHC1-BM10	0	NORM	11/18/2008	186	< 0.0115 U	0.57 J	14.5	1380	< 0.4 U	0.16 J	795		
WHC1-BM10	3	NORM	11/18/2008	153	0.024 J	0.71 J	15.5	2710	< 0.4 U	0.19 J	1210		
WHC1-BM10	13	NORM	11/18/2008	130	< 0.0115 U	1.3 J	10.4	2840	< 0.4 U	0.13 J	828		
WHC1-BN01	0	NORM	12/1/2008	343	< 0.0352 U	< 0.47 U	18.3	4610 J	< 0.4 U	0.13 J+	578		
WHC1-BN01	12	NORM	12/1/2008	243	< 0.0347 U	111	16.1	1980 J	< 0.4 U	0.11 J+	2400		
WHC1-BN02	0	NORM	12/1/2008	403	< 0.0121 U	0.53 J	18.9	4110 J	< 0.4 U	0.14 J+	282		
WHC1-BN02	0	FD	12/1/2008	410	< 0.012 U	0.59 J	19.4	4060 J	< 0.4 U	0.13 J+	267		
WHC1-BN02	11	NORM	12/1/2008	342	< 0.0118 U	0.57 J	20.1	3320 J	< 0.4 U	0.13 J+	682		
WHC1-BN03	0	NORM	12/17/2008	346	< 0.0115 UJ	0.53 J+	17.2	2280	< 0.4 U	< 0.11 U	315		
WHC1-BN03	10	NORM	12/18/2008	221	< 0.0115 UJ	0.72 J+	14	1600	< 0.4 U	< 0.11 U	809		
WHC1-BN04	0	NORM	12/17/2008	419	0.0475 J-	0.59 J+	16	1290	< 0.4 U	< 0.11 U	199		
WHC1-BN04	7	NORM	12/22/2008	337	< 0.0115 U	0.73 J	18	1930 J	< 0.4 U	0.16 J+	454		
WHC1-BN04	17	NORM	12/22/2008	269	< 0.0115 U	0.74 J	17.5	1830 J	< 0.4 U	0.17 J+	522		
WHC1-BN05	0	NORM	11/20/2008	355	0.0158 J	0.71 J+	18.1	1530 J+	< 0.4 U	0.2 J+	271		
WHC1-BN05	0	FD	11/20/2008	321	0.0324 J	0.61 J+	16.6	2220 J+	< 0.4 U	0.16 J+	372		
WHC1-BN05	10	NORM	11/20/2008	177	< 0.0115 U	0.58 J+	18.7	1650 J+	< 0.4 U	0.17 J+	512		
WHC1-BN06	0	NORM	11/20/2008	360	< 0.0339 U	0.71 J+	17.3	2510 J+	< 0.4 U	0.2 J+	383		
WHC1-BN06	10	NORM	11/20/2008	165	< 0.0346 U	< 0.47 U	24	1730 J+	< 0.4 U	0.18 J+	648		
WHC1-BN07	0	NORM	11/21/2008	614 J+	0.0378	0.51 J	21.5	2930 J+	< 0.4 U	0.35 J+	1290		
WHC1-BN07	3	NORM	11/21/2008	304 J+	0.0382	0.6 J	15.9	2710 J+	< 0.4 U	0.25 J+	3350		
WHC1-BN07	13	NORM	11/21/2008	261 J+	< 0.0348 U	0.72 J	14.7	2000 J+	< 0.4 U	0.24 J+	1960		
WHC1-BN07NE	0	NORM	2/2/2010										
WHC1-BN07NW	0	NORM	2/2/2010										
WHC1-BN07SE	0	NORM	2/2/2010										
WHC1-BN07SE	0	FD	2/2/2010										
WHC1-BN07SW	0	NORM	2/2/2010										
WHC1-BN08	0	NORM	11/20/2008	392	< 0.0115 U	1.6 J+	22.4	2630 J+	< 0.4 U	0.32 J+	591		
WHC1-BN08	10	NORM	11/20/2008	282	< 0.0115 U	0.73 J+	14	2570 J+	< 0.4 U	0.15 J+	2480		
WHC1-BN08NE	0	NORM	2/2/2010										
WHC1-BN08NW	0	NORM	2/2/2010			-							

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 42 of 64)

				Metals								
Sample ID	Depth (ft bgs)	Sample Type	Sample Date 2/2/2010	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	
WHC1-BN08SE	0	NORM	2/2/2010									
WHC1-BN08SW	0	NORM	2/2/2010									
WHC1-BN09	0	NORM	12/17/2008	167	< 0.0115 UJ	1.1 J+	10.4	3540	< 0.4 U	< 0.11 U	2610	
WHC1-BN09	11	NORM	12/19/2008	182	< 0.0115 U	1 J	13.3	2350 J-	< 0.4 U	< 0.11 U	1740	
WHC1-BN10	0	NORM	11/18/2008	249	0.0143 J	1.6 J	14.5	2910	< 0.4 U	0.16 J	7680	
WHC1-BN10	10	NORM	11/18/2008	162	0.0264 J	1.2 J	15	1710	< 0.4 U	0.19 J	556	
WHC1-BN10NE	0	NORM	2/2/2010									
WHC1-BN10NW	0	NORM	2/2/2010									
WHC1-BN10SE	0	NORM	2/2/2010									
WHC1-BN10SW	0	NORM	2/2/2010		<u> </u>				 -			
WHC1-BO01	0	NORM	12/2/2008	351 J	< 0.0347 U	0.58	18.1	3650	< 0.4 U	0.13	877 J	
WHC1-BO01	0	FD	12/2/2008	363 J	< 0.0347 U	< 0.47 U	19.2	3040	< 0.4 U	0.14	274 J	
WHC1-BO01	4	NORM	12/2/2008	341 J	< 0.0343 U	0.56	18.8	3610	< 0.4 U	0.15	1520	
WHC1-BO01	14	NORM	12/2/2008	180 J	< 0.0361 U	0.97	15.1	1860	< 0.4 U	0.13	1370	
WHC1-BO02	0	NORM	12/1/2008	259	< 0.0345 U	0.74 J	14.9	4010 J	< 0.4 U	0.12 J+	1100	
WHC1-BO02	12	NORM	12/1/2008	277	< 0.0119 U	0.8 J	22	2370 J	< 0.4 U	0.17 J+	2040	
WHC1-BO03	0	NORM	12/15/2008	487	< 0.0115 U	0.56 J	17.8	3450	< 0.4 U	0.12 J	310	
WHC1-BO03	12	NORM	12/19/2008	222	0.041	0.7 J	17	1700 J-	< 0.4 U	0.11 J+	735	
WHC1-BO04	0	NORM	12/15/2008	464	< 0.0115 U	0.6 J	19.2	3590	< 0.4 U	0.12 J	335	
WHC1-BO04	12	NORM	12/19/2008	241	< 0.0115 U	0.9 J	17.5	2440 J-	< 0.4 U	0.11 J+	1080	
WHC1-BO05	0	NORM	11/20/2008	257	0.0215 J	< 0.47 U	15	1500 J+	< 0.4 U	0.12 J+	363	
WHC1-BO05	10	NORM	11/20/2008	180	< 0.0115 U	< 0.47 U	24.5	1500 J+	< 0.4 U	0.16 J+	1800	
WHC1-BO06	0	NORM	11/20/2008	285	0.0129 J	< 0.47 U	16.1	2130 J+	< 0.4 U	0.13 J+	659	
WHC1-BO06	10	NORM	11/20/2008	293	< 0.0115 U	0.61 J+	14.9	1640 J+	< 0.4 U	< 0.11 UJ	1790	
WHC1-BO07	0	NORM	11/19/2008	264 J	< 0.0115 U	0.7 J	15.9	2650	< 0.4 U	0.18 J	8800	
WHC1-BO07	10	NORM	11/19/2008	170 J	< 0.0115 U	< 0.47 U	10.4	1410	< 0.4 U	0.14 J	2310	
WHC1-BO08	0	NORM	11/20/2008	302	< 0.0115 U	0.84 J+	16.5	4010 J+	< 0.4 U	0.37 J+	2420	
WHC1-BO08	0	FD	11/20/2008	291	< 0.0344 U	0.95 J+	16.3	4020 J+	< 0.4 U	0.15 J+	3480	
WHC1-BO08	11	NORM	11/20/2008	218	< 0.0115 U	0.74 J+	15.2	2320 J+	< 0.4 U	0.15 J+	2970	
WHC1-BO09	0	NORM	11/19/2008	272 J	< 0.0348 U	1 J	13.6	2900	< 0.4 U	0.2 J	1110	
WHC1-BO09	0	FD	11/19/2008	294 J	< 0.0115 U	0.93 J	14.6	3340	< 0.4 U	0.19 J	955	
WHC1-BO09	6	NORM	11/19/2008	141 J	< 0.0359 U	0.74 J	16.1	1630	< 0.4 U	0.18 J	1800	
WHC1-BO09	16	NORM	11/19/2008	203 J	< 0.0115 U	0.77 J	15.3	2070	< 0.4 U	0.16 J	1660	
WHC1-BO10	0	NORM	11/19/2008	312 J	< 0.0115 U	0.78 J	13.8	3390	< 0.4 U	0.16 J	1940	
WHC1-BO10	10		11/19/2008	174 J	< 0.0115 U	0.6 J	11.4	2270	< 0.4 U	0.13 J	1470	
WHC1-BP01	0	NORM	12/1/2008	179	< 0.0345 U	< 0.47 U	8.8	1500 J	< 0.4 U	< 0.11 U	< 104 U	
WHC1-BP01	10	NORM	12/1/2008	148	< 0.012 U	0.5 J	12.8	1520 J	< 0.4 U	0.13 J+	1190	
WHC1-BP02	0	NORM	12/1/2008	373	< 0.0349 U	0.58 J	21	3480 J	< 0.4 U	0.14 J+	340	
WHC1-BP02	11	NORM	12/1/2008	195	< 0.0356 U	0.52 J	15	1510 J	< 0.4 U	0.13 J+	1530	
WHC1-BP03	0	NORM	12/15/2008	358	< 0.0115 U	0.54 J	16.8	2120	< 0.4 U	< 0.11 U	230	

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 43 of 64)

				Metals								
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	
WHC1-BP03	0	FD	12/15/2008	338	0.0145 J	0.63 J	15.9	2080	< 0.4 U	< 0.11 U	229	
WHC1-BP03	11	NORM	12/19/2008	194	< 0.0115 U	2.4 J	17.7	2210 J-	< 0.4 U	0.13 J+	3640	
WHC1-BP04	0	NORM	12/15/2008	292	0.0344	0.55 J	13	2410	< 0.4 U	< 0.11 U	277	
WHC1-BP04	12	NORM	12/19/2008	304	< 0.0345 U	1.1 J	17.5	1650 J-	< 0.4 U	< 0.11 U	1690	
WHC1-BP05	0	NORM	12/15/2008	339	< 0.0115 U	0.5 J	19.8	2300	< 0.4 U	0.14 J	303	
WHC1-BP05	10	NORM	12/19/2008	297	< 0.0115 U	0.78 J	15.1	1860 J-	< 0.4 U	< 0.11 U	1010	
WHC1-BP06	0	NORM	12/12/2008	415	< 0.0115 U	0.7 J+	19.1	3410 J+	< 0.4 U	0.12 J+	372	
WHC1-BP06	10	NORM	12/12/2008	254	< 0.0115 U	1.6 J+	16	1670 J+	< 0.4 U	0.12 J+	1080	
WHC1-BP07	0	NORM	11/20/2008	182	< 0.0115 U	1.2 J+	18	3640 J+	< 0.4 U	0.15 J+	6320	
WHC1-BP07	3	NORM	11/20/2008	139	< 0.0115 U	0.76 J+	15.6	3310 J+	< 0.4 U	0.13 J+	3590	
WHC1-BP07	13	NORM	11/20/2008	292	0.0139 J	0.57 J+	19.3	1760 J+	< 0.4 U	0.16 J+	539	
WHC1-BP08	0	NORM	11/19/2008	230 J	< 0.0115 U	1.4 J	14.1	3600	< 0.4 U	0.14 J	5340	
WHC1-BP08	4	NORM	11/19/2008	118 J	< 0.0115 U	0.8 J	12	3050	< 0.4 U	0.16 J	2970	
WHC1-BP08	14	NORM	11/19/2008	199 J	< 0.0115 U	0.54 J	23	1300	< 0.4 U	0.16 J	502	
WHC1-BP09	0	NORM	11/19/2008	351 J	< 0.0115 U	1.1 J	13.6	3060	< 0.4 U	0.15 J	605	
WHC1-BP09	10	NORM	11/19/2008	121 J	< 0.0115 U	< 0.47 U	9.7	1870	< 0.4 U	< 0.11 U	771	
WHC1-BP10	0	NORM	11/19/2008	216 J	< 0.0115 U	0.77 J	11.9	3300	< 0.4 U	0.13 J	1220	
WHC1-BP10	10	NORM	11/19/2008	163 J	< 0.0115 U	3	15.4	1470	< 0.4 U	0.15 J	1040	
WHC1-D01	0	NORM	12/5/2008	511	< 0.0348 U	1.3 J	15	3310 J+	< 0.4 U	0.12 J+	1250	
WHC1-D01	10	NORM	12/5/2008	396	< 0.0344 U	0.76 J	20.5	2130 J+	< 0.4 U	0.17 J+	1640	
WHC1-D02	0	NORM	12/5/2008	640	< 0.0353 U	1.2 J	19.9	4840 J+	< 0.4 U	0.11 J+	490	
WHC1-D02	10	NORM	12/5/2008	260	0.0625	1.1 J	18	1890 J+	< 0.4 U	0.22 J+	2330	
WHC1-D03	0	NORM	12/5/2008	346 J	< 0.035 U	0.66 J	13.2	2700 J+	< 0.4 U	< 0.11 U	238	
WHC1-D03	0	FD	12/5/2008	673 J	< 0.0349 U	0.88 J	16.7	3680 J+	< 0.4 U	0.13 J+	317	
WHC1-D03	10	NORM	12/5/2008	192	< 0.0345 U	0.86 J	15.2	2030 J+	< 0.4 U	0.23 J+	2190	
WHC1-D04	0	NORM	12/5/2008	564	< 0.0115 U	1 J	17.5	3340 J+	< 0.4 U	0.17 J+	399	
WHC1-D04	10	NORM	12/5/2008	369	< 0.0342 U	0.92 J	17	1900 J+	< 0.4 U	0.12 J+	1260	
WHC1-D05	0	NORM	12/5/2008	436	< 0.0349 U	0.99 J	16.7	3360 J+	< 0.4 U	0.16 J+	514	
WHC1-D05	10	NORM	12/5/2008	334	< 0.0115 U	0.68 J	14.5	2140 J+	< 0.4 U	0.14 J+	1720	
WHC1-D06	0	NORM	12/5/2008	752	< 0.0349 U	0.9 J	13.1	2590 J+	< 0.4 U	0.11 J+	371	
WHC1-D06	10	NORM	12/5/2008	145	< 0.0346 U	1.2 J	13.2	1920 J+	< 0.4 U	0.21 J+	864	
WHC1-D07	0	NORM	12/5/2008	523	< 0.0115 U	0.72 J	17.1	2370 J+	< 0.4 U	0.15 J+	277	
WHC1-D07	10	NORM	12/5/2008	344	< 0.0341 U	0.75 J	18.4	1910 J+	< 0.4 U	0.17 J+	363	
WHC1-D08	0	NORM	12/8/2008	429	< 0.0343 U	0.54 J	13.4 J-	2050 J+	< 0.4 U	< 0.11 U	321	
WHC1-D08	10	NORM	12/9/2008	181	0.0141 J	< 0.47 U	13.5	1550	< 0.4 U	0.11 J+	531	
WHC1-D09	0	NORM	12/8/2008	491	0.0372	0.88 J	13.3 J-	2800 J+	< 0.4 U	0.11 J+	620	
WHC1-D09	11	NORM	12/9/2008	198	0.0128 J	< 0.47 U	16.4	1450	< 0.4 U	0.11 J+	613	
WHC1-D10	0	NORM	12/8/2008	518	< 0.0344 U	0.96 J	15.5 J-	2050 J+	< 0.4 U	0.15 J+	585	
WHC1-D10	10	NORM	12/9/2008	196	< 0.0115 U	0.5 J	15	1600	0.96 J	0.12 J+	710	
WHC1-D11	0	NORM	12/8/2008	1250	0.118	3.1	32.5 J-	3980 J+	< 0.4 U	0.57 J+	4190	

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 44 of 64)

				Metals									
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium		
WHC1-D11	10	NORM	12/9/2008	242	< 0.0115 U	0.56 J	18.4	1430	< 0.4 U	0.12 J+	619		
WHC1-D12	0	NORM	12/10/2008	321	0.0228 J	1.1 J	18.1	2250	< 0.4 U	< 0.11 U	1250		
WHC1-D12	10	NORM	12/10/2008	276	0.0342 J	< 0.47 U	15.5	3110	< 0.4 U	< 0.11 U	1060		
WHC1-D13	0	NORM	12/8/2008	555	0.0362	2.1 J	15	4190	< 0.4 U	0.18 J	1000		
WHC1-D13	10	NORM	12/8/2008	590	< 0.0115 U	< 0.47 U	11	1840	< 0.4 U	< 0.11 U	1130		
WHC1-D15	0	NORM	12/11/2008	340	0.013 J	0.95 J+	12.1	6590	< 0.4 U	< 0.11 U	863		
WHC1-D15	10	NORM	12/11/2008	150	< 0.0115 U	< 0.47 U	12	2100	< 0.4 U	< 0.11 U	1210		
WHC1-D16	0	NORM	12/10/2008	393	0.019 J	2.3 J	12	4510	< 0.4 U	0.11 J	15000		
WHC1-D16	10	NORM	12/10/2008	195	< 0.0115 U	< 0.47 U	11.9	1920	< 0.4 U	< 0.11 U	797		
WHC1-D17	0	NORM	12/10/2008	649	0.0497	8.3	15.2	3950	0.89 J	0.57 J	17400		
WHC1-D17	10	NORM	12/10/2008	252	< 0.0115 U	0.73 J	12.2	1750	< 0.4 U	< 0.11 U	955		
WHC1-D18	0	NORM	12/11/2008	561	0.022 J	1 J+	14.4	2230	< 0.4 U	0.2 J+	434		
WHC1-D18	10	NORM	12/11/2008	204	< 0.0115 U	0.54 J+	15.4	1440	< 0.4 U	0.11 J+	648		
WHC1-D19	0	NORM	12/11/2008	984 J	0.0132 J	1.1 J+	37.2 J	3750	< 0.4 U	0.45 J+	1440		
WHC1-D19	0	FD	12/11/2008	392 J	0.0176 J	0.57 J+	13.5 J	3970	< 0.4 U	0.11 J+	1210		
WHC1-D19	10	NORM	12/11/2008	241	0.0173 J	0.88 J+	16.4	1620	< 0.4 U	0.14 J+	1050		
WHC1-D20	0	NORM	12/12/2008	501	0.0133 J	1.1 J+	17.3	2450 J+	< 0.4 U	0.2 J+	643		
WHC1-D20	10	NORM	12/12/2008	438	0.0202 J	1.1 J+	17.5	2180 J+	< 0.4 U	0.11 J+	653		
WHC1-D21	0	NORM	12/16/2008	779	0.0135 J	1.5 J	17 J+	1930 J+	< 0.4 U	0.17 J+	514 J+		
WHC1-D21	10	NORM	12/16/2008	353	0.0192 J	0.87 J	15.5 J+	2050 J+	< 0.4 U	0.12 J+	670 J+		
WHC1-D22	0	NORM	12/16/2008	677	0.0437	1.3 J	21.3 J+	4120 J+	< 0.4 U	0.32 J+	777 J+		
WHC1-D22	10	NORM	12/16/2008	402	< 0.0115 U	0.8 J	15.7 J+	2230 J+	< 0.4 U	0.12 J+	946 J+		
WHC1-D23	0	NORM	12/16/2008	385	< 0.0115 U	0.73 J+	11.4	2150	< 0.4 U	0.12 J	596		
WHC1-D23	10	NORM	12/16/2008	410	< 0.0115 U	0.78 J+	19.3	2250	< 0.4 U	0.15 J	500		
WHC1-D24	0	NORM	12/16/2008	327	< 0.0115 U	0.87 J	10.5 J+	1490 J+	< 0.4 U	0.14 J+	572 J+		
WHC1-D24	0	FD	12/16/2008	415	< 0.0115 U	0.78 J	14 J+	1830 J+	< 0.4 U	0.17 J+	378 J+		
WHC1-D24	10	NORM	12/16/2008	332	< 0.0115 U	0.63 J	18.2 J+	1980 J+	< 0.4 U	0.16 J+	388 J+		
WHC1-D25	0	NORM	12/16/2008	431	< 0.0115 U	0.81 J	11.5 J+	1870 J+	< 0.4 U	0.16 J+	321 J+		
WHC1-D25	10	NORM	12/16/2008	284	0.0334 J	0.73 J	23.8 J+	2160 J+	< 0.4 U	0.13 J+	750 J+		
WHC1-D26	0	NORM	12/12/2008	363	0.02 J	0.6 J+	19.4	1840 J+	< 0.4 U	0.15 J+	352		
WHC1-D26	10	NORM	12/12/2008	334	< 0.0115 U	0.64 J+	19	1870 J+	< 0.4 U	< 0.11 U	485		
WHC1-D27	0	NORM	12/12/2008	414	0.0125 J	0.66 J+	21.3	2010 J+	< 0.4 U	0.12 J+	330		
WHC1-D27	0	FD	12/12/2008	290	0.0213 J	0.61 J+	17	1730 J+	< 0.4 U	0.11 J+	314		
WHC1-D27	10	NORM	12/12/2008	274	0.0326 J	0.76 J+	18.5	1860 J+	< 0.4 U	0.16 J+	559		
WHC1-D28	0	NORM	12/12/2008	357	0.0193 J	0.66 J+	15.2	1680 J+	< 0.4 U	< 0.11 U	265		
WHC1-D28	10	NORM	12/12/2008	386	0.0319 J	1.1 J+	18.9	1850 J+	< 0.4 U	0.14 J+	563		
WHC1-D29	0	NORM	12/12/2008	394	< 0.0115 U	0.76 J+	18.4	1920 J+	< 0.4 U	0.12 J+	299		
WHC1-D29	10	NORM	12/12/2008	313	< 0.0115 U	0.79 J+	18.3	1830 J+	< 0.4 U	0.12 J+	499		
WHC1-P01	0	NORM	12/15/2008	432	< 0.0115 U	0.58 J	19.1	5510	< 0.4 U	0.17 J	979		
WHC1-P01	12	NORM	12/19/2008	326	< 0.0115 U	1.2 J	13.3	1510 J-	< 0.4 U	< 0.11 U	1080		

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 45 of 64)

				Metals										
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium			
WHC1-P01NE	0	NORM	2/2/2010											
WHC1-P01NW	0	NORM	2/2/2010											
WHC1-P01SE	0	NORM	2/2/2010											
WHC1-P01SW	0	NORM	2/2/2010											
WHC1-P01SW	0	FD	2/2/2010											
WHC1-P02	0	NORM	12/1/2008	387	< 0.0118 U	< 0.47 U	16.8	2070 J	< 0.4 U	0.12 J+	211			
WHC1-P02	10	NORM	12/1/2008	246	< 0.0339 U	< 0.47 U	15	1410 J	< 0.4 U	< 0.11 U	214			
WHC1-P03	0	NORM	12/15/2008	414	< 0.0115 U	0.59 J	18.7	2070	< 0.4 U	0.14 J	274			
WHC1-P03	3	NORM	12/18/2008	322	< 0.0343 UJ	0.73 J+	20.7	1730	< 0.4 U	0.11 J+	344			
WHC1-P03	3	FD	12/18/2008	313	< 0.0115 UJ	0.49 J+	14.5	1750	< 0.4 U	< 0.11 U	368			
WHC1-P03	13	NORM	12/18/2008	248	< 0.0347 UJ	0.52 J+	13.1	1540	< 0.4 U	< 0.11 U	323			
WHC1-P04	0	NORM	12/15/2008	367	< 0.0115 U	0.72 J	20	3010	< 0.4 U	0.16 J	404			
WHC1-P04	10	NORM	12/18/2008	176	< 0.0354 UJ	0.53 J+	17.2	1400	< 0.4 U	< 0.11 U	986			
WHC1-P05	0	NORM	12/8/2008	319	< 0.0115 U	0.53 J	16.6 J-	1730 J+	< 0.4 U	0.11 J+	260			
WHC1-P05	0	FD	12/8/2008	300	< 0.0347 U	< 0.47 U	17.9 J-	1650 J+	< 0.4 U	0.12 J+	318			
WHC1-P05	10	NORM	12/18/2008	240	< 0.0115 UJ	0.83 J+	13.8	1540	< 0.4 U	< 0.11 U	289			
WHC1-P06	0	NORM	12/2/2008	357 J	< 0.0341 U	0.53	19.2	1690	< 0.4 U	0.15	385			
WHC1-P06	12	NORM	12/2/2008	314 J	< 0.0115 U	0.63	17.8	1930	< 0.4 U	0.12	394			
WHC1-P07	0	NORM	12/2/2008	430 J	< 0.0115 U	0.51	21.7	2370	< 0.4 U	0.17	355			
WHC1-P07	3	NORM	12/2/2008	242 J	< 0.0342 U	0.76	19.2	2040	< 0.4 U	0.15	806			
WHC1-P07	13	NORM	12/2/2008	233 J	< 0.0115 U	0.5	16.1	2020	< 0.4 U	0.11	608			
WHC1-P08	0	NORM	12/3/2008	334	< 0.0115 U	0.5	19.6	2510	< 0.4 U	0.12	297			
WHC1-P08	11	NORM	12/3/2008	318	< 0.0115 U	0.89	15.2	2350	< 0.4 U	0.13	834			
WHC1-P09	0	NORM	12/4/2008	394	< 0.0115 U	0.61 J	18.9	2570 J+	< 0.4 U	0.13 J+	247 J+			
WHC1-P09	0	FD	12/4/2008	395	0.037	0.61 J	19.7	2220 J+	< 0.4 U	0.13 J+	225 J+			
WHC1-P09	10	NORM	12/4/2008	283	< 0.0115 U	0.91 J	13	2220 J+	< 0.4 U	0.11 J+	895 J+			
WHC1-P10	0	NORM	11/25/2008	442 J	< 0.034 U	< 2.6 UJ	15.2 J+	5200 J	< 0.4 U	0.13 J+	7930 J+			
WHC1-P10	10	NORM	11/25/2008	407 J	< 0.0406 U	< 3.1 UJ	20 J+	2950 J	< 0.4 U	0.17 J+	2050 J+			
WHC1-P11	0	NORM	12/8/2008	1760	0.0769 J	4	65.4 J-	3210 J+	< 0.4 U	0.96 J+	6960			
WHC1-P11	0	FD	12/8/2008	1120	0.172 J	3.2	49.1 J-	2720 J+	< 0.4 U	1.3 J+	7320			
WHC1-P11	10	NORM	12/9/2008	256	0.0159 J	0.65 J	15.7	1740	< 0.4 U	< 0.11 U	806			
WHC1-P12	0	NORM	12/5/2008	404	< 0.0348 U	0.76 J	13.3	3510 J+	< 0.4 U	< 0.11 U	459			
WHC1-P12	11	NORM	12/5/2008	267	< 0.0345 U	0.88 J	15.3	2390 J+	0.94 J	0.11 J+	757			
WHC1-P13	0	NORM	12/9/2008	411	< 0.0115 U	3.2	16.8	5570	1.3 J	0.13 J+	6910			
WHC1-P13	10	NORM	12/9/2008	240	0.0212 J	0.73 J	26	5230	< 0.4 U	< 0.11 U	1420			
WHC1-P13	10	FD	12/9/2008	260	< 0.0115 U	1.5 J	21.2	3220	< 0.4 U	< 0.11 U	1730			
WHC1-P14	0	NORM	12/17/2008	547	< 0.0401 UJ	1.1 J+	21.6	3520	< 0.4 U	0.21 J+	422			
WHC1-P15	0	NORM	12/8/2008	351	< 0.0361 U	0.74 J	20.2 J-	4150 J+	< 0.4 U	0.13 J+	2490			
WHC1-P15	1.5	NORM	12/8/2008	310	< 0.0115 U	0.6 J	15.9 J-	2780 J+	< 0.4 U	< 0.11 U	504			
WHC1-P15	10	NORM	12/18/2008	291	< 0.0115 UJ	0.55 J+	16.1	1590	< 0.4 U	< 0.11 U	890			

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 46 of 64)

Sample ID					Metals								
WHICL-PISNE	Sample ID			_	Manganese	Mercury	Molybdenum	Nickel	otassium	selenium	silver	Sodium	
WHICL-PISSE													
WHICL-PISSW O NORM 22/2010		0	FD										
WHICL-PISSE		0											
WHCL-PI6	WHC1-P15SE	0	NORM	2/2/2010									
WHCL-PI6	WHC1-P15SW	0	NORM	2/2/2010									
WHCL-P16		0		12/1/2008	493	< 0.0119 U	0.79 J	19.4	3100 J	< 0.4 U	0.16 J+	258	
WHCL-PI7		11											
WHCL-PI7		0											
WHCL-PI7	WHC1-P17	12	NORM	12/19/2008	250	< 0.035 U	0.68 J	17.9	1880 J	< 0.4 U	< 0.11 U	836	
WHC2-BF05NE 12 NORM 12/1/2009 253 < 0.0118 U 0.98 J 18.4 2800 J < 0.4 U 0.13 J + 1150		12	FD					19.9	3770 J		0.12 J+		
WHC2-BF05NP 12 NORM 12/1/2009 178 J < 0.005 U 0.56	WHC1-P18	0	NORM	12/1/2008		< 0.0119 U	< 0.47 U	19.6	4130 J		0.18 J+	572	
NRC2-BF05NE 12 NORM 12/3/2009 178 J < 0.005 U < 3.2 U 15.7 J+ 2620 J < 3.2 U < 1.3 U 3950 J	WHC1-P18	12	NORM	12/1/2008			0.98 J	18.4	2800 J	< 0.4 U	0.13 J+	1150	
WHC2-BF05NE 12 NORM 12/3/2009 95.2 <0.005 U 0.66 9.9 1610 <0.225 U 0.0099 4380													
WHC2-BF05NW 12 NORM 12/3/2009 143													
WHC2-BF05SE 12 NORM 12/3/2009 286 < 0.005 U 0.98 18.2 3330 < 0.225 U 0.13 4890 WHC2-BF05SW 12 NORM 12/3/2009 187 < 0.005 U 0.49 16.6 2690 0.3 0.12 3890 WHC2-BF05SW 12 NORM 12/4/2009 263 J < 0.005 U < 3.7 U 19.6 J 3850 J < 0.225 U < 1.5 U 5380 J WHC2-BF05SW 10 NORM 12/4/2009 1070 J < 0.005 U < 3.7 U 19.6 J 3850 J < 0.225 U < 1.5 U < 1.5 U 4590 WHC2-BF05SW 10 NORM 12/4/2009 1970 J < 0.005 U < 3.2 U 12.9 3450 J < 0.225 U < 1.3 U 1580 WHC2-BF05SE 10 NORM 12/4/2009 1971 < 0.005 U < 3.2 U 12.9 3450 J < 0.225 U < 1.3 U 1580 WHC2-BF05SE 10 NORM 12/4/2009 218 J < 0.005 U < 3.4 U 17 3170 J < 0.225 U < 1.5 U 3120 WHC2-BF06SE 10 NORM 12/4/2009 396 J < 0.005 U < 1.0 U 22.8 5950 J < 0.225 U < 1.5 U 3120 WHC2-BF06SE 10 NORM 12/3/2009 287 < 0.005 U < 1.0 U 13.3 2910 < 0.225 U 0.13 1430 WHC2-BF06SE 10 NORM 12/3/2009 282 < 0.005 U < 0.066 16 4040 0.42 0.14 2030 WHC2-BF06SE 10 NORM 12/3/2009 282 < 0.005 U < 0.2 U 12.4 2100 0.47 0.073 796 WHC2-BF06SE 10 NORM 12/3/2009 282 < 0.005 U < 0.2 U 12.4 2100 0.47 0.073 796 WHC2-BF06SE 10 NORM 12/3/2009 262 < 0.005 U < 0.2 U 12.8 1730 0.4 0.11 628 WHC2-BF06SE 10 NORM 12/3/2009 213 < 0.005 U < 1.0 U 13.8 2430 0.67 0.091 0.11 628 WHC2-BF06SE 10 NORM 12/3/2009 213 < 0.005 U < 0.2 U 12.8 1730 0.4 0.11 628 WHC2-BF06SE 10 NORM 11/30/2009 374 J < 0.0341 UJ < 2.6 UJ 13.9 3520 J < 0.225 U < 1.1 UJ 3730 J WHC2-BF06SE 10 NORM 11/30/2009 374 J < 0.0341 UJ < 2.6 UJ 13.9 3520 J < 0.225 U < 1.1 UJ 3730 J WHC2-BF06C 0 NORM 11/30/2009 374 J < 0.0341 UJ < 0.045 J 3.3 UJ 14.7 J 4.060 J < 0.225 U < 1.3 UJ 3740 J WHC2-BF00C 13 NORM 11/25/2009 147 J < 0.0351 J < 0.0351													
WHC2-BF05SW 12 NORM 12/3/2009 187 < 0.005 U 0.49 16.6 2690 0.3 0.12 3890 WHC2-BG04C 10 NORM 12/4/2009 263 J < 0.005 U < 3.7 U 19.6 J 3850 J < 0.025 U < 1.5 U 6380 J WHC2-BG04NE 10 NORM 12/4/2009 1070 J < 0.005 U < 3.3 U 11.8 1620 J < 0.025 U < 1.3 U 4590 WHC2-BG04NW 10 NORM 12/4/2009 197 J < 0.005 U < 3.2 U 12.9 3450 J < 3.2 U < 1.3 U 4590 WHC2-BG04SE 10 NORM 12/4/2009 181 J < 0.005 U < 3.4 U 17 3170 J < 0.025 U < 1.4 U 6270 WHC2-BG04SW 10 NORM 12/4/2009 396 J < 0.005 U < 1.1 U 22.8 5950 J < 0.225 U < 1.5 U 3120 WHC2-BG06SW 10 NORM 12/4/2009 287 < 0.005 U < 1.0 U 13.3 2910 < 0.225 U < 1.5 U 3120 WHC2-BG06C 10 NORM 12/3/2009 287 < 0.005 U < 1.0 U 13.3 2910 < 0.225 U < 0.13 1430 WHC2-BG06NW 10 NORM 12/3/2009 286 < 0.005 U 0.66 16 4040 0.42 0.14 2030 WHC2-BG06SW 10 NORM 12/3/2009 282 < 0.005 U < 0.2 U 12.4 2100 0.47 0.073 796 WHC2-BG06SW 10 NORM 12/3/2009 262 < 0.005 U < 0.2 U 12.4 2100 0.47 0.073 796 WHC2-BG06SW 10 NORM 12/3/2009 262 < 0.005 U < 0.2 U 12.8 1730 0.4 0.11 628 WHC2-BG06SW 10 NORM 12/3/2009 262 < 0.005 U < 0.2 U 12.8 1730 0.4 0.11 628 WHC2-BG06SW 10 NORM 12/3/2009 262 < 0.005 U < 0.2 U 12.8 1730 0.4 0.11 628 WHC2-BG06SW 10 NORM 12/3/2009 274 < 0.035 U < 0.2 U 12.8 1730 0.4 0.11 628 WHC2-BG06SW 10 NORM 12/3/2009 274 < 0.035 U < 0.2 U 12.8 1730 0.4 0.11 628 WHC2-BM10C 13 NORM 11/25/2009 147 < 0.0345 U < 0.2 U 12.8 1730 0.4 0.11 628 0.15 U 3390 U < 0.005 U < 0													
WHC2-BG04C		12											
WHC2-BG04NE 10 NORM 12/4/2009 1070 J < 0.005 U < 3.3 U 11.8 1620 J+ < 0.225 U < 1.3 U 4590 WHC2-BG04NW 10 NORM 12/4/2009 197 J < 0.005 U < 3.2 U 12.9 3450 J+ < 3.2 U < 1.3 U 15800 WHC2-BG04SE 10 NORM 12/4/2009 396 J < 0.005 U < 1.0 22.8 5950 J+ < 0.225 U < 1.4 U 6270 WHC2-BG04SW 10 NORM 12/4/2009 396 J < 0.005 U < 1.0 22.8 5950 J+ < 0.225 U < 1.5 U 3120 WHC2-BG06C 10 NORM 12/3/2009 287 < 0.005 U < 1.0 1.3 32910 < 0.225 U 0.13 1430 WHC2-BG06NE 10 NORM 12/3/2009 282 < 0.005 U < 0.2 U 12.4 2100 0.47 0.073 796 WHC2-BG06SW 10 NORM 12/3/2009 262 < 0.005 U < 1.0 13.8		10	NORM	12/4/2009	263 J		< 3.7 U	19.6 J	3850 J+	< 0.225 U	< 1.5 U	6380 J	
WHC2-BG04NW 10 NORM 12/4/2009 197 J < 0.005 U < 3.2 U 12.9 3450 J+ < 3.2 U < 1.3 U 15800 WHC2-BG04SE 10 NORM 12/4/2009 218 J < 0.005 U < 3.4 U 17 3170 J+ < 0.225 U < 1.4 U 6270 WHC2-BG04SW 10 NORM 12/4/2009 396 J < 0.005 U < 1 U 22.8 5950 J+ < 0.225 U < 1.5 U 3120 WHC2-BG06C 10 NORM 12/3/2009 287 < 0.005 U < 1 U 13.3 2910 < 0.225 U 0.13 1430 WHC2-BG06NE 10 NORM 12/3/2009 406 < 0.005 U 0.66 16 4040 0.42 0.14 2030 WHC2-BG06NW 10 NORM 12/3/2009 282 < 0.005 U < 0.2 U 12.4 2100 0.47 0.073 796 WHC2-BG06SW 10 NORM 12/3/2009 262 < 0.005 U < 0.2 U 12.8 <th< td=""><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		10											
WHC2-BG04SE 10 NORM 12/4/2009 218 J < 0.005 U < 3.4 U 17 3170 J+ < 0.225 U < 1.4 U 6270 WHC2-BG04SW 10 NORM 12/4/2009 396 J < 0.005 U < 1 U 22.8 5950 J+ < 0.225 U < 1.5 U 3120 WHC2-BG06C 10 NORM 12/3/2009 287 < 0.005 U < 1 U 13.3 2910 < 0.225 U < 0.13 1430 WHC2-BG06NE 10 NORM 12/3/2009 406 < 0.005 U < 0.66 16 4040 0.42 0.14 2030 WHC2-BG06NE 10 NORM 12/3/2009 282 < 0.005 U < 0.2 U 12.4 2100 0.47 0.073 796 WHC2-BG06SW 10 NORM 12/3/2009 262 < 0.005 U < 0.2 U 12.8 1730 0.4 0.11 26.8 WHC2-BG06SW 10 NORM 12/3/2009 213 < 0.034 U < 0.2 U 12.8 1730 <td></td>													
WHC2-BG04SW 10 NORM 12/4/2009 396 J < 0.005 U < 1 U 22.8 5950 J+ < 0.225 U < 1.5 U 3120 WHC2-BG06C 10 NORM 12/3/2009 287 < 0.005 U	WHC2-BG04SE	10	NORM	12/4/2009	218 J	< 0.005 U	< 3.4 U	17	3170 J+		< 1.4 U	6270	
WHC2-BG06C 10 NORM 12/3/2009 287 < 0.005 U < 1 U 13.3 2910 < 0.225 U 0.13 1430 WHC2-BG06NE 10 NORM 12/3/2009 406 < 0.005 U													
WHC2-BG66NE 10 NORM 12/3/2009 406 < 0.005 U 0.66 16 4040 0.42 0.14 2030 WHC2-BG06NW 10 NORM 12/3/2009 282 < 0.005 U		10											
WHC2-BG06NW 10 NORM 12/3/2009 282 < 0.005 U < 0.2 U 12.4 2100 0.47 0.073 796 WHC2-BG06SE 10 NORM 12/3/2009 262 < 0.005 U													
WHC2-BG06SE 10 NORM 12/3/2009 262 < 0.005 U < 1 U 13.8 2430 0.67 0.091 1450 WHC2-BG06SW 10 NORM 12/3/2009 213 < 0.005 U		10											
WHC2-BI05C 0 NORM 11/30/2009 374 J < 0.0341 UJ < 2.6 UJ 13.9 3520 J < 0.225 U < 1 UJ 3730 J WHC2-BL07 0 NORM 8/9/2010 245 0.0351 J+ < 2.6 U		10					< 1 U	13.8	2430	0.67	0.091	1450	
WHC2-BI05C 0 NORM 11/30/2009 374 J < 0.0341 UJ < 2.6 UJ 13.9 3520 J < 0.225 U < 1 UJ 3730 J WHC2-BL07 0 NORM 8/9/2010 245 0.0351 J+ < 2.6 U	WHC2-BG06SW	10	NORM	12/3/2009			< 0.2 U	12.8	1730		0.11		
WHC2-BL07 0 NORM 8/9/2010 245 0.0351 J+ < 2.6 U 18.3 4140 J+ 0.95 J 0.15 J 3390 J+ WHC2-BM06C 0 NORM 11/30/2009 78.4 J 0.0435 J- < 2.6 UJ	WHC2-BI05C	0	NORM				< 2.6 UJ	13.9	3520 J	< 0.225 U	< 1 UJ		
WHC2-BM10C 13 NORM 11/25/2009 147 J < 0.0432 U < 3.2 UJ 15.6 J+ 3100 J < 0.225 U < 1.3 UJ 7740 J WHC2-BM10C 13 FD 11/25/2009 139 J < 0.0446 U	WHC2-BL07	0	NORM	8/9/2010									
WHC2-BM10C 13 FD 11/25/2009 139 J < 0.0446 U < 3.3 UJ 14.7 J+ 4060 J < 0.225 U < 1.3 UJ 2840 J WHC2-BM10NE 13 NORM 11/25/2009 188 J 0.0591 < 2.9 UJ	WHC2-BM06C	0	NORM	11/30/2009	78.4 J	0.0435 J-	< 2.6 UJ	5.9	1740 J	< 0.225 U	< 1 UJ	2640 J	
WHC2-BM10C 13 FD 11/25/2009 139 J < 0.0446 U < 3.3 UJ 14.7 J+ 4060 J < 0.225 U < 1.3 UJ 2840 J WHC2-BM10NE 13 NORM 11/25/2009 188 J 0.0591 < 2.9 UJ	WHC2-BM10C	13	NORM	11/25/2009	147 J	< 0.0432 U	< 3.2 UJ	15.6 J+	3100 J	< 0.225 U	< 1.3 UJ	7740 J	
WHC2-BM10NE 13 NORM 11/25/2009 188 J 0.0591 < 2.9 UJ 16.2 J+ 2220 J < 0.225 U < 1.2 UJ 5560 J WHC2-BM10NW 13 NORM 11/25/2009 247 J < 0.0389 U													
WHC2-BM10NW 13 NORM 11/25/2009 247 J < 0.0389 U < 2.9 UJ 23.4 J+ 2680 J < 0.225 U < 1.2 UJ 6730 J WHC2-BM10SE 13 NORM 11/25/2009 157 J < 0.0371 U		13	NORM										
WHC2-BM10SE 13 NORM 11/25/2009 157 J < 0.0371 U < 2.8 UJ 11.5 J+ 1510 J < 0.225 U < 1.1 UJ 520 J WHC2-BM10SW 13 NORM 11/25/2009 156 J < 0.0372 U													
WHC2-BM10SW 13 NORM 11/25/2009 156 J < 0.0372 U < 2.8 UJ 12.4 J+ 2120 J < 0.225 U < 1.1 UJ 3880 J WHC2-BN09C 11 NORM 11/25/2009 271 J < 0.0362 U													
WHC2-BN09C 11 FD 11/25/2009 265 J < 0.0363 U < 2.7 UJ 19.2 J+ 3690 J < 0.225 U < 1.1 UJ 3220 J WHC2-BN09NE 11 NORM 11/25/2009 389 J 0.0404 < 2.8 UJ	WHC2-BM10SW	13											
WHC2-BN09C 11 FD 11/25/2009 265 J < 0.0363 U < 2.7 UJ 19.2 J+ 3690 J < 0.225 U < 1.1 UJ 3220 J WHC2-BN09NE 11 NORM 11/25/2009 389 J 0.0404 < 2.8 UJ	WHC2-BN09C	11	NORM	11/25/2009	271 J	< 0.0362 U	< 2.7 UJ	15.3 J+	3340 J	< 0.225 U	< 1.1 UJ	2470 J	
WHC2-BN09NE 11 NORM 11/25/2009 389 J 0.0404 < 2.8 UJ 19.6 J+ 3880 J < 0.225 U < 1.1 UJ 4170 J		11	FD										
	WHC2-BN09NE	11	NORM	11/25/2009	389 J	0.0404		19.6 J+	3880 J	< 0.225 U	< 1.1 UJ	4170 J	
WHC2-BN09NW 11 NORM 11/25/2009 335 J < 0.0358 U < 2.7 UJ 17.2 J+ 3810 J < 0.225 U < 1.1 UJ 5650 J		11											

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 47 of 64)

				Metals								
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	
WHC2-BN09SE	11	NORM	11/25/2009	320 J	< 0.0367 U	< 2.8 UJ	17.7 J+	3640 J	< 0.225 U	< 1.1 UJ	3400 J	
WHC2-BN09SW	11	NORM	11/25/2009	318 J	< 0.0362 U	< 2.7 UJ	17.4 J+	3570 J	< 0.225 U	< 1.1 UJ	7320 J	
WHC2-BN10	0	NORM	8/10/2010	231	< 0.0064 U	< 2.6 U	13.5	2450 J+	< 2.6 UJ	< 0.042 U	5390 J+	
WHC2-BN10NE	0	NORM	8/10/2010	182	< 0.0339 U	< 2.5 U	12.3	3720 J+	< 2.5 UJ	0.046 J	7100 J+	
WHC2-BN10SE	0	NORM	8/10/2010	297	< 0.0339 U	< 2.5 U	12.9	2910 J+	< 2.5 UJ	0.049 J	4400 J+	
WHC2-BN10SW	0	NORM	8/10/2010	168	< 0.0344 U	< 2.6 U	10.4	3550 J+	< 2.6 UJ	< 0.041 U	6410 J+	
WHC2-BO10C	0	NORM	11/25/2009	257 J	< 0.0341 UJ	< 2.6 UJ	13.6	4040 J	< 0.225 U	< 1 UJ	4010 J	
WHC2-BO10C	0	FD	11/30/2009	215 J	< 0.0344 UJ	< 2.6 UJ	12	3930 J	< 0.225 U	< 1 UJ	4110 J	
WHC2-BP07C	3	NORM	11/25/2009	223 J	< 0.0341 U	< 2.6 UJ	13.4 J+	4480 J	< 0.225 U	< 1 UJ	3360 J	
WHC2-BP07NE	3	NORM	11/25/2009	250 J	< 0.0338 U	< 2.5 UJ	13.4 J+	3840 J	< 0.225 U	< 1 UJ	2050 J	
WHC2-BP07NW	3	NORM	11/25/2009	279 J	< 0.0341 UJ	< 2.6 UJ	18.7	4530 J	< 0.225 U	< 1 UJ	6990 J	
WHC2-BP07SE	3	NORM	11/25/2009	269 J	< 0.0355 U	< 2.7 UJ	18.3 J+	4910 J	< 0.225 U	< 1.1 UJ	8310 J	
WHC2-BP07SW	3	NORM	11/25/2009	220 J	0.057 J-	< 2.6 UJ	16.6	4450 J	< 0.225 U	< 1 UJ	4200 J	
WHC2-BP08C	4	NORM	11/25/2009	236 J	< 0.0356 U	< 2.7 UJ	18.5 J+	4630 J	< 0.225 U	< 1.1 UJ	7190 J	
WHC2-BP08NE	4		11/25/2009	219 J	< 0.0357 U	< 2.7 UJ	15 J+	3770 J	< 0.225 U	< 1.1 UJ	1910 J	
WHC2-BP08NW	4		11/25/2009	195 J	< 0.0341 U	< 2.6 UJ	12.4 J+	4090 J	< 0.225 U	< 1 UJ	7890 J	
WHC2-BP08SE	4		11/25/2009	225 J	< 0.005 U	< 2.7 UJ	15.6 J+	3910 J	< 0.225 U	< 1.1 UJ	8510 J	
WHC2-BP08SW	4	11111711111111	11/25/2009	242 J	< 0.0358 U	< 2.7 UJ	15.2 J+	2760 J	< 0.225 U	< 1.1 UJ	6250 J	
WHC2-D11C	0	NORM	12/2/2009	625 J	0.103	< 2.5 U	20.5	2700 J+	< 2.5 U	<1 U	718	
WHC2-D13C	10	NORM	12/3/2009	296	0.0145	< 0.2 U	13.9	2240	0.69	0.063	1200	
WHC2-D13NE	10	NORM	12/3/2009	348	0.0167	< 0.2 U	16.7	3930	4.2	0.15	1370	
WHC2-D13NW	10	NORM	12/3/2009	142	< 0.005 U	< 0.2 U	16.2	1910	< 0.225 U	0.14	709	
WHC2-D13SE	10	NORM	12/3/2009	326	< 0.005 U	< 0.2 U	20.4	4000	< 0.225 U	0.1	2690	
WHC2-D13SW	10	NORM	12/3/2009	369	0.0323	< 1 U	18.5	2030	0.7	0.18	1210	
WHC2-D14C	0	NORM	12/2/2009	356 J	< 0.005 U	< 2.6 U	12.1	2490 J+	< 0.225 U	< 1.1 U	1480	
WHC2-D16C	0	NORM	11/30/2009	206 J	< 0.0376 UJ	< 2.8 UJ	12.8	2960 J	< 0.225 U	< 1.1 UJ	16100 J	
WHC2-D17C	0	NORM	12/1/2009	368 J	< 0.0370 UJ	< 2.8 UJ	13.2	3420 J	< 0.225 U	< 1.1 UJ	5340 J	
WHC2-P07C	0	NORM	12/1/2009	233 J	< 0.0372 UJ	< 2.5 UJ	20.6	1630 J	< 0.225 U	0.12 J+	573 J	
WHC2-P11C	0	NORM	12/1/2009	351 J	0.0532 J-	2.7 J+	16.8	2140 J	< 0.225 U	< 1 UJ	3120 J	
WHC2-P11C	10	NORM	12/3/2009	205	0.151	1.2	22.4	1850	0.28	0.38	4060	
WHC2-P13C	10	NORM	12/4/2009	203 273 J	< 0.005 U	< 3.5 U	14.4	3090 J+	< 3.5 U	< 1.4 U	6110	
WHC2-P13NE	10	NORM	12/4/2009	210 J	< 0.005 U	< 3.2 U	16.6 J	3600 J+	< 3.2 U	< 1.3 U	6120 J	
WHC2-P13NE WHC2-P13NW	10	NORM	12/4/2009	349 J	< 0.005 U	< 3.2 U	16.1	4040 J+	< 3.2 U	< 1.3 U	5960	
WHC2-P13NW WHC2-P13SE	10	NORM	12/4/2009	267 J	< 0.005 U	< 0.2 U	23.1 J	4040 J+ 4750	< 0.225 U	< 1.5 U	2730 J	
WHC2-P13SE	10	NORM	12/4/2009	231 J	< 0.005 U	< 0.2 U	23.1 J 17 J	2950 J+	< 0.225 U	< 1.3 U	2190 J	
WHC3-BO10C	0	NORM	8/16/2010	231 J 223 J	< 0.003 U 0.0074 J	< 0.39 U	17.3	2950 J 2950 J	< 0.223 U	< 1.2 U < 0.04 U	2450 J+	
WHC3-BO10C WHC3-D11C	0	NORM	6/24/2010	1710	0.0074 J 0.118 J+		24.6	2930 J 3080 J+	1.2 J	0.46 J	2430 J+ 4040 J+	
	0			1710		3.8 < 0.47 U	5.4 5.4	3080 J+ 1730 J+	1.2 J < 0.96 U	0.46 J < 0.048 U	4040 J+ 1070 J+	
WHC3-D14C		NORM	8/9/2010		0.0095 J+							
WHC3-D14C	0	FD	8/9/2010	160 141	< 0.0073 U	< 0.47 U	5.3	1670 J+	< 0.96 U	< 0.049 U	1270 J+	
WHC3-P11C	0	NORM	8/9/2010	141	0.0134 J+	< 2.6 U	9.6	1900 J+	< 0.83 U	0.079 J	1140 J+	

SOIL METALS DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 48 of 64)

				Metals								
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	
WHC3-P11C	0	FD	8/9/2010	208	0.015 J+	< 2.7 U	9	1490 J+	< 0.86 U	0.14 J	903 J+	
WHC7-D12	0	NORM	3/20/2014	390	< 0.011 U	0.87 J	14	1700 J+	0.95 J	0.79 J	410	
WHC7-W11	0	NORM	3/20/2014	580	< 0.011 U	180	18	4600 J+	1.9 J	0.75 J	640	
WHC7-WA11	0	NORM	5/12/2014	520	0.011 J	< 0.61 U	17	2400 J+	1.4 J	0.46 J	590 J+	
WHD-AS-BG05	0	NORM	9/18/2009		-		-		-			
WHD-AS-BG05	10	NORM	9/18/2009		==				==		**	
WHD-AS-BH04	10	NORM	9/18/2009									
WHD-AS-BK03	12	NORM	9/21/2009									
WHD-AS-BL03	0	NORM	9/21/2009									
WHD-AS-BL03	0	FD	9/21/2009		-	-	-		-	-		
WHD-AS-BN01	12		9/21/2009									
WHD-AS-BN10	0	NORM	9/18/2009									
WHD-AS-BP03	11	NORM	9/21/2009		==				==		**	
WHD-AS-BP03	11	FD	9/21/2009									
WHD-AS-BP04	0	NORM	9/18/2009									
WHD-AS-BP08	0	NORM	9/18/2009									
WHD-AS-BP08	4	NORM	9/21/2009									
WHD-AS-P14	0	NORM	9/21/2009									

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 49 of 64)

				Metals							
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Strontium	Thallium	Tin	Titanium	Fungsten	Uranium	Vanadium	Zinc
OSC1-BM11	0	NORM	9/21/2009	140	< 0.105 U	< 0.75 U	583 J	< 0.185 UJ	0.87	38.6	40.9
OSC1-BM11	10	NORM	9/21/2009	253	< 0.105 U	< 0.75 U	824 J	< 0.185 UJ	1	64.1	36.8
OSC1-BN11	0	NORM	9/22/2009	412 J	< 1 U	< 0.75 U	478	< 2.5 U	6.3	57.2	25.6
OSC1-BN11	5	NORM	9/22/2009	198 J	< 1.1 U	< 0.75 U	612	< 2.6 U	1.8	51.7	24.8
OSC1-BN11N1	0	NORM	1/21/2010	833 J	< 0.105 U	< 0.75 U	753	< 0.185 U	9.8 J+	84.7 J+	37.5 J+
OSC1-BN11N2	0	NORM	1/21/2010	672 J	< 0.105 U	< 0.75 U	699	< 0.185 U	7.6 J+	79.9 J+	35.5 J+
OSC1-BN11S1	0	NORM	1/21/2010	544 J	< 0.105 U	< 0.75 U	845	< 0.185 U	4.2 J+	80.3 J+	41.5 J+
OSC1-BN11S2	0	NORM	1/21/2010	768 J	< 0.105 U	< 0.75 U	712	< 0.185 U	6.9 J+	77 J+	37.1 J+
OSC1-BO11	0	NORM	9/16/2009	161	< 0.105 U	< 0.75 U	495	< 0.185 U	2.6	44.4	22.7
OSC1-BO11	0	FD	9/16/2009	178	< 0.105 U	< 0.75 U	393	< 0.185 U	2.6	44.7	22.2
OSC1-BO11	5	NORM	9/16/2009	274	< 1.3 U	< 0.75 U	560	< 0.185 U	2	42.6	38.5
OSC1-BO11E1	0	NORM	1/21/2010	897 J	< 0.105 U	< 0.75 U	775	< 0.185 U	4.9 J+	64.3 J+	33.3 J+
OSC1-BO11E2	0	NORM	1/21/2010	587 J	< 0.105 U	2.1 J+	872	< 0.185 U	4.6 J+	74.1 J+	45 J+
OSC1-BO11W1	0	NORM	1/21/2010	879 J	< 0.105 U	1.7 J+	930	< 0.185 U	5.7 J+	74.4 J+	48.3 J+
OSC1-BO11W2	0	NORM	1/21/2010	694 J	< 0.105 U	< 0.75 U	861	< 0.185 U	5.2 J+	82 J+	42.7 J+
OSC1-BO11W2	0	FD	1/21/2010	729 J	< 0.105 U	< 0.75 U	801	< 0.185 U	5.8 J+	75 J+	38.3 J+
OSC1-BP11	0	NORM	9/16/2009	266	< 0.105 U	< 0.75 U	495	< 0.185 U	3.8	35.6	30.2
OSC1-BP11	5	NORM	9/16/2009	312	< 1.4 U	< 0.75 U	547	< 0.185 U	3	45.5	27.7
OSC1-BP11NE	0	NORM	1/21/2010	438 J	< 0.105 U	< 0.75 U	698	< 0.185 U	3.3 J+	68.1 J+	36.5 J+
OSC1-BP11NW	0	NORM	1/21/2010	1000 J	< 0.105 U	< 0.75 U	819	< 0.185 U	12.1 J+	100 J+	45.8 J+
OSC1-BP11SE	0	NORM	1/21/2010	410 J	< 1.1 UJ	1.6 J+	623	2.9 J+	3.6 J+	51.9 J+	30 J+
OSC1-BP11SW	0	NORM	1/21/2010	532 J	< 1.2 UJ	< 1.2 UJ	718	< 2.9 U	3.8 J+	54.9 J+	34 J+
OSC1-JP06	0	NORM	9/22/2009	241 J	< 1.2 U	< 0.75 U	389	< 3.1 U	3	52.6	20.5
OSC1-JP06	5	NORM	9/22/2009	214 J	< 1.4 U	< 0.75 U	478	< 3.4 U	1.8	45.6	16.4
OSC1-JP07	0	NORM	9/21/2009	161	< 0.105 U	< 0.75 U	657 J	< 0.185 UJ	0.73	52.8	26.5
OSC1-JP07	5	NORM	9/21/2009	173	< 0.105 U	< 0.75 U	479 J	< 0.185 UJ	1.4	37.6	24
OSC1-JP08	0	NORM	9/21/2009	564	< 1.2 UJ	< 0.75 U	469 J	< 3 UJ	2.1	56.1	29.1
OSC1-JP08	10	NORM	9/21/2009	227	< 1.2 UJ	< 0.75 U	613 J	< 3.1 UJ	0.79	51.7	27.3
OSC1-JP08N1	0	NORM	1/21/2010	978 J	< 0.105 U	1.5 J+	698	< 3 U	6 J+	73.2 J+	35 J+
OSC1-JP08S1	0	NORM	1/21/2010	1140 J	< 0.105 U	< 0.75 U	602	< 0.185 U	5.9 J+	63.5 J+	32.9 J+
OSC1-JP08S2	0	NORM	1/21/2010	1380 J	< 0.105 U	< 0.75 U	607	< 3.1 U	14.2 J+	80.4 J+	34.5 J+
OSC1-JS10	0	NORM	1/31/2010	1980 J	< 1.4 UJ	2.4 J+	810	< 3.5 U	11 J+	91.4 J+	51.2 J+
OSC1-JS10	0	FD	1/21/2010	2430 J	< 0.105 U	2.1 J+	801	< 3.4 U	12 J+	83 J+	49.7 J+
OSC2-BN11	0	NORM	8/16/2010	701 J	< 0.29 U	< 0.39 U	699 J	< 0.42 UJ	5.4	59.4	29.6
OSC2-BN11N1	0	NORM	8/16/2010	741 J	< 0.29 U	< 0.38 U	643 J	< 0.41 UJ	4.5	54	31.5
OSC2-BN11N2	0	NORM	8/16/2010	598 J	< 0.3 U	< 0.39 U	537 J	< 0.42 UJ	4	46.2	30.4
OSC2-BN11S1	0	NORM	8/16/2010	674 J	< 0.3 U	< 0.39 U	640 J	< 0.42 UJ	5.4	47	27.2
OSC2-BN11S2	0	NORM	8/16/2010	1960 J	< 0.3 U	< 0.39 U	618 J	< 0.42 UJ	11.2	43.1	24.7
OSC2-BO11	0	NORM	8/16/2010	500 J	< 0.3 U	< 0.39 U	618 J	< 0.42 UJ	3.5	44.6	25.8
OSC2-BO11E1	0	NORM	8/16/2010	388 J	< 0.29 U	< 0.39 U	554 J	< 0.42 UJ	2.3	37.2	24.8

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 50 of 64)

							Me	tals			
Sample ID	Depth (ft bgs)	Sample Type	e Date	Strontium	Thallium	Tin	Titanium	Tungsten	Uranium	Vanadium	Zinc
OSC2-BO11E2	0	NORM	8/16/2010	505 J	< 0.29 U	< 1 U	734 J	< 0.42 UJ	3.9	52.5	30.1
OSC2-BO11W1	0	NORM	8/16/2010	493 J	< 0.29 U	1.1	583 J	< 0.42 UJ	3.4	41.9	27.9
OSC2-BO11W2	0	NORM	8/16/2010	511 J	< 0.3 U	< 0.39 U	591 J	< 0.42 UJ	2.5	36.7	25.7
OSC2-BP11	0	NORM	8/16/2010	527 J	< 0.3 U	1.1	663 J	< 2.6 UJ	4.1	36.2	27.2
OSC2-BP11NE	0	NORM	8/16/2010	483 J	< 0.3 U	< 1 U	749 J	< 0.42 UJ	4.6	46	28.5
OSC2-BP11NW	0	NORM	8/16/2010	669 J	< 0.3 U	<1 U	638 J	< 2.6 UJ	3.1	49	28.3
OSC2-BP11SE	0	NORM	8/16/2010	412 J	< 0.29 U	<1 U	629 J	< 0.42 UJ	2.8	38.3	26.4
OSC2-BP11SW	0	NORM	8/16/2010	418 J	< 0.29 U	< 0.39 U	809 J	< 0.42 UJ	3	45.2	30.6
OSC2-JP06	0	NORM	8/10/2010	599 J+	< 0.3 U	0.45 J	656	< 0.43 UJ	2.1	49.4	27.5 J+
OSC2-JP06NE	0	NORM	8/10/2010	430 J+	< 0.3 U	1.6	474	< 0.42 UJ	1.4	41.2	21.5 J+
OSC2-JP06NW	0	NORM	8/10/2010	1170 J+	< 1.1 U	1.3	480	< 0.43 UJ	4.7	54.2	23.6 J+
OSC2-JP06SE	0	NORM	8/10/2010	359 J+	< 1.1 U	0.57 J	805	< 0.44 UJ	2.2	52.6	28 J+
OSC2-JP06SW	0	NORM	8/10/2010	510 J+	< 0.3 U	0.59 J	792	< 0.42 UJ	2.1	68.1	32.6 J+
OSC2-JP07	0	NORM	8/10/2010	1040 J+	< 1 U	0.44 J	674	< 0.42 UJ	4.1	84.6	29 J+
OSC2-JP07NW	0	NORM	8/10/2010	820 J+	< 1 U	< 0.39 U	450	< 0.42 UJ	3	51.4	26.2 J+
OSC2-JP07SW	0	NORM	8/10/2010	732 J+	< 1.1 U	< 0.4 U	542	< 0.43 UJ	5.1	49.4	26.3 J+
OSC2-JP08	0	NORM	8/16/2010	730	< 0.3 U	< 0.39 U	563	< 0.42 UJ	2.1	38.1	24
OSC2-JP08N1	0	NORM	8/16/2010	474	< 0.32 U	< 0.42 U	603	< 2.8 UJ	2.1	41.2	31.2
OSC2-JP08S1	0	NORM	8/16/2010	496	< 0.29 U	< 0.38 U	583	< 0.41 UJ	1.5	35.5	27.3
OSC2-JP08S2	0	NORM	8/16/2010	2580	< 0.3 U	< 0.39 U	505	< 0.42 UJ	3.6	81.7	20.7
OSC2-JS10	0	NORM	8/16/2010	350 J	< 1 U	< 1 UJ	614 J	< 2.6 UJ	3.3	36.5	18.7
OSC2-JS10	0	FD	8/16/2010	394 J	< 1.1 U	< 1.1 UJ	625 J	< 2.7 UJ	3.6	36.5	19.3
OSC6-JP07	0	NORM	8/1/2012	620	< 0.85 U	< 0.56 U	510	2 J	3	47	27
OSC6-JP07	0	FD	8/1/2012	870	< 0.84 U	0.75 J	510	2.2 J	3.7	50	25
OSC6-JP07NW	0	NORM	8/1/2012	8500	< 0.82 U	< 0.54 U	420	< 1.3 U	1.5	33	20
OSC6-JP07SW	0	NORM	8/1/2012	560	< 0.82 U	< 0.54 U	550	< 1.4 U	3.1	43	23
WH-AS_A0	0	NORM	1/4/2012								
WH-AS_A0	0	FD	1/4/2012								
WH-AS_A3	0	NORM	12/30/2011								
WH-AS_A4	0	NORM	12/30/2011								
WH-AS_A5	0	NORM	12/30/2011								
WH-AS_A6	0	NORM	12/30/2011								
WH-AS_A6	0	FD	12/30/2011								
WH-AS_A8	0	NORM	12/30/2011								
WH-AS_B0	0	NORM	1/4/2012								
WH-AS_B1	0	NORM	1/4/2012								
WH-AS_B5	0	NORM	12/30/2011								
WH-AS_B7	0	NORM	12/30/2011								
WH-AS_B9	0	NORM	12/30/2011								
WH-AS_C1	0	NORM	1/4/2012								

SOIL METALS DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 51 of 64)

				Metals								
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Strontium	Thallium	Ę	Titanium	Tungsten	Uranium	Vanadium	Zinc	
WH-AS_C5	0		12/30/2011									
WH-AS_C6	0	NORM	12/30/2011									
WH-AS_C9	0	NORM	12/30/2011									
WH-AS_D0	0	NORM	1/4/2012									
WH-AS_D1	0	NORM	1/4/2012									
WH-AS_D2	0	NORM	1/4/2012									
WH-AS_D4	0	NORM	12/30/2011									
WH-AS_D5	0	NORM	12/30/2011									
WH-AS_D6	0	NORM	12/30/2011									
WH-AS_D7	0	NORM	12/30/2011									
WH-AS_D7	0	FD	12/30/2011									
WH-AS_D9	0	NORM	12/30/2011									
WH-AS_E1	0	NORM	1/4/2012									
WH-AS_E6	0	NORM	1/4/2012									
WH-AS_F0	0	NORM	1/4/2012									
WH-AS_F3	0	NORM	1/4/2012									
WH-AS_F6	0	NORM	12/30/2011									
WH-AS_F7	0	NORM	12/30/2011									
WH-AS_G1	0	NORM	1/4/2012									
WH-AS_G1	0	FD	1/4/2012									
WH-AS_G6	0	NORM	12/30/2011									
WH-AS_H3	0	NORM	1/4/2012									
WH-AS_H5	0	NORM	12/30/2011									
WH-AS_J0	0	NORM	1/4/2012									
WH-AS_J1	0	NORM	1/4/2012									
WH-AS_J2	0	NORM	1/4/2012									
WH-AS_J3	0	NORM	1/4/2012									
WH-AS_J3	0	FD	1/4/2012									
WH-AS_J4	0	NORM	1/4/2012									
WH-AS_J6	0	NORM	12/30/2011									
WH-AS_J6	0	FD	12/30/2011									
WH-AS_K1	0	NORM	1/4/2012									
WH-AS_K4	0	NORM	12/30/2011									
WH-AS_K5	0	NORM	12/30/2011									
WH-AS_K7	0	NORM	12/30/2011									
WH-AS_L0	0	NORM	1/4/2012									
WH-AS_L1	0	NORM	1/4/2012									
WH-AS_L2	0	NORM	1/4/2012									
WH-AS_L5	0	NORM	12/30/2011									
WH-AS_L6	0	NORM	12/30/2011									

SOIL METALS DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 52 of 64)

							Me	etals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Strontium	Fhallium	Tin	Fitanium	Tungsten	Uranium	Vanadium	Zinc
WH-AS L6	0	FD	12/30/2011								
WH-AS M1	0	NORM	1/4/2012								
WH-AS M4	0	NORM	12/30/2011								
WH-AS M6	0	NORM	12/30/2011								
WH-AS_N1	0	NORM	1/4/2012								
WH-AS N10	0	NORM	12/29/2011								
WH-AS N18	0	NORM	12/28/2011							<u> </u>	
WH-AS N19	0	NORM	12/28/2011								
WH-AS_N3	0	NORM	1/4/2012								
WH-AS N4	0	NORM	12/30/2011								
WH-AS N5	0	NORM									
WH-AS N6	0	NORM	12/30/2011								
WH-AS_N8	0	NORM	12/30/2011								
WH-AS PO	0	NORM	1/4/2012								
WH-AS PO	0	FD	1/4/2012								
WH-AS P11	0	NORM	12/29/2011								
WH-AS P12	0	NORM	12/29/2011								
WH-AS P14	0	NORM	12/29/2011								
WH-AS P15	0	NORM	12/29/2011								
WH-AS P16	0	NORM	12/29/2011								
WH-AS P17	0	NORM	12/28/2011				<u> </u>				
WH-AS_P4	0	NORM									
WH-AS P5	0	NORM	12/30/2011								
WH-AS P9	0	NORM	12/30/2011								
WH-AS Q0	0	NORM	1/4/2012								
WH-AS Q10	0	NORM	12/29/2011								
WH-AS_Q11	0	NORM	12/29/2011								
WH-AS_Q11	0	FD	12/29/2011								
WH-AS O12	0	NORM	12/29/2011								
WH-AS O13	0	NORM	12/29/2011								
WH-AS Q15	0	NORM	12/29/2011				<u> </u>			<u></u>	
WH-AS O16	0	NORM	12/29/2011								
WH-AS O18	0	NORM	12/28/2011								++
WH-AS Q3	0	NORM	1/4/2012								
WH-AS Q4	0	NORM	12/30/2011								
WH-AS Q5	0	NORM	12/30/2011								
WH-AS_Q6	0	NORM	12/30/2011								
WH-AS_Q8	0	NORM	12/29/2011								
WH-AS_Q8 WH-AS_O8	0	FD	12/29/2011								
WH-AS_Q8 WH-AS_R1	0	NORM	1/4/2012								
M U-WO_VI	U	NORW	1/4/2012								

SOIL METALS DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 53 of 64)

				Metals								
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Strontium	Fhallium	Tin	Fitanium	Tungsten	Uranium	Vanadium	Zinc	
WH-AS R10	0	NORM	12/29/2011									
WH-AS R12	0	NORM	12/29/2011									
WH-AS R14	0	NORM	12/29/2011									
WH-AS_R15	0	NORM	12/29/2011									
WH-AS_R15	0	FD	12/29/2011									
WH-AS R3	0	NORM	1/4/2012									
WH-AS R7	0	NORM	12/30/2011									
WH-AS R9	0	NORM	12/29/2011									
WH-AS_S0	0	NORM	1/4/2012									
WH-AS_S10	0	NORM	12/29/2011									
WH-AS S11	0	NORM	12/29/2011									
WH-AS S13	0	NORM	12/29/2011							<u> </u>	++	
WH-AS_S14	0	NORM	12/29/2011									
WH-AS S15	0	NORM	12/29/2011									
WH-AS S16	0	NORM								<u></u>	++	
WH-AS S17	0	NORM	12/28/2011									
WH-AS S18	0	NORM	12/28/2011			<u></u>			<u></u>			
WH-AS_S3	0	NORM	1/4/2012									
WH-AS_S8	0	NORM	12/30/2011									
WH-AS S9	0	NORM	12/29/2011									
WH-AS TO	0	NORM	1/4/2012									
WH-AS T10	0	NORM	12/29/2011									
WH-AS T10	0	FD	12/29/2011									
WH-AS T12	0	NORM	12/29/2011									
WH-AS T13	0	NORM	12/29/2011									
WH-AS T15	0	NORM	12/29/2011		<u> </u>				<u> </u>			
WH-AS_T17	0	NORM	12/28/2011									
WH-AS T2	0	NORM	1/4/2012									
WH-AS T3	0	NORM	1/4/2012									
WH-AS T5	0	NORM	1/4/2012									
WH-AS T9	0	NORM	12/29/2011									
WH-AS U12	0	NORM	12/29/2011									
WH-AS U13	0	NORM	12/29/2011									
WH-AS U14	0	NORM	12/28/2011									
WH-AS U14	0	FD	12/28/2011								<u>-</u> -	
WH-AS U19	0	NORM	12/28/2011									
WH-AS U4	0	NORM	1/4/2012									
WH-AS_U6	0	NORM	1/4/2012									
WH-AS_U6 WH-AS_U9	0	NORM	12/29/2011									
WH-AS_U9	0		12/29/2011									
W11-V9_W11	U	NORW	12/29/2011		-		-			-	-	

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 54 of 64)

							Me	tals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Strontium	Thallium	Tin	Titanium	Tungsten	Uranium	Vanadium	Zinc
WH-AS_W13	0	NORM	12/29/2011								
WH-AS_W16	0	NORM	12/28/2011								
WH-AS_W18	0	NORM	12/28/2011								
WHC1-BF01	0	NORM	11/24/2008	311 J	< 0.75 U	< 0.75 U	708 J	< 1.25 U	1.3	45.6 J+	91.5 J+
WHC1-BF01	12	NORM	11/24/2008	402 J	< 0.75 U	< 0.75 U	874 J	< 1.25 U	2.7	49.3 J+	34.8 J+
WHC1-BF02	0	NORM	11/25/2008	234 J	< 0.75 U	< 0.75 U	717 J	1.7 J	0.95 J+	48.6 J+	57.4 J+
WHC1-BF02	11	NORM	11/25/2008	654 J	< 0.75 U	< 0.75 U	671 J	< 1.25 U	1.3 J+	41.1 J+	30.4 J+
WHC1-BF03	0	NORM	11/25/2008	200 J	< 0.75 U	< 0.75 U	487 J	< 1.25 U	1 J+	30.9 J+	36.8 J+
WHC1-BF03	10	NORM	11/25/2008	330 J	< 0.75 U	< 0.75 U	706 J	< 1.25 U	2.6 J+	49.1 J+	33.3 J+
WHC1-BF04	0	NORM	11/25/2008	260 J	< 0.75 U	< 0.75 U	690 J	< 1.25 U	0.8 J	45.7 J+	51.5 J+
WHC1-BF04	0	FD	11/25/2008	213 J	< 0.75 U	< 0.75 U	716 J	< 1.25 U	1.5 J	39.9 J+	37.7 J+
WHC1-BF04	10	NORM	11/25/2008	966 J	< 0.75 U	< 0.75 U	510 J	< 1.25 U	2.9 J+	36.7 J+	27.2 J+
WHC1-BF05	0	NORM	11/25/2008	407	< 0.75 U	< 0.75 U	612	< 1.25 UJ	1.3	37	31.4
WHC1-BF05	12	NORM	12/10/2008	1280	< 0.75 U	< 0.75 U	369	< 1.25 UJ	9.9	72.3	31
WHC1-BF06	0	NORM	12/10/2008	364	< 0.75 U	< 0.75 U	352	< 1.25 UJ	1.1	24.8	24.1
WHC1-BF06	10	NORM	12/10/2008	187	< 0.75 U	< 0.75 U	151	< 1.25 UJ	7.2	25.7	21.4
WHC1-BG01	0	NORM	11/24/2008	289 J	< 0.75 U	< 0.75 U	703 J	< 1.25 U	1.2	48.5 J+	51 J+
WHC1-BG01	11	NORM	11/24/2008	291 J	< 0.75 U	< 0.75 U	881 J	< 1.25 U	1.8	47.5 J+	38.4 J+
WHC1-BG02	0	NORM	11/24/2008	223 J	< 0.75 U	< 0.75 U	596 J	< 1.25 U	0.93	39.7 J+	46.8 J+
WHC1-BG02	0	FD	11/24/2008	222 J	< 0.75 U	< 0.75 U	623 J	< 1.25 U	0.99	44.9 J+	44.5 J+
WHC1-BG02	10	NORM	11/24/2008	347 J	< 0.75 U	< 0.75 U	675 J	< 1.25 U	1.5	41.7 J+	39 J+
WHC1-BG03	0	NORM	12/11/2008	177	< 0.75 U	< 0.75 U	687	< 1.25 U	0.99	50.6 J+	59.2
WHC1-BG03	11	NORM	12/11/2008	270	< 0.75 U	< 0.75 U	831	< 1.25 U	1.5	48.4 J+	30.4
WHC1-BG04	0		12/11/2008	157	< 0.75 U	< 0.75 U	699	< 1.25 U	0.66	45.4 J+	75.1
WHC1-BG04	10	NORM	12/11/2008	221	< 0.75 U	< 0.75 U	601	< 1.25 U	13.3	60.5 J+	31.2
WHC1-BG05	0		11/25/2008	423 J	< 0.75 U	< 0.75 U	680 J	< 1.25 U	1.5 J+	44.6 J+	33.2 J+
WHC1-BG05	10	NORM	11/25/2008	1410 J	< 0.75 U	< 0.75 U	662 J	< 1.25 U	4.3 J+	47.1 J+	33.2 J+
WHC1-BG06	0		12/10/2008	203	< 0.75 U	< 0.75 U	654	< 1.25 UJ	0.9	42.9	33.2
WHC1-BG06	10	NORM	12/10/2008	93.4	< 0.75 U	< 0.75 U	552	< 1.25 UJ	4	184	36.8
WHC1-BH01	0	NORM	12/3/2008	170	< 0.75 U	< 0.75 U	579	< 1.25 UJ	0.88	33.5	33.2
WHC1-BH01	11	NORM	12/3/2008	179	< 0.75 U	< 0.75 U	698	< 1.25 UJ	1.2	39.5	28.6
WHC1-BH02	0	NORM	12/4/2008	141 J+	< 0.75 U	< 0.75 U	465	< 1.25 U	0.72	32.6 J+	34.8 J+
WHC1-BH02	10	NORM	12/4/2008	183 J+	< 0.75 U	< 0.75 U	505	< 1.25 U	0.8	32.6 J+	21.9 J+
WHC1-BH03	0	NORM	12/9/2008	173 J	< 0.75 U	< 0.75 U	890	< 1.25 UJ	0.72	55.8	44.4
WHC1-BH03	10	NORM	12/9/2008	358 J	< 0.75 U	< 0.75 U	1140	< 1.25 UJ	1.7	56.6	32.2
WHC1-BH04	0	NORM	12/11/2008	200	< 0.75 U	< 0.75 U	671	< 1.25 U	1.2	47.1 J+	49.8
WHC1-BH04	10	NORM	12/11/2008	266	< 0.75 U	< 0.75 U	824	< 1.25 U	3	53.9 J+	28.3
WHC1-BH05	0	NORM	12/9/2008	197 J	< 0.75 U	< 0.75 U	927 J	< 1.25 UJ	0.73	45.7	46.1
WHC1-BH05	0	FD	12/9/2008	180 J	< 0.75 U	< 0.75 U	770 J	< 1.25 UJ	0.6	42.3	39.9
WHC1-BH05	10	NORM	12/9/2008	765 J	< 0.75 U	< 0.75 U	506	< 1.25 UJ	10.9	51.9	30.6
milet biles	10	101011	12/2/2000	103 5	X 0.75 O	× 0.75 G		X 1.25 OJ	10.2	213/	20.0

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 55 of 64)

				Metals								
				um	m		ш	en	ш	um		
	Depth	Sample	Sample	Strontium	Thallium		Titanium	Fungsten	Uranium	anadium	ဝ	
Sample ID	(ft bgs)	Type	Date	Stro	Гћа	Tin	Γita	l'un	Jra	Van	Zinc	
WHC1-BH06	0	NORM	12/11/2008	849	< 0.75 U	< 0.75 U	654	< 1.25 U	0.73	39.6 J+	40	
WHC1-BH06	0	FD	12/11/2008	520	< 0.75 U	< 0.75 U	766	< 1.25 U	0.7	44.8 J+	34.9	
WHC1-BH06	10	NORM	12/11/2008	359	< 0.75 U	< 0.75 U	627	< 1.25 U	3.3	43 J+	22.7	
WHC1-BI01	0	NORM	12/3/2008	294	< 0.75 U	< 0.75 U	523	< 1.25 UJ	1.3	34.2	35.3	
WHC1-BI01	11	NORM	12/3/2008	253	< 0.75 U	< 0.75 U	494	< 1.25 UJ	1.3	34.1	27.6	
WHC1-BI02	0	NORM	12/4/2008	162 J+	< 0.75 U	< 0.75 U	636	< 1.25 U	0.68	36.2 J+	37.6 J+	
WHC1-BI02	3	NORM	12/4/2008	190 J+	< 0.75 U	< 0.75 U	692	< 1.25 U	1	39.2 J+	30.5 J+	
WHC1-BI02	13	NORM	12/4/2008	202 J+	< 0.75 U	< 0.75 U	628	< 1.25 U	1.2	38.9 J+	25.9 J+	
WHC1-BI03	0	NORM	12/4/2008	148 J+	< 0.75 U	< 0.75 U	788	< 1.25 U	0.71	44.5 J+	39 J+	
WHC1-BI03	11	NORM	12/4/2008	166 J+	< 0.75 U	< 0.75 U	830	< 1.25 U	1	46.6 J+	31.4 J+	
WHC1-BI04	0	NORM	12/8/2008	199	< 0.75 U	< 0.75 U	667	< 1.25 UJ	0.9	46.4 J-	40.9	
WHC1-BI04	10	NORM	12/9/2008	199 J	< 0.75 U	< 0.75 U	1120	< 1.25 UJ	0.93	55.1	32.4	
WHC1-BI05	0	NORM	12/9/2008	207 J	< 0.75 U	< 0.75 U	332	< 1.25 UJ	8.2	54.7	29.1	
WHC1-BI05	10	NORM	12/9/2008	181 J	< 0.75 U	< 0.75 U	940 J	< 1.25 UJ	1.8	45.8	27.4	
WHC1-BJ01	0	NORM	12/3/2008	313	< 0.75 U	< 0.75 U	651	< 1.25 UJ	1.6	39.9	34.3	
WHC1-BJ01	3	NORM	12/3/2008	216	< 0.75 U	< 0.75 U	896	< 1.25 UJ	1.4	49	32.6	
WHC1-BJ01	13	NORM	12/3/2008	177	< 0.75 U	< 0.75 U	500	< 1.25 UJ	1.7	34.6	22.1	
WHC1-BJ01NE	0	NORM	2/1/2010									
WHC1-BJ01NW	0	NORM	2/1/2010									
WHC1-BJ01SE	0	NORM	2/1/2010									
WHC1-BJ01SE	0	FD	2/1/2010									
WHC1-BJ01SW	0	NORM	2/1/2010									
WHC1-BJ02	0	NORM	12/2/2008	143 J	< 0.75 U	< 0.75 U	717	< 1.25 UJ	0.7	43.8 J-	53	
WHC1-BJ02	0	FD	12/2/2008	142 J	< 0.75 U	< 0.75 U	939	< 1.25 UJ	0.75	49.2 J-	62.2	
WHC1-BJ02	12	NORM	12/2/2008	209 J	< 0.75 U	< 0.75 U	731	< 1.25 UJ	1.4	45.5 J-	30.2	
WHC1-BJ03	0	NORM	12/4/2008	163 J+	< 0.75 U	< 0.75 U	791	< 1.25 U	1.1	47.9 J+	44.3 J+	
WHC1-BJ03	0	FD	12/4/2008	162 J+	< 0.75 U	< 0.75 U	722	< 1.25 U	0.95	45.3 J+	44.7 J+	
WHC1-BJ03	12	NORM	12/4/2008	211 J+	< 0.75 U	< 0.75 U	771	< 1.25 U	1.2	45.2 J+	30.1 J+	
WHC1-BJ04	0	NORM	12/4/2008	126 J+	< 0.75 U	< 0.75 U	723	< 1.25 U	0.65	43.4 J+	36.1 J+	
WHC1-BJ04	11	NORM	12/4/2008	152 J+	< 0.75 U	< 0.75 U	649	< 1.25 U	0.8	40.1 J+	31.3 J+	
WHC1-BJ05	0	NORM	12/11/2008	235	< 0.75 U	< 0.75 U	610	< 1.25 U	1.3	42.8 J+	31.6	
WHC1-BJ05	10	NORM	12/11/2008	163	< 0.75 U	< 0.75 U	750	< 1.25 U	1.3	46.7 J+	26.7	
WHC1-BK01	0	NORM	12/3/2008	411	< 0.75 U	< 0.75 U	725	< 1.25 UJ	1.9	43.7	38.8	
WHC1-BK01	0	FD	12/3/2008	427	< 0.75 U	< 0.75 U	723	< 1.25 UJ	2.2	44.8	39.1	
WHC1-BK01	10	NORM	12/3/2008	384	< 0.75 U	< 0.75 U	750	< 1.25 UJ	2.4	46.5	31.7	
WHC1-BK02	0	NORM	12/8/2008	177	< 0.75 U	< 0.75 U	1110	< 1.25 UJ	0.91	57.5 J-	44.2	
WHC1-BK02	11	NORM	12/18/2008	163 J+	< 0.75 U	< 0.75 U	596	< 1.25 U	1.6	46.7	30.1	
WHC1-BK03	0	NORM	12/15/2008	205	< 0.75 U	< 0.75 U	796	< 1.25 U	1.1	47.1	35.6	
WHC1-BK03	12	NORM	12/18/2008	175 J+	< 0.75 U	< 0.75 U	920	< 1.25 U	1.6	58.3	28.4	
WHC1-BK04	0	NORM	12/4/2008	149 J+	< 0.75 U	< 0.75 U	600	< 1.25 U	0.74	38.1 J+	35.4 J+	

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 56 of 64)

							Me	etals			
	Depth	Sample	Sample	Strontium	Fhallium	_	Fitanium	Tungsten	Uranium	anadium	JC
<u>.</u> .	(ft bgs)	Type	Date			Tin				>	Zinc
WHC1-BK04	10	NORM	12/4/2008	364 J+	< 0.75 U	< 0.75 U	582	< 1.25 U	1.3	39.6 J+	37.4 J+
WHC1-BK05	0	NORM	12/12/2008	181	< 0.75 U	< 0.75 U	1040	< 1.25 U	0.84	76.9	49.9 J+
WHC1-BK05	11	NORM	12/12/2008	178	< 0.75 U	< 0.75 U	841	< 1.25 U	1.2	56.1	30.3 J+
WHC1-BL01	0	NORM	12/3/2008	361	< 0.75 U	< 0.75 U	676	< 1.25 UJ	1.7	41.2	36.8
WHC1-BL01	10	NORM	12/3/2008	558	< 0.75 U	< 0.75 U	735	< 1.25 UJ	2.4	43.4	32.9
WHC1-BL02	0	NORM	12/2/2008	141 J	< 0.75 U	< 0.75 U	797	< 1.25 UJ	0.8	49.7 J-	44.4
WHC1-BL02	10	NORM	12/2/2008	179 J	< 0.75 U	< 0.75 U	909	< 1.25 UJ	1.1	53.3 J-	34.4
WHC1-BL03	0	NORM	12/8/2008	256	< 0.75 U	< 0.75 U	874	< 1.25 UJ	1.3	46.4 J-	34.7
WHC1-BL03	10	NORM	12/18/2008	217 J+	< 0.75 U	< 0.75 U	585	< 1.25 U	1.2	37.1	25.1
WHC1-BL04	0	NORM	12/17/2008	151 J+	< 0.75 U	< 0.75 U	658	< 1.25 U	0.76	43.1	34.6
WHC1-BL04	12	NORM	12/22/2008	210 J	< 0.75 U	< 0.75 U	1070	< 1.25 U	1.1 J+	51.1 J-	38 J+
WHC1-BL05	0	NORM	11/21/2008	133	< 0.75 U	< 0.75 U	657	< 1.25 U	0.99	41.7 J+	33.7 J+
WHC1-BL05	10	NORM	11/21/2008	137	< 0.75 U	< 0.75 U	655	< 1.25 U	1	39.7 J+	27.7 J+
WHC1-BL06	0	NORM	11/21/2008	49.8	< 0.75 U	< 0.75 U	627	< 1.25 U	0.49 J	37.4 J+	22 J+
WHC1-BL06	11	NORM	11/21/2008	159	< 0.75 U	< 0.75 U	785	< 1.25 U	1.7	50.5 J+	32.5 J+
WHC1-BL07	0	NORM	11/21/2008	200	< 0.75 U	< 0.75 U	578	< 1.25 U	1.9	45.7 J+	35.4 J+
WHC1-BL07	10	NORM	11/21/2008	180	< 0.75 U	< 0.75 U	906	< 1.25 U	2	46.8 J+	33.6 J+
WHC1-BL08	0	NORM	11/18/2008	670	< 0.75 U	< 0.75 U	654	< 1.25 U	2.9	38	24.8
WHC1-BL08	10	NORM	11/18/2008	192	< 0.75 U	< 0.75 U	770	< 1.25 U	1.9	34.6	25.5
WHC1-BL08NE	0	NORM	2/2/2010								
WHC1-BL08NW	0	NORM	2/2/2010								
WHC1-BL08SE	0	NORM	2/2/2010								
WHC1-BL08SW	0	NORM	2/2/2010								
WHC1-BL11	0	NORM	11/18/2008	1010	< 0.75 U	1.3	750	< 1.25 U	3.6	45.9	33.4
WHC1-BL11	12	NORM	11/18/2008	297	< 0.75 U	< 0.75 U	719	< 1.25 U	2.1	39	24.7
WHC1-BL11NE	0	NORM	2/2/2010								
WHC1-BL11NW	0	NORM	2/2/2010		==		**		==		
WHC1-BL11SE	0	NORM	2/2/2010								
WHC1-BL11SW	0	NORM	2/2/2010								
WHC1-BM01	0	NORM	12/3/2008	204	< 0.75 U	< 0.75 U	706	< 1.25 UJ	0.84	41.1	67.6
WHC1-BM01	10	NORM	12/3/2008	233	< 0.75 U	< 0.75 U	844	< 1.25 UJ	1.4	48.6	31.2
WHC1-BM02	0	NORM	12/2/2008	168 J	< 0.75 U	< 0.75 U	673	< 1.25 UJ	0.64	37.6 J-	31.6
WHC1-BM02	12	NORM	12/2/2008	209 J	< 0.75 U	< 0.75 U	781	< 1.25 UJ	1.1	43.1 J-	29.8
WHC1-BM03	0	NORM	12/8/2008	198	< 0.75 U	< 0.75 U	872	< 1.25 UJ	0.99	46.9 J-	37.7
WHC1-BM03	10	NORM	12/18/2008	230 J+	< 0.75 U	< 0.75 U	774	< 1.25 U	1.5	43.8	26.6
WHC1-BM04	0	NORM	12/17/2008	133 J+	< 0.75 U	< 0.75 U	871	< 1.25 U	0.7	58.8	35.8
WHC1-BM04	0	FD	12/17/2008	135 J+	< 0.75 U	< 0.75 U	695	< 1.25 U	0.74	51.3	35.4
WHC1-BM04	10		12/22/2008	213 J	< 0.75 U	< 0.75 U	940	< 1.25 U	1.6 J+	49.8 J-	37.8 J+
WHC1-BM05	0	NORM	11/21/2008	182	< 0.75 U	< 0.75 U	805	< 1.25 U	1.1	39.4 J+	27.9 J+
WHC1-BM05	10		11/21/2008	200	< 0.75 U	< 0.75 U	859	< 1.25 U	1.8	46 J+	30.8 J+

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 57 of 64)

				Metals									
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Strontium	Fhallium	r Jin	Titanium	Fungsten	Uranium	Vanadium	Zinc		
WHC1-BM06	0	NORM	11/21/2008	210 J	< 0.75 U	< 0.75 U	314 J	< 1.25 U	0.9	36 J+	13.2 J+		
WHC1-BM06	0	FD	11/21/2008	59.1 J	< 0.75 U	1.5	1150 J	< 1.25 U	0.79	44.9 J+	23.1 J+		
WHC1-BM06	10	NORM	11/21/2008	106	< 0.75 U	< 0.75 U	676	< 1.25 U	2.2	53.1 J+	31.6 J+		
WHC1-BM07	0	NORM	11/20/2008	184 J	< 0.75 U	< 0.75 U	517	< 1.25 UJ	1.2	31.5 J+	33.8 J+		
WHC1-BM07	11	NORM	11/20/2008	302 J	< 0.75 U	< 0.75 U	505	< 1.25 UJ	3.5	31.1 J+	24.1 J+		
WHC1-BM08	0	NORM	11/18/2008	122 J	< 0.75 U	< 0.75 U	578	< 1.25 U	1.7	30.5	41.2		
WHC1-BM08	0	FD	11/18/2008	275 J	< 0.75 U	2.1 J	954	< 1.25 U	2.2	48.3	37.7		
WHC1-BM08	11	NORM	11/18/2008	346	< 0.75 U	< 0.75 U	627	< 1.25 U	2.4	36.1	31.6		
WHC1-BM09	0	NORM	11/18/2008	339	< 0.75 U	< 0.75 U	766	< 1.25 U	1.2	38.3	32		
WHC1-BM09	12	NORM	11/18/2008	231	< 0.75 U	< 0.75 U	588	< 1.25 U	2.1	32.2	21.7		
WHC1-BM10	0	NORM	11/18/2008	689	< 0.75 U	< 0.75 U	760	< 1.25 U	3.7	41.7	25.4		
WHC1-BM10	3	NORM	11/18/2008	390	< 0.75 U	< 0.75 U	691	< 1.25 U	2.3	51.8	33.4		
WHC1-BM10	13	NORM	11/18/2008	143	< 0.75 U	< 0.75 U	572	< 1.25 U	2.4	43.8	24.9		
WHC1-BN01	0	NORM	12/1/2008	209 J-	< 0.75 U	< 0.75 U	540 J	< 1.25 UJ	0.95	36.6	42.9		
WHC1-BN01	12	NORM	12/1/2008	332 J-	< 0.75 U	< 0.75 U	562 J	< 1.25 UJ	3.3	38.4	26.7		
WHC1-BN02	0	NORM	12/1/2008	132 J-	< 0.75 U	< 0.75 U	649 J	< 1.25 UJ	0.75	39.5	48.1		
WHC1-BN02	0	FD	12/1/2008	129 J-	< 0.75 U	< 0.75 U	601 J	< 1.25 UJ	0.71	38.5	51.6		
WHC1-BN02	11	NORM	12/1/2008	195 J-	< 0.75 U	< 0.75 U	672 J	< 1.25 UJ	1.1	43	39.8		
WHC1-BN03	0	NORM	12/17/2008	189 J+	< 0.75 U	< 0.75 U	688	< 1.25 U	0.89	44.2	35.2		
WHC1-BN03	10	NORM	12/18/2008	244 J+	< 0.75 U	< 0.75 U	707	< 1.25 U	1.8	42.2	26.9		
WHC1-BN04	0	NORM	12/17/2008	110 J+	< 0.75 U	< 0.75 U	747	< 1.25 U	0.76	36.9	30.5		
WHC1-BN04	7	NORM	12/22/2008	159 J	< 0.75 U	< 0.75 U	985	< 1.25 U	1.1 J+	53.8 J-	39.9 J+		
WHC1-BN04	17	NORM	12/22/2008	167 J	< 0.75 U	< 0.75 U	768	2.4 J	1.1 J+	43.1 J-	34.9 J+		
WHC1-BN05	0	NORM	11/20/2008	145 J	< 0.75 U	< 0.75 U	837	< 1.25 UJ	1	48.2 J+	41.5 J+		
WHC1-BN05	0	FD	11/20/2008	143 J	< 0.75 U	< 0.75 U	848	< 1.25 UJ	0.96	46.5 J+	36.7 J+		
WHC1-BN05	10	NORM	11/20/2008	173 J	< 0.75 U	< 0.75 U	900	< 1.25 UJ	1.4	45 J+	32.2 J+		
WHC1-BN06	0	NORM	11/20/2008	242 J	< 0.75 U	< 0.75 U	716	< 1.25 UJ	1.5	42 J+	40.4 J+		
WHC1-BN06	10	NORM	11/20/2008	181 J	< 0.75 U	< 0.75 U	800	< 1.25 UJ	1.9	44.9 J+	33.4 J+		
WHC1-BN07	0	NORM	11/21/2008	357	< 0.75 U	< 0.75 U	640	< 1.25 U	2.4	36.3 J+	33.3 J+		
WHC1-BN07	3	NORM	11/21/2008	330	< 0.75 U	< 0.75 U	629	< 1.25 U	2.1	39.7 J+	33.7 J+		
WHC1-BN07	13	NORM	11/21/2008	207	< 0.75 U	1.6	746	< 1.25 U	1.9	36.8 J+	29.3 J+		
WHC1-BN07NE	0	NORM	2/2/2010										
WHC1-BN07NW	0	NORM	2/2/2010										
WHC1-BN07SE	0	NORM	2/2/2010										
WHC1-BN07SE	0	FD	2/2/2010										
WHC1-BN07SW	0	NORM	2/2/2010										
WHC1-BN08	0	NORM	11/20/2008	434 J	< 1 U	1.7	753	1.6 J-	2.7	63.6 J+	47.7 J+		
WHC1-BN08	10	NORM	11/20/2008	290 J	< 0.75 U	< 0.75 U	524	< 1.25 UJ	2.1	43.4 J+	39.3 J+		
WHC1-BN08NE	0	NORM	2/2/2010										
WHC1-BN08NW	0	NORM	2/2/2010		-								

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 58 of 64)

' I							1/10	etals			
<u>.</u> .	Depth (ft bgs)	Sample Type	Гуре Date	Strontium	Thallium	Tin	Titanium	Tungsten	Uranium	Vanadium	Zinc
WHC1-BN08SE	0	NORM	2/2/2010					 -			
WHC1-BN08SW	0	NORM	2/2/2010								
WHC1-BN09	0	NORM	12/17/2008	172 J+	< 0.75 U	< 0.75 U	594	< 1.25 U	1.8	38.1	32.1
WHC1-BN09	11	NORM	12/19/2008	337	< 0.75 U	< 0.75 U	819	< 1.25 UJ	1.9	46.3	30.7
WHC1-BN10	0	NORM	11/18/2008	421	< 0.75 U	< 0.75 U	700	< 1.25 U	3.4	90	30.9
WHC1-BN10	10	NORM	11/18/2008	104	< 0.75 U	< 0.75 U	947	< 1.25 U	0.98	53.4	31.8
WHC1-BN10NE	0	NORM	2/2/2010								
WHC1-BN10NW	0	NORM	2/2/2010								
WHC1-BN10SE	0	NORM	2/2/2010								
WHC1-BN10SW	0	NORM	2/2/2010							<u> </u>	
WHC1-BO01	0	NORM	12/2/2008	222 J	< 0.75 U	< 0.75 U	683	< 1.25 UJ	1	40.4 J-	42.6
WHC1-BO01	0	FD	12/2/2008	149 J	< 0.75 U	< 0.75 U	745	< 1.25 UJ	0.7	43.3 J-	41.1
WHC1-BO01	4	NORM	12/2/2008	222 J	< 0.75 U	< 0.75 U	759	< 1.25 UJ	1	43.4 J-	41.8
WHC1-BO01	14	NORM	12/2/2008	452 J	< 0.75 U	< 0.75 U	604	< 1.25 UJ	2.4	38.3 J-	27.2
WHC1-BO02	0	NORM	12/1/2008	244 J-	< 0.75 U	< 0.75 U	579 J	< 1.25 UJ	0.94	37.1	33.9
WHC1-BO02	12	NORM	12/1/2008	471 J-	< 0.75 U	9.8	755 J	< 1.25 UJ	2.2	48.4	35.6
WHC1-BO03	0	NORM	12/15/2008	161	< 0.75 U	< 0.75 U	796	< 1.25 U	0.84	43.2	50.6
WHC1-BO03	12	NORM	12/19/2008	518	< 0.75 U	< 0.75 U	886	< 1.25 UJ	1.7	42.6	30.9
WHC1-BO04	0	NORM	12/15/2008	178	< 0.75 U	3.3	774	< 1.25 U	0.89	46.3	43.4
WHC1-BO04	12	NORM	12/19/2008	486	< 0.75 U	< 0.75 U	806	< 1.25 UJ	1.7	48.1	29.1
WHC1-BO05	0	NORM	11/20/2008	138 J	< 0.75 U	< 0.75 U	638	< 1.25 UJ	1	38.8 J+	26.9 J+
WHC1-BO05	10	NORM	11/20/2008	168 J	< 0.75 U	< 0.75 U	854	< 1.25 UJ	1.4	43.8 J+	33.2 J+
WHC1-BO06	0	NORM	11/20/2008	159 J	< 0.75 U	< 0.75 U	731	< 1.25 UJ	0.91	45.8 J+	34.9 J+
WHC1-BO06	10		11/20/2008	141 J	< 0.75 U	< 0.75 U	558	< 1.25 UJ	1.3	38.3 J+	27.7 J+
WHC1-BO07	0	NORM	11/19/2008	482	< 0.75 U	< 0.75 U	765	< 1.25 UJ	2.3	39.7	30.7
WHC1-BO07	10	NORM	11/19/2008	171	< 0.75 U	< 0.75 U	548	< 1.25 UJ	0.92	31.1	21
WHC1-BO08	0	NORM	11/20/2008	389 J	< 0.75 U	< 0.75 U	706	< 1.25 UJ	3.1	49.3 J+	40.2 J+
WHC1-BO08	0	FD	11/20/2008	506 J	< 0.75 U	< 0.75 U	639	< 1.25 UJ	2.4	42.9 J+	38.2 J+
WHC1-BO08	11	NORM	11/20/2008	308 J	< 0.75 U	< 0.75 U	686	< 1.25 UJ	3.3	48.9 J+	30.4 J+
WHC1-BO09	0	NORM	11/19/2008	282	< 0.75 U	< 1.1 U	706	< 1.25 UJ	1.8	42.8	33.1
WHC1-BO09	0	FD	11/19/2008	310	< 0.75 U	< 0.75 U	721	< 1.25 UJ	2	49.4	32.9
WHC1-BO09	6	NORM	11/19/2008	323	< 0.75 U	< 0.75 U	610	< 1.25 UJ	3.1	40.6	23.8
WHC1-BO09	16		11/19/2008	297	< 0.75 U	< 0.75 U	691	< 1.25 UJ	2.7	38.7	25.2
WHC1-BO10	0	NORM	11/19/2008	553	< 0.75 U	< 0.75 U	620	< 1.25 UJ	5.1	48.7	30.2
WHC1-BO10	10			480	< 0.75 U	< 0.75 U	558	< 1.25 UJ	2.9	38.8	26.8
WHC1-BP01	0	NORM	12/1/2008	199 J-	< 0.75 U	< 0.75 U	460 J	< 1.25 UJ	1.1	28.7	30.3
WHC1-BP01	10	NORM	12/1/2008	1370 J-	< 0.75 U	< 0.75 U	652 J	< 1.25 UJ	3.9	36.5	24
WHC1-BP02	0	NORM	12/1/2008	155 J-	< 0.75 U	< 0.75 U	801 J	< 1.25 UJ	0.94	45.5	45.1
WHC1-BP02	11	NORM	12/1/2008	654 J-	< 0.75 U	< 0.75 U	755 J	< 1.25 UJ	3.8	42.3	24.8
WHC1-BP03	0			152	< 0.75 U	< 0.75 U	778	< 1.25 U	0.71	43.8	43.3

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 59 of 64)

							Me	etals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Strontium	Fhallium	Fin	Titanium	Tungsten	Uranium	Vanadium	Zinc
WHC1-BP03	0	FD	12/15/2008	129	< 0.75 U	< 0.75 U	793	< 1.25 U	0.6	45.1	37.2
WHC1-BP03	11	NORM	12/19/2008	337	< 0.75 U	< 0.75 U	707	< 1.25 UJ	4.7	44.5	29.7
WHC1-BP04	0		12/15/2008	179	< 0.75 U	< 0.75 U	742	< 1.25 U	1.3	37.7	37.5
WHC1-BP04	12	NORM	12/19/2008	199	< 0.75 U	< 0.75 U	945	< 1.25 UJ	1.1	44.4	32.4
WHC1-BP05	0	NORM	12/15/2008	163	< 0.75 U	< 0.75 U	1050	< 1.25 U	0.77	54.1	38.7
WHC1-BP05	10	NORM	12/19/2008	180	< 0.75 U	< 0.75 U	739	< 1.25 UJ	1.1	41.5	30.8
WHC1-BP06	0	NORM	12/12/2008	216	< 0.75 U	< 0.75 U	946	< 1.25 U	1.1	53.9	43.2 J+
WHC1-BP06	10	NORM	12/12/2008	166	< 0.75 U	< 0.75 U	1030	< 1.25 U	1.2	56.1	30.1 J+
WHC1-BP07	0	NORM	11/20/2008	1700 J	< 0.75 U	< 0.75 U	646	< 1.25 UJ	1.7	40.1 J+	30.7 J+
WHC1-BP07	3		11/20/2008	1710 J	< 0.75 U	< 0.75 U	610	< 1.25 UJ	3.5	45.7 J+	24.4 J+
WHC1-BP07	13	NORM	11/20/2008	125 J	< 0.75 U	< 0.75 U	795	< 1.25 UJ	1.1	40.6 J+	30.4 J+
WHC1-BP08	0	NORM	11/19/2008	618	< 0.75 U	< 0.75 U	673	< 1.25 UJ	2.2	49.9	29.2
WHC1-BP08	4	NORM	11/19/2008	212	< 0.75 U	< 0.75 U	509	< 1.25 UJ	3.5	57	24.7
WHC1-BP08	14	NORM	11/19/2008	124	< 0.75 U	< 0.75 U	687	< 1.25 UJ	0.82	37.8	26.6
WHC1-BP09	0	NORM	11/19/2008	449	< 0.75 U	< 0.75 U	609	< 1.25 UJ	1.4	34	28.2
WHC1-BP09	10	NORM	11/19/2008	192	< 0.75 U	< 0.75 U	501	< 1.25 UJ	1	26.4	21.7
WHC1-BP10	0	NORM	11/19/2008	257	< 0.75 U	< 0.75 U	609	< 1.25 UJ	2.5	39.3	25.4
WHC1-BP10	10	NORM	11/19/2008	207	< 0.75 U	< 0.75 U	718	< 1.25 UJ	1.3	35	23.9
WHC1-D01	0	NORM	12/5/2008	269 J+	< 0.75 U	< 0.75 U	632	< 1.25 UJ	1.8	36.9 J+	58.1
WHC1-D01	10	NORM	12/5/2008	225 J+	< 0.75 U	< 0.75 U	807	< 1.25 UJ	1.6	43.7 J+	55
WHC1-D02	0	NORM	12/5/2008	384 J+	< 0.75 U	0.84 J	697	< 1.25 UJ	1.3	37.7 J+	107
WHC1-D02	10	NORM	12/5/2008	128 J+	< 0.75 U	< 0.75 U	1090	< 1.25 UJ	1.4	49.6 J+	46.8
WHC1-D03	0	NORM	12/5/2008	204 J+	< 0.75 U	< 0.75 U	610	< 1.25 UJ	0.79	34.4 J+	47.8
WHC1-D03	0	FD	12/5/2008	254 J+	< 0.75 U	< 0.75 U	735	< 1.25 UJ	0.94	40.2 J+	59.6
WHC1-D03	10	NORM	12/5/2008	148 J+	< 0.75 U	< 0.75 U	1000	< 1.25 UJ	1.3	52.6 J+	50
WHC1-D04	0	NORM	12/5/2008	277 J+	< 0.75 U	1.1	740	< 1.25 UJ	1.1	41.5 J+	62.5
WHC1-D04	10	NORM	12/5/2008	362 J+	< 0.75 U	< 0.75 U	593	< 1.25 UJ	1.5	33.6 J+	30.1
WHC1-D05	0	NORM	12/5/2008	198 J+	< 0.75 U	< 0.75 U	715	< 1.25 UJ	0.72	41.6 J+	46.5
WHC1-D05	10	NORM	12/5/2008	220 J+	< 0.75 U	< 0.75 U	806	< 1.25 UJ	1	40.5 J+	32.6
WHC1-D06	0	NORM	12/5/2008	220 J+	< 0.75 U	< 0.75 U	756	< 1.25 UJ	1	37.2 J+	50.8
WHC1-D06	10	NORM	12/5/2008	139 J+	< 0.75 U	< 0.75 U	898	< 1.25 UJ	1.9	47.6 J+	41.3
WHC1-D07	0	NORM	12/5/2008	214 J+	< 0.75 U	< 0.75 U	899	< 1.25 UJ	0.99	47.7 J+	47
WHC1-D07	10	NORM	12/5/2008	213 J+	< 0.75 U	0.91 J	1100	< 1.25 UJ	1.1	46.8 J+	36.2
WHC1-D08	0	NORM	12/8/2008	197	< 0.75 U	< 0.75 U	706	< 1.25 UJ	0.83	40.5 J-	35.1
WHC1-D08	10	NORM	12/9/2008	177 J	< 0.75 U	< 0.75 U	949 J	< 1.25 UJ	1.6	42.5	28.4
WHC1-D09	0	NORM	12/8/2008	248	< 0.75 U	3.2	635	< 1.25 UJ	1.1	40 J-	40.8
WHC1-D09	11	NORM	12/9/2008	188 J	< 0.75 U	< 0.75 U	1030	< 1.25 UJ	1.3	50.4	31.8
WHC1-D10	0	NORM	12/8/2008	186	< 0.75 U	0.84 J	1150	< 1.25 UJ	0.9	72.3 J-	50.7
WHC1-D10	10	NORM	12/9/2008	185 J	< 0.75 U	< 0.75 U	697 J	< 1.25 UJ	1.5	32.4	23.5
WHC1-D11	0	NORM	12/8/2008	383	1.2	14	1110	5.1 J-	2.2	85.7 J-	91.8

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 60 of 64)

				Metals							
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Strontium	Fhallium	Fin	Titanium	Tungsten	Uranium	Vanadium	Zinc
WHC1-D11	10	NORM	12/9/2008	175 J	< 0.75 U	< 0.75 U	1100	< 1.25 UJ	1.2	49.2	30.9
WHC1-D12	0	NORM	12/10/2008	243	< 0.75 U	< 0.75 U	722	< 1.25 UJ	3.2	59.8	28.2
WHC1-D12	10	NORM	12/10/2008	659	< 0.75 U	< 0.75 U	290	< 1.25 UJ	18	40.2	25
WHC1-D13	0	NORM	12/8/2008	630	< 0.75 U	1.1	641	2.2 J-	2.5	45.9	69.6
WHC1-D13	10	NORM	12/8/2008	153	< 0.75 U	< 0.75 U	339	< 1.25 UJ	8.2	22.2	24.5
WHC1-D15	0	NORM	12/11/2008	422	< 0.75 U	< 0.75 U	573	< 1.25 U	0.73	39 J+	77.8
WHC1-D15	10	NORM	12/11/2008	552	< 0.75 U	< 0.75 U	460	< 1.25 U	6.9	76.9 J+	23.6
WHC1-D16	0	NORM	12/10/2008	805	< 0.75 U	1.1 J	650	3.7 J-	4.2	40.8	46.5
WHC1-D16	10	NORM	12/10/2008	891	< 0.75 U	< 0.75 U	632	< 1.25 UJ	3.2	41.8	25.1
WHC1-D17	0	NORM	12/10/2008	504	< 0.75 U	1.2	837	13.1 J-	3.8	50.1	97.2
WHC1-D17	10	NORM	12/10/2008	267	< 0.75 U	< 0.75 U	716	< 1.25 UJ	2.5	51.5	24.1
WHC1-D18	0	NORM	12/11/2008	205	< 0.75 U	1.4	987	1.7 J	1.2	62.2 J+	42.7
WHC1-D18	10	NORM	12/11/2008	219	< 0.75 U	< 0.75 U	812	< 1.25 U	1.3	45.7 J+	25.1
WHC1-D19	0	NORM	12/11/2008	322 J	0.9 J	3.9 J	952	4.4 J	1.8 J	63.8 J+	85.5 J
WHC1-D19	0	FD	12/11/2008	155 J	< 0.75 U	< 0.75 U	719	< 1.25 U	0.82 J	46.1 J+	35.8 J
WHC1-D19	10	NORM	12/11/2008	147	< 0.75 U	< 0.75 U	798	< 1.25 U	1.2	43.7 J+	27.3
WHC1-D20	0	NORM	12/12/2008	201	< 0.75 U	1.7	1210	1.5 J	1.1	80.4	51.1 J+
WHC1-D20	10	NORM	12/12/2008	161	< 0.75 U	< 0.75 U	1040	< 1.25 U	1.1	65.2	38.9 J+
WHC1-D21	0	NORM	12/16/2008	175 J+	< 0.75 U	1.2	674 J	< 2.7 UJ	1.1	45.4 J+	35.6
WHC1-D21	10	NORM	12/16/2008	158 J+	< 0.75 U	< 0.75 U	694 J	< 1.25 UJ	1.1	43.7 J+	32.8
WHC1-D22	0	NORM	12/16/2008	339 J+	< 0.75 U	2	833 J	< 1.25 UJ	1.6	49.7 J+	82.6
WHC1-D22	10	NORM	12/16/2008	177 J+	< 0.75 U	< 0.75 U	793 J	< 2.7 UJ	1.2	44.5 J+	33.9
WHC1-D23	0	NORM	12/16/2008	191	< 0.75 U	1.3	679	< 1.25 U	1	41	37.3
WHC1-D23	10	NORM	12/16/2008	191	< 0.75 U	< 0.75 U	675	< 1.25 U	1.1	45.7	35.4
WHC1-D24	0	NORM	12/16/2008	196 J+	< 0.75 U	0.92 J	737 J	< 1.25 UJ	0.99	41.2 J+	35.4
WHC1-D24	0	FD	12/16/2008	188 J+	< 0.75 U	1.2	958 J	< 1.25 UJ	1.1	46.7 J+	41.4
WHC1-D24	10	NORM	12/16/2008	154 J+	< 0.75 U	< 0.75 U	786 J	< 1.25 UJ	1.2	44.5 J+	32.9
WHC1-D25	0	NORM	12/16/2008	155 J+	< 0.75 U	1 J	726 J	< 1.25 UJ	0.98	38.5 J+	42.2
WHC1-D25	10	NORM	12/16/2008	165 J+	< 0.75 U	< 0.75 U	899 J	< 1.25 UJ	1.1	49.5 J+	34.2
WHC1-D26	0	NORM	12/12/2008	157	< 0.75 U	< 0.75 U	1310	< 1.25 U	0.86	69.4	45.7 J+
WHC1-D26	10	NORM	12/12/2008	141	< 0.75 U	< 0.75 U	1070	< 1.25 U	1.1	59	34.3 J+
WHC1-D27	0	NORM	12/12/2008	160	< 0.75 U	< 0.75 U	1030	< 1.25 U	0.88	56.9	39.5 J+
WHC1-D27	0	FD	12/12/2008	131	< 0.75 U	< 0.75 U	837	< 1.25 U	0.75	49.5	36.8 J+
WHC1-D27	10	NORM	12/12/2008	150	< 0.75 U	< 0.75 U	1100	< 1.25 U	1.3	62.7	40.3 J+
WHC1-D28	0	NORM	12/12/2008	149	< 0.75 U	< 0.75 U	871	< 1.25 U	0.97	50.6	36.6 J+
WHC1-D28	10	NORM	12/12/2008	176	< 0.75 U	< 0.75 U	1320	2 J	1.2	69.8	37.2 J+
WHC1-D29	0	NORM	12/12/2008	200	< 0.75 U	0.93 J	754	< 1.25 U	1.2	51	61.5 J+
WHC1-D29	10	NORM	12/12/2008	200	< 0.75 U	< 0.75 U	1050	< 1.25 U	1.1	61.2	34.1 J+
WHC1-P01	0	NORM	12/15/2008	202	< 0.75 U	< 0.75 U	831	< 1.25 U	1.2	46.9	40.4
WHC1-P01	12	NORM	12/19/2008	151	< 0.75 U	< 0.75 U	645	< 1.25 UJ	0.98	35.8	25.7

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 61 of 64)

Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Strontium	Fhallium	Fin	Fitanium	Tungsten	Uranium	Vanadium	Zinc
WHC1-P01NE	0	NORM	2/2/2010								
WHC1-P01NW	0	NORM	2/2/2010								
WHC1-P01SE	0	NORM	2/2/2010								
WHC1-P01SW	0	NORM	2/2/2010								
WHC1-P01SW	0	FD	2/2/2010								
WHC1-P02	0	NORM	12/1/2008	130 J-	< 0.75 U	< 0.75 U	767 J	< 1.25 UJ	0.62	46.5	39.1
WHC1-P02	10	NORM	12/1/2008	140 J-	< 0.75 U	< 0.75 U	603 J	< 1.25 UJ	0.93	37.9	27.6
WHC1-P03	0	NORM	12/15/2008	204	< 0.75 U	< 0.75 U	1060	< 1.25 U	1	54.3	40.1
WHC1-P03	3	NORM	12/18/2008	201 J+	< 0.75 U	< 0.75 U	783	< 1.25 U	1.4	46.8	29.6
WHC1-P03	3	FD	12/18/2008	198 J+	< 0.75 U	< 0.75 U	704	< 1.25 U	1.1	40.5	26.7
WHC1-P03	13	NORM	12/18/2008	145 J+	< 0.75 U	< 0.75 U	587	< 1.25 U	1.3	39.5	24.4
WHC1-P04	0	NORM	12/15/2008	277	< 0.75 U	< 0.75 U	857	< 1.25 U	1.6	53.2	42
WHC1-P04	10	NORM	12/18/2008	224 J+	< 0.75 U	< 0.75 U	692	< 1.25 U	1.5	40	25.5
WHC1-P05	0	NORM	12/8/2008	178	< 0.75 U	< 0.75 U	781	< 1.25 UJ	0.88	37.4 J-	43.3
WHC1-P05	0	FD	12/8/2008	159	< 0.75 U	< 0.75 U	873	< 1.25 UJ	0.96	45.4 J-	42.8
WHC1-P05	10	NORM	12/18/2008	147 J+	< 0.75 U	< 0.75 U	679	< 1.25 U	1.4	40.3	24.6
WHC1-P06	0	NORM	12/2/2008	156 J	< 0.75 U	< 0.75 U	1020	< 1.25 UJ	1.4	52.7 J-	37.3
WHC1-P06	12	NORM	12/2/2008	161 J	< 0.75 U	< 0.75 U	749	< 1.25 UJ	0.9	46 J-	30.7
WHC1-P07	0	NORM	12/2/2008	164 J	< 0.75 U	< 0.75 U	984	< 1.25 UJ	0.98	51.2 J-	38.6
WHC1-P07	3	NORM	12/2/2008	172 J	< 0.75 U	< 0.75 U	784	< 1.25 UJ	1.3	48.7 J-	30.3
WHC1-P07	13	NORM	12/2/2008	196 J	< 0.75 U	< 0.75 U	675	< 1.25 UJ	1.4	42.4 J-	29
WHC1-P08	0	NORM	12/3/2008	185	< 0.75 U	< 0.75 U	807	< 1.25 UJ	0.8	44.6	51.3
WHC1-P08	11	NORM	12/3/2008	220	< 0.75 U	< 0.75 U	858	< 1.25 UJ	1	45.7	31.3
WHC1-P09	0	NORM	12/4/2008	176 J+	< 0.75 U	< 0.75 U	966	< 1.25 U	0.85	49.9 J+	46.7 J+
WHC1-P09	0	FD	12/4/2008	183 J+	< 0.75 U	< 0.75 U	794	< 1.25 U	0.77	45.1 J+	38.9 J+
WHC1-P09	10	NORM	12/4/2008	210 J+	< 0.75 U	< 0.75 U	634	< 1.25 U	1.1	39.7 J+	27.3 J+
WHC1-P10	0	NORM	11/25/2008	690 J	< 0.75 U	< 0.75 U	571 J	< 1.25 U	0.82 J+	36.5 J+	69.9 J+
WHC1-P10	10	NORM	11/25/2008	973 J	< 0.75 U	< 0.75 U	757 J	< 1.25 U	4.4 J+	61.4 J+	36.8 J+
WHC1-P11	0	NORM	12/8/2008	701	2.1	13.9	1600	7.4 J-	4.6	92.2 J-	120
WHC1-P11	0	FD	12/8/2008	494	1.8	17.5	1650	4.6 J-	3.8	78.3 J-	94.5
WHC1-P11	10	NORM	12/9/2008	185 J	< 0.75 U	< 0.75 U	919	< 1.25 UJ	1.8	45.8	29.9
WHC1-P12	0	NORM	12/5/2008	254 J+	< 0.75 U	< 0.75 U	708	< 1.25 UJ	0.85	33.5 J+	48
WHC1-P12	11	NORM	12/5/2008	393 J+	< 0.75 U	< 0.75 U	748	< 1.25 UJ	1.5	38.4 J+	30.2
WHC1-P13	0	NORM	12/9/2008	191 J	< 0.75 U	< 0.75 U	881	< 1.25 UJ	0.86	50.4	47.4
WHC1-P13	10	NORM	12/9/2008	129 J	< 0.75 U	< 0.75 U	841	< 1.25 UJ	11.8	64.1	66.1
WHC1-P13	10	FD	12/9/2008	500 J	< 0.75 U	< 0.75 U	780	< 1.25 UJ	12.8	68.9	45.7
WHC1-P14	0	NORM	12/17/2008	396 J+	< 0.75 U	< 0.75 U	640	< 1.25 U	1.9	44	86.4
WHC1-P15	0	NORM	12/8/2008	275	< 0.75 U	< 0.75 U	922	< 1.25 UJ	1.4	49.4 J-	42.9
WHC1-P15	1.5	NORM	12/8/2008	202	< 0.75 U	< 0.75 U	832	< 1.25 UJ	1.7	43.9 J-	34.1
WHC1-P15	10	NORM	12/18/2008	272 J+	< 0.75 U	< 0.75 U	719	< 1.25 U	1.6	44.5	26

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 62 of 64)

							Me	etals			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Strontium	Thallium	Tin	Fitanium	Tungsten	Uranium	Vanadium	Zinc
WHC1-P15NE	0	NORM	2/2/2010								
WHC1-P15NE	0	FD	2/2/2010								
WHC1-P15NW	0	NORM	2/2/2010								
WHC1-P15SE	0	NORM	2/2/2010								
WHC1-P15SW	0	NORM	2/2/2010								
WHC1-P16	0	NORM	12/1/2008	156 J-	< 0.75 U	< 0.75 U	753 J	< 1.25 UJ	0.92	46.8	52.5
WHC1-P16	11	NORM	12/1/2008	227 J-	< 0.75 U	< 0.75 U	574 J	< 1.25 UJ	1.5	39.6	29.8
WHC1-P17	0	NORM	12/15/2008	151	< 0.75 U	< 0.75 U	828	< 1.25 U	0.95	45.8	47.5
WHC1-P17	12	NORM	12/19/2008	356	< 0.75 U	< 0.75 U	744	< 1.25 UJ	1.4	46.5	27
WHC1-P17	12	FD	12/19/2008	256	< 0.75 U	< 0.75 U	704	< 1.25 UJ	1.5	43.7	35.6
WHC1-P18	0	NORM	12/1/2008	176 J-	< 0.75 U	< 0.75 U	669 J	< 1.25 UJ	1.1	42.2	43.6
WHC1-P18	12	NORM	12/1/2008	287 J-	< 0.75 U	< 0.75 U	686 J	< 1.25 UJ	1.7	45.5	33.5
WHC2-BF05C	12	NORM	12/3/2009	836 J	< 0.105 U	< 0.75 U	445 J	< 3.2 UJ	12.4 J+	48	24.2 J+
WHC2-BF05NE	12	NORM	12/3/2009	296	< 0.105 U	< 0.75 U	579	< 0.185 U	4.3	46.6	19.2
WHC2-BF05NW	12	NORM	12/3/2009	859	< 0.105 U	< 0.75 U	335	< 0.185 U	7.9	36.6	15.8
WHC2-BF05SE	12	NORM	12/3/2009	706	< 0.105 U	< 0.75 U	356	< 0.185 U	8.7	38.5	29.3
WHC2-BF05SW	12	NORM	12/3/2009	862	< 0.105 U	< 0.75 U	393	< 0.185 U	11	48.3	24
WHC2-BG04C	10	NORM	12/4/2009	546 J	< 0.105 U	< 0.75 U	420 J	< 0.185 UJ	21.2	73.9 J	49.2
WHC2-BG04NE	10	NORM	12/4/2009	741 J-	< 0.105 U	< 0.75 U	185	< 0.185 UJ	23.8	45.1	16.4
WHC2-BG04NW	10	NORM	12/4/2009	486 J-	< 0.105 U	< 0.75 U	416	< 0.185 UJ	2.3	30.6	28.3
WHC2-BG04SE	10	NORM	12/4/2009	410 J-	< 0.105 U	< 0.75 U	278	< 0.185 UJ	13.1	43.6	31.3
WHC2-BG04SW	10	NORM	12/4/2009	1530 J-	< 0.105 U	< 0.75 U	479	< 0.185 UJ	22.3	71.6	58.7
WHC2-BG06C	10	NORM	12/3/2009	3020	< 0.105 U	< 0.75 U	348	< 0.185 U	12.2	58.3	26.6
WHC2-BG06NE	10	NORM	12/3/2009	1600	< 0.105 U	< 0.75 U	431	< 0.185 U	11.7	67.1	28.2
WHC2-BG06NW	10	NORM	12/3/2009	703	< 0.105 U	< 0.75 U	258	< 0.185 U	7.2	38	19.1
WHC2-BG06SE	10	NORM	12/3/2009	4200	< 0.105 U	< 0.75 U	208	< 0.185 U	16.7	76.7	20.5
WHC2-BG06SW	10	NORM	12/3/2009	733	< 0.105 U	< 0.75 U	464	< 0.185 U	2.2	35.9	21.6
WHC2-BI05C	0	NORM	11/30/2009	265 J	< 0.105 U	< 0.75 U	523	< 0.185 U	0.99 J+	35.5	36.8 J+
WHC2-BL07	0	NORM	8/9/2010	152	< 0.3 U	< 1 U	864	< 2.6 UJ	1.5	74.5	48.8
WHC2-BM06C	0	NORM	11/30/2009	98.4 J	< 0.105 U	1.1 J+	882	< 2.6 UJ	0.8 J+	33.9	19.6 J+
WHC2-BM10C	13	NORM	11/25/2009	409 J	< 0.105 U	< 0.75 U	398 J	< 0.185 U	5 J+	38.9 J+	24.6 J+
WHC2-BM10C	13	FD	11/25/2009	194 J	< 0.105 U	< 0.75 U	486 J	< 0.185 U	8 J≑	48.9 J+	30.3 J+
WHC2-BM10NE	13	NORM	11/25/2009	603 J	< 0.105 U	< 0.75 U	553 J	< 0.185 U	4.2 J+	40.9 J+	26.6 J+
WHC2-BM10NW	13	NORM	11/25/2009	742 J	< 0.105 U	1.2 J≠	623 J	< 2.9 U	4.7 J+	52.4 J+	43.5 J+
WHC2-BM10SE	13	NORM	11/25/2009	415 J	< 0.105 U	< 0.75 U	369 J	< 0.185 U	2.6 J#	29.8 J+	17.4 J+
WHC2-BM10SW	13	NORM	11/25/2009	571 J	< 0.105 U	< 0.75 U	485 J	< 0.185 U	3.3 J+	36 J+	21.5 J+
WHC2-BN09C	11	NORM	11/25/2009	302 J	< 1.1 UJ	< 0.75 U	455 J	< 2.7 U	1.8 J+	34.1 J+	32.7 J+
WHC2-BN09C	11	FD	11/25/2009	373 J	< 0.105 U	< 0.75 U	593 J	< 2.7 U	2.4 J+	41 J+	36.6 J+
WHC2-BN09NE	11	NORM	11/25/2009	404 J	< 0.105 U	< 0.75 U	580 J	< 0.185 U	2.2 J+	38.7 J+	40.2 J+
WHC2-BN09NW	11	NORM	11/25/2009	268 J	< 0.105 U	< 0.75 U	596 J	< 0.185 U	1.9 J+	40.8 J+	37.5 J+

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 63 of 64)

	Ī			Metals							
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Strontium	Thallium	Tin	Titanium	Tungsten	Uranium	Vanadium	Zinc
WHC2-BN09SE	11	NORM	11/25/2009	382 J	< 0.105 U	< 0.75 U	540 J	< 0.185 U	2.8 J+	39.9 J+	38.6 J+
WHC2-BN09SW	11	NORM	11/25/2009	293 J	< 0.105 U	< 0.75 U	508 J	< 0.185 U	2.1 J+	36 J+	37.7 J+
WHC2-BN10	0	NORM	8/10/2010	382 J+	< 1.1 U	0.9 J	540	< 0.43 UJ	6.2	79.3	25.3 J+
WHC2-BN10NE	0	NORM	8/10/2010	878 J+	< 1 U	0.52 J	595	< 0.42 UJ	5.9	53.9	31.7 J+
WHC2-BN10SE	0	NORM	8/10/2010	861 J+	< 1 U	< 0.39 U	545	< 0.42 UJ	3.5	52.4	28.8 J+
WHC2-BN10SW	0	NORM	8/10/2010	489 J+	< 0.3 U	< 0.39 U	424	< 0.42 UJ	2.9	38.3	25.3 J+
WHC2-BO10C	0	NORM	11/25/2009	473 J	< 0.105 U	< 0.75 U	531	< 2.6 UJ	6.9 J+	53.7	32.6 J+
WHC2-BO10C	0	FD	11/30/2009	235 J	< 0.105 U	< 0.75 U	540	< 0.185 U	5.2 J+	59.9	27.8 J+
WHC2-BP07C	3	NORM	11/25/2009	215 J	< 0.105 U	< 0.75 U	439 J	< 0.185 U	1.8 J+	34.3 J+	30.3 J+
WHC2-BP07NE	3	NORM	11/25/2009	165 J	< 0.105 U	< 0.75 U	464 J	< 0.185 U	1.1 J+	30.9 J+	32 J+
WHC2-BP07NW	3	NORM	11/25/2009	806 J	< 1 UJ	< 0.75 U	593	< 2.6 UJ	3 J+	49.9	32.1 J+
WHC2-BP07SE	3	NORM	11/25/2009	713 J	< 0.105 U	< 0.75 U	613 J	< 2.7 U	3.5 J+	59 J+	35.6 J+
WHC2-BP07SW	3	NORM	11/25/2009	512 J	< 1 UJ	< 0.75 U	609	< 2.6 UJ	1 J+	37.5	30.4 J+
WHC2-BP08C	4	NORM	11/25/2009	1360 J	< 0.105 U	< 0.75 U	493 J	< 0.185 U	2.7 J+	47.5 J+	27.3 J+
WHC2-BP08NE	4	NORM	11/25/2009	762 J	< 0.105 U	< 0.75 U	557 J	< 2.7 U	3 J+	48.4 J+	25.5 J+
WHC2-BP08NW	4	NORM	11/25/2009	575 J	< 0.105 U	< 0.75 U	404 J	< 2.6 U	1.7 J+	37.5 J+	21.9 J+
WHC2-BP08SE	4	NORM	11/25/2009	728 J	< 0.105 U	< 0.75 U	492 J	< 0.185 U	3 J+	43.3 J+	28.2 J+
WHC2-BP08SW	4	NORM	11/25/2009	413 J	< 0.105 U	< 0.75 U	490 J	< 2.7 U	4.6 J+	37.8 J+	26 J+
WHC2-D11C	0	NORM	12/2/2009	400 J-	< 1 U	1.1	483	< 2.5 UJ	1.7	37.1	106
WHC2-D13C	10	NORM	12/3/2009	572	< 0.105 U	< 0.75 U	182	< 0.185 U	11.1	58.2	21
WHC2-D13NE	10	NORM	12/3/2009	1530	< 0.105 U	< 0.75 U	280	< 0.185 U	21.1	57.9	35.9
WHC2-D13NW	10	NORM	12/3/2009	986	< 0.105 U	< 0.75 U	473	< 0.185 U	3.5	40.2	20.6
WHC2-D13SE	10	NORM	12/3/2009	303	< 0.105 U	< 0.75 U	297	< 0.185 U	13.1	183	45.7
WHC2-D13SW	10	NORM	12/3/2009	695	< 0.105 U	< 0.75 U	265	< 0.185 U	17.9	54.9	18.5
WHC2-D14C	0	NORM	12/2/2009	376 J-	< 0.105 U	< 0.75 U	406	< 2.6 UJ	1.2	27.2	80.5
WHC2-D16C	0	NORM	11/30/2009	541 J	< 0.105 U	< 0.75 U	456	< 2.8 UJ	2.8 J+	35.6	29.7 J+
WHC2-D17C	0	NORM	12/1/2009	332 J	< 1.1 UJ	< 0.75 U	656 J	< 2.8 U	2	43.1 J+	35.2 J+
WHC2-P07C	0	NORM	12/1/2009	169 J	< 1 UJ	< 0.75 U	836 J	< 0.185 U	1.3	< 3.51 U	31.1 J+
WHC2-P11C	0	NORM	12/1/2009	210 J	1.3 J+	3.5 J+	1210 J	6.4	1.1	88.6 J+	44.6 J+
WHC2-P11C	10	NORM	12/3/2009	139	1.3	1.4	792	2.3	1.7	59.3	69.2
WHC2-P13C	10	NORM	12/4/2009	656 J-	< 0.105 U	< 0.75 U	443	< 0.185 UJ	4.9	38.3	31
WHC2-P13NE	10	NORM	12/4/2009	276 J	< 0.105 U	< 0.75 U	424 J	< 0.185 UJ	12.2	75 J	42.4
WHC2-P13NW	10	NORM	12/4/2009	615 J-	< 0.105 U	< 0.75 U	499	< 0.185 UJ	8.5	56.5	37.7
WHC2-P13SE	10	NORM	12/4/2009	127 J	< 0.105 U	< 0.75 U	684 J	< 0.185 U	10.5	72.8 J	73.5
WHC2-P13SW	10	NORM	12/4/2009	314 J	< 0.105 U	< 0.75 U	534 J	< 0.185 UJ	11.4	61.7 J	46.3
WHC3-BO10C	0	NORM	8/16/2010	693 J	< 0.29 U	< 0.38 U	614 J	< 0.41 UJ	2.7	40.9	26.7
WHC3-D11C	0	NORM	6/24/2010	286	1.8	13.3	1000	8.1 J-	1.9	71.2	78.9
WHC3-D14C	0	NORM	8/9/2010	1990	< 0.35 U	< 0.46 U	218	< 0.5 UJ	26.5	54.8	17.8
WHC3-D14C	0	FD	8/9/2010	2010	< 0.35 U	< 0.46 U	192	< 0.5 UJ	23.5	64.3	17.5
WHC3-P11C	0	NORM	8/9/2010	77.8	1.3	1.1	1180	< 2.6 UJ	0.6	83.3	28.8
	Ü	1101011	3/ // 2010	77.0	1.5	1.1	1100	12.0 00	0.0	05.5	20.0

SOIL METALS DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 64 of 64)

					Metals									
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Strontium	Thallium	Tin	Titanium	Tungsten	Uranium	Vanadium	Zinc			
WHC3-P11C	0	FD	8/9/2010	93.1	1.2	1.5	1050	3.7 J-	0.71	128	30.3			
WHC7-D12	0	NORM	3/20/2014	230 J+	< 0.68 U	2.1	350 J+	1.6 J-	0.72	29	35			
WHC7-W11	0	NORM	3/20/2014	270 J+	< 0.67 U	7	880 J+	1.8 J-	3.7	52	1400			
WHC7-WA11	0	NORM	5/12/2014	300 J+	< 0.74 U	0.52 J	550	< 1.2 U	0.86	41	44			
WHD-AS-BG05	0	NORM	9/18/2009											
WHD-AS-BG05	10	NORM	9/18/2009											
WHD-AS-BH04	10	NORM	9/18/2009											
WHD-AS-BK03	12	NORM	9/21/2009											
WHD-AS-BL03	0	NORM	9/21/2009											
WHD-AS-BL03	0	FD	9/21/2009		-		-		-	-				
WHD-AS-BN01	12	NORM	9/21/2009											
WHD-AS-BN10	0	NORM	9/18/2009											
WHD-AS-BP03	11	NORM	9/21/2009											
WHD-AS-BP03	11	FD	9/21/2009											
WHD-AS-BP04	0	NORM	9/18/2009											
WHD-AS-BP08	0	NORM	9/18/2009											
WHD-AS-BP08	4	NORM	9/21/2009											
WHD-AS-P14	0	NORM	9/21/2009											

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 27)

				Organochlorine Pesticides							
	Depth	Sample	Sample	2,4-DDD	4-DDE	4,4-DDD	4-DDE	4,4-DDT	Aldrin	alpha-BHC	alpha-Chlordane
Sample ID	(ft bgs)	Type	Date		2,		4,		<u> </u>		
OSC1-BM11	0	NORM	9/21/2009	< 0.00015 U	< 0.00013 U	< 0.00012 U	< 0.00044 U	< 0.00026 U	< 0.000095 U	< 0.000098 U	< 0.00011 U
OSC1-BM11	10	NORM	9/21/2009	< 0.00017 U	< 0.00015 U	< 0.00013 U	< 0.0005 U	< 0.00029 U	< 0.00011 U	< 0.00011 U	< 0.00012 U
OSCI-BN11	0	NORM	9/22/2009	0.0045 J+	0.022 J+	0.012 J+	0.11 J+	0.0078 J+	< 0.000092 U	< 0.000095 U	< 0.00011 U
OSCI-BNII	5	NORM	9/22/2009	< 0.00015 U	0.0067	0.0036	0.024	< 0.00026 U	< 0.000096 U	< 0.000099 U	< 0.00011 U
OSC1-BO11	0	NORM	9/16/2009	< 0.00015 U	< 0.00013 U	< 0.00012 U	< 0.00045 U	< 0.00026 U	< 0.000098 U	< 0.0001 U	< 0.00011 U
OSC1-BO11	0	FD	9/16/2009	< 0.00016 U	< 0.00014 U	< 0.00013 U	< 0.00049 U	< 0.00028 U	< 0.0001 U	< 0.00011 U	< 0.00012 U
OSC1-BO11	5	NORM	9/16/2009	< 0.00018 U	< 0.00016 U	< 0.00014 U	< 0.00053 U	< 0.00031 U	< 0.00011 U	< 0.00012 U	< 0.00013 U
OSC1-BP11	0	NORM	9/16/2009	< 0.00018 U	< 0.00016 U	< 0.00014 U	< 0.00053 U	< 0.00031 U	< 0.00011 U	< 0.00012 U	< 0.00013 U
OSC1-BP11	5	NORM	9/16/2009	< 0.00019 U	< 0.00017 U	< 0.00015 U	< 0.00057 U	< 0.00033 U	< 0.00012 U	< 0.00013 U	< 0.00014 U
OSC1-JP06	0	NORM	9/22/2009	< 0.00017 U	< 0.00015 U	< 0.00014 U	< 0.00052 U	< 0.0003 U	< 0.00011 U	< 0.00012 U	< 0.00013 U
OSC1-JP06	5	NORM	9/22/2009	< 0.00019 U	< 0.00017 U	< 0.00015 U	< 0.00058 U	< 0.00034 U	< 0.00013 U	< 0.00013 U	< 0.00014 U
OSC1-JP07	0	NORM	9/21/2009	< 0.00015 U	< 0.00013 U	< 0.00012 U	< 0.00045 U	< 0.00026 U	< 0.000098 U	< 0.0001 U	< 0.00011 U
OSC1-JP07	5	NORM	9/21/2009	< 0.00018 U	< 0.00016 U	< 0.00014 U	< 0.00053 U	< 0.00031 U	< 0.00011 U	< 0.00012 U	< 0.00013 U
OSC1-JP08	0	NORM	9/21/2009	< 0.00017 U	< 0.00015 U	< 0.00013 U	< 0.0005 U	< 0.00029 U	< 0.00011 U	< 0.00011 U	< 0.00012 U
OSC1-JP08	10	NORM	9/21/2009	< 0.00017 U	< 0.00015 U	< 0.00014 U	< 0.00053 U	< 0.0003 U	< 0.00011 U	< 0.00012 U	< 0.00013 U
OSC1-JS10	0	NORM	1/31/2010	0.0063 J	0.026 J	0.011 J	0.13 J	0.11 J	< 0.00013 U	< 0.00013 U	< 0.00015 U
OSC1-JS10	0	FD	1/21/2010	< 0.00019 UJ	0.0069 J	0.0064 J	0.04 J	0.041 J	< 0.00012 U	< 0.00013 U	< 0.00014 U
WHC1-BF01	0	NORM	11/24/2008	< 0.00031 U	0.005 J	< 0.00009 U	0.0086	0.0034 J	< 0.000096 U	< 0.00028 U	< 0.00021 U
WHC1-BF01	12	NORM	11/24/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BF02	0	NORM	11/25/2008	< 0.00031 U	0.0038 J+	< 0.00009 U	0.0076 J+	0.0026 J+	< 0.000096 U	< 0.00029 U	< 0.00021 U
WHC1-BF02	11	NORM	11/25/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	0.0024	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BF03	0	NORM	11/25/2008	< 0.00031 U	0.0018	< 0.00009 U	< 0.0002 U	< 0.00021 U	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-BF03	10	NORM	11/25/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BF04	0	NORM	11/25/2008	< 0.00031 U	0.0028	< 0.00009 U	0.0065	0.0033	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-BF04	0	FD	11/25/2008	< 0.00033 U	< 0.00021 U	< 0.000095 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.0003 U	< 0.00023 U
WHC1-BF04	10	NORM	11/25/2008	< 0.00033 U	< 0.00022 U	< 0.00096 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.0003 U	< 0.00023 U
WHC1-BF05	0	NORM	11/25/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	0.0033	0.0021	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BF05	12	NORM	12/10/2008	< 0.00043 U	< 0.00029 U	< 0.00013 U	< 0.00027 U	< 0.00029 U	< 0.00014 U	< 0.0004 U	< 0.0003 U
WHC1-BF06	0	NORM	12/10/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	0.0034	0.0032	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BF06	10	NORM	12/10/2008	< 0.00041 U	< 0.00027 U	< 0.00012 U	< 0.00026 U	< 0.00027 U	< 0.00013 U	< 0.00038 U	< 0.00029 U
WHC1-BG01	0	NORM	11/24/2008	< 0.00031 U	0.09	< 0.00009 U	0.058	0.035	< 0.000096 U	0.003	< 0.00021 U
WHC1-BG01	11	NORM	11/24/2008	< 0.00032 U	0.0032	< 0.000092 U	0.002	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BG02	0	NORM	11/24/2008	< 0.00031 U	0.025 J+	0.0023 J+	0.025 J+	0.011 J+	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-BG02	0	FD	11/24/2008	0.0017 J	0.028	0.0035	0.028	0.014	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-BG02	10	NORM	11/24/2008	< 0.0032 U	0.014	< 0.00092 U	0.013	0.0041	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-BG03	0	NORM	12/11/2008	< 0.00032 U	0.0056	< 0.000092 U	0.012	0.003 J	< 0.000099 U	< 0.00029 U	< 0.00021 U
WHC1-BG03	11	NORM	12/11/2008	< 0.00031 U	< 0.0021 U	< 0.00009 U	< 0.002 U	< 0.0003 J	< 0.000098 U	< 0.00029 U	< 0.00021 U
WHC1-BG04	0	NORM	12/11/2008	< 0.031 U	< 0.00 U	< 0.009 U	< 0.0002 C	< 0.02 U	< 0.0096 U	< 0.00027 C	0.085 J
WHC1-BG04	10	NORM	12/11/2008	< 0.0004 U	< 0.002 C	< 0.00012 U	< 0.0025 U	< 0.0027 U	< 0.0000 U	< 0.0037 U	< 0.00028 U
17.11017004	10	TATAINIAI	14/11/4000	~ 0,000+ U	→ 0+00040 U	N 0.00012 U		> 0.00047 U	~ 0.00013 U	× 0.00007 U	→ v.00020 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 27)

							Organochlor	ine Pesticides			
	Depth	Sample	Sample	2,4-DDD	,4-DDE	4,4-DDD	4-DDE	,4-DDT	Aldrin	alpha-BHC	alpha-Chlordane
Sample ID	(ft bgs)	Type	Date		7		4,	4			
WHC1-BG05 WHC1-BG05	0	NORM	11/25/2008 11/25/2008	< 0.00031 U	< 0.0002 U < 0.00023 U	< 0.000091 U < 0.0001 U	< 0.0002 U < 0.00022 U	< 0.00021 U < 0.00023 U	< 0.000097 U < 0.00011 U	< 0.00029 U < 0.00032 U	< 0.00021 U < 0.00024 U
WHC1-BG05 WHC1-BG06	0	NORM NORM	12/10/2008	< 0.00035 U < 0.00032 U	< 0.00023 U 0.005 J+	< 0.0001 U < 0.00093 U	< 0.00022 U 0.012 J+	0.00023 U 0.011 J+	< 0.00011 U < 0.000099 U	< 0.00032 U < 0.00029 U	< 0.00024 U
WHC1-BG06	10	NORM	12/10/2008	< 0.00032 U	< 0.003 J+ < 0.00025 U	< 0.000093 U	< 0.002 J+ < 0.00024 U	< 0.0025 U	< 0.000099 U	0.005	< 0.00022 U
WHC1-BH01	0	NORM	12/3/2008	< 0.00038 U	0.007	< 0.00011 U	0.0024 0	0.00025	< 0.00012 U	< 0.00029 U	< 0.00020 U
WHC1-BH01	11	NORM	12/3/2008	< 0.00031 U	< 0.007	< 0.000092 U	< 0.002 U	< 0.0033	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BH02	0	NORM	12/4/2008	< 0.00032 U	0.012	< 0.000092 U	0.02	0.0067	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BH02	10	NORM	12/4/2008	< 0.00031 U	< 0.002 U	< 0.000092 U	< 0.002 U	< 0.0007 < 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BH03	0	NORM	12/9/2008	< 0.00031 U	0.0002 0	< 0.000091 U	0.022	0.0068	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-BH03	10	NORM	12/9/2008	< 0.00031 U	< 0.0021 U	< 0.000091 U	< 0.0022 < 0.0002 U	< 0.0003 U	< 0.000097 U	< 0.00029 U	< 0.00022 U
WHC1-BH04	0	NORM	12/11/2008	< 0.00032 U	0.002 J	< 0.000092 U	0.007	0.0032	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-BH04	10	NORM	12/11/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00021 U
WHC1-BH05	0	NORM	12/9/2008	0.0042 J	0.016	0.0055 J	0.077 J	0.034 J	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BH05	0	FD	12/9/2008	0.0024 J	0.011 J+	0.0027 J	0.036 J	0.017 J	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BH05	10	NORM	12/9/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BH06	0	NORM	12/11/2008	0.0052 J	0.023 J	< 0.000098 U	0.1 J	0.038 J	< 0.0001 U	< 0.00031 U	< 0.00023 U
WHC1-BH06	0	FD	12/11/2008	< 0.00033 UJ	0.0068 J	< 0.000097 U	0.024 J	0.007 J	< 0.0001 U	< 0.00031 U	< 0.00023 U
WHC1-BH06	10	NORM	12/11/2008	< 0.00035 U	< 0.00023 U	< 0.0001 U	< 0.00022 U	< 0.00023 U	< 0.00011 U	0.0023	< 0.00024 U
WHC1-BI01	0	NORM	12/3/2008	< 0.00067 U	0.033	< 0.0002 U	0.032	0.024	< 0.00021 U	< 0.00062 U	< 0.00046 U
WHC1-BI01	11	NORM	12/3/2008	< 0.00032 U	0.028	0.0023	0.025	0.024	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BI02	0	NORM	12/4/2008	< 0.00032 U	0.0042	< 0.000094 U	0.0086	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BI02	3	NORM	12/4/2008	< 0.00031 U	< 0.00021 U	< 0.000091 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BI02	13	NORM	12/4/2008	< 0.00031 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BI03	0	NORM	12/4/2008	< 0.00031 U	0.0078	< 0.000092 U	0.019	0.0041	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BI03	11	NORM	12/4/2008	< 0.00031 U	< 0.0002 U	< 0.000091 U	< 0.0002 U	< 0.00021 U	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-BI04	0	NORM	12/8/2008	< 0.00031 U	0.0071	< 0.000091 U	0.019	0.007	< 0.000097 U	< 0.00029 U	< 0.00022 U
WHC1-BI04	10	NORM	12/9/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BI05	0	NORM	12/9/2008	0.006 J	0.029	0.014	0.1	0.034	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BI05	10	NORM	12/9/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BJ01	0	NORM	12/3/2008	< 0.00032 U	0.0021	0.0021	0.0093	0.0069	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BJ01	3	NORM	12/3/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BJ01	13	NORM	12/3/2008	< 0.00033 U	< 0.00021 U	< 0.000095 U	< 0.0002 U	< 0.00022 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BJ02	0	NORM	12/2/2008	< 0.00032 U	< 0.00021 UJ	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BJ02	0	FD	12/2/2008	< 0.00032 UJ	0.0088 J	< 0.000093 UJ	< 0.0002 UJ	< 0.00021 UJ	< 0.000099 UJ	< 0.00029 UJ	< 0.00022 UJ
WHC1-BJ02	12	NORM	12/2/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.00031 U	0.002	< 0.000091 U	0.0053	< 0.00021 U	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-BJ03	0	FD	12/4/2008	< 0.00031 U	0.0027	< 0.000091 U	0.0068	< 0.00021 U	< 0.000097 U	< 0.00029 U	< 0.00022 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BJ04	0	NORM	12/4/2008	< 0.00031 U	0.0019	< 0.00009 U	0.0064	< 0.00021 U	< 0.000097 U	< 0.00029 U	< 0.00021 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 27)

							Organochlor	ine Pesticides			
	Depth	Sample	Sample	2,4-DDD	4-DDE	,4-DDD	4-DDE	.4-DDT	Aldrin	alpha-BHC	alpha-Chlordane
Sample ID	(ft bgs)	Type	Date		2,	4	4,	4			
WHC1-BJ04	11	NORM	12/4/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BJ05	0	NORM	12/11/2008	0.002 J	0.03 J+	0.0078 J+	0.067 J+	0.022 J+	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-BJ05	10	NORM	12/11/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BK01	0	NORM	12/3/2008	< 0.0016 U	< 0.001 U	< 0.00047 U	0.01	< 0.0011 U	< 0.0005 U	< 0.0015 U	< 0.0011 U
WHC1-BK01	0	FD	12/3/2008	< 0.0016 U	< 0.0011 U	< 0.00047 U	0.011	< 0.0011 U	< 0.0005 U	< 0.0015 U	< 0.0011 U
WHC1-BK01	10	NORM	12/3/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BK02	0	NORM	12/8/2008	< 0.00031 U	< 0.00021 U	< 0.000091 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BK02	11	NORM	12/18/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BK03	0	NORM		< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BK03	12	NORM	12/18/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BK04	0	NORM	12/4/2008	< 0.00032 U	0.0025	< 0.000092 U	0.0064	0.0018	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BK04	10	NORM	12/4/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BK05	0	NORM	12/12/2008	< 0.00031 U	0.0064	< 0.000091 U	0.014	0.0068	< 0.000097 U	< 0.00029 U	< 0.00022 U
WHC1-BK05	11	NORM	12/12/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BL01	0	NORM	12/3/2008	< 0.0016 U	< 0.001 U	< 0.00046 U	< 0.001 U	< 0.0011 U	< 0.00049 U	< 0.0015 U	< 0.0011 U
WHC1-BL01	10	NORM	12/3/2008	< 0.00032 U	0.002	< 0.000093 U	0.0048	0.003	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BL02	0	NORM	12/2/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BL02	10	NORM	12/2/2008	< 0.00033 U	< 0.00022 U	< 0.000096 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.00031 U	< 0.00023 U
WHC1-BL03	0	NORM	12/8/2008	< 0.00032 U	0.003	0.003	0.0071	0.0079	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BL03	10	NORM	12/18/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BL04	0	NORM	12/17/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	0.002	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BL04	12	NORM	12/22/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BL05	0	NORM	11/21/2008	< 0.00031 U	0.017 J+	0.0047 J+	0.033 J+	0.0097 J+	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-BL05	10	NORM	11/21/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BL06	0	NORM	11/21/2008	0.0068 J	0.06 J+	0.02 J+	0.16 J+	0.045 J+	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-BL06	11	NORM	11/21/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BL07	0	NORM	11/21/2008	0.0033 J	0.0066	0.0064	0.022	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BL07	10	NORM	11/21/2008	< 0.0004 U	< 0.00026 U	< 0.00012 U	< 0.00025 U	< 0.00027 U	< 0.00013 U	< 0.00037 U	< 0.00028 U
WHC1-BL08	0	NORM	11/18/2008	0.0057 J	0.057	0.013 J+	0.055	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BL08	10	NORM	11/18/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	0.0022 J+	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BL11	0		11/18/2008	0.018 J	0.049	0.048 J	0.21	0.094 J	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BL11	12	NORM	11/18/2008	< 0.00033 U	< 0.00021 U	< 0.000095 U	0.0039 J	< 0.00022 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BM01	0	NORM	12/3/2008	< 0.00032 U	< 0.00021 U	< 0.000095 U	0.0024	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BM01	10	NORM	12/3/2008	< 0.00031 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BM02	0	NORM	12/2/2008	< 0.00031 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BM02	12	NORM	12/2/2008	< 0.00033 U	< 0.00021 U	< 0.000095 U	< 0.00021 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BM03	0	NORM	12/8/2008	< 0.00033 U	< 0.00021 U	< 0.000092 U	0.0026	0.002	< 0.00098 U	< 0.00029 U	< 0.00022 U
WHC1-BM03	10	NORM		< 0.00031 U	< 0.00021 U	< 0.000092 U	< 0.0021 U	< 0.0022 U	< 0.0001 U	< 0.00027 C	< 0.00022 U
WHC1-BM04	0	NORM		< 0.00033 U	< 0.00021 U	< 0.000090 U	0.0032 J	< 0.00022 U	< 0.0001 C	< 0.0003 U	< 0.00023 U
WIICI-DIMOT	U	TOM	12/11/2000	< 0.00032 U	< 0.00021 U	< 0.000072 €	0.00323	\ 0.00021 U	< 0.000076 U	< 0.00027 U	< 0.00022 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 27)

							Organochlor	ine Pesticides			1
							- 9				alpha-Chlordane
				О	田	Д	田	H		alpha-BHC	hlc
	Depth	Sample	Sample	QQ	,4-DDE	4-DDD	,4-DDE	,4-DDT	ii.	а-Е	a-C
Sample ID	(ft bgs)	Туре	Date	2,4-DDD	4,	4,	4,	4	Aldrin	lph	lph
WHC1-BM04	0	FD	12/17/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	0.0065 J	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BM04	10	NORM	12/22/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BM05	0	NORM	11/21/2008	< 0.00031 U	0.035	< 0.00009 U	0.0041	< 0.0002 U	< 0.000096 U	< 0.00028 U	< 0.00021 U
WHC1-BM05	10	NORM	11/21/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BM06	0	NORM	11/21/2008	0.028 J	0.12 J+	0.064	0.4 J	0.13 J	< 0.000097 U	0.0029 J+	< 0.00021 U
WHC1-BM06	0	FD	11/21/2008	0.01 J	0.037 J	0.023 J	0.16 J	0.049 J	< 0.0001 U	< 0.00031 U	< 0.00023 U
WHC1-BM06	10	NORM	11/21/2008	0.0039 J	0.017 J+	0.0062 J+	0.067	0.012 J+	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BM07	0	NORM	11/20/2008	0.0025 J	0.058 J	0.013 J	0.13 J+	0.029 J+	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-BM07	11	NORM	11/20/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BM08	0	NORM	11/18/2008	< 0.00031 UJ	0.0034 J	0.0044 J	0.015 J	0.056 J	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BM08	0	FD	11/18/2008	0.01 J	0.055	0.025 J	0.16	0.14 J	< 0.00011 U	< 0.00033 U	< 0.00024 U
WHC1-BM08	11	NORM	11/18/2008	0.0023 J	0.016 J	0.017 J	0.065	0.027 J	< 0.0001 U	< 0.0003 U	< 0.00023 U
WHC1-BM09	0	NORM	11/18/2008	< 0.00031 U	0.0021 J+	< 0.000092 U	0.0067 J+	0.0044 J	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BM09	12	NORM	11/18/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	0.0037 J+	0.0027 J+	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BM10	0	NORM	11/18/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	0.0034 J+	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BM10	3	NORM	11/18/2008	0.0022 J+	0.005 J	< 0.000095 U	0.01 J+	0.0026 J+	< 0.0001 U	< 0.0003 U	< 0.00023 U
WHC1-BM10	13	NORM	11/18/2008	< 0.00039 U	< 0.00026 U	< 0.00011 U	< 0.00025 U	< 0.00026 U	< 0.00012 U	< 0.00036 U	< 0.00027 U
WHC1-BN01	0	NORM	12/1/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BN01	12	NORM	12/1/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BN02	0	NORM	12/1/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BN02	0	FD	12/1/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BN02	11	NORM	12/1/2008	< 0.00031 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BN03	0	NORM	12/17/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	0.0032	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BN03	10	NORM	12/18/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BN04	0	NORM	12/17/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	0.0032	0.0041	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BN04	7	NORM	12/22/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BN04	17	NORM	12/22/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BN05	0	NORM	11/20/2008	< 0.00031 UJ	0.013 J	< 0.00009 UJ	0.018 J	0.0041 J	< 0.000096 UJ	< 0.00028 UJ	< 0.00021 UJ
WHC1-BN05	0	FD	11/20/2008	< 0.00031 UJ	< 0.0002 UJ	< 0.000091 UJ	< 0.0002 UJ	0.0021 J	< 0.000097 UJ	< 0.00029 UJ	< 0.00021 UJ
WHC1-BN05	10	NORM	11/20/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BN06	0	NORM	11/20/2008	< 0.00031 U	< 0.0002 U	< 0.00009 U	< 0.0002 U	< 0.00021 U	< 0.000096 U	< 0.00029 U	< 0.00021 U
WHC1-BN06	10	NORM	11/20/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BN07	0	NORM	11/21/2008	0.0035 J	0.34	0.017	0.24	0.0097 J	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BN07	3	NORM	11/21/2008	0.0044 J	0.014	0.0058	0.045 J	0.015 J	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BN07	13	NORM	11/21/2008	< 0.00032 U	0.01	< 0.000093 U	0.018	0.0068	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-BN08	0	NORM	11/20/2008	0.0018 J	0.0052	0.0031	0.026	0.0067	< 0.000096 U	< 0.00029 U	< 0.00021 U
WHC1-BN08	10	NORM	11/20/2008	0.0044 J	0.016 J+	0.015 J+	0.065 J+	0.049 J	< 0.000097 U	< 0.00029 U	< 0.00022 U
WHC1-BN09	0	NORM	12/17/2008	< 0.00032 U	< 0.00021 U	0.0025	0.012	0.0043	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BN09	11	NORM	12/19/2008	< 0.00034 U	< 0.00022 U	< 0.000098 U	< 0.00021 U	< 0.00022 U	< 0.00011 U	< 0.00031 U	< 0.00023 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 27)

				Organochlorine Pesticides								
				Ð	ā	Ð	ā S	Ŧ		alpha-BHC	alpha-Chlordane	
	Depth	Sample	Sample	4-DDD	4-DDE	DD	4-DDE	4-DDT	Ę.	а-Е	a-C	
Sample ID	(ft bgs)	Туре	Date	2,4-		4,4-DDD	.+,	4,	Aldrin	lph	lph	
WHC1-BN10	0	NORM	11/18/2008	< 0.00034 U	< 0.00022 U	< 0.000098 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.00031 U	< 0.00023 U	
WHC1-BN10	10	NORM	11/18/2008	< 0.00037 U	< 0.00024 U	< 0.00011 U	< 0.00023 U	< 0.00024 U	< 0.00011 U	< 0.00034 U	< 0.00025 U	
WHC1-BO01	0	NORM	12/2/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U	
WHC1-BO01	0	FD	12/2/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U	
WHC1-BO01	4	NORM	12/2/2008	< 0.00031 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U	
WHC1-BO01	14	NORM	12/2/2008	< 0.00033 U	< 0.00022 U	< 0.000096 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.00031 U	< 0.00023 U	
WHC1-BO02	0	NORM	12/1/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U	
WHC1-BO02	12	NORM	12/1/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U	
WHC1-BO03	0	NORM	12/15/2008	< 0.00031 U	0.0033	< 0.000092 U	0.0066 J+	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U	
WHC1-BO03	12	NORM	12/19/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U	
WHC1-BO04	0	NORM	12/15/2008	< 0.00032 U	< 0.00021 U	< 0.000095 U	0.0037 J+	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U	
WHC1-BO04	12	NORM	12/19/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U	
WHC1-BO05	0	NORM	11/20/2008	< 0.00035 U	< 0.00023 U	< 0.0001 U	< 0.00022 U	< 0.00023 U	< 0.00011 U	< 0.00032 U	< 0.00024 U	
WHC1-BO05	10	NORM	11/20/2008	< 0.00035 U	< 0.00023 U	< 0.0001 U	< 0.00022 U	< 0.00023 U	< 0.00011 U	< 0.00032 U	< 0.00024 U	
WHC1-BO06	0	NORM	11/20/2008	< 0.00034 UJ	< 0.00022 UJ	< 0.000098 UJ	< 0.00021 UJ	< 0.00022 UJ	< 0.0001 UJ	< 0.00031 UJ	< 0.00023 UJ	
WHC1-BO06	10	NORM	11/20/2008	< 0.00035 UJ	< 0.00023 UJ	< 0.0001 UJ	< 0.00022 UJ	< 0.00023 UJ	< 0.00011 UJ	< 0.00032 UJ	< 0.00024 UJ	
WHC1-BO07	0	NORM	11/19/2008	< 0.00031 U	< 0.0002 U	< 0.00009 U	0.0028	< 0.00021 U	< 0.000097 U	< 0.00029 U	< 0.00021 U	
WHC1-BO07	10	NORM	11/19/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U	
WHC1-BO08	0	NORM	11/20/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U	
WHC1-BO08	0	FD	11/20/2008	< 0.00031 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U	
WHC1-BO08	11	NORM	11/20/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U	
WHC1-BO09	0	NORM	11/19/2008	< 0.00032 U	< 0.00021 UJ	< 0.000093 UJ	< 0.0002 UJ	< 0.00021 UJ	< 0.000099 U	< 0.00029 U	< 0.00022 U	
WHC1-BO09	0	FD	11/19/2008	0.0023 J	0.0089 J	0.0098 J	0.054 J	0.07 J	< 0.000097 U	< 0.00029 U	< 0.00021 U	
WHC1-BO09	6	NORM	11/19/2008	< 0.00033 U	< 0.00022 U	< 0.000096 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.0003 U	< 0.00023 U	
WHC1-BO09	16	NORM	11/19/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	0.0059 J+	0.0043 J+	< 0.000099 U	< 0.00029 U	< 0.00022 U	
WHC1-BO10	0	NORM	11/19/2008	< 0.00031 U	< 0.00021 U	< 0.000091 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U	
WHC1-BO10	10	NORM	11/19/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U	
WHC1-BP01	0	NORM	12/1/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.00098 U	< 0.00029 U	< 0.00022 U	
WHC1-BP01	10	NORM	12/1/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.0003 U	< 0.00022 U	
WHC1-BP02	0	NORM	12/1/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.0003 U	< 0.00022 U	
WHC1-BP02	11	NORM	12/1/2008	< 0.00033 U	< 0.00021 U	< 0.000095 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.0003 U	< 0.00022 U	
WHC1-BP03	0	NORM	12/15/2008	< 0.00031 U	< 0.0002 U	< 0.000091 U	0.0029 J+	< 0.00021 U	< 0.000097 U	< 0.00029 U	< 0.00021 U	
WHC1-BP03	0	FD	12/15/2008	< 0.00031 U	< 0.0002 U	< 0.000091 U	0.0025 J+	< 0.00021 U	< 0.000097 U	< 0.00029 U	< 0.00021 U	
WHC1-BP03	11	NORM	12/19/2008	< 0.00033 U	< 0.00022 U	< 0.000096 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.00031 U	< 0.00023 U	
WHC1-BP04	0	NORM	12/15/2008	< 0.00031 U	0.0021 J+	< 0.000091 U	0.0025 J+	0.0034	< 0.000098 U	< 0.00029 U	< 0.00022 U	
WHC1-BP04	12	NORM	12/19/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U	
WHC1-BP05	0	NORM	12/15/2008	< 0.00031 U	0.0045 J+	< 0.000091 U	0.0073 J+	0.003	< 0.000097 U	< 0.00029 U	< 0.00022 U	
WHC1-BP05	10	NORM	12/19/2008	< 0.00033 U	< 0.00021 U	< 0.000091 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.0003 U	< 0.00023 U	
WHC1-BP06	0	NORM	12/12/2008	< 0.00032 U	0.0036 J+	< 0.000092 U	0.01 J+	0.0026	< 0.000099 U	< 0.00029 U	< 0.00022 U	

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 27)

							Organochlor	ine Pesticides			1
								į		HC.	alpha-Chiordane
				DL	DE	DL	DE	DI	ď	-BI	Ş
	Depth	Sample	Sample	4-DDD	4-DDE	4,4-DDD	4-DDE	4-DDT	Aldrin	alpha-BHC	oha
Sample ID	(ft bgs)	Type	Date	2,	2,		,4	,4			
WHC1-BP06	10	NORM	12/12/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-BP07	0	NORM	11/20/2008	< 0.00034 U	< 0.00022 U	< 0.000099 U	< 0.00021 U	< 0.00022 U	< 0.00011 U	< 0.00031 U	< 0.00023 U
WHC1-BP07	3	NORM	11/20/2008	< 0.00033 U	< 0.00022 U	< 0.000096 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.0003 U	< 0.00023 U
WHC1-BP07	13	NORM	11/20/2008	< 0.00034 UJ	< 0.00022 UJ	< 0.000098 UJ	< 0.00021 UJ	< 0.00022 UJ	< 0.0001 UJ	< 0.00031 UJ	< 0.00023 UJ
WHC1-BP08	0	NORM	11/19/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	0.005	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BP08	4	NORM	11/19/2008	< 0.00033 U	< 0.00022 U	< 0.000098 U	0.0045	< 0.00022 U	< 0.0001 U	< 0.00031 U	< 0.00023 U
WHC1-BP08	14	NORM	11/19/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-BP09	0	NORM	11/19/2008	< 0.00031 U	< 0.0002 U	< 0.000091 U	< 0.0002 U	< 0.00021 U	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-BP09	10	NORM	11/19/2008	< 0.00033 U	< 0.00021 U	< 0.000095 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.0003 U	< 0.00023 U
WHC1-BP10	0	NORM	11/19/2008	< 0.00031 U	< 0.0002 U	< 0.000091 U	< 0.0002 U	< 0.00021 U	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-BP10	10	NORM	11/19/2008	< 0.00031 U	< 0.0002 U	< 0.000091 U	< 0.0002 U	< 0.00021 U	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-D01	0	NORM	12/5/2008	0.24 J	1.1	0.47 J	5.3	0.94	< 0.000099 U	0.081	< 0.00022 U
WHC1-D01	10	NORM	12/5/2008	< 0.00031 U	0.016 J+	0.0027 J	0.032 J+	0.0079 J	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-D02	0	NORM	12/5/2008	< 0.00032 U	0.038 J+	< 0.000094 U	0.061	0.013 J+	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-D02	10	NORM	12/5/2008	0.0042 J	0.031 J+	< 0.000093 U	0.073	0.015 J+	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-D03	0	NORM	12/5/2008	< 0.00032 U	0.06	0.0041 J	0.053	0.025 J+	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-D03	0	FD	12/5/2008	< 0.00032 U	0.067	< 0.000093 UJ	0.052	0.022 J+	< 0.000099 U	< 0.0003 U	< 0.00022 U
WHC1-D03	10	NORM	12/5/2008	< 0.00032 U	0.039 J+	0.0024 J+	0.02 J+	0.017 J+	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-D04	0	NORM	12/5/2008	0.0027 J+	0.21	0.0063 J	0.21	0.081 J	< 0.0001 U	0.0052 J+	< 0.00022 U
WHC1-D04	10	NORM	12/5/2008	0.0017 J	0.02	0.0045	0.04	0.011	< 0.000097 U	0.0019 J	< 0.00022 U
WHC1-D05	0	NORM	12/5/2008	0.011 J	0.1	0.018 J+	0.15	0.089	< 0.000099 U	0.002 J+	< 0.00022 U
WHC1-D05	10	NORM	12/5/2008	< 0.00031 U	< 0.00021 U	< 0.000091 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-D06	0	NORM	12/5/2008	< 0.00032 U	0.014	< 0.000093 U	0.024	0.013 J	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-D06	10	NORM	12/5/2008	< 0.00032 U	0.0095 J+	< 0.000092 U	0.0068 J+	0.0041 J+	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-D07	0	NORM	12/5/2008	< 0.00031 U	0.017	< 0.000091 U	0.022	0.013	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-D07	10	NORM	12/5/2008	< 0.00031 U	0.075	0.0024	0.049	0.018	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-D08	0	NORM	12/8/2008	< 0.00031 U	0.032	0.0046	0.051	0.041 J	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-D08	10	NORM	12/9/2008	< 0.00034 U	< 0.00022 U	< 0.000098 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.00031 U	< 0.00023 U
WHC1-D09	0	NORM	12/8/2008	< 0.00032 U	0.11	0.0034	0.071	0.034	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-D09	11	NORM	12/9/2008	< 0.00033 U	0.0021	< 0.000097 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.00031 U	< 0.00023 U
WHC1-D10	0	NORM	12/8/2008	0.0086 J	0.12	0.01 J+	0.2	0.076	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-D10	10	NORM	12/9/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-D11	0	NORM	12/8/2008	0.17 J	3.6	0.21	3.2	0.95 J+	< 0.001 U	0.036	< 0.0023 U
WHC1-D11	10	NORM	12/9/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.0003 U	< 0.00022 U
WHC1-D12	0	NORM	12/10/2008	0.0023 J+	0.011 J+	< 0.0001 U	0.018 J+	0.017 J+	< 0.00011 U	< 0.00032 U	< 0.00024 U
WHC1-D12	10	NORM	12/10/2008	< 0.00043 U	< 0.00028 U	< 0.00013 U	< 0.00027 U	< 0.00029 U	< 0.00014 U	< 0.0004 U	< 0.0003 U
WHC1-D13	0	NORM	12/8/2008	0.0067 J+	0.017 J	< 0.000094 U	0.032 J+	0.025 J	0.0053 J	0.0038 J	< 0.00022 U
WHC1-D13	10	NORM	12/8/2008	< 0.00041 U	< 0.00027 U	< 0.00012 U	< 0.00026 U	< 0.00027 U	< 0.00013 U	< 0.00038 U	< 0.00028 U
WHC1-D15	0	NORM	12/11/2008	< 0.00032 U	0.004 J	< 0.000094 U	0.0087	0.0025	< 0.0001 U	< 0.0003 U	< 0.00022 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 7 of 27)

							Organochlor	ine Pesticides			
	Depth	Sample	Sample	2,4-DDD	.4-DDE	.4-DDD	.4-DDE	.4-DDT	Aldrin	alpha-BHC	alpha-Chlordane
Sample ID	(ft bgs)	Type	Date		6	4	4	4			
WHC1-D15	10	NORM	12/11/2008	< 0.00039 U	< 0.00026 U	< 0.00012 U	< 0.00025 U	< 0.00026 U	< 0.00012 U	0.018	< 0.00027 U
WHC1-D16	0	NORM	12/10/2008	0.0025 J	0.0098 J+	< 0.000098 U	0.025 J+	0.009 J	< 0.0001 U	< 0.00031 U	< 0.00023 U
WHC1-D16	10	NORM	12/10/2008	< 0.00036 U	< 0.00023 U	< 0.0001 U	< 0.00022 U	< 0.00024 U	< 0.00011 U	< 0.00033 U	< 0.00025 U
WHC1-D17	0	NORM		0.016 J	0.015 J+	< 0.000097 U	0.036 J	< 0.00022 U	< 0.0001 U	< 0.00031 U	< 0.00023 U
WHC1-D17	10	NORM	12/10/2008	< 0.00035 U	< 0.00023 U	< 0.0001 U	< 0.00022 U	< 0.00023 U	< 0.00011 U	0.0026 J+	< 0.00024 U
WHC1-D18	0	NORM		0.0071 J	0.32 J+	0.02 J	0.27 J+	0.15	< 0.000098 U	0.0066 J+	< 0.00022 U
WHC1-D18	10	NORM	12/11/2008	< 0.00032 U	0.007	< 0.000092 U	0.0057	0.0028	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-D19	0	NORM	12/11/2008	0.027 J	0.095 J	0.039 J	0.34 J	0.1 J	< 0.0001 U	0.0078 J	< 0.00022 U
WHC1-D19	0	FD	12/11/2008	< 0.00031 UJ	0.011 J	< 0.000091 UJ	0.016 J	0.0078 J	< 0.000097 U	< 0.00029 UJ	< 0.00022 U
WHC1-D19	10	NORM	12/11/2008	< 0.00032 U	0.0031	< 0.000093 U	0.0024	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-D20	0	NORM	12/12/2008	0.0021 J	0.12 J+	0.012 J	0.15 J+	0.08	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-D20	10	NORM	12/12/2008	< 0.00032 U	0.017 J+	0.0019 J+	0.02 J+	0.013	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-D21	0	NORM	12/16/2008	< 0.00033 U	0.13	0.0076 J+	0.11	0.071	< 0.0001 U	0.0052 J+	< 0.00022 U
WHC1-D21	10	NORM	12/16/2008	< 0.00032 U	0.017	< 0.000093 U	0.016	0.008	< 0.000099 U	< 0.0003 U	< 0.00022 U
WHC1-D22	0	NORM	12/16/2008	< 0.00037 U	0.075	0.0059 J	0.085	0.034	< 0.00012 U	< 0.00034 U	< 0.00026 U
WHC1-D22	10	NORM	12/16/2008	< 0.00033 U	< 0.00022 U	< 0.000096 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.0003 U	< 0.00023 U
WHC1-D23	0	NORM	12/16/2008	0.017 J	0.13	0.031	0.28	0.17	< 0.0001 U	0.0074	< 0.00022 U
WHC1-D23	10	NORM	12/16/2008	< 0.00031 U	0.0032	< 0.000091 U	0.0025	< 0.00021 U	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-D24	0	NORM	12/16/2008	0.0062 J	0.096 J	0.011 J+	0.15	0.065 J	< 0.0001 U	< 0.0003 U	< 0.00023 U
WHC1-D24	0	FD	12/16/2008	0.0079 J	0.26 J	0.012 J	0.21	0.14 J	< 0.0001 U	< 0.00031 U	< 0.00023 U
WHC1-D24	10	NORM	12/16/2008	< 0.00032 U	0.024	0.0042	0.018	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-D25	0	NORM	12/16/2008	0.0031 J	0.03	0.0065	0.076	0.034	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-D25	10	NORM	12/16/2008	0.0052 J	0.021	0.0028	0.021	0.01	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-D26	0	NORM	12/12/2008	0.0091 J+	0.059 J+	0.013 J+	0.11 J+	0.059	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-D26	10	NORM	12/12/2008	< 0.00034 U	< 0.00022 U	< 0.000099 U	< 0.00021 U	< 0.00023 U	< 0.00011 U	< 0.00032 U	< 0.00023 U
WHC1-D27	0	NORM	12/12/2008	0.018 J	0.17 J+	< 0.000094 U	0.19 J	0.05 J	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-D27	0	FD	12/12/2008	0.0041 J	0.058 J+	< 0.000093 U	0.073 J	0.042	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-D27	10	NORM	12/12/2008	0.0095 J+	0.1 J+	0.017 J+	0.11 J+	0.078	< 0.0001 U	< 0.0003 U	< 0.00024 U
WHC1-D28	0	NORM	12/12/2008	0.021 J+	0.051 J+	0.035 J+	0.089 J+	0.11	< 0.000099 U	< 0.00029 U	< 0.00021 U
WHC1-D28	10	NORM	12/12/2008	0.002 J	0.13 J+	0.014 J	0.13 J+	0.08	< 0.000099 U	0.006 J+	< 0.00022 U
WHC1-D29	0	NORM	12/12/2008	< 0.0023	0.063 J+	< 0.00093 U	0.07 J+	0.07 J	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-D29	10	NORM	12/12/2008	< 0.00032 U	0.0046 J+	< 0.000095 U	0.0095 J+	0.004 J	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-P01	0	NORM		< 0.00032 U	0.0040 J+	< 0.000093 U	0.024 J+	0.016	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-P01	12	NORM	12/19/2008	< 0.00031 U	< 0.0001 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-P02	0	NORM	12/1/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	0.0065	0.0036	< 0.000097 U	< 0.00029 U	< 0.00022 U
WHC1-P02	10	NORM	12/1/2008	< 0.00031 U	< 0.0002 U	< 0.000091 U	< 0.0003 < 0.0002 U	< 0.0030	< 0.000097 U	< 0.00029 U	< 0.00022 U
WHC1-P03	0	NORM	12/1/2008	< 0.00031 U	< 0.0002 U	< 0.000091 U	0.0002 U	< 0.00021 U	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-P03	3	NORM	12/13/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-P03	3	FD	12/18/2008	< 0.00031 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
W UC1-L02	3	ΓD	12/10/2008	< 0.00031 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 8 of 27)

							Organochlor	ine Pesticides			
G. L.P.	Depth	Sample	Sample Date	2,4-DDD	4-DDE	4,4-DDD	4,4-DDE	4,4-DDT	Aldrin	alpha-BHC	alpha-Chlordane
Sample ID WHC1-P03	(ft bgs)	Type	12/18/2008		< 0.00021 U		< 0.0002 U	< 0.00021 U	< 0.000099 U	ਕ < 0.00029 U	 < 0.00022 U
		NORM		< 0.00032 U		< 0.000093 U					
WHC1-P04	0	NORM	12/15/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-P04	10	NORM	12/18/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-P05	0	NORM	12/8/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	< 0.0002 U	0.0025	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-P05		FD	12/8/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-P05	10	NORM	12/18/2008	< 0.00033 U	< 0.00021 U	< 0.000095 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-P06	0	NORM	12/2/2008	< 0.00031 U	< 0.0002 U	< 0.000091 U	< 0.0002 U	< 0.00021 U	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-P06	12	NORM	12/2/2008	< 0.00031 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-P07	0	NORM	12/2/2008	< 0.00031 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-P07	3	NORM	12/2/2008	< 0.00031 U	< 0.00021 U	< 0.000091 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-P07	13	NORM	12/2/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-P08	0	NORM	12/3/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	0.0023	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-P08	11	NORM	12/3/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-P09	0	NORM	12/4/2008	< 0.00032 U	0.0051	< 0.000092 U	0.011	< 0.00021 UJ	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-P09	0	FD	12/4/2008	< 0.00032 U	0.0055	< 0.000093 U	0.011	0.0041 J	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-P09	10	NORM	12/4/2008	< 0.00031 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-P10	0	NORM	11/25/2008	< 0.00031 U	< 0.0002 U	< 0.000091 U	0.0024	< 0.00021 U	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-P10	10	NORM	11/25/2008	< 0.00037 U	< 0.00024 U	< 0.00011 U	< 0.00023 U	< 0.00025 U	< 0.00012 U	< 0.00034 U	< 0.00026 U
WHC1-P11	0	NORM	12/8/2008	< 0.0032 UJ	1.8 J	0.11 J	2 J	1.3 J	< 0.001 U	0.029	< 0.0022 UJ
WHC1-P11	0	FD	12/8/2008	0.12 J	2.9	0.25 J	3.3	1.9 J+	< 0.00098 U	0.037	0.19 J
WHC1-P11	10	NORM	12/9/2008	< 0.00034 U	< 0.00022 U	< 0.000098 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.00031 U	< 0.00023 U
WHC1-P12	0	NORM	12/5/2008	0.009 J	0.092	0.018 J+	0.18	0.074	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-P12	11	NORM	12/5/2008	< 0.00032 U	0.11	0.0043 J+	0.05	0.019 J+	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-P13	0	NORM	12/9/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-P13	10	NORM	12/9/2008	< 0.00045 U	< 0.00029 U	< 0.00013 U	< 0.00028 U	< 0.0003 U	< 0.00014 U	< 0.00041 U	< 0.00031 U
WHC1-P13	10	FD	12/9/2008	< 0.0004 U	< 0.00026 U	< 0.00012 U	< 0.00025 U	< 0.00026 U	< 0.00012 U	< 0.00037 U	< 0.00027 U
WHC1-P14	0	NORM	12/17/2008	< 0.0018 U	0.017	< 0.00053 U	0.028	0.012 J	< 0.00057 U	< 0.0017 U	< 0.0013 U
WHC1-P15	0	NORM	12/8/2008	< 0.00033 U	0.0029	< 0.000096 U	0.0041	0.0034 J	< 0.0001 U	< 0.00031 U	< 0.00023 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.00033 U	< 0.00022 U	< 0.000096 U	< 0.00021 U	< 0.00022 U	< 0.0001 U	< 0.0003 U	< 0.00023 U
WHC1-P15	10	NORM	12/18/2008	< 0.00032 U	< 0.00021 U	< 0.000094 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-P16	0	NORM	12/1/2008	< 0.0032 U	< 0.0021 U	< 0.00092 U	< 0.002 U	< 0.0021 U	< 0.00098 U	< 0.0029 U	< 0.0022 U
WHC1-P16	11	NORM	12/1/2008	< 0.00031 U	< 0.0002 U	< 0.000091 U	< 0.0002 U	< 0.00021 U	< 0.000097 U	< 0.00029 U	< 0.00021 U
WHC1-P17	0	NORM	12/15/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	0.0059 J+	< 0.00021 U	< 0.000099 U	< 0.00029 U	< 0.00022 U
WHC1-P17	12	NORM	12/19/2008	< 0.00032 U	< 0.00021 U	< 0.000093 U	< 0.0002 U	< 0.00021 U	< 0.0001 U	< 0.0003 U	< 0.00022 U
WHC1-P17	12	FD	12/19/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-P18	0	NORM	12/1/2008	< 0.00032 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC1-P18	12	NORM	12/1/2008	< 0.00031 U	< 0.00021 U	< 0.000092 U	< 0.0002 U	< 0.00021 U	< 0.000098 U	< 0.00029 U	< 0.00022 U
WHC2-D01	0	NORM	6/24/2010	0.018 J+	0.027 J+	0.041	0.13 J	0.029 J+	< 0.00032 U	< 0.00014 U	0.0023 J+
WHC2-D01C	0	NORM	12/2/2009	< 0.0014 U	< 0.0013 U	< 0.0011 U	< 0.0043 U	< 0.0025 U	< 0.00092 U	< 0.00096 U	< 0.0011 U
	U	1101011	12/2/2007	₹0.001∓ 0	₹ 0.0013 0	₹ 0.0011 0	₹ 0.00∓3 €	₹ 0.0025 €	\ 0.000 <i>73</i> U	₹ 0.00070 €	₹ 0.0011 €

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 9 of 27)

							Organochlor	ine Pesticides			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	2,4-DDD	2,4-DDE	4,4-DDD	4,4-DDE	4,4-DDT	Aldrin	alpha-BHC	alpha-Chlordane
WHC2-D04C	0	NORM	12/2/2009	< 0.0014 U	0.07	< 0.0011 U	0.061	0.043 J	< 0.00093 U	< 0.00096 U	< 0.0011 U
WHC2-D05C	0	NORM	12/2/2009	< 0.00072 U	7.5	0.11	2.9 J	3.6 J	< 0.00046 U	0.037	< 0.00053 U
WHC2-D11C	0	NORM	12/2/2009	0.11	3.6	0.18	2.5	1.1 J	< 0.00046 U	0.037	< 0.00053 U
WHC2-D14C	0	NORM	12/2/2009	< 0.00074 U	< 0.00065 U	< 0.00058 U	< 0.0022 U	< 0.0013 U	< 0.00048 U	< 0.00049 U	< 0.00055 U
WHC2-P11C	0	NORM	12/1/2009	0.025 J+	1.5	0.11	1.2	0.58	< 0.000094 U	0.11	< 0.00011 U
WHC3-D11C	0	NORM	6/24/2010		3.4	0.42	5.1	2.8	< 0.00031 U	0.14	< 0.00058 U
WHC3-P11C	0	NORM	8/9/2010	0.014 J+	0.18	0.026 J+	0.3	0.11	< 0.00032 U	0.1 J	< 0.00059 U
WHC3-P11C	0	FD	8/9/2010	0.023 J+	0.19	0.029 J+	0.28	0.11 J+	< 0.00033 U	0.04 J	< 0.00062 U
WHC6-D05	0	NORM	7/27/2012			0.0046	0.034 J+	0.02	< 0.00032 U	< 0.00019 U	< 0.00059 U
WHC6-D11	0	NORM	7/27/2012			0.0064	0.071	0.031	< 0.00031 U	0.00079	< 0.00058 U
WHC6-P11	0	NORM	7/27/2012			0.03	0.24	0.11	< 0.00031 U	0.25 J+	< 0.00057 U

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 10 of 27)

Sample ID	E E E E E E E E E E
OSC1-BM11	< 0.00011 U < 0.00013 U < 0.00011 U < 0.00011 U < 0.00011 U < 0.00012 U < 0.00013 U < 0.00013 U < 0.00013 U < 0.00013 U < 0.00014 U < 0.00015 U < 0.00015 U < 0.00011 U < 0.00013 U < 0.00011 U < 0.00013 U
OSCI-BN11 O NORM 9/22/2009 0.013 J+ < 0.0015 U	 < 0.00011 U < 0.00011 U < 0.00012 U < 0.00013 U < 0.00013 U < 0.00013 U < 0.00014 U < 0.00015 U < 0.00015 U < 0.00011 U < 0.00013 U
OSC1-BN11 5 NORM 9/22/2009 0.0051 < 0.0015 U < 0.0001 U < 0.0001 U < 0.00012 U < 0.00014 U OSC1-BO11 0 NORM 9/16/2009 < 0.00014 U	<0.00011 U <0.00011 U <0.00012 U <0.00013 U <0.00013 U <0.00014 U <0.00013 U <0.00015 U <0.00015 U <0.00015 U <0.00011 U <0.00013 U <0.00013 U <0.00013 U <0.00013 U <0.00013 U
OSC1-B011 O NORM 9/16/2009 < 0.00014 U < 0.0001 U < 0.0001 U < 0.00012 U < 0.00014 U OSC1-B011 0 FD 9/16/2009 < 0.00015 U	<0.00011 U <0.00012 U <0.00013 U <0.00013 U <0.00014 U <0.00015 U <0.00015 U <0.00011 U <0.00011 U <0.00013 U <0.00013 U <0.00013 U <0.00013 U <0.00013 U
OSC1-BO11 0 FD 9/16/2009 < 0.00015 U < 0.0017 U 0.0047 < 0.00011 U < 0.00013 U < 0.00015 U OSC1-BO11 5 NORM 9/16/2009 < 0.00016 U	<0.00012 U <0.00013 U <0.00013 U <0.00014 U <0.00013 U <0.00015 U <0.00015 U <0.00011 U <0.00013 U <0.00013 U <0.00013 U <0.00013 U <0.00013 U
OSC1-BO11 5 NORM 9/16/2009 < 0.00016 U < 0.0018 U < 0.00013 U < 0.00012 U < 0.00014 U < 0.00017 U OSC1-BP11 0 NORM 9/16/2009 < 0.00016 U	<0.00013 U <0.00013 U <0.00014 U <0.00013 U <0.00015 U <0.00011 U <0.00013 U <0.00013 U <0.00013 U <0.00013 U
OSC1-BP11 0 NORM 9/16/2009 < 0.00016 U < 0.00013 U < 0.00012 U < 0.00012 U < 0.00014 U < 0.00017 U OSC1-BP11 5 NORM 9/16/2009 < 0.00017 U	<0.00013 U <0.00014 U <0.00013 U <0.00015 U <0.00011 U <0.00013 U <0.00013 U <0.00013 U
OSC1-BP11 5 NORM 9/16/2009 < 0.00017 U < 0.002 U < 0.00014 U < 0.00013 U < 0.00013 U < 0.00015 U < 0.00018 U OSC1-JP06 0 NORM 9/22/2009 < 0.00016 U	<0.00014 U <0.00013 U <0.00015 U <0.00011 U <0.00013 U <0.00013 U <0.00013 U
OSC1-JP06 0 NORM 9/22/2009 < 0.00016 U < 0.00013 U < 0.00012 U < 0.00012 U < 0.00014 U < 0.00016 U < 0.00016 U < 0.00016 U < 0.00013 U < 0.00014 U <td><0.00013 U <0.00015 U <0.00011 U <0.00013 U <0.00013 U <0.00013 U</td>	<0.00013 U <0.00015 U <0.00011 U <0.00013 U <0.00013 U <0.00013 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.00015 U <0.00011 U <0.00013 U <0.00013 U <0.00013 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.00011 U < 0.00013 U < 0.00013 U < 0.00013 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.00013 U < 0.00013 U < 0.00013 U
OSC1-JP08 0 NORM 9/21/2009 0.021 < 0.0017 U < 0.00013 U < 0.00011 U < 0.00014 U < 0.00016 U OSC1-JP08 10 NORM 9/21/2009 < 0.00016 U	< 0.00013 U < 0.00013 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.00013 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.00013 U
OSC1-JS10 0 NORM 1/31/2010 0.017 J < 0.002 U < 0.00015 U < 0.00013 U < 0.00013 U < 0.00016 U < 0.00019 U OSC1-JS10 0 FD 1/21/2010 0.0094 J < 0.002 U	
OSC1-JS10 0 FD 1/21/2010 0.0094 J < 0.002 U < 0.00015 U < 0.00013 U < 0.00013 U < 0.00015 U < 0.00018 U WHC1-BF01 0 NORM 11/24/2008 0.0033 < 0.0024 U	
WHC1-BF01 0 NORM 11/24/2008 0.0033 < 0.0024 U < 0.00017 U < 0.000092 U < 0.00011 U < 0.000094 U < 0.00026 U	< 0.00014 U
WIICH DEGL. 12 NORM 11/4/2000 (0.0001) (0.0001) (0.0001) (0.00001) (0.00001) (0.00001)	< 0.000084 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.000087 U
WHC1-BF02	< 0.000084 U
WHC1-BF02	< 0.000086 U
WHC1-BF03	< 0.000084 U
WHC1-BF03	< 0.000086 U
WHC1-BF04	< 0.000084 U
WHC1-BF04	< 0.000089 U
WHC1-BF04 10 NORM 11/25/2008 <0.0002 U <0.00028 U <0.00098 U <0.00011 U <0.00011 U <0.00011 U <0.00028 U	< 0.000089 U
WHC1-BF05 0 NORM 11/25/2008 0.0021 < 0.0024 U < 0.00017 U < 0.000094 U < 0.00011 U < 0.000096 U < 0.00027 U	< 0.000086 U
WHC1-BF05 12 NORM 12/10/2008 < 0.00027 U < 0.00033 U < 0.00024 U < 0.00013 U < 0.00015 U < 0.00013 U < 0.00013 U < 0.00013 U	< 0.00012 U
WHC1-BF06	< 0.000086 U
WHC1-BF06 10 NORM 12/10/2008 < 0.00025 U < 0.00023 U < 0.00023 U < 0.00012 U < 0.00014 U < 0.00013 U < 0.00036 U	< 0.00011 U
WHC1-BG01	< 0.000084 U
WHC1-BG01	< 0.000086 U
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< 0.000084 U
WHC1-BG02	< 0.000085 U
WHC1-BG02	< 0.000086 U
WHC1-BG03	< 0.000084 U
WHC1-BG03	< 0.000085 U
WHC1-BG04	< 0.0084 U
WHC1-BG04 10 NORM 12/11/2008 < 0.00025 U < 0.00011 U < 0.00012 U < 0.00014 U < 0.00012 U < 0.00012 U < 0.00015 U	< 0.0001 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 11 of 27)

							Organochlor	ine Pesticides			
				beta-BHC	Chlordane	delta-BHC	g	Endosulfan I	Endosulfan II	Endosulfan sulfate	
	Depth	Sample	Sample	1-B	ord	а-Е	ldri	losı	losı	losu	rin
Sample ID	(ft bgs)	Type	Date)eta	Ch1	delt	Dieldrin	Enc	Enc	Endosu sulfate	Endrin
WHC1-BG05	0	NORM	11/25/2008	0.0022	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-BG05	10	NORM	11/25/2008	< 0.00021 U	< 0.0027 U	< 0.00019 U	< 0.0001 U	< 0.00012 U	< 0.00011 U	< 0.0003 U	< 0.000095 U
WHC1-BG06	0	NORM	12/10/2008	0.0091 J+	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BG06	10	NORM	12/10/2008	< 0.00023 U	< 0.0029 U	< 0.00021 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00033 U	< 0.0001 U
WHC1-BH01	0	NORM	12/3/2008	0.0033	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000085 U
WHC1-BH01	11	NORM	12/3/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BH02	0	NORM	12/4/2008	0.015	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BH02	10	NORM	12/4/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-BH03	0	NORM	12/9/2008	0.0079	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-BH03	10	NORM	12/9/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U
WHC1-BH04	0	NORM	12/11/2008	0.015	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000084 U
WHC1-BH04	10	NORM	12/11/2008	0.0018	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BH05	0	NORM	12/9/2008	0.008 J	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BH05	0	FD	12/9/2008	0.011 J	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U
WHC1-BH05	10	NORM	12/9/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BH06	0	NORM	12/11/2008	0.0026 J	< 0.0026 U	< 0.00018 U	< 0.0001 U	< 0.00012 U	< 0.0001 U	< 0.00029 U	< 0.000092 U
WHC1-BH06	0	FD	12/11/2008	0.002 J+	< 0.0025 U	< 0.00018 U	< 0.000099 U	< 0.00011 U	< 0.0001 U	< 0.00028 U	< 0.00009 U
WHC1-BH06	10	NORM	12/11/2008	< 0.00021 U	< 0.0027 U	< 0.00019 U	< 0.0001 U	< 0.00012 U	< 0.00011 U	< 0.0003 U	< 0.000095 U
WHC1-BI01	0	NORM	12/3/2008	0.0085	< 0.0051 U	< 0.00037 U	< 0.0002 U	< 0.00023 U	< 0.0002 U	< 0.00058 U	< 0.00018 U
WHC1-BI01	11	NORM	12/3/2008	0.0046	< 0.0024 U	< 0.00018 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BI02	0	NORM	12/4/2008	0.0048	< 0.0024 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00028 U	< 0.000087 U
WHC1-BI02	3	NORM	12/4/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-BI02	13	NORM	12/4/2008	0.0019	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000085 U
WHC1-BI03	0	NORM	12/4/2008	0.011	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BI03	11	NORM	12/4/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-BI04	0	NORM	12/8/2008	0.0066	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-BI04	10	NORM	12/9/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00028 U	< 0.000088 U
WHC1-BI05	0	NORM	12/9/2008	0.017	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BI05	10	NORM	12/9/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BJ01	0	NORM	12/3/2008	0.0033	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U
WHC1-BJ01	3	NORM	12/3/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BJ01	13	NORM	12/3/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000097 U	< 0.00011 U	< 0.000099 U	< 0.00028 U	< 0.000088 U
WHC1-BJ02	0	NORM	12/2/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BJ02	0	FD	12/2/2008	< 0.00019 UJ	< 0.0024 UJ	< 0.00017 UJ	0.0019 J	< 0.00011 UJ	< 0.000097 UJ	< 0.00027 UJ	0.0033 J
WHC1-BJ02	12	NORM	12/2/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BJ03	0	NORM	12/4/2008	0.013	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-BJ03	0	FD	12/4/2008	0.012	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BJ04	0	NORM	12/4/2008	0.0031	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000084 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 12 of 27)

							Organochlor	ine Pesticides			
							- g		_		
				•	4)	()		I m	II m	ш	
				beta-BHC	Chlordane	delta-BHC	.ш	Endosulfan	Endosulfan	Endosulfan sulfate	_
	Depth	Sample	Sample	1-B	ord	a-F	Dieldrin	losı	losı	losı	fri
Sample ID	(ft bgs)	Type	Date	beta	Chl	delı	Die	Enc	Enc	Endosu sulfate	Endrin
WHC1-BJ04	11	NORM	12/4/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BJ05	0	NORM	12/11/2008	0.031 J+	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-BJ05	10	NORM	12/11/2008	0.0041	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BK01	0	NORM	12/3/2008	< 0.00097 U	< 0.012 U	< 0.00088 U	< 0.00048 U	< 0.00055 U	< 0.00049 U	< 0.0014 U	< 0.00043 U
WHC1-BK01	0	FD	12/3/2008	< 0.00098 U	< 0.012 U	< 0.00088 U	< 0.00048 U	< 0.00055 U	< 0.00049 U	< 0.0014 U	< 0.00044 U
WHC1-BK01	10	NORM	12/3/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00028 U	< 0.000088 U
WHC1-BK02	0	NORM	12/8/2008	0.002	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000085 U
WHC1-BK02	11	NORM	12/18/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000099 U	< 0.00028 U	< 0.000088 U
WHC1-BK03	0	NORM	12/15/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BK03	12	NORM	12/18/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00028 U	< 0.000087 U
WHC1-BK04	0	NORM	12/4/2008	0.0097	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BK04	10	NORM	12/4/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BK05	0	NORM	12/12/2008	0.0084	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-BK05	11	NORM	12/12/2008	0.0042 J+	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U
WHC1-BL01	0	NORM	12/3/2008	< 0.00097 U	< 0.012 U	< 0.00087 U	< 0.00047 U	< 0.00055 U	< 0.00048 U	< 0.0014 U	< 0.00043 U
WHC1-BL01	10	NORM	12/3/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BL02	0	NORM	12/2/2008	0.0023 J+	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BL02	10	NORM	12/2/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000099 U	< 0.00011 U	< 0.0001 U	< 0.00028 U	< 0.00009 U
WHC1-BL03	0	NORM	12/8/2008	0.0029	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BL03	10	NORM	12/18/2008	0.01	< 0.0024 U	< 0.00018 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BL04	0	NORM	12/17/2008	0.0052	< 0.0025 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00028 U	< 0.000087 U
WHC1-BL04	12	NORM	12/22/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U
WHC1-BL05	0	NORM		0.0047 J+	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-BL05	10	NORM	11/21/2008	0.004	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BL06	0	NORM	11/21/2008	0.0039 J+	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-BL06	11	NORM	11/21/2008	0.0023 J+	< 0.0025 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00028 U	< 0.000088 U
WHC1-BL07 WHC1-BL07	10	NORM	11/21/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000085 U
	0	NORM	11/21/2008 11/18/2008	< 0.00025 U 0.0083 J+	< 0.0031 U	< 0.00022 U < 0.00018 U	< 0.00012 U < 0.000096 U	< 0.00014 U < 0.00011 U	< 0.00012 U < 0.000098 U	< 0.00035 U < 0.00028 U	< 0.00011 U < 0.000087 U
WHC1-BL08 WHC1-BL08	10	NORM			< 0.0025 U						
WHC1-BL11	0	NORM NORM	11/18/2008 11/18/2008	< 0.0002 U 0.011 J+	< 0.0025 U < 0.0024 U	< 0.00018 U < 0.00017 U	< 0.000096 U < 0.000094 U	< 0.00011 U < 0.00011 U	< 0.000098 U < 0.000096 U	< 0.00028 U < 0.00027 U	< 0.000088 U < 0.000086 U
WHC1-BL11	12	NORM	11/18/2008	< 0.0002 U	< 0.0024 U	< 0.00017 U	< 0.000094 U < 0.000097 U	< 0.00011 U	< 0.000098 U	< 0.00027 U < 0.00028 U	< 0.000089 U
WHC1-BL11 WHC1-BM01	0	NORM	12/3/2008	0.0002 0	< 0.0025 U	< 0.00018 U < 0.00018 U	< 0.000097 U	< 0.00011 U < 0.00011 U	< 0.000099 U < 0.000099 U	< 0.00028 U	< 0.000089 U < 0.000088 U
WHC1-BM01	10	NORM	12/3/2008	< 0.0022 < 0.00019 U	< 0.0025 U < 0.0024 U	< 0.00018 U < 0.00017 U	< 0.000097 U < 0.000094 U	< 0.00011 U < 0.00011 U	< 0.000099 U < 0.000096 U	< 0.00028 U < 0.00027 U	< 0.000088 U < 0.000086 U
WHC1-BM01 WHC1-BM02	0	NORM	12/3/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U < 0.000094 U	< 0.00011 U < 0.00011 U	< 0.000096 U < 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BM02 WHC1-BM02	12	NORM	12/2/2008	< 0.00019 U	< 0.0024 U < 0.0025 U	< 0.00017 U < 0.00018 U	< 0.000094 U < 0.000097 U	< 0.00011 U < 0.00011 U	< 0.000098 U < 0.000099 U	< 0.00027 U < 0.00028 U	< 0.000086 U < 0.000089 U
WHC1-BM02 WHC1-BM03	0	NORM	12/2/2008	0.0024	< 0.0025 U < 0.0024 U	< 0.00018 U < 0.00017 U	< 0.000097 U < 0.000094 U	< 0.00011 U < 0.00011 U	< 0.000099 U < 0.000096 U	< 0.00028 U < 0.00027 U	< 0.000089 U < 0.000085 U
WHC1-BM03	10	NORM	12/8/2008	< 0.0024 < 0.0002 U	< 0.0024 U < 0.0025 U	< 0.00017 U < 0.00018 U	< 0.000094 U < 0.000098 U	< 0.00011 U < 0.00011 U	< 0.00096 U < 0.0001 U	< 0.00027 U < 0.00028 U	< 0.000085 U < 0.000089 U
WHC1-BM03	0	NORM	12/17/2008	< 0.0002 U < 0.00019 U	< 0.0023 U < 0.0024 U	< 0.00018 U < 0.00017 U	< 0.000098 U < 0.000094 U	< 0.00011 U	< 0.0001 U	< 0.00028 U < 0.00027 U	< 0.000089 U < 0.000086 U
WITCI-DIVIU4	U	NOKW	12/1//2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000090 U	< 0.00027 U	< 0.000080 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 13 of 27)

							Organochlor	ine Pesticides			
G at 1 Th	Depth (ft bgs)	Sample	Sample Date	oeta-BHC	Chlordane	delta-BHC	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin
Sample ID WHC1-BM04	(It bgs)	Type FD	12/17/2008	< 0.00019 U	< 0.0024 U	ਤ < 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	≅ < 0.00027 U	
WHC1-BM04	10	NORM	12/22/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U < 0.000086 U
WHC1-BM05	0	NORM	11/21/2008	0.0032	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000097 U < 0.000094 U	< 0.00027 U	< 0.000086 U < 0.000084 U
WHC1-BM05	10	NORM	11/21/2008	0.0052	< 0.0024 U	< 0.00017 U	< 0.000092 U	< 0.00011 U	< 0.000094 U	< 0.00020 U	< 0.000084 U
WHC1-BM05 WHC1-BM06	0	NORM	11/21/2008	0.0037 0.01 J	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000085 U
WHC1-BM06	0	FD	11/21/2008	0.01 J	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.0001 U	< 0.00027 U	< 0.000083 U
WHC1-BM06	10	NORM	11/21/2008	0.0023 J 0.0018 J+	< 0.0023 U	< 0.00018 U	< 0.000099 U	< 0.00011 U	< 0.0001 U	< 0.00029 U	< 0.00009 U
WHC1-BM07	0	NORM	11/21/2008	0.0018 J+ 0.0069 J+	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000085 U
WHC1-BM07	11	NORM	11/20/2008	0.0069 J+	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000093 U	< 0.00027 U	< 0.000083 U
WHC1-BM08	0	NORM	11/20/2008	< 0.004 < 0.00019 UJ	< 0.0024 U	< 0.00017 U	< 0.000093 U < 0.000094 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BM08	0	FD	11/18/2008	0.0041 J	< 0.0024 U	< 0.00017 U	< 0.000034 C	< 0.00011 U	< 0.000030 C	< 0.00027 C	< 0.000086 U
WHC1-BM08	11	NORM	11/18/2008	0.0028 J	< 0.0027 U	< 0.00019 U	< 0.00011 U	< 0.00012 U	< 0.00011 U	< 0.0003 U	< 0.000090 U
WHC1-BM09	0	NORM	11/18/2008	< 0.0020 J	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.0001 U	< 0.00023 U	< 0.00009 U
WHC1-BM09	12	NORM	11/18/2008	0.0066 J+	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000090 U	< 0.00027 U	< 0.000087 U
WHC1-BM10	0	NORM	11/18/2008	0.0064 J+	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 C	< 0.000087 U
WHC1-BM10	3	NORM	11/18/2008	0.018 J+	< 0.0025 U	< 0.00018 U	< 0.000098 U	< 0.00011 U	< 0.0000 U	< 0.00028 U	< 0.000089 U
WHC1-BM10	13	NORM	11/18/2008	< 0.00024 U	< 0.003 U	< 0.00022 U	< 0.00012 U	< 0.00011 U	< 0.0001 U	< 0.00034 U	< 0.00011 U
WHC1-BN01	0	NORM	12/1/2008	0.0051 J+	< 0.0025 U	< 0.00018 U	< 0.000012 U	< 0.00011 U	< 0.000012 U	< 0.00028 U	< 0.000088 U
WHC1-BN01	12	NORM	12/1/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00020 U	< 0.000086 U
WHC1-BN02	0	NORM	12/1/2008	< 0.0002 U	< 0.0025 U	< 0.00017 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00027 U	< 0.000088 U
WHC1-BN02	0	FD	12/1/2008	0.0021 J+	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BN02	11	NORM	12/1/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000085 U
WHC1-BN03	0	NORM	12/17/2008	0.0023	< 0.0025 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00028 U	< 0.000088 U
WHC1-BN03	10	NORM	12/18/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BN04	0	NORM	12/17/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BN04	7	NORM	12/22/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BN04	17	NORM	12/22/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00028 U	< 0.000088 U
WHC1-BN05	0	NORM	11/20/2008	< 0.00019 UJ	< 0.0023 UJ	< 0.00017 UJ	< 0.000092 UJ	< 0.00011 UJ	< 0.000094 UJ	< 0.00026 UJ	< 0.000084 UJ
WHC1-BN05	0	FD	11/20/2008	< 0.00019 UJ	< 0.0024 UJ	< 0.00017 UJ	< 0.000093 UJ	< 0.00011 UJ	< 0.000095 UJ	< 0.00027 UJ	< 0.000084 UJ
WHC1-BN05	10	NORM	11/20/2008	0.0088	< 0.0024 U	< 0.00018 U	< 0.000095 U	< 0.00011 U	< 0.000098 U	< 0.00027 U	< 0.000087 U
WHC1-BN06	0	NORM	11/20/2008	0.005	< 0.0024 U	< 0.00017 U	< 0.000092 U	< 0.00011 U	< 0.000094 U	< 0.00027 U	< 0.000084 U
WHC1-BN06	10	NORM	11/20/2008	0.0045	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U
WHC1-BN07	0	NORM	11/21/2008	0.016	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BN07	3	NORM	11/21/2008	0.011	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U
WHC1-BN07	13	NORM	11/21/2008	0.0043	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BN08	0	NORM	11/20/2008	0.0033	< 0.0024 U	< 0.00017 U	< 0.000092 U	< 0.00011 U	< 0.000094 U	< 0.00027 U	< 0.000084 U
WHC1-BN08	10	NORM	11/20/2008	0.0042 J+	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-BN09	0	NORM	12/17/2008	0.0038	< 0.0025 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00028 U	< 0.000088 U
WHC1-BN09	11	NORM	12/19/2008	0.0051	< 0.0026 U	< 0.00018 U	< 0.0001 U	< 0.00012 U	< 0.0001 U	< 0.00029 U	< 0.000092 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 14 of 27)

							Organochlor	ine Pesticides			Ī
				HC	me	delta-BHC		Endosulfan I	Endosulfan II	Endosulfan sulfate	
	Depth	Sample	Sample	-BI	orda	[-B]	dri	nsc	nsc	osu.	ii
Sample ID	(ft bgs)	Туре	Date	beta-BHC	Chlordane	elta	Dieldrin	'ndc	'ndc	Endosu sulfate	Endrin
WHC1-BN10	0	NORM	11/18/2008	< 0.0002 U	< 0.0026 U	< 0.00018 U	< 0.0001 U	 < 0.00012 U	< 0.0001 U	= ± 5 < 0.00029 U	< 0.000091 U
WHC1-BN10	10	NORM	11/18/2008	< 0.0002 U	< 0.0028 U	< 0.00010 U	< 0.0001 U	< 0.00012 U	< 0.0001 U	< 0.00027 U	< 0.0001 U
WHC1-BO01	0	NORM	12/2/2008	0.0034 J+	< 0.0024 U	< 0.00017 U	< 0.000011 U	< 0.00011 U	< 0.00097 U	< 0.00032 U	< 0.00086 U
WHC1-BO01	0	FD	12/2/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U
WHC1-BO01	4	NORM	12/2/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.00094 U	< 0.00011 U	< 0.00096 U	< 0.00027 U	< 0.000085 U
WHC1-BO01	14	NORM	12/2/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000099 U	< 0.00011 U	< 0.0001 U	< 0.00028 U	< 0.00009 U
WHC1-BO02	0	NORM	12/1/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BO02	12	NORM	12/1/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BO03	0	NORM	12/15/2008	0.0047	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BO03	12	NORM	12/19/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BO04	0	NORM	12/15/2008	0.0069	< 0.0025 U	< 0.00018 U	< 0.000097 U	< 0.00011 U	< 0.000099 U	< 0.00028 U	< 0.000088 U
WHC1-BO04	12	NORM	12/19/2008	< 0.0002 U	< 0.0024 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00028 U	< 0.000087 U
WHC1-BO05	0	NORM	11/20/2008	< 0.00021 U	< 0.0027 U	< 0.00019 U	< 0.0001 U	< 0.00012 U	< 0.00011 U	< 0.0003 U	< 0.000095 U
WHC1-BO05	10	NORM	11/20/2008	0.0028	< 0.0027 U	< 0.00019 U	< 0.0001 U	< 0.00012 U	< 0.00011 U	< 0.0003 U	< 0.000095 U
WHC1-BO06	0	NORM	11/20/2008	< 0.00021 UJ	< 0.0026 UJ	< 0.00018 UJ	< 0.0001 UJ	< 0.00012 UJ	< 0.0001 UJ	< 0.00029 UJ	< 0.000092 UJ
WHC1-BO06	10	NORM	11/20/2008	0.0025 J	< 0.0026 UJ	< 0.00019 UJ	< 0.0001 UJ	< 0.00012 UJ	< 0.00011 UJ	< 0.0003 UJ	< 0.000094 UJ
WHC1-BO07	0	NORM	11/19/2008	0.0045	< 0.0024 U	< 0.00017 U	< 0.000092 U	< 0.00011 U	< 0.000094 U	< 0.00027 U	< 0.000084 U
WHC1-BO07	10	NORM	11/19/2008	0.0031	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BO08	0	NORM	11/20/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BO08	0	FD	11/20/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BO08	11	NORM	11/20/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BO09	0	NORM	11/19/2008	< 0.00019 UJ	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BO09	0	FD	11/19/2008	0.0094 J	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-BO09	6	NORM	11/19/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000098 U	< 0.00011 U	< 0.0001 U	< 0.00028 U	< 0.000089 U
WHC1-BO09	16	NORM	11/19/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BO10	0	NORM	11/19/2008	0.029	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000085 U
WHC1-BO10	10	NORM	11/19/2008	0.0029	< 0.0024 U	0.0027	< 0.000094 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U
WHC1-BP01	0	NORM	12/1/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BP01	10	NORM	12/1/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BP02	0	NORM	12/1/2008	0.0031 J+	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-BP02	11	NORM	12/1/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000097 U	< 0.00011 U	< 0.000099 U	< 0.00028 U	< 0.000089 U
WHC1-BP03	0	NORM	12/15/2008	0.002	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000084 U
WHC1-BP03	0	FD	12/15/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-BP03	11	NORM	12/19/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000099 U	< 0.00011 U	< 0.0001 U	< 0.00028 U	< 0.00009 U
WHC1-BP04	0	NORM	12/15/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000085 U
WHC1-BP04	12	NORM	12/19/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-BP05	0	NORM	12/15/2008	0.015	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-BP05	10	NORM	12/19/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000098 U	< 0.00011 U	< 0.0001 U	< 0.00028 U	< 0.000089 U
WHC1-BP06	0	NORM	12/12/2008	0.019	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 15 of 27)

WHC1-BP07 0 NORM 11/20/2008 < 0.00021 U	 E E E E E E E E E E E E E E E E E E E
WHC1-BP06	 < 0.000086 U < 0.000092 U < 0.000091 UJ < 0.000088 U < 0.000088 U < 0.000088 U < 0.000085 U
WHC1-BP07 0 NORM 11/20/2008 < 0.00021 U	 < 0.000092 U < 0.00009 U < 0.000091 UJ < 0.000088 U < 0.000088 U < 0.000088 U < 0.000085 U < 0.000086 U
WHC1-BP07 3 NORM 11/20/2008 < 0.0002 U < 0.00018 U < 0.000018 U < 0.00011 U < 0.0001 U < 0.00028 U WHC1-BP07 13 NORM 11/20/2008 0.0019 J < 0.00026 UJ	 < 0.00009 U < 0.000091 UJ < 0.000088 U < 0.000088 U < 0.000088 U < 0.000085 U < 0.000086 U
WHC1-BP07 13 NORM 11/20/2008 0.0019 J < 0.0026 UJ < 0.00018 UJ < 0.0001 UJ < 0.00029 UJ < 0.00028 U WHC1-BP08 0 NORM 11/19/2008 < 0.0002 U	 < 0.000091 UJ < 0.000088 U < 0.000091 U < 0.000088 U < 0.000085 U < 0.000089 U < 0.000085 U < 0.000086 U
WHC1-BP08 0 NORM 11/19/2008 < 0.0002 U < 0.0025 U < 0.00018 U < 0.00011 U < 0.000098 U < 0.00028 U < 0.00028 U < 0.00025 U < 0.00018 U < 0.00011 U < 0.00011 U < 0.0001 U < 0.0002 U < 0.0001 U < 0.0001 U < 0.0002 U < 0.0001 U < 0.0001 U < 0.0002 U < 0.0001 U < 0.0001 U < 0.0002 U < 0.0001 U < 0.0001 U < 0.0002 U < 0.0001 U < 0.0001 U < 0.0002 U < 0.0001 U < 0.0001 U < 0.0002 U < 0.0001 U < 0.0001 U < 0.0001 U < 0.00001 U < 0.0001 U < 0.00001 U < 0.00001 U	 < 0.000088 U < 0.000091 U < 0.000088 U < 0.000085 U < 0.000087 U < 0.000086 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 < 0.000091 U < 0.000088 U < 0.000085 U < 0.000087 U < 0.000086 U
WHC1+BP08 14 NORM 11/19/2008 < 0.0002 U < 0.00025 U < 0.00018 U < 0.00011 U < 0.000098 U < 0.00028 U < 0.00028 U < 0.00028 U < 0.00017 U < 0.000098 U < 0.000098 U < 0.000098 U < 0.000098 U < 0.000099 U < 0.00027 U < 0.00027 U < 0.00027 U < 0.00017 U < 0.00011 U < 0.00011 U < 0.00027 U < 0.00027 U < 0.00027 U < 0.00028 U < 0.00011 U < 0.00011 U < 0.00011 U < 0.00027 U < 0.00028 U < 0.00017 U < 0.000011 U < 0.00011 U < 0.00028 U < 0.00027 U < 0.00027 U < 0.00027 U < 0.00017 U < 0.000093 U < 0.00011 U < 0.000027 U < 0.00027 U < 0.	 0.000088 U 0.000085 U 0.000089 U 0.000085 U 0.000085 U 0.000087 U 0.000086 U
WHC1-BP09 0 NORM 11/19/2008 < 0.00019 U < 0.00017 U < 0.000093 U < 0.00011 U < 0.000095 U < 0.00027 U < 0.00027 U < 0.00027 U < 0.00018 U < 0.00018 U < 0.00011 U < 0.00010 U < 0.00027 U < 0.00028 U < 0.00018 U < 0.00011 U < 0.00011 U < 0.00028 U < 0.00028 U < 0.00017 U < 0.000093 U < 0.00011 U < 0.000095 U < 0.00027 U < 0.00027 U < 0.00027 U < 0.00017 U < 0.000093 U < 0.00011 U < 0.000095 U < 0.00027 U < 0.000	<0.000089 U <0.000085 U <0.000085 U <0.000087 U <0.000086 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.000085 U <0.000085 U <0.000087 U <0.000086 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.000085 U <0.000085 U <0.000087 U <0.000086 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.000087 U < 0.000086 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.000086 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.000088 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
WHC1-D03 0 FD 12/5/2008 0.0099 J+ < 0.0024 U < 0.00017 U < 0.000095 U < 0.00011 U < 0.000097 U < 0.00027 U <	< 0.000087 U
	< 0.000087 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.000087 U
	< 0.000086 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.000088 U
	< 0.000085 U
WHC1-D05 0 NORM 12/5/2008 0.12 < 0.0024 U < 0.00017 U < 0.000095 U < 0.00011 U < 0.00097 U < 0.00027 U	< 0.000087 U
WHC1-D05	< 0.000085 U
WHC1-D06	< 0.000087 U
	< 0.000086 U
WHC1-D07	< 0.000085 U
WHC1-D07	< 0.000085 U
WHC1-D08 0 NORM 12/8/2008 0.0026 < 0.0024 U < 0.00017 U < 0.000094 U < 0.00011 U < 0.000096 U < 0.00027 U <	< 0.000085 U
WHC1-D08	< 0.000091 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.000086 U
	< 0.00009 U
	< 0.000086 U
WHC1-D10	< 0.000086 U
WHC1-D11 0 NORM 12/8/2008 0.8 < 0.025 U < 0.0018 U < 0.00098 U < 0.0011 U < 0.001 U < 0.0028 U	< 0.0009 U
	< 0.000087 U
	< 0.000094 U
	< 0.00012 U
	< 0.000088 U
WHC1-D13 10 NORM 12/8/2008 < 0.00025 U < 0.0031 U < 0.00022 U < 0.00012 U < 0.00014 U < 0.00013 U < 0.00035 U	< 0.00011 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 16 of 27)

							Organochlor	ine Pesticides			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	beta-BHC	Chlordane	delta-BHC	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin
WHC1-D15	10	NORM	12/11/2008	< 0.00024 U	< 0.003 U	< 0.00022 U	< 0.00012 U	< 0.00014 U	< 0.00012 U	< 0.00034 U	< 0.00011 U
WHC1-D16	0	NORM	12/10/2008	0.023 J+	< 0.0026 U	< 0.00018 U	< 0.0001 U	< 0.00012 U	< 0.0001 U	< 0.00029 U	< 0.000091 U
WHC1-D16	10	NORM	12/10/2008	0.0021	< 0.0027 U	< 0.00019 U	< 0.00011 U	< 0.00012 U	< 0.00011 U	< 0.00031 U	< 0.000097 U
WHC1-D17	0	NORM	12/10/2008	0.26 J	< 0.0025 U	< 0.00018 U	< 0.000099 U	< 0.00011 U	< 0.0001 U	0.0085 J+	< 0.000091 U
WHC1-D17	10	NORM	12/10/2008	< 0.00021 U	< 0.0027 U	< 0.00019 U	< 0.0001 U	< 0.00012 U	< 0.00011 U	< 0.0003 U	< 0.000095 U
WHC1-D18	0	NORM	12/11/2008	0.021 J+	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-D18	10	NORM	12/11/2008	0.016	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-D19	0	NORM	12/11/2008	0.031 J	< 0.0025 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00028 U	< 0.000088 U
WHC1-D19	0	FD	12/11/2008	0.01 J	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-D19	10	NORM	12/11/2008	0.0028	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U
WHC1-D20	0	NORM	12/12/2008	0.0071 J+	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-D20	10	NORM	12/12/2008	0.0043 J+	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-D21	0	NORM	12/16/2008	0.02 J+	< 0.0025 U	< 0.00018 U	< 0.000097 U	< 0.00011 U	< 0.000099 U	< 0.00028 U	< 0.000089 U
WHC1-D21	10	NORM	12/16/2008	0.011	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-D22	0	NORM	12/16/2008	0.0073	< 0.0028 U	< 0.0002 U	< 0.00011 U	< 0.00013 U	< 0.00011 U	< 0.00032 U	< 0.0001 U
WHC1-D22	10	NORM	12/16/2008	0.0072	< 0.0025 U	< 0.00018 U	< 0.000098 U	< 0.00011 U	< 0.0001 U	< 0.00028 U	< 0.000089 U
WHC1-D23	0	NORM	12/16/2008	0.0099	< 0.0025 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00028 U	< 0.000088 U
WHC1-D23	10	NORM	12/16/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-D24	0	NORM	12/16/2008	0.0027 J	< 0.0025 U	< 0.00018 U	< 0.000098 U	< 0.00011 U	< 0.0001 U	< 0.00028 U	< 0.00009 U
WHC1-D24	0	FD	12/16/2008	0.0055 J	< 0.0025 U	< 0.00018 U	< 0.000099 U	< 0.00011 U	< 0.0001 U	< 0.00028 U	< 0.00009 U
WHC1-D24	10	NORM	12/16/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00028 U	< 0.000087 U
WHC1-D25	0	NORM	12/16/2008	0.0035	< 0.0025 U	< 0.00018 U	< 0.000097 U	< 0.00011 U	< 0.000099 U	< 0.00028 U	< 0.000088 U
WHC1-D25	10	NORM	12/16/2008	0.0029	< 0.0025 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00028 U	< 0.000087 U
WHC1-D26	0	NORM	12/12/2008	0.006 J+	< 0.0024 U	< 0.00017 U	< 0.00094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-D26	10	NORM	12/12/2008	< 0.00021 U	< 0.0026 U	< 0.00019 U	< 0.0001 U	< 0.00012 U	< 0.0001 U	< 0.00029 U	< 0.000093 U
WHC1-D27	0	NORM	12/12/2008	0.045	< 0.0025 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	0.0057 J	< 0.000087 U
WHC1-D27	0	FD	12/12/2008	0.014 J	< 0.0024 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00027 UJ	< 0.000087 U
WHC1-D27	10	NORM	12/12/2008	0.022 J+	< 0.0027 U	< 0.00019 U	< 0.00011 U	< 0.00012 U	< 0.00011 U	< 0.0003 U	< 0.000096 U
WHC1-D28	0	NORM	12/12/2008	0.012 J+	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U
WHC1-D28	10	NORM	12/12/2008	0.014 J+	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-D29	0	NORM	12/12/2008	0.0039 J+	< 0.0024 U	< 0.00018 U	< 0.000095 U	< 0.00011 U	< 0.000098 U	< 0.00027 U	< 0.000087 U
WHC1-D29	10	NORM	12/12/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000097 U	< 0.00011 U	< 0.000099 U	< 0.00028 U	< 0.000088 U
WHC1-P01	0	NORM	12/15/2008	0.0092	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-P01	12	NORM	12/19/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U
WHC1-P02	0	NORM	12/1/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-P02	10	NORM	12/1/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000084 U
WHC1-P03	0	NORM	12/15/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-P03	3	NORM	12/18/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000085 U
WHC1-P03	3	FD	12/18/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 17 of 27)

							Organochlor	ine Pesticides			
				()	o	C	Ž.	Endosulfan I	an II	an	
				beta-BHC	Chlordane	delta-BHC	ii	ulf	Endosulfan	Endosulfan sulfate	а
	Depth	Sample	Sample	a-F	lor	ta-	Dieldrin	sop	sop	Endosu sulfate	Endrin
Sample ID	(ft bgs)	Type	Date								
WHC1-P03	13	NORM	12/18/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U
WHC1-P04	0	NORM	12/15/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-P04	10	NORM	12/18/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000097 U	< 0.00011 U	< 0.000099 U	< 0.00028 U	< 0.000088 U
WHC1-P05	0	NORM	12/8/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00028 U	< 0.000087 U
WHC1-P05	0	FD	12/8/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U
WHC1-P05	10	NORM	12/18/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000097 U	< 0.00011 U	< 0.000099 U	< 0.00028 U	< 0.000089 U
WHC1-P06	0	NORM	12/2/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-P06	12	NORM	12/2/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000085 U
WHC1-P07	0	NORM	12/2/2008	0.0042 J+	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-P07	3	NORM	12/2/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000085 U
WHC1-P07	13	NORM	12/2/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U
WHC1-P08	0	NORM	12/3/2008	0.0018	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-P08	11	NORM	12/3/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-P09	0	NORM	12/4/2008	0.0077 J	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-P09	0	FD	12/4/2008	0.0057 J	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-P09	10	NORM	12/4/2008	0.0038	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-P10	0	NORM	11/25/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-P10	10	NORM	11/25/2008	< 0.00023 U	< 0.0028 U	< 0.0002 U	< 0.00011 U	< 0.00013 U	< 0.00011 U	< 0.00032 U	< 0.0001 U
WHC1-P11	0	NORM	12/8/2008	0.097 J	< 0.024 U	< 0.0018 U	< 0.00095 U	< 0.0011 U	< 0.00098 U	< 0.0027 U	< 0.00087 U
WHC1-P11	0	FD	12/8/2008	0.19 J	< 0.024 U	< 0.0017 U	< 0.00094 U	< 0.0011 U	< 0.00096 U	< 0.0027 U	< 0.00086 U
WHC1-P11	10	NORM	12/9/2008	0.0038	< 0.0026 U	< 0.00018 U	< 0.0001 U	< 0.00012 U	< 0.0001 U	< 0.00029 U	< 0.000091 U
WHC1-P12	0	NORM	12/5/2008	0.036 J+	< 0.0024 U	0.0027 J+	0.0021 J	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-P12	11	NORM	12/5/2008	0.021 J+	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-P13	0	NORM	12/9/2008	0.0044	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000087 U
WHC1-P13	10	NORM	12/9/2008	< 0.00027 U	< 0.0034 U	< 0.00024 U	< 0.00013 U	< 0.00015 U	< 0.00014 U	< 0.00038 U	< 0.00012 U
WHC1-P13	10	FD	12/9/2008	< 0.00024 U	< 0.003 U	< 0.00022 U	< 0.00012 U	< 0.00014 U	< 0.00012 U	< 0.00034 U	< 0.00011 U
WHC1-P14	0	NORM	12/17/2008	0.017	< 0.014 U	< 0.001 U	< 0.00055 U	< 0.00063 U	< 0.00056 U	< 0.0016 U	< 0.0005 U
WHC1-P15	0	NORM	12/8/2008	0.0029	< 0.0025 U	< 0.00018 U	< 0.000099 U	< 0.00011 U	< 0.0001 U	< 0.00028 U	< 0.00009 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000098 U	< 0.00011 U	< 0.0001 U	< 0.00028 U	< 0.000089 U
WHC1-P15	10	NORM	12/18/2008	< 0.0002 U	< 0.0025 U	< 0.00018 U	< 0.000096 U	< 0.00011 U	< 0.000098 U	< 0.00028 U	< 0.000087 U
WHC1-P16	0	NORM	12/1/2008	< 0.0019 U	< 0.024 U	< 0.0017 U	< 0.00094 U	< 0.0011 U	< 0.00096 U	< 0.0027 U	< 0.00086 U
WHC1-P16	11	NORM	12/1/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000093 U	< 0.00011 U	< 0.000095 U	< 0.00027 U	< 0.000085 U
WHC1-P17	0	NORM	12/15/2008	0.0068	< 0.0024 U	< 0.00017 U	< 0.000095 U	< 0.00011 U	< 0.000097 U	< 0.00027 U	< 0.000086 U
WHC1-P17	12	NORM	12/19/2008	< 0.0002 U	< 0.0024 U	< 0.00018 U	< 0.000095 U	< 0.00011 U	< 0.000098 U	< 0.00027 U	< 0.000087 U
WHC1-P17	12	FD	12/19/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-P18	0	NORM	12/1/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000086 U
WHC1-P18	12	NORM	12/1/2008	< 0.00019 U	< 0.0024 U	< 0.00017 U	< 0.000094 U	< 0.00011 U	< 0.000096 U	< 0.00027 U	< 0.000085 U
WHC2-D01	0	NORM	6/24/2010	0.023 J+	< 0.0039 U	< 0.00025 U	< 0.00023 U	< 0.0006 U	< 0.00025 U	< 0.00026 U	< 0.00014 U
WHC2-D01C	0	NORM	12/2/2009	< 0.0013 U	< 0.015 U	< 0.0011 U	< 0.00098 U	< 0.00097 U	< 0.0012 U	< 0.0014 U	< 0.0011 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 18 of 27)

							Organochlor	ine Pesticides			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	beta-BHC	Chlordane	delta-BHC	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin
WHC2-D04C	0	NORM	12/2/2009	0.064	< 0.015 U	< 0.0011 U	< 0.00098 U	< 0.00097 U	< 0.0012 U	< 0.0014 U	< 0.0011 U
WHC2-D05C	0	NORM	12/2/2009	5.6	< 0.0074 U	0.025	< 0.00049 U	< 0.00048 U	< 0.00058 U	< 0.00068 U	< 0.00054 U
WHC2-D11C	0	NORM	12/2/2009	0.26	< 0.0074 U	< 0.00054 U	< 0.00049 U	< 0.00048 U	< 0.00058 U	< 0.00068 U	< 0.00054 U
WHC2-D14C	0	NORM	12/2/2009	< 0.00067 U	< 0.0077 U	< 0.00056 U	< 0.0005 U	< 0.0005 U	< 0.0006 U	< 0.0007 U	< 0.00056 U
WHC2-P11C	0	NORM	12/1/2009	0.12	< 0.0015 U	< 0.00011 U	< 0.000099 U	< 0.000098 U	< 0.00012 U	< 0.00014 U	< 0.00011 U
WHC3-D11C	0	NORM	6/24/2010	1.1	< 0.0038 U	< 0.00025 U	< 0.00022 U	< 0.00058 U	< 0.00024 U	< 0.00025 U	< 0.00014 U
WHC3-P11C	0	NORM	8/9/2010	0.097 J	< 0.0039 U	< 0.00025 U	< 0.00022 U	< 0.0006 U	< 0.00025 U	< 0.00026 U	< 0.00014 U
WHC3-P11C	0	FD	8/9/2010	0.073 J	< 0.004 U	< 0.00026 U	< 0.00023 U	< 0.00062 U	< 0.00025 U	< 0.00027 U	< 0.00015 U
WHC6-D05	0	NORM	7/27/2012	0.0049	< 0.0039 U	< 0.00025 U	< 0.00022 U	< 0.0006 U	< 0.00025 U	< 0.00036 U	< 0.00017 U
WHC6-D11	0	NORM	7/27/2012	0.0044	< 0.0038 U	< 0.00025 U	< 0.00022 U	< 0.00059 U	< 0.00024 U	< 0.00035 U	< 0.00016 U
WHC6-P11	0	NORM	7/27/2012	0.089	< 0.0038 U	< 0.00025 U	< 0.00022 U	< 0.00058 U	< 0.00024 U	< 0.00034 U	< 0.00016 U

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 19 of 27)

							Organochlor	rine Pesticides			1
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Endrin aldehyde	Endrin ketone	gamma-BHC (Lindane)	gamma- Chlordane	Heptachlor	Heptachlor epoxide	Methoxychlor	Toxaphene
OSC1-BM11	0	NORM	9/21/2009	< 0.00016 U	< 0.00014 U	< 0.00011 U	< 0.000091 U	< 0.000099 U	< 0.00012 U	< 0.00035 U	< 0.0059 U
OSC1-BM11	10	NORM	9/21/2009	< 0.00018 U	< 0.00016 U	< 0.00012 U	< 0.0001 U	< 0.00011 U	< 0.00014 U	< 0.00039 U	< 0.0066 U
OSC1-BN11	0	NORM	9/22/2009	< 0.00016 U	< 0.00013 U	< 0.00011 U	< 0.000088 U	< 0.000096 U	< 0.00012 U	< 0.00034 U	< 0.0057 U
OSC1-BN11	5	NORM	9/22/2009	< 0.00016 U	< 0.00014 U	< 0.00011 U	< 0.000092 U	< 0.0001 U	< 0.00012 U	< 0.00035 U	< 0.0059 U
OSC1-BO11	0	NORM	9/16/2009	< 0.00016 U	< 0.00014 U	< 0.00011 U	< 0.000093 U	< 0.0001 U	< 0.00012 U	< 0.00036 U	< 0.006 U
OSC1-BO11	0	FD	9/16/2009	< 0.00018 U	< 0.00015 U	< 0.00012 U	< 0.0001 U	< 0.00011 U	< 0.00013 U	< 0.00038 U	< 0.0065 U
OSC1-BO11	5	NORM	9/16/2009	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.00011 U	< 0.00012 U	< 0.00015 U	< 0.00042 U	< 0.0071 U
OSC1-BP11	0	NORM	9/16/2009	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.00011 U	< 0.00012 U	< 0.00014 U	< 0.00042 U	< 0.007 U
OSC1-BP11	5	NORM	9/16/2009	< 0.00021 U	< 0.00018 U	< 0.00014 U	< 0.00012 U	< 0.00013 U	< 0.00015 U	< 0.00045 U	< 0.0076 U
OSC1-JP06	0	NORM	9/22/2009	< 0.00019 U	< 0.00016 U	< 0.00013 U	< 0.00011 U	< 0.00012 U	< 0.00014 U	< 0.00041 U	< 0.0069 U
OSC1-JP06	5	NORM	9/22/2009	< 0.00021 U	< 0.00018 U	< 0.00014 U	< 0.00012 U	< 0.00013 U	< 0.00016 U	< 0.00046 U	< 0.0077 U
OSC1-JP07	0	NORM	9/21/2009	< 0.00016 U	< 0.00014 U	< 0.00011 U	< 0.000093 U	< 0.0001 U	< 0.00012 U	< 0.00036 U	< 0.006 U
OSC1-JP07	5	NORM	9/21/2009	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.00011 U	< 0.00012 U	< 0.00014 U	< 0.00042 U	< 0.007 U
OSC1-JP08	0	NORM	9/21/2009	< 0.00018 U	< 0.00016 U	< 0.00012 U	< 0.0001 U	< 0.00011 U	< 0.00014 U	< 0.00039 U	< 0.0066 U
OSC1-JP08	10	NORM	9/21/2009	< 0.00019 U	< 0.00016 U	< 0.00013 U	< 0.00011 U	< 0.00012 U	< 0.00014 U	< 0.00041 U	< 0.007 U
OSC1-JS10	0	NORM	1/31/2010	< 0.00021 U	< 0.00018 U	< 0.00015 U	< 0.00012 U	< 0.00013 U	< 0.00016 U	< 0.00046 U	< 0.0078 U
OSC1-JS10	0	FD	1/21/2010	< 0.00021 U	< 0.00018 U	< 0.00014 U	< 0.00012 U	< 0.00013 U	< 0.00016 U	< 0.00045 U	< 0.0076 U
WHC1-BF01	0	NORM	11/24/2008	< 0.00018 U	< 0.00016 U	< 0.00012 U	< 0.000084 U	< 0.00017 U	< 0.00013 U	0.0021 J	< 0.0059 U
WHC1-BF01	12	NORM	11/24/2008	< 0.00019 U	< 0.00017 U	< 0.00012 U	< 0.000087 U	< 0.00017 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BF02	0	NORM	11/25/2008	< 0.00018 U	< 0.00017 U	< 0.00012 U	< 0.000084 U	< 0.00017 U	< 0.00011 U	< 0.00032 U	< 0.0059 U
WHC1-BF02	11	NORM	11/25/2008	< 0.00019 U	< 0.00010 U	< 0.00012 U	< 0.000084 U	< 0.00017 C	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-BF03	0	NORM	11/25/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000084 U	< 0.00013 U	< 0.00014 U	< 0.00033 U	< 0.0059 U
WHC1-BF03	10	NORM	11/25/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000084 U	< 0.00017 C	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-BF04	0	NORM	11/25/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000084 U	< 0.00013 U	< 0.00014 U	< 0.00033 U	< 0.0059 U
WHC1-BF04	0	FD	11/25/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000084 U	< 0.00017 C	< 0.00013 U	< 0.00032 U	< 0.0062 U
WHC1-BF04	10	NORM	11/25/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000089 U	< 0.00018 U	< 0.00014 U	< 0.00034 U	< 0.0062 U
WHC1-BF05	0	NORM	11/25/2008	< 0.00019 U	< 0.00013 U	< 0.00013 U	< 0.000089 U	< 0.00019 U	< 0.00014 U	< 0.00034 U	< 0.006 U
WHC1-BF05	12	NORM	12/10/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.00012 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.008 U
WHC1-BF06	0	NORM	12/10/2008	< 0.00020 U	< 0.00023 U	< 0.00013 U	0.0032	< 0.00025 U	< 0.00014 U	< 0.00033 U	< 0.0063 U
WHC1-BF06	10	NORM	12/10/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.0032 < 0.00011 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0079 U
WHC1-BG01	0	NORM	11/24/2008	0.00024 U	< 0.00022 U	< 0.00017 U	< 0.00011 U < 0.000084 U	< 0.00023 U < 0.00017 U	< 0.00018 U	< 0.00043 U	< 0.0079 U < 0.0059 U
WHC1-BG01	11	NORM	11/24/2008	< 0.0019 J < 0.00019 U	< 0.00016 U < 0.00017 U	< 0.00012 U < 0.00013 U	< 0.000084 U	< 0.00017 U	< 0.00013 U	< 0.00032 U < 0.00033 U	< 0.0039 U < 0.006 U
WHC1-BG02	0	NORM	11/24/2008	0.0023 J	< 0.00017 U	< 0.00013 U	< 0.000086 U < 0.000084 U	< 0.00018 U < 0.00017 U	< 0.00014 U < 0.00013 U	< 0.00033 U < 0.00032 U	< 0.006 U < 0.0059 U
WHC1-BG02	0	FD	11/24/2008	< 0.0023 J	< 0.00017 U	< 0.00013 U	< 0.000084 U	< 0.00017 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BG02 WHC1-BG02	10	NORM	11/24/2008	< 0.00018 U < 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U < 0.00018 U	< 0.00013 U < 0.00014 U	< 0.00032 U < 0.00033 U	< 0.0059 U < 0.006 U
	0										
WHC1-BG03	·	NORM	12/11/2008	< 0.00018 U	< 0.00016 U	< 0.00012 U	< 0.000084 U	< 0.00017 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BG03	11	NORM	12/11/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-BG04	0	NORM	12/11/2008	< 0.018 U	< 0.017 U	< 0.012 U	0.18 J	< 0.017 U	< 0.013 U	< 0.032 U	< 0.59 U
WHC1-BG04	10	NORM	12/11/2008	< 0.00024 U	< 0.00022 U	< 0.00016 U	< 0.00011 U	< 0.00023 U	< 0.00017 U	< 0.00042 U	< 0.0077 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 20 of 27)

							Organochlor	ine Pesticides			
	Depth	Sample	Sample	Endrin aldehyde	Endrin ketone	gamma-BHC (Lindane)	gamma- Chlordane	Heptachlor	Heptachlor epoxide	Methoxychlor	Toxaphene
Sample ID	(ft bgs)	Type	Date								
WHC1-BG05	0	NORM	11/25/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BG05	10	NORM	11/25/2008	< 0.00021 U	< 0.00019 U	< 0.00014 U	< 0.000095 U	< 0.0002 U	< 0.00015 U	< 0.00036 U	< 0.0066 U
WHC1-BG06	0	NORM	12/10/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	0.0063 J+	< 0.006 U
WHC1-BG06	10	NORM	12/10/2008	< 0.00023 U	< 0.00021 U	< 0.00016 U	< 0.0001 U	< 0.00022 U	< 0.00017 U	< 0.0004 U	< 0.0073 U
WHC1-BH01	0	NORM	12/3/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-BH01	11	NORM	12/3/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BH02	0	NORM	12/4/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00032 U	< 0.006 UJ
WHC1-BH02	10	NORM	12/4/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BH03	0	NORM	12/9/2008	0.0026	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BH03	10	NORM	12/9/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BH04	0	NORM	12/11/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000084 U	< 0.00018 U	< 0.00013 U	0.002 J	< 0.0059 U
WHC1-BH04	10	NORM	12/11/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BH05	0	NORM	12/9/2008	0.0023 J	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	0.0039	< 0.006 U
WHC1-BH05	0	FD	12/9/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BH05	10	NORM	12/9/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BH06	0	NORM	12/11/2008	0.0034 J+	< 0.00018 U	< 0.00014 U	< 0.000092 U	< 0.00019 U	< 0.00014 U	< 0.00035 U	< 0.0064 U
WHC1-BH06	0	FD	12/11/2008	< 0.00019 U	< 0.00018 U	< 0.00013 U	< 0.00009 U	< 0.00019 U	< 0.00014 U	< 0.00034 U	< 0.0063 U
WHC1-BH06	10	NORM	12/11/2008	< 0.00021 U	< 0.00019 U	< 0.00014 U	< 0.000095 U	< 0.0002 U	< 0.00015 U	< 0.00036 U	< 0.0066 U
WHC1-BI01	0	NORM	12/3/2008	< 0.00039 U	< 0.00036 U	< 0.00027 U	< 0.00018 U	< 0.00038 U	< 0.00029 U	< 0.00069 U	< 0.013 U
WHC1-BI01	11	NORM	12/3/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BI02	0	NORM	12/4/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BI02	3	NORM	12/4/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-BI02	13	NORM	12/4/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-BI03	0	NORM	12/4/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BI03	11	NORM	12/4/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BI04	0	NORM	12/8/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BI04	10	NORM	12/9/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BI05	0	NORM	12/9/2008	0.003 J	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-BI05	10	NORM	12/9/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BJ01	0	NORM	12/3/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BJ01	3	NORM	12/3/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BJ01	13	NORM	12/3/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00034 U	< 0.0062 U
WHC1-BJ02	0	NORM	12/2/2008	< 0.00019 UJ	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BJ02	0	FD	12/2/2008	0.01 J	< 0.00017 UJ	< 0.00013 UJ	< 0.000086 UJ	< 0.00018 UJ	< 0.00014 UJ	< 0.00033 UJ	< 0.006 UJ
WHC1-BJ02	12	NORM	12/2/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BJ03	0	FD	12/4/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BJ04	0	NORM	12/4/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000084 U	< 0.00017 U	< 0.00013 U	< 0.00032 U	< 0.0059 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 21 of 27)

							Organochlor	ine Pesticides			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Endrin aldehyde	Endrin ketone	gamma-BHC (Lindane)	gamma- Chlordane	Heptachlor	Heptachlor epoxide	Methoxychlor	Foxaphene
WHC1-BJ04	11	NORM	12/4/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	二 で < 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BJ05	0	NORM	12/11/2008	0.0051 J+	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0059 U
WHC1-BJ05	10	NORM	12/11/2008	< 0.0031 J+ < 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000083 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0061 U
WHC1-BK01	0	NORM	12/3/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.00043 U	< 0.00010 U	< 0.00014 U	< 0.0017 U	< 0.03 UJ
WHC1-BK01	0	FD	12/3/2008	< 0.00094 U	< 0.00085 U	< 0.00064 U	< 0.00043 U	< 0.0009 U	< 0.00069 U	0.013 J	< 0.03 UJ
WHC1-BK01	10	NORM	12/3/2008	< 0.00091 U	< 0.00017 U	< 0.00013 U	< 0.000011 C	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 UJ
WHC1-BK02	0	NORM	12/8/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00011 U	< 0.00033 U	< 0.006 U
WHC1-BK02	11	NORM	12/18/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00013 C	< 0.00032 U	< 0.0061 U
WHC1-BK03	0	NORM	12/15/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BK03	12	NORM	12/18/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BK04	0	NORM	12/4/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BK04	10	NORM	12/4/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BK05	0	NORM	12/12/2008	0.0018 J	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BK05	11	NORM	12/12/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BL01	0	NORM	12/3/2008	< 0.00093 U	< 0.00085 U	< 0.00064 U	< 0.00043 U	< 0.00089 U	< 0.00068 U	< 0.0016 U	< 0.03 U
WHC1-BL01	10	NORM	12/3/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 UJ
WHC1-BL02	0	NORM	12/2/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BL02	10	NORM	12/2/2008	< 0.00019 U	< 0.00018 U	< 0.00013 U	< 0.00009 U	< 0.00019 U	< 0.00014 U	< 0.00034 U	< 0.0063 U
WHC1-BL03	0	NORM	12/8/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BL03	10	NORM	12/18/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BL04	0	NORM	12/17/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BL04	12	NORM	12/22/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BL05	0	NORM	11/21/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BL05	10	NORM	11/21/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BL06	0	NORM	11/21/2008	0.0033 J	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BL06	11	NORM	11/21/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BL07	0	NORM	11/21/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-BL07	10	NORM	11/21/2008	< 0.00024 U	< 0.00021 U	< 0.00016 U	< 0.00011 U	< 0.00023 U	< 0.00017 U	< 0.00042 U	< 0.0076 U
WHC1-BL08	0	NORM	11/18/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BL08	10	NORM	11/18/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BL11	0	NORM	11/18/2008	0.0039 J	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	0.0038 J	< 0.006 U
WHC1-BL11	12	NORM	11/18/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000089 U	< 0.00018 U	< 0.00014 U	< 0.00034 U	< 0.0062 U
WHC1-BM01	0	NORM	12/3/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0062 U
WHC1-BM01	10	NORM	12/3/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BM02	0	NORM	12/2/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00032 U	< 0.006 U
WHC1-BM02	12	NORM	12/2/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000089 U	< 0.00018 U	< 0.00014 U	< 0.00034 U	< 0.0062 U
WHC1-BM03	0	NORM	12/8/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-BM03	10	NORM	12/18/2008	< 0.00019 U	< 0.00018 U	< 0.00013 U	< 0.000089 U	< 0.00018 U	< 0.00014 U	< 0.00034 U	< 0.0062 U
WHC1-BM04	0	NORM	12/17/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 22 of 27)

							Organochlor	ine Pesticides			
				aldehyde	ketone	gamma-BHC (Lindane)	ų.	or	or	Methoxychlor	ne
				n al	n ke	gamma-B	gamma- Chlordane	Heptachlor	Heptachlor epoxide	xy	Toxaphene
	Depth	Sample	Sample	Endrin	Endrin	mm ind	gamma- Chlorda	pta	Heptach	ethc	xap
Sample ID	(ft bgs)	Type	Date								
WHC1-BM04	0	FD	12/17/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BM04	10	NORM	12/22/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BM05	0	NORM	11/21/2008	< 0.00018 U	< 0.00016 U	< 0.00012 U	< 0.000084 U	< 0.00017 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BM05	10	NORM	11/21/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BM06	0	NORM	11/21/2008	0.0084 J	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BM06	0	FD	11/21/2008	0.0064 J	< 0.00018 U	< 0.00013 U	< 0.00009 U	< 0.00019 U	< 0.00014 U	< 0.00034 U	< 0.0063 U
WHC1-BM06	10	NORM	11/21/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BM07	0	NORM	11/20/2008	0.003 J	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BM07	11	NORM	11/20/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BM08	0	NORM	11/18/2008	< 0.00018 UJ	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	0.01 J	< 0.006 U
WHC1-BM08	0	FD	11/18/2008	0.0099 J	< 0.00019 U	< 0.00014 U	< 0.000096 U	< 0.0002 U	0.0021 J	< 0.00036 UJ	< 0.0067 U
WHC1-BM08	11	NORM	11/18/2008	0.012 J	< 0.00018 U	< 0.00013 U	< 0.00009 U	< 0.0019 U	< 0.0014 U	< 0.0034 U	< 0.063 U
WHC1-BM09	0	NORM	11/18/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BM09	12	NORM	11/18/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BM10	0	NORM	11/18/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BM10	3	NORM	11/18/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000089 U	< 0.00018 U	< 0.00014 U	< 0.00034 U	< 0.0062 U
WHC1-BM10	13	NORM	11/18/2008	< 0.00023 U	< 0.00021 U	< 0.00016 U	< 0.00011 U	< 0.00022 U	< 0.00017 U	< 0.00041 U	< 0.0075 U
WHC1-BN01	0	NORM	12/1/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BN01	12	NORM	12/1/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BN02	0	NORM	12/1/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BN02	0	FD	12/1/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BN02	11	NORM	12/1/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-BN03	0	NORM	12/17/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BN03	10	NORM	12/18/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BN04	0	NORM	12/17/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BN04	7	NORM	12/22/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BN04	17	NORM	12/22/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BN05	0	NORM	11/20/2008	< 0.00018 UJ	< 0.00016 UJ	< 0.00012 UJ	< 0.000084 UJ	< 0.00017 UJ	< 0.00013 UJ	0.0038 J	< 0.0058 UJ
WHC1-BN05	0	FD	11/20/2008	< 0.00018 UJ	< 0.00017 UJ	< 0.00013 UJ	< 0.000084 UJ	< 0.00017 UJ	< 0.00013 UJ	0.013 J	< 0.0059 UJ
WHC1-BN05	10	NORM	11/20/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BN06	0	NORM	11/20/2008	< 0.00018 U	< 0.00017 U	< 0.00012 U	< 0.000084 U	< 0.00017 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BN06	10	NORM	11/20/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BN07	0	NORM	11/21/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BN07	3	NORM	11/21/2008	0.0043 J	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BN07	13	NORM	11/21/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BN08	0	NORM	11/20/2008	< 0.00018 U	< 0.00017 U	< 0.00012 U	< 0.000084 U	< 0.00017 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BN08	10	NORM	11/20/2008	0.0031 J	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BN09	0	NORM	12/17/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BN09	11	NORM	12/19/2008	< 0.0002 U	< 0.00018 U	< 0.00014 U	< 0.000092 U	< 0.00019 U	< 0.00014 U	< 0.00035 U	< 0.0064 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 23 of 27)

							Organochlor	ine Pesticides			
				e e							
				aldehyde	<u>e</u>	7)				or.	
				del	ketone	H	o o	or	or	chl	je Je
				ı al	ı ke	a-E une	a- lan	chl	chl	××	her
	Depth	Sample	Sample	Endrin	Endrin	gamma-BHC (Lindane)	gamma- Chlordane	Heptachlor	Heptachlor epoxide	Methoxychlor	Toxaphene
Sample ID	(ft bgs)	Type	Date				ga Ch				
WHC1-BN10	0	NORM	11/18/2008	< 0.0002 U	< 0.00018 U	< 0.00014 U	< 0.000091 U	< 0.00019 U	< 0.00014 U	0.002 J	< 0.0064 U
WHC1-BN10	10	NORM	11/18/2008	< 0.00022 U	< 0.0002 U	< 0.00015 U	< 0.0001 U	< 0.00021 U	< 0.00016 U	< 0.00038 U	< 0.007 U
WHC1-BO01	0	NORM	12/2/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BO01	0	FD	12/2/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BO01	4	NORM	12/2/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-BO01	14	NORM	12/2/2008	< 0.00019 U	< 0.00018 U	< 0.00013 U	< 0.00009 U	< 0.00019 U	< 0.00014 U	< 0.00034 U	< 0.0063 U
WHC1-BO02	0	NORM	12/1/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BO02	12	NORM	12/1/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BO03	0	NORM	12/15/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BO03	12	NORM	12/19/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BO04	0	NORM	12/15/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0062 U
WHC1-BO04	12	NORM	12/19/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BO05	0	NORM	11/20/2008	< 0.0002 U	< 0.00019 U	< 0.00014 U	< 0.000095 U	< 0.0002 U	< 0.00015 U	< 0.00036 U	< 0.0066 U
WHC1-BO05	10	NORM	11/20/2008	< 0.00021 U	< 0.00019 U	< 0.00014 U	< 0.000095 U	< 0.0002 U	< 0.00015 U	0.0078	< 0.0067 U
WHC1-BO06	0	NORM	11/20/2008	< 0.0002 UJ	< 0.00018 UJ	< 0.00014 UJ	< 0.000092 UJ	< 0.00019 UJ	< 0.00014 UJ	< 0.00035 UJ	< 0.0064 UJ
WHC1-BO06	10	NORM	11/20/2008	< 0.0002 UJ	< 0.00018 UJ	< 0.00014 UJ	< 0.000094 UJ	< 0.0002 UJ	< 0.00015 UJ	< 0.00036 UJ	< 0.0066 UJ
WHC1-BO07	0	NORM	11/19/2008	< 0.00018 U	< 0.00017 U	< 0.00012 U	< 0.000084 U	< 0.00017 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BO07	10	NORM	11/19/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BO08	0	NORM	11/20/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BO08	0	FD	11/20/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BO08	11	NORM	11/20/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BO09	0	NORM	11/19/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BO09	0	FD	11/19/2008	0.003 J+	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BO09	6	NORM	11/19/2008	< 0.00019 U	< 0.00018 U	< 0.00013 U	< 0.000089 U	< 0.00019 U	< 0.00014 U	< 0.00034 U	< 0.0062 U
WHC1-BO09	16	NORM	11/19/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BO10	0	NORM	11/19/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-BO10	10	NORM	11/19/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BP01	0	NORM	12/1/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-BP01	10	NORM	12/1/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BP02	0	NORM	12/1/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BP02	11	NORM	12/1/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000089 U	< 0.00018 U	< 0.00014 U	< 0.00034 U	< 0.0062 U
WHC1-BP03	0	NORM	12/15/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000084 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BP03	0	FD	12/15/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BP03	11	NORM	12/19/2008	< 0.00019 U	< 0.00018 U	< 0.00013 U	< 0.00009 U	< 0.00019 U	< 0.00014 U	< 0.00034 U	< 0.0063 U
WHC1-BP04	0	NORM	12/15/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-BP04	12	NORM	12/19/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	0.013	< 0.006 U
WHC1-BP05	0	NORM	12/15/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BP05	10	NORM	12/19/2008	< 0.00019 U	< 0.00018 U	< 0.00013 U	< 0.000089 U	< 0.00018 U	< 0.00014 U	< 0.00034 U	< 0.0062 U
WHC1-BP06	0	NORM	12/12/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 24 of 27)

							Organochlor	ine Pesticides			
				aldehyde	ketone	gamma-BHC (Lindane)	ue	lor	lor	Methoxychlor	sne
	Donth	Comple	Comple	n E.	ii k	na- lane	na- rda	ach	ach ide	loxy	phe
C I. ID	Depth (ft bgg)	Sample	Sample Date	Endrin	Endrin	gamma-B	gamma- Chlordane	Heptachlor	Heptachlor epoxide	leth	Toxaphene
Sample ID WHC1-BP06	(ft bgs)	Type NORM	12/12/2008	回 < 0.00019 U	(0.00017 U				= = □ = = = = = = = = = = = = = = = = = = =	≥ < 0.00033 U	< 0.006 U
WHC1-BP06 WHC1-BP07	0	NORM	12/12/2008	< 0.00019 U < 0.0002 U	< 0.00017 U < 0.00018 U	< 0.00013 U < 0.00014 U	< 0.000086 U < 0.000092 U	< 0.00018 U < 0.00019 U	< 0.00014 U < 0.00015 U	< 0.00033 U < 0.00035 U	< 0.006 U
WHC1-BP07	3	NORM	11/20/2008	< 0.0002 U	< 0.00018 U	< 0.00014 U	< 0.000092 U	< 0.00019 U	< 0.00013 U	< 0.00033 U	< 0.0063 U
WHC1-BP07	13	NORM	11/20/2008	< 0.00019 C	< 0.00018 UJ	< 0.00013 U	< 0.00009 U	< 0.00019 UJ	< 0.00014 UJ	< 0.00034 U	< 0.0064 UJ
WHC1-BP08	0	NORM	11/19/2008	< 0.0002 UJ	< 0.00017 U	< 0.00014 UJ	< 0.000091 UJ	< 0.00019 UJ	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-BP08	4	NORM	11/19/2008	< 0.00017 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00035 U	< 0.0061 U
WHC1-BP08	14	NORM	11/19/2008	< 0.0002 U	< 0.00017 U	< 0.00013 U	< 0.000091 C	< 0.00019 U	< 0.00014 U	< 0.00033 U	< 0.0004 U
WHC1-BP09	0	NORM	11/19/2008	< 0.00013 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00011 U	< 0.00033 U	< 0.0059 U
WHC1-BP09	10	NORM	11/19/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000089 U	< 0.00018 U	< 0.00014 U	< 0.00034 U	< 0.0062 U
WHC1-BP10	0	NORM	11/19/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-BP10	10	NORM	11/19/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-D01	0	NORM	12/5/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	0.003 J	0.016 J+	< 0.006 U
WHC1-D01	10	NORM	12/5/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00032 U	< 0.006 U
WHC1-D02	0	NORM	12/5/2008	0.0045 J	< 0.00017 U	< 0.00013 U	0.0029 J+	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-D02	10	NORM	12/5/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-D03	0	NORM	12/5/2008	0.0048 J+	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-D03	0	FD	12/5/2008	0.0048 J+	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-D03	10	NORM	12/5/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-D04	0	NORM	12/5/2008	0.02 J	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00034 U	< 0.0062 U
WHC1-D04	10	NORM	12/5/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-D05	0	NORM	12/5/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-D05	10	NORM	12/5/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-D06	0	NORM	12/5/2008	0.0028	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-D06	10	NORM	12/5/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-D07	0	NORM	12/5/2008	0.0019	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-D07	10	NORM	12/5/2008	0.0022 J	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-D08	0	NORM	12/8/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-D08	10	NORM	12/9/2008	< 0.0002 U	< 0.00018 U	< 0.00014 U	< 0.000091 U	< 0.00019 U	< 0.00014 U	< 0.00035 U	< 0.0064 U
WHC1-D09 WHC1-D09	0	NORM	12/8/2008	0.0039 < 0.00019 U	< 0.00017 U	< 0.00013 U < 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-D09 WHC1-D10	11 0	NORM NORM	12/9/2008 12/8/2008	< 0.00019 U 0.0052 J+	< 0.00018 U < 0.00017 U	< 0.00013 U < 0.00013 U	< 0.00009 U < 0.000086 U	< 0.00019 U < 0.00018 U	< 0.00014 U < 0.00014 U	< 0.00034 U < 0.00033 U	< 0.0063 U < 0.006 U
WHC1-D10	10	NORM	12/8/2008	< 0.0052 J+ < 0.00019 U	< 0.00017 U < 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U < 0.00014 U	0.0068	< 0.006 U
WHC1-D10	0	NORM	12/9/2008	0.23	< 0.00017 U	< 0.0013 U	< 0.00086 U	< 0.0018 U	< 0.0014 U	< 0.0084 U	< 0.066 U < 0.063 U
WHC1-D11	10	NORM	12/9/2008	< 0.00019 U	< 0.0018 U	< 0.0013 U	< 0.0009 U	< 0.0019 U	< 0.0014 U	< 0.0034 U	< 0.063 U
WHC1-D11	0	NORM	12/10/2008	0.0024 J+	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-D12	10	NORM	12/10/2008	< 0.0024 J+	< 0.00018 U	< 0.00014 U	< 0.000034 U	< 0.00019 U	< 0.00019 U	< 0.00036 U	< 0.0083 U
WHC1-D13	0	NORM	12/8/2008	0.0024 J	< 0.00023 U	< 0.00013 U	< 0.00012 U	< 0.00024 U	< 0.00013 U	< 0.00043 U	< 0.0063 U
WHC1-D13	10	NORM	12/8/2008	< 0.0024 U	< 0.00017 C	< 0.00013 U	< 0.00011 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0078 U
WHC1-D15	0	NORM	12/11/2008	< 0.00019 U	< 0.00022 U	< 0.00017 U	0.0026 J	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
	Ü	1101011	12/11/2000	(0.0001)	(0.00017 0	10.00015	0.00203	10.000100	10.000110	10.00033	₹ 0.0001 €

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 25 of 27)

							Organochlor	ine Pesticides			
				Endrin aldehyde	ketone	IC	Ţ.	·		ılor	
				alde	ketc	gamma-BHC (Lindane)	ine	Heptachlor	Heptachlor epoxide	Methoxychlor	Toxaphene
	Depth	Sample	Sample	ii.	lii.	ma- dan	ma- orda	tach	tack	hox	qdı
Sample ID	(ft bgs)	Туре	Date	gudi	Endrin	gamma-B	gamma- Chlordane	lepí	Heptach	/let]	, Oxe
WHC1-D15	10	NORM	12/11/2008	< 0.00023 U	< 0.00021 U	0.0024	< 0.00011 U	< 0.00022 U	< 0.00017 U	< 0.00041 U	< 0.0075 U
WHC1-D16	0	NORM	12/10/2008	0.0022 J	< 0.00018 U	< 0.00013 U	< 0.000011 U	< 0.00019 U	< 0.00014 U	< 0.00035 U	< 0.0064 U
WHC1-D16	10	NORM	12/10/2008	< 0.00021 U	< 0.00019 U	< 0.00014 U	< 0.000097 U	< 0.0002 U	< 0.00015 U	< 0.00037 U	< 0.0068 U
WHC1-D17	0	NORM	12/10/2008	< 0.0002 U	< 0.00018 U	< 0.00013 U	< 0.000091 U	< 0.00019 U	< 0.00014 U	0.032 J+	< 0.0063 U
WHC1-D17	10	NORM	12/10/2008	< 0.00021 U	< 0.00019 U	< 0.00014 U	< 0.000095 U	< 0.0002 U	< 0.00015 U	< 0.00036 U	< 0.0067 U
WHC1-D18	0	NORM	12/11/2008	0.0074 J	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	0.0063 J+	< 0.00032 U	< 0.006 U
WHC1-D18	10	NORM	12/11/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-D19	0	NORM	12/11/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-D19	0	FD	12/11/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-D19	10	NORM	12/11/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-D20	0	NORM	12/12/2008	0.0054 J+	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-D20	10	NORM	12/12/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-D21	0	NORM	12/16/2008	0.0051 J	< 0.00017 U	< 0.00013 U	< 0.000089 U	< 0.00018 U	< 0.00014 U	< 0.00034 U	< 0.0062 U
WHC1-D21	10	NORM	12/16/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-D22	0	NORM	12/16/2008	0.0042 J	< 0.0002 U	< 0.00015 U	< 0.0001 U	< 0.00021 U	< 0.00016 U	< 0.00038 U	< 0.0071 U
WHC1-D22	10	NORM	12/16/2008	< 0.00019 U	< 0.00018 U	< 0.00013 U	< 0.000089 U	< 0.00019 U	< 0.00014 U	< 0.00034 U	< 0.0063 U
WHC1-D23	0	NORM	12/16/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-D23	10	NORM	12/16/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-D24	0	NORM	12/16/2008	< 0.00019 U	< 0.00018 U	< 0.00013 U	< 0.00009 U	< 0.00019 U	< 0.00014 U	< 0.00034 U	< 0.0063 U
WHC1-D24	0	FD	12/16/2008	< 0.00019 U	< 0.00018 U	< 0.00013 U	< 0.00009 U	< 0.00019 U	< 0.00014 U	< 0.00034 U	< 0.0063 U
WHC1-D24	10	NORM	12/16/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-D25	0	NORM	12/16/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00034 U	< 0.0062 U
WHC1-D25	10	NORM	12/16/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-D26	0	NORM	12/12/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-D26	10	NORM	12/12/2008	< 0.0002 U	< 0.00018 U	< 0.00014 U	< 0.000093 U	< 0.00019 U	< 0.00015 U	< 0.00035 U	< 0.0065 U
WHC1-D27	0	NORM	12/12/2008	0.0079 J	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	0.026 J	< 0.0061 U
WHC1-D27	0	FD	12/12/2008	0.0027 J	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	0.0041 J	< 0.0061 U
WHC1-D27	10	NORM	12/12/2008	0.0028 J	< 0.00019 U	< 0.00014 U	< 0.000096 U	< 0.0002 U	< 0.00015 U	< 0.00037 U	< 0.0067 U
WHC1-D28	0	NORM	12/12/2008	0.002 J	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	0.0036 J	< 0.006 U
WHC1-D28	10	NORM	12/12/2008	0.0079 J	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-D29	0	NORM	12/12/2008	0.029 J+	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	0.019 J+	< 0.0061 U
WHC1-D29	10	NORM	12/12/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0062 U
WHC1-P01	0	NORM	12/15/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00032 U	< 0.006 U
WHC1-P01	12	NORM	12/19/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-P02	0	NORM	12/1/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-P02	10	NORM	12/1/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000084 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-P03	0	NORM	12/15/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-P03	3	NORM	12/18/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-P03	3	FD	12/18/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 26 of 27)

							Organochlor	ine Pesticides			
	Depth	Sample	Sample	Endrin aldehyde	Endrin ketone	gamma-BHC (Lindane)	gamma- Chlordane	Heptachlor	Heptachlor epoxide	Methoxychlor	Toxaphene
Sample ID	(ft bgs)	Type	Date								
WHC1-P03	0	NORM	12/18/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-P04 WHC1-P04	10	NORM NORM	12/15/2008 12/18/2008	< 0.00019 U < 0.00019 U	< 0.00017 U < 0.00017 U	< 0.00013 U < 0.00013 U	< 0.000086 U < 0.000088 U	< 0.00018 U < 0.00018 U	< 0.00014 U < 0.00014 U	< 0.00033 U < 0.00033 U	< 0.006 U < 0.0062 U
WHC1-P04 WHC1-P05	0	NORM	12/18/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000088 U < 0.000087 U	< 0.00018 U	< 0.00014 U	0.016 J	< 0.0062 U < 0.0061 U
WHC1-P05	0	FD	12/8/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 UJ	< 0.0061 U
WHC1-P05	10	NORM	12/8/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000089 U	< 0.00018 U	< 0.00014 U	< 0.00033 UJ < 0.00034 U	< 0.0062 U
WHC1-P06	0	NORM	12/2/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00014 U	< 0.00034 U	< 0.0059 U
WHC1-P06	12	NORM	12/2/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-P07	0	NORM	12/2/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-P07	3	NORM	12/2/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00014 C	< 0.00033 U	< 0.006 U
WHC1-P07	13	NORM	12/2/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC1-P08	0	NORM	12/3/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 UJ
WHC1-P08	11	NORM	12/3/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 UJ
WHC1-P09	0	NORM	12/4/2008	< 0.00018 U	0.0018 J	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	0.0037 J	< 0.006 U
WHC1-P09	0	FD	12/4/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-P09	10	NORM	12/4/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00032 U	< 0.006 U
WHC1-P10	0	NORM	11/25/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-P10	10	NORM	11/25/2008	< 0.00022 U	< 0.0002 U	< 0.00015 U	< 0.0001 U	< 0.00021 U	< 0.00016 U	< 0.00038 U	< 0.0071 U
WHC1-P11	0	NORM	12/8/2008	0.21 J	< 0.0017 U	< 0.0013 U	< 0.00087 U	< 0.0018 U	0.063 J	< 0.0033 U	< 0.061 U
WHC1-P11	0	FD	12/8/2008	0.12 J	< 0.0017 U	< 0.0013 U	< 0.00086 U	< 0.0018 U	0.046 J	< 0.0033 U	< 0.06 U
WHC1-P11	10	NORM	12/9/2008	< 0.0002 U	< 0.00018 U	< 0.00014 U	< 0.000091 U	< 0.00019 U	< 0.00014 U	< 0.00035 U	< 0.0064 U
WHC1-P12	0	NORM	12/5/2008	< 0.00019 U	< 0.00017 U	0.014 J+	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-P12	11	NORM	12/5/2008	0.0012 J	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-P13	0	NORM	12/9/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-P13	10	NORM	12/9/2008	< 0.00026 U	< 0.00024 U	< 0.00018 U	< 0.00012 U	< 0.00025 U	< 0.00019 U	< 0.00046 U	< 0.0085 U
WHC1-P13	10	FD	12/9/2008	< 0.00023 U	< 0.00021 U	< 0.00016 U	< 0.00011 U	< 0.00022 U	< 0.00017 U	< 0.00041 U	< 0.0076 U
WHC1-P14	0	NORM	12/17/2008	< 0.0011 U	< 0.00098 U	< 0.00074 U	< 0.0005 U	< 0.001 U	< 0.00079 U	< 0.0019 U	< 0.035 U
WHC1-P15	0	NORM	12/8/2008	< 0.00019 U	< 0.00018 U	< 0.00013 U	< 0.00009 U	< 0.00019 U	< 0.00014 U	< 0.00034 U	< 0.0063 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.00019 U	< 0.00018 U	< 0.00013 U	< 0.000089 U	< 0.00019 U	< 0.00014 U	< 0.00034 U	< 0.0062 U
WHC1-P15	10	NORM	12/18/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-P16	0	NORM	12/1/2008	< 0.0018 U	< 0.0017 U	< 0.0013 U	< 0.00086 U	< 0.0018 U	< 0.0014 U	< 0.0033 U	< 0.06 U
WHC1-P16	11	NORM	12/1/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.0059 U
WHC1-P17	0	NORM	12/15/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-P17	12	NORM	12/19/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000087 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.0061 U
WHC1-P17	12	FD	12/19/2008	< 0.00019 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-P18	0	NORM	12/1/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000086 U	< 0.00018 U	< 0.00014 U	< 0.00033 U	< 0.006 U
WHC1-P18	12	NORM	12/1/2008	< 0.00018 U	< 0.00017 U	< 0.00013 U	< 0.000085 U	< 0.00018 U	< 0.00013 U	< 0.00032 U	< 0.006 U
WHC2-D01	0	NORM	6/24/2010	< 0.00041 U	< 0.00031 U	< 0.00018 U	< 0.00017 U	< 0.0001 U	< 0.00045 U	< 0.00076 U	< 0.016 U
WHC2-D01C	0	NORM	12/2/2009	< 0.0016 U	< 0.0013 U	< 0.0011 U	< 0.00089 U	< 0.00097 U	< 0.0012 U	< 0.0034 U	< 0.057 U

SOIL ORGANOCHLORINE PESTICIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 27 of 27)

							Organochlori	ine Pesticides			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Endrin aldehyde	Endrin ketone	gamma-BHC (Lindane)	gamma- Chlordane	Heptachlor	Heptachlor epoxide	Methoxychlor	Toxaphene
WHC2-D04C	0	NORM	12/2/2009	0.02 J	< 0.0014 U	< 0.0011 U	< 0.00089 U	< 0.00097 U	< 0.0012 U	< 0.0034 U	< 0.058 U
WHC2-D05C	0	NORM	12/2/2009	< 0.00078 U	< 0.00067 U	< 0.00053 U	< 0.00044 U	< 0.00048 U	< 0.00058 U	< 0.0017 U	< 0.028 U
WHC2-D11C	0	NORM	12/2/2009	< 0.00078 U	< 0.00067 U	< 0.00053 U	< 0.00044 U	< 0.00048 U	< 0.00059 U	< 0.0017 U	< 0.029 U
WHC2-D14C	0	NORM	12/2/2009	< 0.0008 U	< 0.00069 U	< 0.00055 U	< 0.00046 U	< 0.0005 U	< 0.0006 U	< 0.0017 U	< 0.029 U
WHC2-P11C	0	NORM	12/1/2009	< 0.00016 U	< 0.00014 U	< 0.00011 U	< 0.00009 U	< 0.000098 U	< 0.00012 U	< 0.00035 U	< 0.0058 U
WHC3-D11C	0	NORM	6/24/2010	< 0.0004 U	< 0.0003 U	< 0.00017 U	< 0.00016 U	< 0.000097 U	< 0.00044 U	< 0.00074 U	< 0.015 U
WHC3-P11C	0	NORM	8/9/2010	< 0.00041 U	< 0.00031 U	0.0054 J	< 0.00017 U	< 0.000099 U	< 0.00045 U	< 0.00075 U	< 0.016 U
WHC3-P11C	0	FD	8/9/2010	< 0.00042 U	< 0.00032 U	< 0.00018 UJ	< 0.00017 U	< 0.0001 U	< 0.00047 U	< 0.00078 U	< 0.016 U
WHC6-D05	0	NORM	7/27/2012	< 0.00041 U	< 0.00044 U	< 0.00018 U	< 0.00017 U	< 0.00021 U	< 0.00045 U	< 0.00075 U	< 0.016 U
WHC6-D11	0	NORM	7/27/2012	< 0.0004 U	< 0.00043 U	< 0.00017 U	< 0.00016 U	< 0.00021 U	< 0.00044 U	< 0.00074 U	< 0.016 U
WHC6-P11	0	NORM	7/27/2012	0.0082	< 0.00042 U	0.007	< 0.00016 U	0.012	< 0.00043 U	< 0.00073 U	< 0.015 U

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

SOIL POLYNUCLEAR AROMATIC HYDROCARBONS (PAHs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 9)

								Do	lymuoloon An	omatic Hydro	and and (DA	IIa)				
					T I		T .	ro	iynuciear Ar	omane nyuro	Cardons (PA	HS)	_	0	r	
					ne		enzo(a)anthracene	ne	enzo(b)fluoranthene	enzo(g,h,i)perylene	enzo(k)fluoranthene		Dibenzo(a,h)anthracen e	-cd)pyrene		
				ene	yle		th	/rel	nor	g(i	nor		h)a	κ,	ne	
				ıth	ıthı	əue)an	(d(<u> </u>	,h,	ıĮį(o	(a,	2,	hre	
	D 41	a ,	G 1	abl	apł	rac	0(a	0(a	o(b	g)o	o(k	sen	ızι	00	ant	<u>e</u>
	Depth	Sample	Sample	cenaphthene	cenaphthylene	Anthracene	žuž	enzo(a)pyrene	zuz	zuz	zuz	Chrysene	per	ideno(1	Phenanthrene	Pyrene
Sample ID	(ft bgs)	Type	Date	V	Ā		B	B	Ď	B	Ř		_	lı		
OSC1-BM11	0	NORM	9/21/2009	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
OSC1-BM11	10	NORM	9/21/2009	< 0.00193 U	< 0.00193 U	< 0.00193 U	< 0.00193 U	< 0.00193 U	< 0.00193 U	< 0.00193 U	< 0.00193 U	< 0.00193 U	< 0.00193 U	< 0.00193 U	< 0.00193 U	< 0.00193 U
OSC1-BN11	0	NORM	9/22/2009	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U
OSC1-BN11	5	NORM	9/22/2009	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U
OSC1-BO11	0	NORM	9/16/2009	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.00307 J	0.00203 J	0.00393 J	0.00305 J	< 0.00173 U	0.00287 J	< 0.00173 U	< 0.00173 U	0.00231 J	0.00489 J
OSC1-BO11	0	FD	9/16/2009	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U
OSC1-BO11	5	NORM	9/16/2009	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U
OSC1-BP11	0	NORM	9/16/2009	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U
OSC1-BP11	5	NORM	9/16/2009	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U
OSC1-JP06	0	NORM	9/22/2009	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U
OSC1-JP06	5	NORM	9/22/2009	< 0.00194 U	< 0.00194 U	< 0.00194 U	< 0.00194 U	< 0.00194 U	< 0.00194 U	< 0.00194 U	< 0.00194 U	< 0.00194 U	< 0.00194 U	< 0.00194 U	< 0.00194 U	< 0.00194 U
OSC1-JP07	0	NORM	9/21/2009	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U
OSC1-JP07	5	NORM	9/21/2009	< 0.00212 U	< 0.00212 U	< 0.00212 U	0.00345 J	0.00222 J	0.00261 J	0.00313 J	< 0.00212 U	0.00229 J	< 0.00212 U	0.00228 J	0.00257 J	0.00404 J
OSC1-JP08	0	NORM	9/21/2009	< 0.00188 U	< 0.00188 U	< 0.00188 U	< 0.00188 U	< 0.00188 U	< 0.00188 U	< 0.00188 U	< 0.00188 U	< 0.00188 U	< 0.00188 U	< 0.00188 U	< 0.00188 U	< 0.00188 U
OSC1-JP08	10	NORM	9/21/2009	< 0.00187 U	< 0.00187 U	< 0.00187 U	< 0.00187 U	< 0.00187 U	< 0.00187 U	< 0.00187 U	< 0.00187 U	< 0.00187 U	< 0.00187 U	< 0.00187 U	< 0.00187 U	< 0.00187 U
WHC1-BF01	0	NORM	11/24/2008	< 0.0017 U	< 0.0017 U	< 0.0017 U	0.00218 J	< 0.0017 U	0.00223 J	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U
WHC1-BF01	12	NORM	11/24/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-BF02	0	NORM	11/25/2008	< 0.00168 U	< 0.00168 U	< 0.00168 U	< 0.00168 U	< 0.00168 U	0.00439 J	0.00236 J	0.00187 J	0.0023 J	< 0.00168 U	0.0118	< 0.00168 U	0.00315 J
WHC1-BF02	11	NORM	11/25/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-BF03	0	NORM	11/25/2008	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U
WHC1-BF03	10	NORM	11/25/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-BF04	0	NORM	11/25/2008	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U
WHC1-BF04	0	FD	11/25/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-BF04	10	NORM	11/25/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-BF05	0	NORM	11/25/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.00551 J
WHC1-BF05	12	NORM	12/10/2008	< 0.00228 U	< 0.00228 U	< 0.00228 U	< 0.00228 U	< 0.00228 U	< 0.00228 U	< 0.00228 U	< 0.00228 U	< 0.00228 U	< 0.00228 U	< 0.00228 U	< 0.00228 U	< 0.00228 U
WHC1-BF06	0	NORM	12/10/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	0.00229 J
WHC1-BF06	10	NORM	12/10/2008	< 0.00232 U	< 0.00232 U	< 0.00232 U	< 0.00232 U	< 0.00232 U	< 0.00232 U	< 0.00232 U	< 0.00232 U	< 0.00232 U	< 0.00232 U	< 0.00232 U	< 0.00232 U	< 0.00232 U
WHC1-BG01	0	NORM	11/24/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.00444 J	0.0126	0.00952	0.00423 J	0.00356 J	0.00577 J	< 0.00172 U	0.0135	0.00453 J	0.0075
WHC1-BG01	11	NORM	11/24/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-BG02	0	NORM	11/24/2008	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	0.00926	0.00383 J	< 0.00169 U	< 0.00169 U	0.00217 J	< 0.00169 U	< 0.00169 U	< 0.00169 U	0.0019 J
WHC1-BG02	0	FD	11/24/2008	< 0.00168 U	< 0.00168 U	< 0.00168 U	0.0023 J	0.0101	0.00495 J	0.00222 J	< 0.00168 U	0.00285 J	< 0.00168 U	0.0115	< 0.00168 U	0.00364 J
WHC1-BG02	10	NORM	11/24/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-BG03	0	NORM	12/11/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-BG03	11	NORM	12/11/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-BG04	0	NORM	12/11/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-BG04	10	NORM	12/11/2008	< 0.00223 U	< 0.00223 U	< 0.00223 U	< 0.00223 U	< 0.00223 U	< 0.00223 U	< 0.00223 U	< 0.00223 U	< 0.00223 U	< 0.00223 U	< 0.00223 U	< 0.00223 U	< 0.00223 U

SOIL POLYNUCLEAR AROMATIC HYDROCARBONS (PAHs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 9)

	1							n.	Jemuslaan A	omotio II1	acambana (DA	IIa)				
							1	Po	nynuciear Ar	omatic Hydro	ocarbons (PA	.Hs)		10	1	
				e	cenaphthylene		Benzo(a)anthracene	enzo(a)pyrene	enzo(b)fluoranthene	enzo(g,h,i)perylene	enzo(k)fluoranthene		Dibenzo(a,h)anthracen e	-cd)pyrene		
				nen	lyı	e)	ut	yre	Juc	l(i,	luc		,h)	2,3	ene	
				htt	htł	sen	a)a	a)p	b)f	g,h	k)f	ne	o(a		thr	
	Depth	Sample	Sample	cenaphthene	nap	Anthracene)oz)oz)oz)oz)oz	Chrysene	zue	deno(1	Phenanthrene	ine
Sample ID	(ft bgs)	Туре	Date	100	Ce	vnt]	en	Ben	en			hr)ibe	ppu	heı	Pyrene
WHC1-BG05	0	NORM	11/25/2008	< 0.00182 U	< 0.00182 U	< 0.00182 U	0.00429 J	0.0117	0.00585 J	 < 0.00182 U	0.00224 J	0.00469 J	< 0.00182 U	< 0.00182 U	0.006 J	0.00991
WHC1-BG05	10	NORM	11/25/2008	< 0.00102 U	< 0.00102 U	< 0.00102 U	< 0.004273	< 0.00203 U		< 0.00102 U	< 0.002243	< 0.00203 U	< 0.00102 U	< 0.00102 U		< 0.00203 U
WHC1-BG06	0	NORM	12/10/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00203 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-BG06	10	NORM	12/10/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U		< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U		< 0.00173 U
WHC1-BH01	0	NORM	12/3/2008	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00241 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U
WHC1-BH01	11	NORM	12/3/2008	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U
WHC1-BH02	0	NORM	12/4/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.00223 J	0.00466 J	0.0021 J	0.00172 C	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.00325 J
WHC1-BH02	10	NORM	12/4/2008	< 0.00170 U	< 0.00171 U	< 0.00170 U	< 0.00170 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00170 U	< 0.00170 U	< 0.00170 U	< 0.00170 U	< 0.00171 U
WHC1-BH03	0	NORM	12/9/2008	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	0.00206 J	0.00346 J	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	0.00276 J
WHC1-BH03	10	NORM	12/9/2008	< 0.0017 U	< 0.00174 U	< 0.0017 U	< 0.00174 U	< 0.00174 U	1	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.0017 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-BH04	0	NORM	12/11/2008	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U
WHC1-BH04	10	NORM	12/11/2008	< 0.00173 U	< 0.00172 U	< 0.00173 U	< 0.00173 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00173 U	< 0.00172 U	< 0.00173 U	< 0.00173 U	< 0.00172 U	< 0.00172 U
WHC1-BH05	0	NORM	12/9/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-BH05	0	FD	12/9/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.00362 J-	0.0123 J-	< 0.00173 U	0.00285 J	0.00623 J-	< 0.00173 U	< 0.00173 U	0.00225 J	0.00658 J
WHC1-BH05	10	NORM	12/9/2008	< 0.00179 UJ	< 0.00179 UJ	< 0.00179 UJ	< 0.00179 UJ	< 0.00179 U.	0.00179 U.	< 0.00179 UJ	< 0.00179 UJ	< 0.00179 UJ	< 0.00179 UJ	< 0.00179 U.	< 0.00179 UJ	< 0.00179 UJ
WHC1-BH06	0	NORM	12/11/2008	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U
WHC1-BH06	0	FD	12/11/2008	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U
WHC1-BH06	10	NORM	12/11/2008	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U
WHC1-BI01	0	NORM	12/3/2008	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U
WHC1-BI01	11	NORM	12/3/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-BI02	0	NORM	12/4/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-BI02	3	NORM	12/4/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-BI02	13	NORM	12/4/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-BI03	0	NORM	12/4/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.00266 J
WHC1-BI03	11	NORM	12/4/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-BI04	0	NORM	12/8/2008	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U
WHC1-BI04	10	NORM	12/9/2008	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U
WHC1-BI05	0	NORM	12/9/2008	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	0.003 J	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171~U	< 0.00171 U	< 0.00171 U	0.00291 J
WHC1-BI05	10	NORM	12/9/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-BJ01	0	NORM	12/3/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.00258 J	0.00209 J	0.00293 J	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173~U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-BJ01	3	NORM	12/3/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U		< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-BJ01	13	NORM	12/3/2008	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U
WHC1-BJ02	0	NORM	12/2/2008	0.0206	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	0.215 J	0.0115 J
WHC1-BJ02	0	FD	12/2/2008	< 0.00347 U	< 0.00347 U	0.909	< 0.00347 U	< 0.00347 U	< 0.00347 U	< 0.00347 U	< 0.00347 U	< 0.00347 U	< 0.00347 U	< 0.00347 U	< 0.00347 U	0.0545 J
WHC1-BJ02	12	NORM	12/2/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.0407	0.00202 J
WHC1-BJ03	0	NORM	12/4/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-BJ03	0	FD	12/4/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U

SOIL POLYNUCLEAR AROMATIC HYDROCARBONS (PAHs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 9)

								Po	lynuclear Ar	omatic Hydro	ocarbons (PA	Hs)				
				cenaphthene	cenaphthylene	Anthracene	enzo(a)anthracene	enzo(a)pyrene	Benzo(b)fluoranthene	enzo(g,h,i)perylene	enzo(k)fluoranthene		Dibenzo(a,h)anthracen e	1,2,3-cd)pyrene	Phenanthrene	
	Depth	Sample	Sample	nap	nap	hrac	Zo(8	zo(ŝ	zo(l	ŝ)oz	poz	Chrysene	enzo	ndeno(1	nani	ine
Sample ID	(ft bgs)	Туре	Date	Ace	Ace	^nt]	Ben	Ben	3en	Ben	Ben	Chr) ibe	nde	Jhei	yrene
WHC1-BJ03	12	NORM	12/4/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-BJ04	0	NORM	12/4/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-BJ04	11	NORM	12/4/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-BJ05	0	NORM	12/11/2008	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	0.00255 J	0.00505 J	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	0.00366 J
WHC1-BJ05	10	NORM	12/11/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-BK01	0	NORM	12/3/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	0.00373 J	0.00297 J	0.00266 J	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-BK01	0	FD	12/3/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	0.0058 J	0.00479 J	0.00383 J	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-BK01	10	NORM	12/3/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-BK02	0	NORM	12/8/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-BK02	11	NORM	12/18/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174~U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-BK03	0	NORM	12/15/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.00261 J	0.00275 J	< 0.00172 U	0.00242 J	0.00271 J	< 0.00172 U	0.00242 J	0.00256 J	0.00413 J
WHC1-BK03	12	NORM	12/18/2008	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178~U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U
WHC1-BK04	0	NORM	12/4/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00179 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-BK04	10	NORM	12/4/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174~U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-BK05	0	NORM	12/12/2008	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U
WHC1-BK05	11	NORM	12/12/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-BL01	0	NORM	12/3/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.00465 J	< 0.00173 UJ	< 0.00173 UJ	< 0.00173 UJ	< 0.00173 U	< 0.00173 UJ	< 0.00173 U.	< 0.00173 U	0.00241 J
WHC1-BL01	10	NORM	12/3/2008	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U
WHC1-BL02	0	NORM	12/2/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.00219 J	< 0.00173 U	0.00293 J	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.00275 J
WHC1-BL02	10	NORM	12/2/2008	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U
WHC1-BL03	0	NORM	12/8/2008	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	0.00191 J	< 0.00171~U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U
WHC1-BL03	10	NORM	12/18/2008	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U
WHC1-BL04	0	NORM	12/17/2008	< 0.00176 U	< 0.00176~U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176~U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U
WHC1-BL04	12	NORM	12/22/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-BL05	0	NORM	11/21/2008	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U
WHC1-BL05	10	NORM	11/21/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174~U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-BL06	0	NORM	11/21/2008	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U
WHC1-BL06	11	NORM	11/21/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175~U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-BL07	0	NORM	11/21/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-BL07	10	NORM	11/21/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-BL08	0	NORM	11/18/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-BL08	10	NORM	11/18/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-BL11	0		11/18/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00183 U
WHC1-BL11	12	NORM	11/18/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00204 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-BM01	0	NORM	12/3/2008	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	0.00232 J	0.00326 J	< 0.00178~U	0.00454 J	0.00317 J	< 0.00178 U	< 0.00178 U	< 0.00178 U	0.00371 J
WHC1-BM01	10	NORM	12/3/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.00203 J	0.00346 J	< 0.00173 U	0.00187 J	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.00444 J
WHC1-BM02	0	NORM	12/2/2008	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U

SOIL POLYNUCLEAR AROMATIC HYDROCARBONS (PAHs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 9)

	ı			I				D.	1 1 A .		(D.)	TT\				1
							1	Po	lynuclear Ar	omatic Hydro	ocarbons (PA	.Hs)		0	1	
				cenaphthene	cenaphthylene	n	enzo(a)anthracene	enzo(a)pyrene	enzo(b)fluoranthene	enzo(g,h,i)perylene	enzo(k)fluoranthene		Dibenzo(a,h)anthracen e	,2,3-cd)pyrene	sne	
				hth	hth	Anthracene	а)аі	a)p;	b)fl	g,h,	k)fl	ne	o(a,		Phenanthrene	
	Depth	Sample	Sample	nap	nap	hrao)oz)oz)oz)oz)oz	yse	zue	deno(1	nan	sne
Sample ID	(ft bgs)	Type	Date	Ace.	4ce	\nt.	Ben	Ben	Ben	Ben	Ben	Chrysene)ibe	nde	heı	Pyrene
WHC1-BM02	12	NORM	12/2/2008	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U				
WHC1-BM03	0	NORM	12/8/2008	< 0.00171 U	0.00217 J	< 0.00171 U										
WHC1-BM03	10	NORM	12/18/2008	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U				
WHC1-BM04	0	NORM	12/17/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U				
WHC1-BM04	0	FD	12/17/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U				
WHC1-BM04	10	NORM	12/22/2008	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U				
WHC1-BM05	0	NORM	11/21/2008	< 0.00168 U	< 0.00168 U	< 0.00168 U	< 0.00168 U	< 0.00168 U	< 0.00168 U	< 0.00168 U	< 0.00168 U	< 0.00168 U				
WHC1-BM05	10	NORM	11/21/2008	< 0.00176 U	< 0.00176 U	0.00258 J	< 0.00176 U	< 0.00176 U	< 0.00176 U	0.0126	< 0.00176 U	< 0.00176 U				
WHC1-BM06	0	NORM	11/21/2008	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U				
WHC1-BM06	0	FD	11/21/2008	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U				
WHC1-BM06	10	NORM	11/21/2008	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U				
WHC1-BM07	0	NORM	11/20/2008	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U				
WHC1-BM07	11	NORM	11/20/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U				
WHC1-BM08	0	NORM	11/18/2008	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U				
WHC1-BM08	0	FD	11/18/2008	< 0.00193 U	< 0.00193 U	< 0.00193 U	< 0.00193 U	< 0.00193 U	< 0.00193 U	< 0.00193 U	< 0.00193 U	< 0.00193 U				
WHC1-BM08	11	NORM	11/18/2008	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U				
WHC1-BM09	0	NORM	11/18/2008	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U				
WHC1-BM10	0		11/18/2008	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U				
WHC1-BM10	3		11/18/2008	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U				
WHC1-BM10	13	NORM	11/18/2008	< 0.00201 U	< 0.00201 U	< 0.00201 U	< 0.00201 U	< 0.00201 U	< 0.00201 U	< 0.00201 U	< 0.00201 U	< 0.00201 U				
WHC1-BN01	0	NORM	12/1/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U				
WHC1-BN01	12	NORM	12/1/2008	< 0.00173 U		< 0.00173 U		< 0.00173 U								
WHC1-BN02	0	NORM	12/1/2008	< 0.00176 U	< 0.00176 U	< 0.00176 U	0.00475 J	0.0118	0.006 J	0.00344 J	0.00251 J	0.00473 J	< 0.00176 U	0.0124	0.00467 J	0.0105
WHC1-BN02	0	FD	12/1/2008	< 0.00175 U		< 0.00175 U										
WHC1-BN02	11	NORM	12/1/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U				
WHC1-BN03 WHC1-BN03	10	NORM NORM	12/17/2008 12/18/2008	< 0.00178 U < 0.00188 U	< 0.00178 U	< 0.00178 U < 0.00188 U	< 0.00178 U	< 0.00178 U < 0.00188 U	0.00216 J < 0.00188 U	< 0.00178 U < 0.00188 U	< 0.00178 U	< 0.00178 U	< 0.00178 U < 0.00188 U	< 0.00178 U	< 0.00178 U < 0.00188 U	< 0.00178 U
WHC1-BN03	0	NORM	12/17/2008	< 0.00188 U	< 0.00188 U < 0.00174 U	< 0.00188 U	< 0.00188 U < 0.00174 U	< 0.00188 U		< 0.00188 U	< 0.00188 U < 0.00174 U	< 0.00188 U < 0.00174 U	< 0.00188 U < 0.00174 U	< 0.00188 U < 0.00174 U		< 0.00188 U < 0.00174 U
WHC1-BN04	7	NORM	12/17/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U				
WHC1-BN04 WHC1-BN04	17	NORM	12/22/2008	< 0.00170 U	< 0.00170 U	< 0.00176 U	< 0.00170 U	< 0.00170 U	< 0.00170 U	< 0.00170 U	< 0.00170 U	< 0.00170 U	< 0.00170 U	< 0.00170 U	< 0.00170 U	< 0.00170 U
WHC1-BN05	0	NORM	11/20/2008	< 0.00177 U	< 0.00177 U	< 0.00177 U	0.00177 U	0.0168 J	0.00177 U	< 0.00177 U	0.00545 J	0.00177 0	< 0.00177 U	0.0155 J	< 0.00177 U	0.00459 J
WHC1-BN05	0	FD	11/20/2008	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.00317 J	< 0.00108 J	< 0.0144 J	< 0.0017 U	< 0.00343 J	< 0.00794 < 0.00171 U	< 0.0017 U	< 0.0133 J	< 0.0017 U	< 0.00439 J
WHC1-BN05	10	NORM	11/20/2008	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U.	< 0.00171 U.	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U.	< 0.00171 U	< 0.00171 U
WHC1-BN06	0	NORM	11/20/2008	< 0.00177 U		< 0.00177 U										
WHC1-BN07	0	NORM	11/20/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U				
WHC1-BN07	3	NORM	11/21/2008	< 0.00173 U	< 0.00173 U	0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.00173 0	< 0.00228 U	< 0.00173 U				
WHC1-BN07	13	- 1 - 1 - 1 - 1	11/21/2008	< 0.00174 U		0.00178 U	< 0.00174 U	< 0.00174 U		< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00122 < 0.00174 U	< 0.00200 U	< 0.0025 U
	1.3	TOM	11/21/2000	\ 0.001/ - U	\ 0.00177 U	0.001//J	\ 0.0017 + U	\ 0.0017 + U	< 0.002 €	\ 0.001/ - U	\ 0.00177 U	< 0.0017 ∓ U	< 0.001/∓ U	\ 0.001/ + U	\ 0.00177 U	\ 0.0023 U

SOIL POLYNUCLEAR AROMATIC HYDROCARBONS (PAHs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 9)

								Po	lynuclear Ar	omatic Hydro	ocarbons (PA	.Hs)				
Samuela ID	Depth (ft bgs)	Sample	Sample Date	cenaphthene	cenaphthylene	Anthracene	enzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	enzo(g,h,i)perylene	enzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracen e	indeno(1,2,3-cd)pyrene	Phenanthrene	Уугепе
Sample ID	· 6/	Type		₹		7	<u>m</u>			0.00271.1	<u>M</u>					
WHC1-BN08 WHC1-BN08	10	NORM NORM	11/20/2008 11/20/2008	< 0.00174 U < 0.00173 U	0.0111 < 0.00173 U	0.00905 < 0.00173 U	0.00371 J < 0.00173 U	0.00348 J < 0.00173 U	< 0.00174 U < 0.00173 U	< 0.00174 U < 0.00173 U	0.0133 < 0.00173 U	0.00233 J < 0.00173 U	0.00484 J < 0.00173 U			
WHC1-BN09	0	NORM	12/17/2008	< 0.00173 U < 0.00179 U	< 0.00173 U	0.00203 J	0.00173 U	0.00173 U	0.00175 U	< 0.00173 U	< 0.00173 U	0.00173 U	< 0.00173 U < 0.00179 U	< 0.00173 U < 0.00179 U	0.0175 0	0.00173 U
WHC1-BN09	11		12/11/2008	< 0.00179 U	< 0.00179 U	< 0.00203 J	< 0.00412 J	< 0.00219 J		< 0.00179 U	< 0.00179 U	< 0.00471 J	< 0.00179 U	< 0.00179 U		< 0.00372 J
WHC1-BN10	0	NORM	11/18/2008	< 0.00181 U	< 0.00181 U	< 0.00181 U	< 0.00181 U	< 0.00181 U	< 0.00181 U	< 0.00181 U	< 0.00181 U					
WHC1-BN10	10		11/18/2008	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U	< 0.00189 U					
WHC1-BI01	0	NORM				< 0.00174 U		< 0.00190 U	< 0.00190 U	< 0.00190 U		< 0.00174 U	< 0.00170 U	< 0.00174 U		
WHC1-BO01	0	FD	12/2/2008 12/2/2008	< 0.00174 U < 0.00173 U		< 0.00174 U < 0.00173 U										
WHC1-BO01	4	NORM	12/2/2008	< 0.00173 U < 0.00171 U	< 0.00173 U	< 0.00173 U < 0.00171 U	< 0.00173 U < 0.00171 U	< 0.00173 U	< 0.00173 U	< 0.00173 U < 0.00171 U	< 0.00173 U	< 0.00173 U < 0.00171 U	< 0.00173 U < 0.00171 U	< 0.00173 U < 0.00171 U	< 0.00173 U	< 0.00173 U
WHC1-BO01	14	NORM		< 0.00171 U	< 0.00171 U		< 0.00171 U		< 0.00171 U	< 0.00171 U	< 0.00171 U					
WHC1-BO01 WHC1-BO02	0		12/2/2008								< 0.0018 U		< 0.0018 U			
		NORM	12/1/2008	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U					
WHC1-BO02	12	NORM	12/1/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U					
WHC1-BO03	0	NORM	12/15/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.00275 J	0.00375 J	< 0.00173 U	0.00267 J	0.00315 J	< 0.00173 U	< 0.00173 U		0.00519 J
WHC1-BO03	12	NORM	12/19/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U					
WHC1-BO04	0	NORM	12/15/2008	< 0.00176 U	< 0.00174 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	0.00201 J	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	0.00248 J
WHC1-BO04	12	NORM	12/19/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U					
WHC1-BO05	0		11/20/2008	< 0.00167 U		< 0.00167 U										
WHC1-BO05	10		11/20/2008	< 0.00173 U		< 0.00173 U		< 0.00173 U								
WHC1-BO06	0		11/20/2008	< 0.00168 U		< 0.00168 U										
WHC1-BO06	10	NORM	11/20/2008	< 0.00175 U		< 0.00175 U										
WHC1-BO07	0	NORM	11/19/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U					
WHC1-BO07	10		11/19/2008	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U					
WHC1-BO08	0		11/20/2008	< 0.00176 U	111111111111111111111111111111111111111	< 0.00176 U		< 0.00176 U								
WHC1-BO08	0	FD	11/20/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U					
WHC1-BO08	11		11/20/2008	< 0.00181 U		< 0.00181 U		< 0.00181 U								
WHC1-BO09	0		11/19/2008	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U					
WHC1-BO09	0	FD	11/19/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.00185 J	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-BO09	6		11/19/2008	< 0.00171 U	< 0.00171 U	< 0.00171 U	0.00194 J	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U
WHC1-BO09	16	NORM	11/19/2008	< 0.0019 U	< 0.0019 U	< 0.0019 U	< 0.0019 U	< 0.0019 U	< 0.0019 U	< 0.0019 U	< 0.0019 U					
WHC1-BO10	0	NORM	11/19/2008	< 0.00174 U		< 0.00174 U		< 0.00174 U								
WHC1-BP01	0	NORM	12/1/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U					
WHC1-BP01	10	NORM	12/1/2008	< 0.00174 U		< 0.00174 U		< 0.00174 U								
WHC1-BP02	0	NORM	12/1/2008	< 0.00171 U		< 0.00171 U										
WHC1-BP02	11	NORM	12/1/2008	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U					
WHC1-BP03	0		12/15/2008	0.00198 J	0.0021 J	0.00277 J	< 0.0017 U	0.00365 J	0.00415 J	< 0.0017 U	0.00363 J	0.00388 J	< 0.00679 U	0.00419 J	0.00342 J	0.00563 J
WHC1-BP03	0	FD	12/15/2008	0.00208 J	0.00223 J	0.003 J	< 0.0017 U	0.00366 J	0.00391 J	< 0.0017 U	0.00355 J	0.00376 J	< 0.0017 U	< 0.0017 U	0.00342 J	0.00489 J
WHC1-BP03	11	NORM	12/19/2008	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U					

SOIL POLYNUCLEAR AROMATIC HYDROCARBONS (PAHs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 9)

								Po	lvnuclear Ar	omatic Hydro	ocarbons (PA	Hs)				
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracen e	Indeno(1,2,3-cd)pyrene	Phenanthrene	Pyrene
WHC1-BP04	0	NORM	12/15/2008	0.00242 J	0.0024 J	0.00308 J	< 0.00171 U	0.00343 J	0.00334 J	< 0.00171 U	0.00313 J	0.00326 J	< 0.00684 U	0.00411 J	0.00345 J	0.00421 J
WHC1-BP04	12	NORM	12/19/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-BP05	0	NORM	12/15/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.002 J	0.0021 J	< 0.00172 U	0.00206 J	0.00208 J	< 0.00688 U	< 0.00172 U	0.00175 J	0.00243 J
WHC1-BP05	10	NORM	12/19/2008	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U
WHC1-BP06	0	NORM	12/12/2008	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U
WHC1-BP06	10	NORM	12/12/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-BP07	0	NORM	11/20/2008	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U
WHC1-BP07	3		11/20/2008	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U		< 0.00176 U
WHC1-BP07	13	NORM	11/20/2008	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U
WHC1-BP08	0	NORM	11/19/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	0.00214 J	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-BP08	4		11/19/2008	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.002143 < 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U
WHC1-BP08	14	NORM	11/19/2008	< 0.00170 U	< 0.00170 U	< 0.00179 U	< 0.00170 U	< 0.00170 U	< 0.00178 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00179 U	< 0.00170 U	< 0.00179 U	< 0.00179 U
WHC1-BP09	0	NORM	11/19/2008	< 0.00177 U	< 0.00177 U	< 0.00171 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00171 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U
WHC1-BP09	10	NORM	11/19/2008	< 0.00171 C	< 0.00171 C	< 0.00171 C	< 0.00171 C	< 0.00171 C	< 0.00171 C	< 0.00171 C	< 0.00171 C	< 0.00171 C	< 0.00171 C	< 0.00171 C	< 0.00171 C	< 0.00171 C
WHC1-BP10	0	NORM	11/19/2008	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U		< 0.002 U
WHC1-BP10	10	NORM	11/19/2008	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U
WHC1-D01	0	NORM	12/5/2008	< 0.00230 U	< 0.00230 U	0.00250 U	< 0.00236 U	0.00230 0	0.00236 0	< 0.00230 U	0.00230 0	0.00236 0	< 0.00230 U	< 0.00230 U	0.00230 0	0.00236 0
WHC1-D01	10	NORM						0.0116 0.00195 J	0.0216 0.00297 J		< 0.0083	< 0.0226 < 0.00173 U	< 0.00174 U < 0.00173 U		0.0183 0.00314 J	0.0276 0.00622 J
			12/5/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U			< 0.00173 U				< 0.00173 U		
WHC1-D02	0	NORM	12/5/2008	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	0.00546 J	0.0152	< 0.00178 U	0.00458 J	0.0107	< 0.00178 U	< 0.00178 U	0.00301 J	0.00944
WHC1-D02	10	NORM	12/5/2008	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	1	< 0.00176 U
WHC1-D03	0	NORM	12/5/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	0.0037 J	0.0108 J	< 0.00174 U	0.00294 J	0.00547 J	< 0.00174 U	< 0.00174 U	0.00191 J	0.00568 J
WHC1-D03	0	FD	12/5/2008	< 0.00174 UJ	< 0.00174 UJ	< 0.00174 UJ	< 0.00174 UJ	0.00501 J-	0.0216 J	0.00464 J-	< 0.00174 UJ	0.00465 J-	< 0.00174 UJ	0.00309 J-	< 0.00174 UJ	0.00566 J-
WHC1-D03	10	NORM	12/5/2008	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U
WHC1-D04	0	NORM	12/5/2008	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	0.00966	0.0361	< 0.00176 U	0.0123	0.0188	< 0.00176 U	0.00776	0.0043 J	0.013
WHC1-D04	10	NORM	12/5/2008	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U
WHC1-D05	0	NORM	12/5/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	0.0023 J	0.00511 J	< 0.00174 U	0.00224 J	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	0.00365 J
WHC1-D05	10	NORM	12/5/2008	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U		< 0.00171 U
WHC1-D06	0	NORM	12/5/2008	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	0.0165	< 0.00183 U	< 0.00183 U	< 0.00183 U	0.0125
WHC1-D06	10	NORM	12/5/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-D07	0	NORM	12/5/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.00194 J
WHC1-D07	10	NORM	12/5/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-D08	0	NORM	12/8/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-D08	10	NORM	12/9/2008	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U
WHC1-D09	0	NORM	12/8/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.00325 J	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.00207 J
WHC1-D09	11	NORM	12/9/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-D10	0	NORM	12/8/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.00176 J	0.00536 J	< 0.00172 U	0.00242 J	0.00274 J	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.00323 J
WHC1-D10	10	NORM	12/9/2008	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U
												_				

SOIL POLYNUCLEAR AROMATIC HYDROCARBONS (PAHs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 7 of 9)

				ı				D.	1 . 1 4			TT.				
					1		1	Po	lynuclear Ar	omatic Hydro	ocarbons (PA	.Hs)		0	_	
				cenaphthene	cenaphthylene	n	enzo(a)anthracene	enzo(a)pyrene	enzo(b)fluoranthene	enzo(g,h,i)perylene	enzo(k)fluoranthene		Dibenzo(a,h)anthracen e	,3-cd)pyrene	sne	
				hth	pth	ene	1)aı	(d(ı	Ę(,t,	¥5	e)(a,	1,2,	hre	
	D 41-	C1-	G1-	apl	apl	rac	0(3	0(a	o(b	3)0	o(k	sen	uzc	deno(1	ant	эе
G L ID	Depth	Sample	Sample	cen	cen	Anthracene	zue	zua	zue	zua	zua	Chrysene	ibe	deı	Phenanthrene	Pyrene
Sample ID	(ft bgs)	Type	Date	V	ď		P	Ř	Ř	B	B		_	In		
WHC1-D11	0	NORM	12/8/2008	< 0.00172 U	0.00228 J	0.0108	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.0519	< 0.00172 U	< 0.00172 U	0.0188	0.039
WHC1-D11	10	NORM	12/9/2008	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	0.00208 J	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U		0.00254 J
WHC1-D12	0	NORM	12/10/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U		< 0.00175 U	< 0.00175 U	0.00205 J	< 0.00175 U	< 0.00175 U	< 0.00175 U	0.00257 J
WHC1-D12	10	NORM	12/10/2008	< 0.00231 U	< 0.00231 U	< 0.00231 U	< 0.00231 U	< 0.00231 U		< 0.00231 U	< 0.00231 U	< 0.00231 U	< 0.00231 U	< 0.00231 U		< 0.00231 U
WHC1-D13	0	NORM	12/8/2008	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	0.00241 J	0.0082	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	0.00401 J
WHC1-D13	10	NORM	12/8/2008	< 0.00252 U	< 0.00252 U	< 0.00252 U	< 0.00252 U	< 0.00252 U		< 0.00252 U	< 0.00252 U	< 0.00252 U	< 0.00252 U	< 0.00252 U	< 0.00252 U	< 0.00252 U
WHC1-D15	0	NORM	12/11/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.00212 J	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-D15	10	NORM	12/11/2008	< 0.00211 U	< 0.00211 U	< 0.00211 U	< 0.00211 U	< 0.00211 U	< 0.00211 U	< 0.00211 U	< 0.00211 U	< 0.00211 U	< 0.00211 U	< 0.00211 U	< 0.00211 U	< 0.00211 U
WHC1-D16	0	NORM	12/10/2008	< 0.00191 U	< 0.00191 U	< 0.00191 U	< 0.00191 U	< 0.00191 U	< 0.00191 U	< 0.00191 U	< 0.00191 U	< 0.00191 U	< 0.00191 U	< 0.00191 U	< 0.00191 U	< 0.00191 U
WHC1-D16	10	NORM	12/10/2008	< 0.00196 U	< 0.00196 U	< 0.00196 U	< 0.00196 U	< 0.00196 U	< 0.00196 U	< 0.00196 U	< 0.00196 U	< 0.00196 U	< 0.00196 U	< 0.00196 U	< 0.00196 U	< 0.00196 U
WHC1-D17	0	NORM	12/10/2008	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U
WHC1-D17	10	NORM	12/10/2008	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U	< 0.00195 U
WHC1-D18	0	NORM	12/11/2008	< 0.00173 U	< 0.00173 U	0.00178 J	< 0.00173 U	0.00818	0.0247	< 0.00173 U	0.00737	0.0191	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.0101
WHC1-D18	10	NORM	12/11/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-D19	0	NORM	12/11/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-D19	0	FD	12/11/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-D19	10	NORM	12/11/2008	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U
WHC1-D20	0	NORM	12/12/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.00223 J	0.00286 J	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.00199 J	0.0021 J
WHC1-D20	10	NORM	12/12/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-D21	0	NORM	12/16/2008	< 0.00177 U	< 0.00177 U	< 0.0021 U	< 0.00177 U	< 0.00314 U	< 0.00382 U	< 0.00177 U	< 0.00319 U	< 0.00327 U	< 0.00177 U	< 0.00177 U	< 0.00248 U	< 0.00431 U
WHC1-D21	10	NORM	12/16/2008	< 0.00176 UJ	< 0.00176 UJ	< 0.00176 UJ	< 0.00176 UJ	< 0.00176 U.	J< 0.00176 UJ	< 0.00176 UJ	< 0.00176 UJ	< 0.00176 UJ	< 0.00176 UJ	< 0.00176 UJ	0.00176 J-	0.00199 J-
WHC1-D22	0	NORM	12/16/2008	< 0.0018 U	< 0.0018 U	< 0.00321 U	< 0.0018 U	< 0.00573 U	0.00829	< 0.0018 U	< 0.00587 U	0.00805	< 0.0018 U	< 0.0018 U	0.00825	0.0132
WHC1-D22	10	NORM	12/16/2008	< 0.00177 UJ	< 0.00177 UJ	< 0.00177 UJ	< 0.00177 UJ	< 0.00177 U.	J< 0.00177 UJ	< 0.00177 UJ	< 0.00177 UJ	< 0.00177 UJ	< 0.00177 UJ	< 0.00177 UJ	I< 0.00177 UJ	< 0.00177 UJ
WHC1-D23	0	NORM	12/16/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00191 U	< 0.00235 U	< 0.00291 U	< 0.00175 U	< 0.00255 U	< 0.0025 U	< 0.00175 U	< 0.00175 U	< 0.00186 U	< 0.00304 U
WHC1-D23	10	NORM	12/16/2008	< 0.00175 UJ	< 0.00175 UJ	< 0.00175 UJ	< 0.00175 UJ	< 0.00175 U.	J< 0.00175 U.	< 0.00175 UJ	< 0.00175 UJ	< 0.00175 UJ	< 0.00175 UJ	< 0.00175 UJ	I< 0.00175 UJ	< 0.00175 UJ
WHC1-D24	0	NORM	12/16/2008	< 0.00182 U	< 0.00182 U	< 0.00241 U	< 0.00182 U	< 0.00706 U		< 0.00182 U	< 0.00623 U	0.00735	< 0.00182 U	< 0.00182 U	< 0.00396 U	0.0115 J
WHC1-D24	0	FD	12/16/2008	< 0.0018 U	< 0.0018 U	< 0.00205 U	< 0.0018 U	< 0.00312 U	< 0.00397 U	< 0.0018 U	< 0.00324 U	< 0.0032 U	< 0.0018 U	< 0.0018 U	< 0.00234 U	< 0.00395 UJ
WHC1-D24	10	NORM	12/16/2008	< 0.00173 U	< 0.00173 U	< 0.00289 U	< 0.00173 U	< 0.00615 U	0.00709	< 0.00173 U	< 0.00461 U	0.0074	< 0.00173 U	< 0.00379 U	0.0126	0.0159
WHC1-D25	0	NORM	12/16/2008	0.0131	0.00279 J	0.0228	0.0741	0.0611	0.125	0.0414	0.0463	0.104	< 0.00182 U	0.0471	0.179	0.0997
WHC1-D25	10	NORM	12/16/2008	< 0.00172 UJ	< 0.00172 UJ		< 0.00172 UJ	0.00213 J-	0.00417 J-	< 0.00172 UJ	< 0.00172 UJ	< 0.00172 UJ	< 0.00172 UJ	< 0.00172 UJ	0.00298 J-	0.00396 J-
WHC1-D26	0	NORM	12/12/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-D26	10	NORM	12/12/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-D27	0	NORM	12/12/2008	< 0.00100 U	< 0.00175 U	< 0.00105 U	< 0.00175 U	0.00218 J	0.00226 J	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U		0.00185 J
WHC1-D27	0	FD	12/12/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	0.00292 J	0.00226 J	< 0.00175 U	0.00177 J	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	0.00207 J
WHC1-D27	10	NORM	12/12/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00275 U	< 0.00175 U	< 0.001775 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-D28	0	NORM	12/12/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.00212 J	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.00175 J
WHC1-D28	10	NORM	12/12/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U		< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U		< 0.00175 U
WIICI-D20	10	TOKIVI	14/14/4000	< 0.00175 U	< 0.00173 U	< 0.00175 U	< 0.00173 U	< 0.00175 U	< 0.001/3 U	< 0.00173 U	< 0.00175 U	< 0.00175 U	< 0.001/3 U	< 0.00175 U	< 0.00175 U	< 0.00175 U

SOIL POLYNUCLEAR AROMATIC HYDROCARBONS (PAHs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 8 of 9)

					1		ı	Po	lynuclear Ar	omatic Hydro	ocarbons (PA	Hs)				
				cenaphthene	cenaphthylene	ue	enzo(a)anthracene	enzo(a)pyrene	Benzo(b)fluoranthene	enzo(g,h,i)perylene	enzo(k)fluoranthene		Dibenzo(a,h)anthracen e	,2,3-cd)pyrene	Phenanthrene	
				pht	pht	cei	(a)	(a) _J	9	(g,l	(<u>K</u>)	ne	3)02		Ttp.	
	Depth	Sample	Sample	naj	naj	hra)OZ)OZ)OZ)OZ)OZ	yse	enz	deno(1	nar	ene
Sample ID	(ft bgs)	Type	Date	√ ce	4ce	Anthracene	Ben	Веп	3en	Ben	Ben	Chrysene	Jib	nde	Jhe Jhe	Pyrene
WHC1-D29	0	NORM	12/12/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.00261 J	0.00664 J	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.0052 J
WHC1-D29	10	NORM	12/12/2008	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U	< 0.00183 U
WHC1-P01	0	NORM	12/15/2008	< 0.00171 U	< 0.00171 U	0.00244 J	< 0.00171 U	0.0037 J	0.00393 J	< 0.00171 U	0.00363 J	0.0037 J	< 0.00685 U	0.0037 J	0.00267 J	0.00477 J
WHC1-P01	12	NORM	12/19/2008	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U
WHC1-P02	0	NORM	12/1/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.004 J	0.0101	0.00791	< 0.00172 U	0.0029 J	0.00814	< 0.00172 U	0.0117	0.00582 J	0.0164
WHC1-P02	10	NORM	12/1/2008	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U
WHC1-P03	0	NORM	12/15/2008	< 0.00171 U	< 0.00171 U	0.0018 J	< 0.00171 U	0.00292 J	0.00323 J	< 0.00171 U	0.00274 J	0.00286 J	< 0.00171 U	< 0.00171 U	0.0024 J	0.00432 J
WHC1-P03	3	NORM	12/18/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-P03	3	FD	12/18/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-P03	13	NORM	12/18/2008	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	0.0021 J
WHC1-P04	0	NORM	12/15/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	0.00271 J	0.00331 J
WHC1-P04	10	NORM	12/18/2008	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U	< 0.00186 U
WHC1-P05	0	NORM	12/8/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-P05	0	FD	12/8/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	0.00175 J	0.00297 J	< 0.00174 U	< 0.00174 U	0.00195 J	< 0.00174 U	< 0.00174 U	< 0.00174 U	0.00285 J
WHC1-P05	10	NORM	12/18/2008	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176 U
WHC1-P06	0	NORM	12/2/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-P06	12	NORM	12/2/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-P07	0	NORM	12/2/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-P07	3	NORM	12/2/2008	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U	< 0.00171 U
WHC1-P07	13	NORM	12/2/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-P08	0	NORM	12/3/2008	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	< 0.0017 U	0.00255 J
WHC1-P08	11	NORM	12/3/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-P09	0	NORM	12/4/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-P09	0	FD	12/4/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	0.00203 J
WHC1-P09	10	NORM	12/4/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-P10	0	NORM	11/25/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	0.00254 J	< 0.00174~U	< 0.00174 U	0.0024 J	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-P10	10	NORM	11/25/2008	< 0.00192 U	< 0.00192 U	< 0.00192 U	< 0.00192 U	< 0.00192 U	< 0.00192 U	< 0.00192 U	< 0.00192 U	< 0.00192 U	< 0.00192 U	< 0.00192 U	< 0.00192 U	< 0.00192 U
WHC1-P11	0	NORM	12/8/2008	< 0.00176 U	< 0.00176~U	0.00601 J	< 0.00176 U	< 0.00176 U	< 0.00176 U	< 0.00176~U	0.0881 J	< 0.00176 UJ	< 0.00176 U	< 0.00176 U	0.0189	0.042 J
WHC1-P11	0	FD	12/8/2008	< 0.00173 U	< 0.00173 U	0.00768	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 UJ	0.0344 J	< 0.00173 U	< 0.00173 U	0.0152	0.0299 J
WHC1-P11	10	NORM	12/9/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175~U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-P12	0	NORM	12/5/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	0.00583 J	0.0131	< 0.00175 U	0.00491 J	0.00897	< 0.00175 U	< 0.00175 U	0.00483 J	0.00831
WHC1-P12	11	NORM	12/5/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-P13	0	NORM	12/9/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC1-P13	10	NORM	12/9/2008	< 0.00229 U	< 0.00229 U	< 0.00229 U	< 0.00229 U	< 0.00229 U		< 0.00229 U	< 0.00229 U	< 0.00229 U	< 0.00229 U	< 0.00229 U	< 0.00229 U	< 0.00229 U
WHC1-P13	10	FD	12/9/2008	< 0.00194 U	< 0.00194 U	< 0.00194 U	< 0.00194 U	< 0.00194 U		< 0.00194 U	< 0.00194 U	< 0.00194 U	< 0.00194 U	< 0.00194 U		< 0.00194 U
WHC1-P14	0	NORM	12/17/2008	< 0.00201 U	< 0.00201 U	< 0.00201 U	0.00913	0.0138	0.0403	< 0.00201 U	< 0.00201 U	0.0261	< 0.00201 U	< 0.00201 U	0.0072 J	0.0166
WHC1-P15	0	NORM	12/8/2008	< 0.00185 U	< 0.00185 U	< 0.00185 U	< 0.00185 U	0.00256 J	0.00581 J	< 0.00185~U	0.00281 J	0.00309 J	< 0.00185 U	< 0.00185 U	< 0.00185 U	0.00423 J

SOIL POLYNUCLEAR AROMATIC HYDROCARBONS (PAHs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 9 of 9)

								Po	lynuclear Ar	omatic Hydro	ocarbons (PA	Hs)				
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracen e	Indeno(1,2,3-cd)pyrene	Phenanthrene	Pyrene
WHC1-P15	1.5	NORM	12/8/2008	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U	< 0.0018 U
WHC1-P15	10	NORM	12/18/2008	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U	< 0.00178 U
WHC1-P16	0	NORM	12/1/2008	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U	< 0.00169 U
WHC1-P16	11	NORM	12/1/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC1-P17	0	NORM	12/15/2008	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	0.00208 J	< 0.00175 U	< 0.00175 U	0.00181 J	< 0.00175 U	0.00181 J	< 0.00175 U	0.0025 J
WHC1-P17	12	NORM	12/19/2008	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC1-P17	12	FD	12/19/2008	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U	< 0.00174 U
WHC1-P18	0	NORM	12/1/2008	< 0.0017 U	< 0.0017 U	< 0.0017 U	0.00252 J	0.0111	0.0137	0.00538 J	0.00382 J	0.00691	< 0.0017 U	0.0143	< 0.0017 U	0.0038 J
WHC1-P18	12	NORM	12/1/2008	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U	< 0.00172 U
WHC2-D14C	0	NORM	12/2/2009	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	0.00265 J	0.00902	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	< 0.00177 U	0.00695 J	0.00567 J
WHC6-D05	0	NORM	7/27/2012	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U	< 0.00175 U
WHC6-D11	0	NORM	7/27/2012	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U	< 0.00173 U
WHC6-P11	0	NORM	7/27/2012	< 0.00169 U	< 0.00169 U	< 0.00169 U	0.0108	0.00507 J	0.0179	0.00372 J	0.00473 J	0.00473 J	< 0.00169 U	0.00406 J	< 0.00169 U	0.00541 J

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 18)

							Po	olychlorinated l	Biphenyls (PCI	Bs)			
				Aroclor 1016	1221	1232	1242	1248	1254	1260			
				r 1(r 1.	r 1.	r 1.	r 1.	r L	r T	105	114	118
	Depth	Sample	Sample	oclo	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor			
Sample ID	(ft bgs)	Type	Date	Arc	Arc	Arc	Arc	Arc	Arc	Arc	PCB	PCB	PCB
OSC1-BM11	0	NORM	9/21/2009								< 2.1 U	< 2.1 U	< 2.1 U
OSC1-BN11	0	NORM	9/22/2009								< 2 U	< 2 U	< 2 U
OSC1-BO11	0	NORM	9/16/2009								< 2.1 U	< 2.1 U	2.3
OSC1-BO11	0	FD	9/16/2009								< 2.3 U	< 2.3 U	3.1
OSC1-BP11	0	NORM	9/16/2009							++	< 2.5 U	< 2.5 U	< 2.5 U
OSC1-JP06	0	NORM	9/22/2009								< 2.5 U	< 2.5 U	< 2.5 U
OSC1-JP07 OSC1-JP08	0	NORM NORM	9/21/2009 9/21/2009								< 2.1 U < 2.4 U	< 2.1 U < 2.4 U	< 2.1 U < 2.4 U
OSC1-JP08 OSC1-JS10	0	NORM	1/31/2010								< 2.4 U	< 2.4 U	< 2.4 U
OSC1-JS10	0	FD	1/31/2010	< 0.0044 U	< 0.0044 U	< 0.0044 U	< 0.0044 U	< 0.0044 U	< 0.0035 U	< 0.0035 U	830	160	1700 J
OSC2-JE01	0	NORM	4/26/2010								190	34	420
OSC2-JE02	0	NORM	4/26/2010								100	18	240
OSC2-JE03	0	NORM	4/26/2010								42	8.5	100
OSC2-JS10	0	NORM	8/16/2010								2.2 J	< 0.68 U	6.8 J
OSC2-JS10	0	FD	8/16/2010								4.6 J	< 0.62 U	12 Ј
OSC3-JE01	0	NORM	8/16/2010								520	110	1200
OSC3-JE02	0	NORM	8/16/2010								160	32	380
OSC4-JE01N	0	NORM	1/6/2012								22	4.7	51
OSC4-JE01S	0	NORM	1/6/2012								4.3	< 0.37 U	8.7
OSC6-JE01	0	NORM	8/1/2012				==				< 0.18 U	< 0.17 U	4.3
WHC1-BF01	0	NORM	11/24/2008								65	4.2	130
WHC1-BF02	0	NORM	11/25/2008								370	41	790
WHC1-BF03	0	NORM	11/25/2008								< 3 U	< 2 U	< 7.8 U
WHC1-BF04 WHC1-BF04	0	NORM	11/25/2008								48 J 120 J	5 J	100 J
WHC1-BF04 WHC1-BF05	0	FD NORM	11/25/2008 11/25/2008								47	14 J 4.7	260 J 97
WHC1-BF06	0	NORM	12/10/2008								110	5.8	220
WHC1-BG01	0	NORM	11/24/2008								830	81	1700
WHC1-BG01 WHC1-BG02	0	NORM	11/24/2008								350 J	29 J	730 J
WHC1-BG02	0	FD	11/24/2008								1500 J	110 J	2900 J
WHC1-BG03	0	NORM	12/11/2008								88	8.6	200
WHC1-BG04	0	NORM	12/11/2008								440	23	760
WHC1-BG05	0	NORM	11/25/2008								37	5.2	91
WHC1-BG06	0	NORM	12/10/2008								770	56	1600
WHC1-BH01	0	NORM	12/3/2008								32	< 2.1 U	49
WHC1-BH02	0	NORM	12/4/2008								63	5.9	120
WHC1-BH03	0	NORM	12/9/2008								120	11	250
WHC1-BH04	0	NORM	12/11/2008								55	5.5	120
WHC1-BH05	0	NORM	12/9/2008								7.8 J	< 2.1 UJ	16 J

SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 18)

							Pe	olychlorinated l	Biphenyls (PCB	Bs)			
				Aroclor 1016	1221	Aroclor 1232	1242	1248	1254	Aroclor 1260			
	D 41	G 1	G 1 .	lor	lor	lor			lor	lor	105	114	118
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	roc]	Aroclor	roc	Aroclor	Aroclor	Aroclor	roc]	PCB	PCB	PCB
WHC1-BH05	(It bgs)	FD	12/9/2008	Α	Α				Α		520 J	73 J	1200 J
WHC1-BH06	0	NORM	12/11/2008	< 0.0054 U	< 0.0054 U	< 0.0054 U	< 0.0054 U	< 0.0054 U	< 0.003 U	< 0.003 U	210	42	510
WHC1-BH06	0	FD	12/11/2008	< 0.0053 U	< 0.0053 U	< 0.0053 U	< 0.0053 U	< 0.0053 U	< 0.0029 U	< 0.0029 U	210	34	480
WHC1-BI01	0	NORM	12/3/2008								200	19	360
WHC1-BI02	0	NORM	12/4/2008								56	4.3	120
WHC1-BI03	0	NORM	12/4/2008								45	3.9	95
WHC1-BI04	0	NORM	12/8/2008								82	9	180
WHC1-BI05	0	NORM	12/9/2008								190	20	410
WHC1-BJ01	0	NORM	12/3/2008								60	2.7	80
WHC1-BJ02	0	NORM	12/2/2008								17	< 2.1 U	28
WHC1-BJ02	0	FD	12/2/2008								19	< 2.1 U	33
WHC1-BJ03	0	NORM	12/4/2008								19	2.3	46
WHC1-BJ03	0	FD	12/4/2008								21	2.6	51
WHC1-BJ04	0	NORM	12/4/2008								19	2.2	41
WHC1-BJ05	0	NORM	12/11/2008								53	5.7	120
WHC1-BK01	0	NORM	12/3/2008								220	10 J	280
WHC1-BK01	0	FD	12/3/2008								150	6.9 J	210
WHC1-BK02	0	NORM	12/8/2008								7.9	< 2.1 U	15
WHC1-BK03	0	NORM	12/15/2008								14	< 2.1 U	21
WHC1-BK04	0	NORM	12/4/2008								28	2.7	53
WHC1-BK05	0	NORM	12/12/2008								58	6.9	120
WHC1-BL01	0	NORM	12/3/2008								64	3.4	98
WHC1-BL02	0	NORM	12/2/2008								15	< 2.1 U	30
WHC1-BL03	0	NORM	12/8/2008								38	< 2.1 UJ	41
WHC1-BL04	0	NORM	12/17/2008								11	< 2.1 U	27
WHC1-BL05	0	NORM	11/21/2008								37	7	85
WHC1-BL06	0	NORM	11/21/2008								390	46	840
WHC1-BL07	0	NORM	11/21/2008								12	2.3	22
WHC1-BL08	0	NORM	11/18/2008								150	21	310
WHC1-BL11	0	NORM	11/18/2008								64	8.9	170
WHC1-BM01	0	NORM	12/3/2008								25	< 2.1 U	46
WHC1-BM02	0	NORM	12/2/2008								8.4	< 2.1 U	15
WHC1-BM03	0	NORM	12/8/2008								28	2.3	50
WHC1-BM04	0	NORM	12/17/2008								16	< 2.1 U	28
WHC1-BM04	0	FD	12/17/2008								17	< 2.1 U	34
WHC1-BM05	0	NORM	11/21/2008								150	22	270
WHC1-BM06	0	NORM	11/21/2008								810 J	89 J	1600 J
WHC1-BM06	0	FD	11/21/2008								1400 J	160 J	2800 J
WHC1-BM07	0	NORM	11/20/2008								1600	200	3400 J

SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 18)

			1				Po	olychlorinated	Biphenyls (PCF	Bs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	PCB 105	PCB 114	PCB 118
WHC1-BM08	0	NORM	11/18/2008								2500 J	340 J	4300 J
WHC1-BM08	0	FD	11/18/2008								13 J	< 2.3 UJ	32 J
WHC1-BM09	0	NORM	11/18/2008								8.2	< 2.1 U	16
WHC1-BM10	0	NORM	11/18/2008								2.3	< 2.1 U	5.3
WHC1-BN01	0	NORM	12/1/2008								6	< 2.1 U	13
WHC1-BN02	0	NORM	12/1/2008								17 J	< 2.1 UJ	39 J
WHC1-BN02	0	FD	12/1/2008								46 J	6 J	110 J
WHC1-BN03	0	NORM	12/17/2008								26	< 2.1 U	55
WHC1-BN04	0	NORM	12/17/2008								11	< 2.1 U	20
WHC1-BN05	0	NORM	11/20/2008								39 J	8.6 J	89 J
WHC1-BN05	0	FD	11/20/2008								180 J	34 J	370 J
WHC1-BN06	0	NORM	11/20/2008								9.2	< 2 U	25
WHC1-BN07	0	NORM	11/21/2008								550	70	990
WHC1-BN08	0	NORM	11/20/2008								110	11	210
WHC1-BN09	0	NORM	12/17/2008								22	4.5	45
WHC1-BN10	0	NORM	11/18/2008								2.3	< 2.2 U	5.1
WHC1-BO01	0	NORM	12/2/2008								< 2.1 U	< 2.1 U	3.6 J
WHC1-BO01	0	FD	12/2/2008								3.8	< 2.1 U	9.5 J
WHC1-BO02	0	NORM	12/1/2008								< 2.1 U	< 2.1 U	< 2.1 U
WHC1-BO03	0	NORM	12/15/2008								45	5.4	100
WHC1-BO04	0	NORM	12/15/2008								30	3.6	67
WHC1-BO05	0	NORM	11/20/2008								< 2.3 UJ	< 2.3 UJ	< 2.3 UJ
WHC1-BO06	0	NORM	11/20/2008								< 2.2 UJ	< 2.2 UJ	< 2.2 UJ
WHC1-BO07	0	NORM	11/19/2008								140	16	310
WHC1-BO08	0	NORM	11/20/2008	-							< 2.1 U	< 2.1 U	< 2.1 U
WHC1-BO08	0	FD	11/20/2008								< 2.1 U	< 2.1 U	< 2.1 U
WHC1-BO09	Ō	NORM	11/19/2008		++				÷=		22 J	3.6 J	49 J
WHC1-BO09	0	FD	11/19/2008								170 J	26 J	350 J
WHC1-BO10	0	NORM	11/19/2008							 -	< 2.1 U	< 2.1 U	< 2.1 U
WHC1-BP01	0	NORM	12/1/2008								< 2.1 U	< 2.1 U	< 2.1 U
WHC1-BP02	0	NORM	12/1/2008								8.6 J	< 2.1 UJ	24
WHC1-BP03	0	NORM	12/15/2008								21	2.5	47
WHC1-BP03	0	FD	12/15/2008								19	2.2	39
WHC1-BP04	0	NORM	12/15/2008								2.8	< 2.1 U	6.3
WHC1-BP05	0	NORM	12/15/2008								39	5.4	92
WHC1-BF06	0	NORM	12/12/2008								52	6.9	110
WHC1-BP07	0	NORM	11/20/2008								5.3	< 2.2 U	7.9
WHC1-BP08	0	NORM	11/19/2008								8	< 2.1 U	17
WHC1-BP09	0	NORM	11/19/2008								6.5	< 2 U	17
11 11C1-D1 U2	U	HOKWI	11/17/2000	_ 			I			1	0.5	\	1 /

SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 18)

							Po	olychlorinated	Biphenyls (PCI	Bs)			
									<u> </u>				
				Aroclor 1016	1221	1232	1242	1248	1254	1260			
				or 1		or 1				or 1	105	114	118
	Depth	Sample	Sample	och	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	PCB 1	PCB 1	PCB]
Sample ID	(ft bgs)	Type	Date	Ar	Ar	Ar	Ar	Ar	Ar	Ar			
WHC1-BP10	0	NORM	11/19/2008								< 2 U	< 2 U	3.8
WHC1-D01	0	NORM	12/5/2008	< 0.0051 U	< 0.0051 U	< 0.0051 U	< 0.0051 U	< 0.0051 U	< 0.0028 U	< 0.0028 U	6300	3200	12000
WHC1-D02	0	NORM	12/5/2008								850	56	1800
WHC1-D03	0	NORM	12/5/2008								1300	97	2500 J
WHC1-D03 WHC1-D04	0	FD NORM	12/5/2008 12/5/2008								2000 2500 J	150 130	4400 J 6600 J
WHC1-D04 WHC1-D05	0	NORM	12/5/2008								410	32	980
WHC1-D05	0	NORM	12/5/2008								200	14	450
WHC1-D00	0	NORM	12/5/2008								270	19	630
WHC1-D07	0	NORM	12/8/2008								220	23	440
WHC1-D09	0	NORM	12/8/2008								640	55	1300
WHC1-D10	0	NORM	12/8/2008								420	51	850
WHC1-D11	0	NORM	12/8/2008	< 0.0053 UJ	< 0.0053 UJ	< 0.0053 UJ	< 0.0053 UJ	< 0.0053 UJ	< 0.0029 UJ	< 0.0029 UJ	35000	5300 J	71000
WHC1-D12	0	NORM	12/10/2008								< 2.3 U	< 2.3 U	3.5
WHC1-D13	0	NORM	12/8/2008	< 0.0052 U	< 0.0052 U	< 0.0052 U	< 0.0052 U	< 0.0052 U	< 0.0028 U	< 0.0028 U	510	78	1000
WHC1-D15	0	NORM	12/11/2008								440	29	740
WHC1-D16	0	NORM	12/10/2008	< 0.0054 U	< 0.0054 U	< 0.0054 U	< 0.0054 U	< 0.0054 U	< 0.0029 U	< 0.0029 U	280	46	590
WHC1-D17	0	NORM	12/10/2008	< 0.0054 U	< 0.0054 U	< 0.0054 U	< 0.0054 U	< 0.0054 U	< 0.0029 U	< 0.0029 U	15000	6200	44000
WHC1-D18	0	NORM	12/11/2008								1700	180	3200 J
WHC1-D19	0	NORM	12/11/2008	< 0.0052 U	< 0.0052 U	< 0.0052 U	< 0.0052 U	< 0.0052 U	< 0.0028 U	< 0.0028 U	77000 J	4300 J	81000 J
WHC1-D19	0	FD	12/11/2008								2200 J	670 J	5400 J
WHC1-D20	0	NORM	12/12/2008								770	110	1600
WHC1-D21	0	NORM	12/16/2008								750	120	1600
WHC1-D22	0	NORM	12/16/2008								1100	110	2300
WHC1-D23	0	NORM	12/16/2008								290	41	600
WHC1-D24	0	NORM	12/16/2008								580	85	1200
WHC1-D24	0	FD	12/16/2008								700 J	83 J	1200 J
WHC1-D25 WHC1-D26	0	NORM NORM	12/16/2008 12/12/2008								470 200	87 17	990 410
WHC1-D26 WHC1-D27	0	NORM	12/12/2008								390	38	690
WHC1-D27	0	FD	12/12/2008								330	40	680
WHC1-D27	0	NORM	12/12/2008								140	15	240
WHC1-D29	0	NORM	12/12/2008								830	69	1500
WHC1-P01	0	NORM	12/15/2008								21	3	93
WHC1-P02	0	NORM	12/1/2008								57	3.4	100
WHC1-P03	0	NORM	12/15/2008								16	2.4	26
WHC1-P04	0	NORM	12/15/2008								35	< 2.1 U	38
WHC1-P05	0	NORM	12/8/2008								200 J	12 J	400 J
WHC1-P05	0	FD	12/8/2008								7.9 J	< 2.1 UJ	12 J

SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 18)

							Po	olychlorinated	Biphenyls (PCI	Rs)			
							<u> </u>	or, emormateu		,			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	PCB 105	PCB 114	PCB 118
WHC1-P06	0	NORM	12/2/2008								17	< 2 U	34
WHC1-P07	0	NORM	12/2/2008								3.8	< 2.1 U	9.4
WHC1-P08	0	NORM	12/3/2008								100	6.7	170
WHC1-P09	0	NORM	12/4/2008								51 J	4.5 J	220 J
WHC1-P09	0	FD	12/4/2008								170 J	12 J	610 J
WHC1-P10	0	NORM	11/25/2008								360	32	820
WHC1-P11	0	NORM	12/8/2008	< 0.0051 UJ	< 0.0028 UJ	< 0.0028 UJ	34000 J	4900 J	55000 J				
WHC1-P11	0	FD	12/8/2008	< 0.0051 UJ	< 0.0028 UJ	< 0.0028 UJ	17000 J	2800 J	30000 J				
WHC1-P12	0	NORM	12/5/2008								1200	130	2300 J
WHC1-P13	0	NORM	12/9/2008								550	67	1200
WHC1-P14	0	NORM	12/17/2008								320	18	900
WHC1-P15	0	NORM	12/8/2008								16	2.9	31
WHC1-P16	0	NORM	12/1/2008								24	2.6	58
WHC1-P17	0	NORM	12/15/2008								34	3.8	88
WHC1-P18	0	NORM	12/1/2008								< 2.1 U	< 2.1 U	< 2.1 U
WHC2-BF02C	0	NORM	12/4/2009								2.1	< 2 U	4.5 J
WHC2-BF02C	0	FD	12/4/2009								3.9	< 2 U	11 J
WHC2-BF02NE	0	NORM	12/4/2009		-	-					100	8.4	210
WHC2-BF02NW	0	NORM	12/4/2009			-					93	6	200
WHC2-BF02SE	0	NORM	12/4/2009			-					7.1	< 2.1 U	15
WHC2-BF02SW	0	NORM	12/4/2009								45	3.2	86
WHC2-BF04C	0	NORM	12/4/2009								5.8	< 2.1 U	13
WHC2-BF04NE	0	NORM	12/4/2009			-					< 2.1 U	< 2.1 U	< 2.1 U
WHC2-BF04NW	0	NORM	12/4/2009								< 2.1 U	< 2.1 U	< 2.1 U
WHC2-BF04SE	0	NORM	12/4/2009								8.7	< 2.1 U	17
WHC2-BF04SW	0	NORM	12/4/2009								< 2.1 U	< 2.1 UJ	< 2.1 U
WHC2-BG02C	0	NORM	12/2/2009								3.6	< 2.1 U	7
WHC2-BG02NE	0	NORM	12/2/2009								73	6.4	150
WHC2-BG02NW	0	NORM	12/2/2009								380	42	780
WHC2-BG02SE	0	NORM	12/2/2009								260	24	520
WHC2-BG02SW	0	NORM	12/2/2009								940	100	1900 J
WHC2-BG03C	0	NORM	12/4/2009								< 2 U	< 2 U	< 2 U
WHC2-BG03C	0	FD	12/4/2009								< 2 U	< 2 U	< 2 U
WHC2-BG03NE	0	NORM	12/4/2009								< 2 U	< 2 U	< 2 U
WHC2-BG03NW	0	NORM	12/4/2009								3	< 2 U	6.5
WHC2-BG03SE	0	NORM	12/4/2009								< 2.1 U	< 2.1 U	< 2.1 U
WHC2-BG03SW	0	NORM	12/4/2009								4.8	< 2 U	8.8
WHC2-BG06C	0	NORM	12/3/2009								< 4 U	< 2.7 U	< 8.1 U
WHC2-BG06NE	0	NORM	12/3/2009								22	< 2.7 U	52

SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 18)

							P	olychlorinated l	Biphenyls (PCI	Bs)			
				1016	1221	1232	1242	1248	1254	1260	2	4	8
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Aroclor 1016	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	PCB 105	PCB 114	PCB 118
WHC2-BG06NW	0	NORM	12/3/2009								< 2.5 U	< 2.5 U	< 3.1 U
WHC2-BG06SE	0	NORM	12/3/2009								< 6.2 U	< 2.8 U	< 11 U
WHC2-BG06SW	0	NORM	12/3/2009								21	< 2.5 U	< 38 U
WHC2-BH03C	0	NORM	12/2/2009								14	< 2 U	28
WHC2-BH05C	0	NORM	12/4/2009								37	5.1	70
WHC2-BH05NE	0	NORM	12/4/2009								51	6	99
WHC2-BH05NW	0	NORM	12/4/2009								13	< 2 U	25
WHC2-BH05SE	0	NORM	12/4/2009								5	< 2.1 U	7.3
WHC2-BH05SW	0	NORM	12/4/2009								41	4.5	88
WHC2-BH06C	0	NORM	12/3/2009								< 2.3 U	< 2.2 U	< 4.9 UJ
WHC2-BH06C	0	FD	12/3/2009								< 2.2 U	< 2.2 U	< 2.6 UJ
WHC2-BH06NE	0	NORM	12/3/2009								110	25	250
WHC2-BH06NW	0	NORM	12/3/2009								< 2.2 U	< 2.2 U	< 2.2 U
WHC2-BH06SE	0	NORM	12/3/2009								< 2.1 U	< 2.1 U	< 2.1 U
WHC2-BH06SW	0	NORM	12/3/2009								< 2.2 U	< 2.2 U	< 3.8 U
WHC2-BI05C	0	NORM	11/30/2009								75	6.2	150
WHC2-BJ05C	0	NORM	12/1/2009								7.1	< 2.1 U	18
WHC2-BJ05NE	0	NORM	12/1/2009								68	6.7	150
WHC2-BJ05NW	0	NORM	12/1/2009								2.4	< 2.1 U	4.4
WHC2-BJ05SE	0	NORM	12/1/2009								6.1	< 2.1 U	13
WHC2-BJ05SW	0	NORM	12/1/2009								110	15	260
WHC2-BK05NE	0	NORM	12/1/2009								26	5.4	58
WHC2-BK05NE	0	NORM	12/1/2009	< 0.0033 U	< 0.0033 U	< 0.0033 U	< 0.0033 U	< 0.0033 U	< 0.0026 U	< 0.0026 U			 14
WHC2-BK05NW WHC2-BK05SC	0	NORM NORM	12/1/2009								5 < 2 U	< 2 U < 2 U	14 < 2 U
WHC2-BK05SE	0	NORM	12/1/2009								< 2 U	< 2 U	< 2 U
WHC2-BK05SE WHC2-BK05SW	0	NORM	12/1/2009								3.4	< 2.1 U	7.4
WHC2-BM06C	0	NORM	11/30/2009								690	82	1400
WHC2-BM07C	0	NORM	11/30/2009								46	6	93
WHC2-BM08C	0	NORM	11/25/2009								69 J	9.7 J	120 J
WHC2-BM08C	0	FD	11/25/2009								140 J	21 J	240 J
WHC2-BN05C	0	NORM	11/30/2009								9	< 2 U	20
WHC2-BP05C	0	NORM	12/2/2009								9.2	< 2 U	18
WHC2-BP05NE	0	NORM	12/2/2009								14	< 2 U	26
WHC2-BP05NW	0	NORM	12/2/2009								4.3	< 2 U	9.5
WHC2-BP05SE	0	NORM	12/2/2009								4.5	< 2 U	9.7
WHC2-BP05SW	0	NORM	12/2/2009								5.3	< 2 U	10
WHC2-D01C	0	NORM	12/2/2009								320 J	21 J	660 J
WHC2-D02C	0	NORM	12/2/2009								640	33	1000

SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 7 of 18)

							Pe	olychlorinated	Biphenyls (PCI	Bs)			
				Aroclor 1016	1221	1232	1242	1248	1254	1260			
				r 1(r 12	105	114	118
	Depth	Sample	Sample	clo	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor			
Sample ID	(ft bgs)	Type	Date	Aro	Aro	Aro	Aro	Aro	Aro	Aro	PCB	PCB	PCB
WHC2-D03C	0	NORM	12/2/2009								120	14	260
WHC2-D03C	0	FD	12/2/2009								100	14	220
WHC2-D04C	0	NORM	12/2/2009								800 J	120	4800 J
WHC2-D05C	0	NORM	12/2/2009	< 0.0033 U	< 0.0033 U	< 0.0033 U	< 0.0033 U	< 0.0033 U	< 0.0026 U	< 0.0026 U	51000 J	6600 J	120000 J
WHC2-D06C	0	NORM	12/2/2009	< 0.0033 U	< 0.0033 U	< 0.0033 U	< 0.0033 U	< 0.0033 U	< 0.0026 U	< 0.0026 U	5500 J	540	10000 J
WHC2-D07C	0	NORM	12/2/2009								400	39	810
WHC2-D09C	0	NORM	12/2/2009								1100	120	2200
WHC2-D10C	0	NORM	11/30/2009	< 0.0033 U	< 0.0033 U	< 0.0033 U	< 0.0033 U	< 0.0033 U	< 0.0026 U	< 0.0026 U	9600 J	1300	18000 J
WHC2-D10C	0	FD	11/30/2009	< 0.0033 U	< 0.0033 U	< 0.0033 U	< 0.0033 U	< 0.0033 U	< 0.0026 U	< 0.0026 U	11000 J	1400	19000 J
WHC2-D11C WHC2-D13C	0	NORM	12/2/2009 12/3/2009	< 0.066 U	< 0.066 U	< 0.066 U	< 0.066 U	< 0.066 U	< 0.052 U	< 0.052 U	18000	2400	31000 < 2.9 U
	0	NORM NORM	12/3/2009								< 2.9 U	< 2.9 U	
WHC2-D13NE WHC2-D13NW	0	NORM	12/3/2009								< 3.2 U < 2.4 U	< 3.2 U < 2.4 U	< 3.2 U < 5 U
WHC2-D13NW WHC2-D13SE	0	NORM	12/3/2009								< 3.1 U	< 3.1 U	< 3.1 U
WHC2-D13SE WHC2-D13SW	0	NORM	12/3/2009								< 8.8 U	< 2.9 U	< 19 U
WHC2-D135W	0	NORM	12/2/2009								8.5	< 2.1 U	18
WHC2-D15C	0	NORM	11/30/2009	< 0.0039 U	< 0.0039 U	< 0.0039 U	< 0.0039 U	< 0.0039 U	< 0.0031 U	< 0.0031 U	170	72	340
WHC2-D16C	0	NORM	11/30/2009								24	6.7	47
WHC2-D17C	0	NORM	12/1/2009	< 0.0036 U	< 0.0036 U	< 0.0036 U	< 0.0036 U	< 0.0036 U	< 0.0028 U	< 0.0028 U	180	77	310
WHC2-D18C	0	NORM	12/1/2009								480	68	1100 J
WHC2-D18C	0	FD	12/1/2009								620	83 J	1400 J
WHC2-D19C	0	NORM	12/1/2009								46	6.2	100
WHC2-D20C	0	NORM	12/1/2009								1000 J	120	2000 J
WHC2-D20C	0	FD	12/1/2009								1000	130	2600 J
WHC2-D21C	0	NORM	12/1/2009								30	2.2	67
WHC2-D22C	0	NORM	12/1/2009								160	30	360
WHC2-D23C	0	NORM	12/1/2009								150	12	330
WHC2-D24C	0	NORM	12/1/2009								14	< 2 U	29
WHC2-D25C	0	NORM	12/1/2009								90	11	180
WHC2-D26C	0	NORM	12/1/2009								510	42	1000 J
WHC2-D27C	0	NORM	12/1/2009								220	26	400
WHC2-D28C	0	NORM	11/30/2009								220	24	410
WHC2-D29C	0	NORM	11/30/2009								70	5.2	130 3100 J
WHC2-JE01	0	NORM	4/26/2010								1300 J	160	270
WHC2-JE02 WHC2-P11C	0	NORM NORM	4/26/2010 12/1/2009	< 0.0034 U	< 0.0034 U	< 0.0034 U	< 0.0034 U	< 0.0034 U	< 0.0026 U	< 0.0026 U	94 7400 J	8.7 2000	20000 J
WHC2-P11C WHC2-P12C	0	NORM	12/1/2009	< 0.0034 U			< 0.0034 U	< 0.0034 U	< 0.0026 U	< 0.0026 U	220	13	390
WHC2-P12C WHC2-P13C	0	NORM	12/4/2009								< 2.8 U	< 2.8 U	8.2
WHC2-P13NE	0	NORM	12/4/2009								5.7	< 2.6 U	11
W IIC2-F 15INE	U	NORW	12/4/2009								٦./	< 2.0 U	11

SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 8 of 18)

							Pe	olychlorinated l	Biphenyls (PCI	Bs)			
	Depth	Sample	Sample	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	3 105	3 114	3 118
Sample ID	(ft bgs)	Type	Date	Aro	Aro	Aro	Aro	Aro	Aro	Aro	PCB	PCB	PCB
WHC2-P13NW	0	NORM	12/4/2009								< 2.6 U	< 2.6 U	3.1
WHC2-P13SE	0	NORM	12/4/2009								< 3.1 U	< 3.1 U	< 3.1 U
WHC2-P13SW	0	NORM	12/4/2009								< 2.4 U	< 2.4 U	3
WHC3-BM06C	0	NORM	8/9/2010								930	100	2300 J
WHC3-D11C	0	NORM	6/24/2010	< 0.85 U	< 1.1 U	< 0.85 U	< 0.85 U	< 0.85 U	< 0.85 U	< 0.85 U	25000 J	3400	64000 J
WHC3-D26C	0	NORM	8/9/2010								39	< 0.29 U	120
WHC3-D27C	0	NORM	8/9/2010								290	25	580
WHC3-D28C	0	NORM	8/9/2010								90	11	210
WHC3-JE01	0	NORM	8/9/2010								2500 J	190	6500 J
WHC3-P11C	0	NORM	8/9/2010								3600	600	9400
WHC3-P11C	0	FD	8/9/2010								2200	370	5900
WHC4-D27N	0	NORM	1/6/2012								64	8.8	110
WHC4-D27S WHC6-BG02SW	0	NORM	1/6/2012 7/27/2012								36 1700	3.2 200 J	54 3600
WHC6-BG02SW	0	NORM FD	7/27/2012								840	200 J 120 J	2100
WHC6-BH06NE	0	NORM	7/27/2012								190	< 11 U	340
WHC6-BH06NE	0	NORM	8/1/2012								380	< 11 U	380
WHC6-BM06	0	FD	8/1/2012								420	36	560
WHC6-D04	0	NORM	7/27/2012								710	68	1600
WHC6-D05	0	NORM	7/27/2012								220	29	340
WHC6-D05	0	NORM	7/27/2012	< 0.0092 U	< 0.0058 U	< 0.0058 U							
WHC6-D06	0	NORM	7/27/2012								490	79	980
WHC6-D07	0	NORM	7/27/2012								46	5.6	97
WHC6-D08	0	NORM	7/27/2012								58	14	130
WHC6-D09	0	NORM	7/27/2012								180	56	360
WHC6-D10	0	NORM	7/27/2012								3000	1000	5000
WHC6-D11	0	NORM	7/27/2012								400	62	720
WHC6-D15	0	NORM	7/27/2012								19	14	29
WHC6-D16	0	NORM	7/27/2012								2.9	< 0.36 U	7.3
WHC6-D17	0	NORM	7/27/2012								65	< 11 U	130
WHC6-D18	0	NORM	7/27/2012	< 0.0089 U	< 0.0056 U	< 0.0056 U	3200	920	5200				
WHC6-D20	0	NORM	8/1/2012								2900	320	4800
WHC6-D27	0	NORM	8/1/2012								46	< 1.5 U	78
WHC6-JE01	0	NORM	8/1/2012								170	19	390
WHC6-P10	0	NORM	7/27/2012								13	< 0.23 U	28
WHC6-P11	0	NORM	7/27/2012								1400	310	2500
WHC7-BG02SW_3	0	NORM	3/20/2014	< 0.0088 U	< 0.0056 U	< 0.0056 U	2500	260	4900 J				
WHC7-BG02SW_3	0	FD	3/20/2014	< 0.0088 U	< 0.0056 U	< 0.0056 U	2200 J	230 J	4400 J				
WHC7-BG02SW_5	0	NORM	5/12/2014								480	< 22 U	790

SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 9 of 18)

							Po	olychlorinated l	Biphenyls (PCF	Bs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	PCB 105	PCB 114	PCB 118
WHC7-BH06NE_3	0	NORM	3/20/2014	< 0.0088 U	< 0.0055 U	< 0.0055 U	11	3.2 J	24				
WHC7-BH06NE_5	0	NORM	5/12/2014								4.3	1 J	9.5
WHC7-D04_3	0	NORM	3/20/2014	< 0.0088 U	< 0.0055 U	< 0.0055 U	530	46	1100				
WHC7-D04_5	0	NORM	5/12/2014								880	100	1700
WHC7-D09_3	0	NORM	3/20/2014	< 0.0088 U	< 0.0055 U	< 0.0055 U	3700	380	7500 J				
WHC7-D09_5	0	NORM	5/12/2014								1.9 J	< 0.57 U	4.4
WHC7-D10_3	0	NORM	3/20/2014	< 0.0088 U	< 0.0055 U	< 0.0055 U	11000 J	1200	21000 J				
WHC7-D10_5	0	NORM	5/12/2014								410	46	880
WHC7-D11_3	0	NORM	3/20/2014	< 0.0088 U	< 0.0055 U	< 0.0055 U	110	28	220				
WHC7-D11_5	0	NORM	5/12/2014								610	86	1200
WHC7-D17_3	0	NORM	3/20/2014	< 0.014 U	< 0.0088 U	< 0.0088 U	3100	240	6800 J				
WHC7-D17_5	0	NORM	5/12/2014								170	21	350
WHC7-D17_5	0	FD	5/12/2014								160	20	340
WHC7-D18_3	0	NORM	3/20/2014	< 0.0088 U	< 0.0056 U	< 0.0056 U	5800 J	1000	11000 J				
WHC7-D18_5	0	NORM	5/12/2014								56	15	110
WHC7-D20_3	0	NORM	3/20/2014	< 0.009 U	< 0.0057 U	< 0.0057 U	2500	290	4900 J				
WHC7-D20_5	0	NORM	5/12/2014								5400 J	680	12000 J
WHC7-P11_3	0	NORM	3/20/2014	< 0.0089 U	< 0.0056 U	< 0.0056 U	29	6.4	52				
WHC7-P11_5	0	NORM	5/12/2014								49	25	100
WHC8-D09	0	NORM	6/27/2014								140	26	260
WHC8-D11	0	NORM	6/27/2014								7.2	2.2 J	16
WHC8-D17	0	NORM	6/27/2014								< 0.84 U	< 0.81 U	< 0.77 U
WHC8-D18	0	NORM	6/27/2014								25	5	47
WHC8-D20	0	NORM	6/27/2014								58	< 2.9 U	110

Aroclor units in mg/kg; PCB congener units in pg/g.

-- = no sample data.

⁼ Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

⁼ Data not included in risk assessment. Sample location covered with fill material (see text).

SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 10 of 18)

								Polychlor	inated Biphen	yls (PCBs)				
							_							
							156/157							
				123	126	156	156	157	167	169	189	209	77	81
g	Depth	Sample	Sample	PCB	PCB	PCB	PCB	PCB	PCB	CB	PCB	PCB (PCB ,	PCB 8
Sample ID OSC1-BM11	(ft bgs)	Type	Date 9/21/2009		 < 2.1 U		<u> </u>	 < 2.1 U						
OSCI-BN11	0	NORM NORM	9/21/2009	< 2.1 U < 2 U	< 2.1 U	< 2.1 U < 2 U		< 2.1 U	< 2.1 U < 2 U	< 2.1 U < 2 U	< 2.1 U < 2 U	< 2.1 U < 2 U	< 2.1 U < 2 U	< 2.1 U < 2 U
OSCI-BO11	0	NORM	9/16/2009	< 2.1 U	< 2.1 U	< 2.1 U	<u></u>	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U
OSC1-BO11	0	FD	9/16/2009	< 2.3 U	< 2.3 U	< 2.3 U		< 2.3 U	< 2.3 U	< 2.3 U	< 2.3 U	34	< 2.3 U	< 2.3 U
OSC1-BP11	0	NORM	9/16/2009	< 2.5 U	< 2.5 U	< 2.5 U		< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U
OSC1-JP06	0	NORM	9/22/2009	< 2.5 U	< 2.5 U	< 2.5 U		< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U
OSC1-JP07	0	NORM	9/21/2009	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U
OSC1-JP08 OSC1-JS10	0	NORM NORM	9/21/2009	< 2.4 U < 2.8 U	< 2.4 U 81 J	< 2.4 U 290		< 2.4 U 67 J	< 2.4 U 130 J	< 2.4 U	< 2.4 U 120 J	< 2.4 U 19000 J	< 2.4 U < 2.8 U	< 2.4 U < 2.8 U
OSC1-JS10	0	FD	1/31/2010	< 2.8 U	150 J	460		130 J	270 J	32 J	380 J	68000 J	< 2.8 U	< 2.8 U
OSC2-JE01	0	NORM	4/26/2010	< 16 U	41	80		17	31	12	33	5700 J	< 180 U	< 22 U
OSC2-JE02	0	NORM	4/26/2010	< 7.5 U	19	42		9	25	5.8	22	3900 J	< 80 U	< 12 U
OSC2-JE03	0	NORM	4/26/2010	< 4 U	6.8	18		4.3	10	< 0.29 U	11	2100 J	< 37 U	< 4.4 U
OSC2-JS10	0	NORM	8/16/2010	< 0.68 U	< 0.73 U	< 0.53 U		< 0.5 U	< 0.6 U	< 0.59 U	< 0.29 U	47	< 0.35 U	< 0.31 U
OSC2-JS10	0	FD	8/16/2010	< 0.62 U	< 0.64 U	< 0.62 U		< 0.59 U	< 0.7 U	< 0.71 U	< 0.26 U	74	< 0.36 U	< 0.33 U
OSC3-JE01 OSC3-JE02	0	NORM NORM	8/16/2010 8/16/2010	< 1.4 U < 0.62 U	87 19	250		58 13	78 23	21	81 15	14000 J 2300 J	< 0.78 U < 0.57 U	< 0.76 U < 0.53 U
OSC4-JE01N	0	NORM	1/6/2012	< 0.62 U	3.5	66 13		13	5.3	< 0.43 U	4.6	620	< 0.57 U	< 0.55 U 2.7
OSC4-JE01S	0	NORM	1/6/2012	< 0.35 U	< 0.44 U	< 0.37 U		< 0.37 U	< 0.3 U	< 0.39 U	< 0.23 U	71	2.5	< 0.38 U
OSC6-JE01	0	NORM	8/1/2012	< 0.16 U	< 0.21 U	< 0.13 U		< 0.13 U	< 0.087 U	< 0.12 U	< 0.11 U	24	< 0.21 U	< 0.19 U
WHC1-BF01	0	NORM	11/24/2008	< 2 U	4.3	30		5.9	11	< 2 U	5.3	270	< 2 U	< 2 U
WHC1-BF02	0	NORM	11/25/2008	< 2 U	29	150		31	61	3.3	32	3700 J	< 2 U	< 2 U
WHC1-BF03	0	NORM	11/25/2008	< 2 U	< 2 U	< 3 U		< 2 U	< 2 U	< 2 U	< 2 U	24	< 2 U	< 2 U
WHC1-BF04	0	NORM	11/25/2008	< 2 U	7.5 J	22 J		4.4 J	10 J	< 2 UJ	9.7 J	1200 J	< 2 U	< 2 U
WHC1-BF04 WHC1-BF05	0	FD NORM	11/25/2008 11/25/2008	< 2.1 U < 2.1 U	19 J 5.8	53 J 25		12 J 5.5	27 J 9.1	4.1 J < 2.1 U	28 J 11	4200 J 1900	< 2.1 U < 2.1 U	< 2.1 U
WHC1-BF06	0	NORM	12/10/2008	< 2.1 U	4.2	43		8.8	9.1	< 2.1 U	7.5	1200	< 2.1 U	< 2.1 U
WHC1-BG01	0	NORM	11/24/2008	< 2 U	25	260		54	90	2.4	29	2600 J	< 2 U	< 2 U
WHC1-BG02	0	NORM	11/24/2008	< 2 U	25 J	170 J		29 J	64 J	2.9 J	31 J	1100 J	< 2 U	< 2 U
WHC1-BG02	0	FD	11/24/2008	< 2 U	72 J	500 J		100 J	220 J	7.3 J	68 J	5500 J	< 2 U	< 2 U
WHC1-BG03	0	NORM	12/11/2008	< 2 U	18	48		11	21	4	15	1400	< 2 U	< 2 U
WHC1-BG04	0	NORM	12/11/2008	< 2 U	38	150		40	61	5.2	28	2400 J	< 2 U	< 2 U
WHC1-BG05	0	NORM	11/25/2008	< 2 U < 2.1 U	8.3 50	20 620		5.7	12 230	2.3	17 160	2700 J 23000	< 2 U	< 2 UJ < 2.1 U
WHC1-BG06 WHC1-BH01	0	NORM NORM	12/10/2008	< 2.1 U	3.2	11		2.6	5.2	< 2.1 U	3.4	300	< 2.1 U	< 2.1 U
WHC1-BH02	0	NORM	12/4/2008	< 2.1 U	6.9	29		6.5	16	< 2.1 UJ	9.3	1300	< 2.1 U	< 2.1 U
WHC1-BH03	0	NORM	12/9/2008	< 2 U	14	50		18	21	3.2	18	2600 J	< 2 U	< 2 U
WHC1-BH04	0	NORM	12/11/2008	< 2 U	8.7	24		6.5	9.7	< 2 U	7.3	910	< 2 U	< 2 U
WHC1-BH05	0	NORM	12/9/2008	< 2.1 U	< 2.1 UJ	2.6 J		< 2.1 UJ	< 2.1 UJ	< 2.1 UJ	< 2.1 UJ	110 J	< 2.1 U	< 2.1 U

TABLE B-7 SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 11 of 18)

								Polychlori	inated Biphen	yls (PCBs)				
				123	126	156	156/157	157	167	169	189	209	77	:1
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	PCB 1	PCB 1	PCB 1	PCB 1	PCB 1	PCB 1	PCB 1	PCB 1	PCB 2	PCB 7	PCB 8]
WHC1-BH05	0	FD	12/9/2008	< 2.1 U	53 J	210 J		43 J	83 J	11 J	53 J	5800 J	< 2.1 U	< 2.1 U
WHC1-BH06	0	NORM	12/11/2008	< 2.2 U	37	150		62	110	9.7	180	38000 J	< 2.2 U	< 2.2 U
WHC1-BH06	0	FD	12/11/2008	< 2.2 U	34	110		56	74	11	170	31000 J	< 2.2 U	< 2.2 U
WHC1-BI01	0	NORM	12/3/2008	< 2.2 U	7.7	73		14	25	< 2.2 U	16	1200	< 2.2 U	< 2.2 U
WHC1-BI02	0	NORM	12/4/2008	< 2.1 U	9.3	26		6.1	14	2.1 J	9.2	1200	< 2.1 U	< 2.1 U
WHC1-BI03	0	NORM	12/4/2008	< 2.1 U	7.5	19		3.9	11	< 2.1 UJ	5.8	810	< 2.1 U	< 2.1 U
WHC1-BI04	0	NORM	12/8/2008	< 2.1 U	9.1	32		9.5	16	2.5	7.8	1300	< 2.1 U	< 2.1 U
WHC1-BI05	0	NORM	12/9/2008	< 2.1 U	21	92		22	36	4	23	2900 J	< 2.1 U	< 2.1 U
WHC1-BJ01	0	NORM	12/3/2008	< 2.1 U	3.7	21		4.4	10	< 2.1 U	4.8	180	< 2.1 U	< 2.1 U
WHC1-BJ02	0	NORM	12/2/2008	< 2.1 U	3.5	6.9		< 2.1 U	4.9	< 2.1 U	2.4	360	< 2.1 U	< 2.1 U
WHC1-BJ02	0	FD	12/2/2008	< 2.1 U	3.6	7.5		< 2.1 U	4	< 2.1 U	< 2.1 U	230	< 2.1 U	< 2.1 U
WHC1-BJ03 WHC1-BJ03	0	NORM FD	12/4/2008 12/4/2008	< 2 U < 2.1 U	3.5	8.8 9.6		2.5	4.7 5.7	< 2 UJ < 2.1 UJ	3.5	420 490	< 2 U < 2.1 U	< 2 U < 2.1 U
WHC1-BJ03 WHC1-BJ04	0	NORM	12/4/2008	< 2.1 U	4.1 3.1	9.6 8.4		2.2	4.8	< 2.1 UJ	3.3	450	< 2.1 U	< 2.1 U
WHC1-BJ05	0	NORM	12/4/2008	< 2 U	9.5	27		5.4	12	< 2 U	7.2	720	< 2 U	< 2 U
WHC1-BK01	0	NORM	12/3/2008	< 2.1 U	3.9	48		13 J	19	< 2.1 U	6.3	110	< 2.1 U	< 2.1 U
WHC1-BK01	0	FD	12/3/2008	< 2.1 U	3.5	36		9.1 J	13	< 2.1 U	4.5	100	< 2.1 U	< 2.1 U
WHC1-BK02	0	NORM	12/8/2008	< 2.1 U	< 2.1 U	5.3		< 2.1 U	2.6	< 2.1 U	< 2.1 U	180	< 2.1 U	< 2.1 U
WHC1-BK03	0	NORM	12/15/2008	< 2.1 U	2.5	7.1		< 2.1 U	4	< 2.1 U	2.4	190	< 2.1 U	< 2.1 U
WHC1-BK04	0	NORM	12/4/2008	< 2.1 U	4.7	13		3.1	5.7	< 2.1 UJ	5.4	850	< 2.1 U	< 2.1 U
WHC1-BK05	0	NORM	12/12/2008	< 2.1 U	8.4	28		9.6	11	3.7	13	2200	< 2.1 U	< 2.1 U
WHC1-BL01	0	NORM	12/3/2008	< 2.1 U	< 2.1 U	16		3.2	5.6	< 2.1 U	< 2.1 U	110	< 2.1 U	< 2.1 U
WHC1-BL02	0	NORM	12/2/2008	< 2.1 U	3.2	5.5		< 2.1 U	2.7	< 2.1 U	2.6	550	< 2.1 U	< 2.1 U
WHC1-BL03	0	NORM	12/8/2008	< 2.1 U	2.9	10		< 2.1 UJ	5.3 J	< 2.1 UJ	4.2 J	330 J	< 2.1 UJ	< 2.1 UJ
WHC1-BL04	0	NORM	12/17/2008	< 2.1 U	2.8	5.2		< 2.1 U	3.4	< 2.1 U	2.8	470	< 2.1 U	< 2.1 U
WHC1-BL05	0	NORM	11/21/2008	< 2 U	< 2 U	13		3.1	4.7	< 2 U	2.3	290	< 2 U	< 2 U
WHC1-BL06	0	NORM	11/21/2008	< 2 U	9.7	160		32	50	< 2 U	13	940	< 2 U	< 2 U
WHC1-BL07	0	NORM	11/21/2008	< 2.1 U	< 2.1 U	3.1		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	21	< 2.1 U	< 2.1 U
WHC1-BL08	0	NORM	11/18/2008	< 2.1 U	3.1	12		< 2.1 U	2.7	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U
WHC1-BL11	0	NORM	11/18/2008	< 2.1 U	< 2.1 U	8.8		2.2	2.4	< 2.1 U	< 2.1 U	140	< 2.1 U	< 2.1 U
WHC1-BM01	0	NORM	12/3/2008	< 2.1 U	2.8	6.9		< 2.1 U	4.1	< 2.1 U	2.2	270	< 2.1 U	< 2.1 U
WHC1-BM02	0	NORM	12/2/2008	< 2.1 U	< 2.1 U	2.8		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	120	< 2.1 U	< 2.1 U
WHC1-BM03	0	NORM	12/8/2008	< 2.1 U	4.1	20		3.4	5.3	< 2.1 U	5.7	400	< 2.1 U	< 2.1 U
WHC1-BM04	0	NORM	12/17/2008	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	11 J	< 2.1 U	< 2.1 U	320	< 2.1 U	< 2.1 U
WHC1-BM04	0	FD	12/17/2008 11/21/2008	< 2.1 U	2.7	8.6 21		< 2.1 U 4.1 J	5.2 J	< 2.1 U	2.1	210 95	< 2.1 U	< 2.1 U
WHC1-BM05 WHC1-BM06	0	NORM NORM	11/21/2008	< 2 U	< 2 U	260 J		4.1 J 55 J	6.6 66 J	< 2 UJ	< 2 U 20 J	95 1300 J	< 2 U	< 2 U
WHC1-BM06	0	FD	11/21/2008	< 2.0 U	57	510 J		110 J	130 J	3.8 J	43 J	2700 J	< 2.0 U	< 2.0 U
WHC1-BM07	0	NORM	11/21/2008	< 2.2 U	58	480		110 J	160	4.7	43 J 41	3400 J	< 2.2 U	< 2.2 U
WINCI-DIVIU/	U	NOKW	11/20/2008	< 2 U	38	480	-	110	100	4./	41	3400 J	< 2 U	< 2 U

SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 12 of 18)

								Polychlor	inated Biphen	vls (PCBs)				
								. ,		(/				
							156/157							
				123	126	156	/99	157	167	169	189	209	77	81
	Depth	Sample	Sample	B 1										
Sample ID	(ft bgs)	Type	Date	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB
WHC1-BM08	0	NORM	11/18/2008	< 2.1 U	200 J	850 J		170 J	300 J	14 J	110 J	8200 J	< 2.1 U	< 2.1 U
WHC1-BM08	0	FD	11/18/2008	< 2.3 U	< 2.3 UJ	2.4 J		< 2.3 UJ	< 2.3 UJ	< 2.3 UJ	< 2.3 UJ	< 2.3 UJ	< 2.3 U	< 2.3 U
WHC1-BM09 WHC1-BM10	0	NORM NORM	11/18/2008	< 2.1 U < 2.1 U	< 2.1 U	2.2 < 2.1 U		< 2.1 U < 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	66 < 2.1 U	< 2.1 U < 2.1 U	< 2.1 U
WHC1-BM10 WHC1-BN01	0	NORM	12/1/2008	< 2.1 U	< 2.1 U	2.7		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U
WHC1-BN02	0	NORM	12/1/2008	< 2.1 U	4 J	7 J		2.2 J	4.6 J	< 2.1 U	4.1 J	660 J	< 2.1 U	< 2.1 U
WHC1-BN02	0	FD	12/1/2008	< 2.1 U	7.1 J	19 J		6.6 J	12 J	2.1	9.7 J	1600 J	< 2.1 U	< 2.1 U
WHC1-BN03	0	NORM	12/17/2008	< 2.1 U	8.4	30		4.1	17	< 2.1 U	9.5	430	< 2.1 U	< 2.1 U
WHC1-BN04	0	NORM	12/17/2008	< 2.1 U	< 2.1 U	13		< 2.1 U	6.2	< 2.1 U	2.5	55	< 2.1 U	< 2.1 U
WHC1-BN05	0	NORM	11/20/2008	< 2 UJ	6.7 J	14 J		2.5 J	5.4 J	< 2 UJ	2.1 J	210 J	< 2 UJ	< 2 UJ
WHC1-BN05	0	FD	11/20/2008	< 2 UJ	28 J	71 J		15 J	29 J	3.1 J	14 J	1600 J	< 2 UJ	< 2 UJ
WHC1-BN06	0	NORM	11/20/2008	< 2 U	< 2 U	2.7		< 2 U	< 2 U	< 2 U	< 2 U	25	< 2 U	< 2 U
WHC1-BN07	0	NORM	11/21/2008	< 2.1 U	17	110		21 J	32	< 2.1 U	5.3	110	< 2.1 U	< 2.1 U
WHC1-BN08	0	NORM	11/20/2008	< 2 U	4.6	20		4.8	6.8	< 2 U	3.9	400	< 2 U	< 2 U
WHC1-BN09	0	NORM	12/17/2008	< 2.1 U	3.4	9.1		< 2.1 U	3.4	< 2.1 U	4	600	< 2.1 U	< 2.1 U
WHC1-BN10 WHC1-BO01	0	NORM NORM	11/18/2008	< 2.2 U < 2.1 U	< 2.2 U < 2.1 U	< 2.2 U < 2.1 U		< 2.2 U < 2.1 U	32 52 J	< 2.2 U < 2.1 U	< 2.2 U < 2.1 U			
WHC1-BO01	0	FD	12/2/2008	< 2.1 U	< 2.1 U	3.3		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	90 J	< 2.1 U	< 2.1 U
WHC1-BO02	0	NORM	12/1/2008	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U
WHC1-BO03	0	NORM	12/15/2008	< 2.1 U	7.7	22		7.2	12	2.7	7.8	1300	< 2.1 U	< 2.1 U
WHC1-BO04	0	NORM	12/15/2008	< 2.1 U	4.9	15		4	6.5	< 2.1 U	5.5	940	< 2.1 U	< 2.1 U
WHC1-BO05	0	NORM	11/20/2008	< 2.3 UJ	< 2.3 UJ	< 2.3 UJ		< 2.3 UJ	< 2.3 UJ	< 2.3 UJ	< 2.3 UJ	< 2.3 UJ	< 2.3 UJ	< 2.3 UJ
WHC1-BO06	0	NORM	11/20/2008	< 2.2 UJ	< 2.2 UJ	< 2.2 UJ		< 2.2 UJ	< 2.2 UJ	< 2.2 UJ	< 2.2 UJ	< 2.2 UJ	< 2.2 UJ	< 2.2 UJ
WHC1-BO07	0	NORM	11/19/2008	< 2 U	16	41		11	18	< 2 U	9.7	1400	< 2 U	< 2 U
WHC1-BO08	0	NORM	11/20/2008	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U
WHC1-BO08	0	FD	11/20/2008	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U
WHC1-BO09	0	NORM	11/19/2008	< 2.1 U	< 2.1 UJ	5.2 J		< 2.1 UJ	< 2.1 UJ	< 2.1 U	< 2.1 UJ	150 J	< 2.1 U	< 2.1 U
WHC1-BO09 WHC1-BO10	0	FD NORM	11/19/2008 11/19/2008	< 2 U < 2.1 U	16 J < 2.1 U	46 J < 2.1 U		9.8 J < 2.1 U	16 J < 2.1 U	< 2 U < 2.1 U	13 J < 2.1 U	1800 J < 2.1 U	< 2 U < 2.1 U	< 2 U < 2.1 U
WHC1-BO10	0	NORM	12/1/2008	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U
WHC1-BP02	0	NORM	12/1/2008	< 2.1 U	< 2.1 U	4.8		< 2.1 U	2.3	< 2.1 U	2.1	400	< 2.1 U	< 2.1 U
WHC1-BP03	0	NORM	12/1/2008	< 2 U	3.7	9.5		2.7	6.4	2.2	3.9	610	< 2 U	< 2 U
WHC1-BP03	0	FD	12/15/2008	< 2 U	4.1	8.9		3.1	6.1	< 2 U	3.9	650	< 2 U	< 2 U
WHC1-BP04	0	NORM	12/15/2008	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	47	< 2.1 U	< 2.1 U
WHC1-BP05	0	NORM	12/15/2008	< 2.1 U	15	61		10	34	6.1	21	2000 J	< 2.1 U	< 2.1 U
WHC1-BP06	0	NORM	12/12/2008	< 2.1 U	13	39		9.8	21	4.4	16	2000	< 2.1 U	< 2.1 U
WHC1-BP07	0	NORM	11/20/2008	< 2.2 U	< 2.2 U	< 2.2 U		< 2.2 U	< 2.2 U	< 2.2 U	< 2.2 U	< 2.2 U	< 2.2 U	< 2.2 U
WHC1-BP08	0	NORM	11/19/2008	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	78	< 2.1 U	< 2.1 U
WHC1-BP09	0	NORM	11/19/2008	< 2 U	< 2 U	4		< 2 U	< 2 U	< 2 U	< 2 U	38	< 2 U	< 2 U

TABLE B-7 SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 13 of 18)

								Polychlori	inated Biphen	yls (PCBs)				
	Depth	Sample	Sample	123	. 126	. 156	156/157	. 157	. 167	. 169	189	. 209	77.	.81
Sample ID	(ft bgs)	Туре	Date	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB
WHC1-BP10	0	NORM	11/19/2008	< 2 U	< 2 U	< 2 U		< 2 U	< 2 U	< 2 U	< 2 U	39	< 2 U	< 2 U
WHC1-D01	0	NORM	12/5/2008	< 2.1 U	200	2800		670	410	< 2.1 U	220	10000	< 2.1 U	< 2.1 U
WHC1-D02	0	NORM	12/5/2008	< 2.1 U	110	670		110	270	17	170	2600 J	< 2.1 U	< 2.1 U
WHC1-D03	0	NORM	12/5/2008	< 2.1 U	110	750		120	330	18	180	3600 J	< 2.1 U	< 2.1 U
WHC1-D03	0	FD	12/5/2008	< 2.1 U	120	1100		200	410	15	210	4600 J	< 2.1 U	< 2.1 U
WHC1-D04	0	NORM	12/5/2008	< 2.1 U	630	5100 J		630	2000	95	1800	9000 J	< 2.1 U	< 2.1 U
WHC1-D05	0	NORM	12/5/2008	< 2.1 U	76	440		62	200	14	130	3500 J	< 2.1 U	< 2.1 U
WHC1-D06	0	NORM	12/5/2008	< 2.1 U	48	290		34	120	7.8	88	1100	< 2.1 U	< 2.1 U
WHC1-D07	0	NORM	12/5/2008	< 2 U	43	310		36	120	6.6	99	960	< 2 U	< 2 U
WHC1-D08	0	NORM	12/8/2008	< 2.1 U	28	160		24	70	5.6	34	820	< 2.1 U	< 2.1 U
WHC1-D09	0	NORM	12/8/2008	< 2.1 U	73	500		79	250	15	110	2000	< 2.1 U	< 2.1 U
WHC1-D10	0	NORM	12/8/2008	< 2.1 U	30	230		41	87	6.4	39	2200 J	< 2.1 U	< 2.1 U
WHC1-D11	0	NORM	12/8/2008	< 2.2 U	2500 J	34000		5200	13000	420	8000 J	70000 J	< 2.2 UJ	< 2.2 UJ
WHC1-D12	0	NORM	12/10/2008	< 2.3 U	< 2.3 U	< 2.3 U		< 2.3 U	< 2.3 U	< 2.3 U	< 2.3 U	34	< 2.3 U	< 2.3 U
WHC1-D13	0	NORM	12/8/2008	< 2.1 U	140	490		140	350	69	450	54000	< 2.1 U	< 2.1 U
WHC1-D15	0	NORM	12/11/2008	< 2.1 U	29	98		31	59	5.4	36	4300 J	< 2.1 U	< 2.1 U
WHC1-D16	0	NORM	12/10/2008	< 2.2 U	59	250		64	100	21	170	30000	< 2.2 U	< 2.2 U
WHC1-D17	0	NORM	12/10/2008	11000	7700	17000		5700	15000	3300	22000	730000	< 2.2 U	< 2.2 U
WHC1-D18	0	NORM	12/11/2008	< 2.1 U	130	760		170	270	14	120	4800 J	< 2.1 U	< 2.1 U
WHC1-D19	0	NORM	12/11/2008	< 2.1 U	1300 J	16000 J		4900 J	8700 J	47 J	1700 J	91000 J	< 2.1 U	< 2.1 U
WHC1-D19	0	FD	12/11/2008	< 2.1 U	< 2.1 UJ	850 J		360 J	160 J	< 2.1 UJ	63 J	3500 J	< 2.1 U	< 2.1 U
WHC1-D20	0	NORM	12/12/2008	< 2.1 U	50	380		72	130	11	54	2800	< 2.1 U	< 2.1 U
WHC1-D21	0	NORM	12/16/2008	< 2.1 U	40	380		74	140	9	52	2100	< 2.1 U	< 2.1 U
WHC1-D22	0	NORM	12/16/2008	< 2.4 U	180	1100		160	410	28	260	4900 J	< 2.4 U	< 2.4 U
WHC1-D23	0	NORM	12/16/2008	< 2.1 U	20	170		26	56	6	26	910	< 2.1 U	< 2.1 U
WHC1-D24	0	NORM	12/16/2008	< 2.2 U	56	480		68	210	17	120	3200 J	< 2.2 U	< 2.2 U
WHC1-D24	0	FD	12/16/2008	< 2.2 UJ	58 J	510 J		91 J	230 J	13 J	99 J	2000	< 2.2 UJ	< 2.2 UJ
WHC1-D25	0	NORM	12/16/2008	< 2.1 U	48	430		76	120	12	72	2400 J	< 2.1 U	< 2.1 U
WHC1-D26	0	NORM	12/12/2008	< 2.1 U	17	200		29	92	5.6	40	1500	< 2.1 U	< 2.1 U
WHC1-D27	0	NORM	12/12/2008	< 2.1 U	41	240		54	120	14	76	6600 J	< 2.1 U	< 2.1 U
WHC1-D27	0	FD	12/12/2008	< 2.1 U	48	290		72	130	17	94	8900 J	< 2.1 U	< 2.1 U
WHC1-D28	0	NORM	12/12/2008	< 2.1 U	16	89		15	39	5.5	13	1700	< 2.1 U	< 2.1 U
WHC1-D29	0	NORM	12/12/2008	< 2.1 U	25	310		58	130	8.2	51	2900	< 2.1 U	< 2.1 U
WHC1-P01	0	NORM	12/15/2008	< 2.1 U	2.5	7.8		2.5	6.2	< 2.1 U	4.6	960	< 2.1 U	< 2.1 U
WHC1-P02	0	NORM	12/1/2008	< 2 U	6.9	15		3.6	7.2	< 2 U	6.2	1100	< 2 U	< 2 U
WHC1-P03	0	NORM	12/15/2008	< 2.1 U	3.9	11		5.4	8	3	3.9	200	< 2.1 U	< 2.1 U
WHC1-P04	0	NORM	12/15/2008	< 2.1 U	2.7	13		4	6.1	< 2.1 U	3.3	280 J	< 2.1 U	< 2.1 U
WHC1-P05	0	NORM	12/8/2008	< 2.1 U	11 J	89 J		15 J	32 J	2.2	14 J	510 J	< 2.1 U	< 2.1 U
WHC1-P05	0	FD	12/8/2008	< 2.1 U	< 2.1 UJ	5.4 J		< 2.1 UJ	2.7 J	< 2.1 U	< 2.1 UJ	120 J	< 2.1 U	< 2.1 U

TABLE B-7 SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA

BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 14 of 18)

								Polychlori	nated Biphen	yls (PCBs)				
							57		•					
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	PCB 123	PCB 126	PCB 156	PCB 156/157	PCB 157	PCB 167	PCB 169	PCB 189	PCB 209	PCB 77	PCB 81
WHC1-P06	0	NORM	12/2/2008	< 2 U	< 2 U	7.5	=	< 2 U	3.4	< 2 U	2.2	190 J	< 2 U	< 2 U
WHC1-P07	0	NORM	12/2/2008	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	170	< 2.1 U	< 2.1 U
WHC1-P08	0	NORM	12/3/2008	< 2.1 U	7.1	25		6.2	13	< 2.1 U	6.3	720	< 2.1 U	< 2.1 U
WHC1-P09	0	NORM	12/4/2008	< 2.1 U	7.9 J	19 J		4 J	8.7 J	20 J	5.4 J	660 J	< 2.1 U	< 2.1 U
WHC1-P09	0	FD	12/4/2008	< 2.1 UJ	22 J	66 J		14 J	36 J	27 J	20 J	2900 J	< 2.1 UJ	< 2.1 UJ
WHC1-P10	0	NORM	11/25/2008	< 2 U	28	110		35	57	3.7	55	9700 J	< 2 U	< 2 U
WHC1-P11	0	NORM	12/8/2008	< 2.1 U	920	11000		2600	4200	160	1600	84000	< 2.1 U	< 2.1 U
WHC1-P11	0	FD	12/8/2008	< 2.1 U	1200	7800		2000	3000	210	1500	79000	< 2.1 U	< 2.1 U
WHC1-P12	0	NORM	12/5/2008	< 2.1 U	33	340		72	110	< 2.1 U	51	5700 J	< 2.1 U	< 2.1 U
WHC1-P13	0	NORM	12/9/2008	< 2.1 U	48	190		42	81	9.1	55	7900 J	< 2.1 U	< 2.1 U
WHC1-P14	0	NORM	12/17/2008	< 2.4 U	97	790		91	380	29	210	1700	< 2.4 U	< 2.4 U
WHC1-P15 WHC1-P16	0	NORM NORM	12/8/2008 12/1/2008	< 2.2 U < 2.1 U	2.4 5.3	3.3 9.6		< 2.2 U	< 2.2 U	< 2.2 U < 2.1 U	5.3	190 1000	< 2.2 U	< 2.2 U < 2.1 U
WHC1-P16 WHC1-P17	0	NORM	12/1/2008	< 2.1 U	5.5	9.6		2.8 5.4	6.4	< 2.1 U	5.8	930	< 2.1 U < 2.1 U	< 2.1 U
WHC1-P17 WHC1-P18	0	NORM	12/13/2008	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U
WHC1-F18 WHC2-BF02C	0	NORM	12/4/2009	< 2 U	< 2 U	< 2 U		< 2 U	< 2 U	< 2 U	< 2 U	< 2.1 U	< 2 U	< 2.1 U
WHC2-BF02C	0	FD	12/4/2009	< 2 U	< 2 U	2.7		< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
WHC2-BF02NE	0	NORM	12/4/2009	< 2 U	9.2	48		8.2	27	< 2 U	11	990 J	< 2 U	< 2 U
WHC2-BF02NW	0	NORM	12/4/2009	< 2 U	7.1	73		12	41	< 2 U	22	630	< 2 U	< 2 U
WHC2-BF02SE	0	NORM	12/4/2009	< 2.1 U	< 2.1 U	4.1		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	130	< 2.1 U	< 2.1 U
WHC2-BF02SW	0	NORM	12/4/2009	< 2 U	4.4	24		4.6	12	< 2 U	4.7	180	< 2 U	< 2 U
WHC2-BF04C	0	NORM	12/4/2009	< 2.1 U	< 2.1 U	3.8		4	< 2.1 U	< 2.1 U	< 2.1 U	98	< 2.1 U	< 2.1 U
WHC2-BF04NE	0	NORM	12/4/2009	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U
WHC2-BF04NW	0	NORM	12/4/2009	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U
WHC2-BF04SE	0	NORM	12/4/2009	< 2.1 U	< 2.1 U	4		< 2.1 U	2.7	< 2.1 U	< 2.1 U	280	< 2.1 U	< 2.1 U
WHC2-BF04SW	0	NORM	12/4/2009	< 2.1 UJ	< 2.1 U	< 2.1 U		< 2.1 UJ	< 2.1 UJ	< 2.1 UJ	< 2.1 U	48	< 2.1 UJ	< 2.1 UJ
WHC2-BG02C	0	NORM	12/2/2009	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U
WHC2-BG02NE	0	NORM	12/2/2009	< 2 U	4.8	35		6.8	15	< 2 U	7.5	520	< 2 U	< 2 U
WHC2-BG02NW	0	NORM	12/2/2009	< 2 U	24	180		37	97	3.7	37	1700 J	< 2 U	< 2 U
WHC2-BG02SE	0	NORM	12/2/2009	< 2.1 U	12	110		24	41	< 2.1 U	13	850	< 2.1 U	< 2.1 U
WHC2-BG02SW	0	NORM	12/2/2009	< 2 U	33	340		74	130	< 2 U	42	2600 J	< 2 U	< 2 U
WHC2-BG03C	0	NORM	12/4/2009	< 2 U	< 2 U	< 2 U		< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
WHC2-BG03C	0	FD	12/4/2009	< 2 U	< 2 U	< 2 U		< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
WHC2-BG03NE	0	NORM	12/4/2009	< 2 U	< 2 U	< 2 U		< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
WHC2-BG03NW	0	NORM	12/4/2009	< 2 U	< 2 U	< 2 U		< 2 U	< 2 U	< 2 U	< 2 U	32	< 2 U	< 2 U
WHC2-BG03SE	0	NORM	12/4/2009	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U
WHC2-BG03SW WHC2-BG06C	0	NORM NORM	12/4/2009 12/3/2009	< 2 U	< 2 U	2.8		< 2 U	< 2 U	< 2 U	< 2 U	63	< 2 U	< 2 U
WHC2-BG06NE	0	NORM	12/3/2009	< 2.7 U < 2.7 U	< 2.7 U < 2.7 U	< 2.7 U		< 2.7 U < 2.7 U	< 2.7 U 5.3	< 2.7 U < 2.7 U	< 2.7 U 7.2	210 1100	< 2.7 U < 2.7 U	< 2.7 U
WILCZ-BOUONE	U	NUKIVI	12/3/2009	< 2.7 U	< 2.7 U	11		< 2.7 U	5.5	< 2.7 U	1.2	1100	< 2.7 U	< 2.7 U

SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 15 of 18)

	Ī							Polychlori	inated Biphen	yls (PCBs)				
							7							
					10	10	156/157				_	_		
	D 41	G 1	G 1.	123	126	156	156	157	167	169	189	209	77	81
Comple ID	Depth (ft bgs)	Sample	Sample Date	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB
Sample ID WHC2-BG06NW	(ft bgs)	Type NORM	12/3/2009	مِّر < 2.5 U	مِّر < 2.5 U	<u>~</u> < 2.5 U		< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U	<u>주</u> 84	< 2.5 U	气 < 2.5 U
WHC2-BG06SE	0	NORM	12/3/2009	< 2.8 U	< 2.8 U	< 2.8 U		< 2.8 U	< 2.8 U	< 2.8 U	3.2	600	< 2.8 U	< 2.8 U
WHC2-BG06SW	0	NORM	12/3/2009	< 2.5 U	< 2.5 U	8.5		< 2.5 U	5.1	< 2.5 U	2.7	440	< 2.5 U	< 2.5 U
WHC2-BH03C	0	NORM	12/2/2009	< 2 U	< 2 U	6.2		< 2 U	< 2 U	< 2 U	< 2 U	250	7.5	< 2 U
WHC2-BH05C	0	NORM	12/4/2009	< 2.1 U	2.7	13		3.9	6.9	< 2.1 U	4.3	590	< 2.1 U	< 2.1 U
WHC2-BH05NE	0	NORM	12/4/2009	< 2.1 U	3.4	18		4.2	10	< 2.1 U	6.4	700	< 2.1 U	< 2.1 U
WHC2-BH05NW	0	NORM	12/4/2009	< 2 U	< 2 U	5.9		< 2 U	< 2 U	< 2 U	< 2 U	120	< 2 U	< 2 U
WHC2-BH05SE	0	NORM	12/4/2009	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	80	< 2.1 U	< 2.1 U
WHC2-BH05SW WHC2-BH06C	0	NORM NORM	12/4/2009 12/3/2009	< 2.1 U < 2.2 U	5.8 < 2.2 U	19 < 2.2 U		4.3 < 2.2 U	9.2 < 2.2 U	< 2.1 U < 2.2 U	6.2 < 2.2 U	830 310 J	< 2.1 U < 2.2 U	< 2.1 U < 2.2 U
WHC2-BH06C WHC2-BH06C	0	FD	12/3/2009	< 2.2 U	< 2.2 U	< 2.2 U		< 2.2 U	< 2.2 U	< 2.2 U	< 2.2 U	140 J	< 2.2 U	< 2.2 U
WHC2-BH06NE	0	NORM	12/3/2009	< 2.1 U	23	73		26	57	9.1	72	13000 J	< 2.1 U	< 2.1 U
WHC2-BH06NW	0	NORM	12/3/2009	< 2.1 U	< 2.2 U	< 2.2 U		< 2.2 U	< 2.2 U	< 2.2 U	< 2.2 U	< 2.2 U	< 2.2 U	< 2.2 U
WHC2-BH06SE	0	NORM	12/3/2009	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	95	< 2.1 U	< 2.1 U
WHC2-BH06SW	0	NORM	12/3/2009	< 2.2 U	< 2.2 U	< 2.2 U		< 2.2 U	< 2.2 U	< 2.2 U	< 2.2 U	110	< 2.2 U	< 2.2 U
WHC2-BI05C	0	NORM	11/30/2009	< 2.1 U	3.5	39		7.8	14	< 2.1 U	5.4	360	< 2.1 U	< 2.1 U
WHC2-BJ05C	0	NORM	12/1/2009	< 2.1 U	< 2.1 U	4.1		< 2.1 U	2.3	< 2.1 U	< 2.1 U	130	< 2.1 U	< 2.1 U
WHC2-BJ05NE	0	NORM	12/1/2009	< 2 U	4.6	39		7.8	17	< 2 U	8	520	< 2 U	< 2 U
WHC2-BJ05NW	0	NORM	12/1/2009	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	47	< 2.1 U	< 2.1 U
WHC2-BJ05SE WHC2-BJ05SW	0	NORM NORM	12/1/2009 12/1/2009	< 2.1 U	< 2.1 U	3		< 2.1 U	< 2.1 U 28	< 2.1 U	< 2.1 U	76 1800 J	< 2.1 U	< 2.1 U < 2 U
WHC2-BJ05SW WHC2-BK05NE	0	NORM	12/1/2009	< 2 U	3.4	55 12		12 3.2	7.3	3.4 < 2 U	5.5	1800 J 1000 J	< 2 U < 2 U	< 2 U
WHC2-BK05NE	0	NORM	12/1/2009		J.4 			3.2	7.3		J.J 	1000 J		< 2 U
WHC2-BK05NW	0	NORM	12/1/2009	< 2 U	< 2 U	2.5		< 2 U	< 2 U	< 2 U	< 2 U	51	< 2 U	< 2 U
WHC2-BK05SC	0	NORM	12/1/2009	< 2 U	< 2 U	< 2 U		< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
WHC2-BK05SE	0	NORM	12/1/2009	< 2 U	< 2 U	< 2 U		< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
WHC2-BK05SW	0	NORM	12/1/2009	< 2.1 U	< 2.1 U	< 2.1 U		< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	35	< 2.1 U	< 2.1 U
WHC2-BM06C	0	NORM	11/30/2009	< 2.3 U	17	230		54	64	< 2.3 U	15	820	< 2.3 U	< 2.3 U
WHC2-BM07C	0	NORM	11/30/2009	< 2.1 U	< 2.1 U	13		2.9	4.9	< 2.1 U	< 2.1 U	100	< 2.1 U	< 2.1 U
WHC2-BM08C	0	NORM	11/25/2009	< 2.1 U	< 2.1 UJ	4.2 J		< 2.1 U	< 2.1 UJ	< 2.1 U	< 2.1 U	38 J	< 2.1 U	< 2.1 U
WHC2-BM08C	0	FD	11/25/2009	< 2.2 U	4.3 J	14 J		3.1	4.7 J	< 2.2 U	< 2.2 U	150 J	< 2.2 U	< 2.2 U
WHC2-BN05C WHC2-BP05C	0	NORM NORM	11/30/2009 12/2/2009	< 2 U < 2 U	< 2 U	3.7		< 2 U	< 2 U	< 2 U	< 2 U	62 69	< 2 U	< 2 U < 2 U
WHC2-BP05NE	0	NORM	12/2/2009	< 2 U	< 2 U	4.9		< 2 U	2.8	< 2 U	< 2 U	64	< 2 U	< 2 U
WHC2-BP05NW	0	NORM	12/2/2009	< 2 U	< 2 U	2		< 2 U	< 2 U	< 2 U	< 2 U	41	< 2 U	< 2 U
WHC2-BP05SE	0	NORM	12/2/2009	< 2 U	< 2 U	2.4		< 2 U	< 2 U	< 2 U	< 2 U	240	< 2 U	< 2 U
WHC2-BP05SW	0	NORM	12/2/2009	< 2 U	< 2 U	2.3		< 2 U	< 2 U	< 2 U	< 2 U	110	< 2 U	< 2 U
WHC2-D01C	0	NORM	12/2/2009	< 2 UJ	33 J	250		40	130	4.6	59	1000 J	< 2 U	< 2 U
WHC2-D02C	0	NORM	12/2/2009	< 2 U	44	370		81	190	< 2 U	72	1900	< 2 U	< 2 U

SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 16 of 18)

								Polychlori	inated Biphen	vls (PCBs)				
								1 ory carron		(1 CDS)				
							57							
				m	9	9	156/157	_	_	6	6	6		
	Depth	Sample	Sample	123	126	156		157	167	169	189	209	77	81
Sample ID	(ft bgs)	Type	Date	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB
WHC2-D03C	0	NORM	12/2/2009		< 2 U	64		13	33		12	630	<u>~</u> <2 U	 < 2 U
WHC2-D03C	0	FD	12/2/2009	< 2 U	< 2 U	55		12	28	< 2 U	9.4	590	< 2 U	< 2 U
WHC2-D04C	0	NORM	12/2/2009	< 2.1 U	580	4900 J		580	2800 J	88	1500	8000 J	< 2.1 U	< 2.1 U
WHC2-D05C	0	NORM	12/2/2009	< 2 U	810	18000 J		4300 J	7500 J	120	1700	42000 J	< 2 U	< 2 U
WHC2-D06C	0	NORM	12/2/2009	< 2 U	270	2600		570	1200	43	450	13000 J	< 2 U	< 2 U
WHC2-D07C	0	NORM	12/2/2009	< 2.1 U	37	230		56	110	6	44	2500	< 2.1 U	< 2.1 U
WHC2-D09C	0	NORM	12/2/2009	< 2 U	79	800		140	360	10	170	4100 J	< 2 U	< 2 U
WHC2-D10C	0	NORM	11/30/2009	< 2.2 U	410	4300		1100	1900	49	670	25000 J	< 2.2 U	< 2.2 U
WHC2-D10C	0	FD	11/30/2009	< 2 U	370	4800		1200	1800	42	590	25000 J	< 2 U	< 2 U
WHC2-D11C	0	NORM	12/2/2009	< 2 U	850	8900		2100	3700	120	1300	46000	< 2 U	< 2 U
WHC2-D13C	0	NORM	12/3/2009	< 2.9 U	< 2.9 U	< 2.9 U		< 2.9 U	< 2.9 U	< 2.9 U	< 2.9 U	< 2.9 U	< 2.9 U	< 2.9 U
WHC2-D13NE	0	NORM	12/3/2009	< 3.2 U	< 3.2 U	< 3.2 U		< 3.2 U	< 3.2 U	< 3.2 U	< 3.2 U	33	< 3.2 U	< 3.2 U
WHC2-D13NW	0	NORM	12/3/2009	< 2.4 U	< 2.4 U	< 2.4 U		< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U	160	< 2.4 U	< 2.4 U
WHC2-D13SE	0	NORM	12/3/2009	< 3.1 U	< 3.1 U	< 3.1 U		< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U
WHC2-D13SW	0	NORM	12/3/2009	< 2.9 U	< 2.9 U	5.4		< 2.9 U	< 2.9 U	< 2.9 U	5.2	1200	< 2.9 U	< 2.9 U
WHC2-D14C	0	NORM	12/2/2009	< 2.1 U	< 2.1 U	5.6		< 2.1 U	3.3	< 2.1 U	< 2.1 U	120	< 2.1 U	< 2.1 U
WHC2-D15C	0	NORM	11/30/2009	< 2.4 U	64	210		100	240	45	250	41000 J	< 2.4 U	< 2.4 U
WHC2-D16C	0	NORM	11/30/2009	< 2.2 U	6.8	31		15	30	< 2.2 U	39	7500 J	< 2.2 U	< 2.2 U
WHC2-D17C	0	NORM	12/1/2009	< 2.2 U	82	190		75	220	48	270	45000 J	< 2.2 U	< 2.2 U
WHC2-D18C	0	NORM	12/1/2009	< 2 U	35	220		47	110	9.1 J	57	6500 J	< 2 U	< 2 U
WHC2-D18C	0	FD	12/1/2009	< 2 UJ	34	300		65	140	12 J	77	9000 J	< 2 UJ	< 2 UJ
WHC2-D19C WHC2-D20C	0	NORM NORM	12/1/2009 12/1/2009	< 2 U	3.8 75 J	18 520		4.3	8.9 240	< 2 U 14 J	5.2 110 J	710 5200 J	< 2 U	< 2 U
WHC2-D20C	0	FD	12/1/2009	< 2 U	75 J 39 J	400		64	210	6.9 J	65 J	1800 J	< 2 U < 2 U	< 2 U
WHC2-D20C WHC2-D21C	0	NORM	12/1/2009	< 2 U	< 2 U	19		3.9	8	6.9 J < 2 U	2.9	1800 J 100	< 2 U	< 2 U
WHC2-D22C	0	NORM	12/1/2009	< 2 U	14	100		17	48	< 2 U	22	660	< 2 U	< 2 U
WHC2-D23C	0	NORM	12/1/2009	< 2 U	11	76		14	34	2.5	21	1400 J	< 2 U	< 2 U
WHC2-D24C	0	NORM	12/1/2009	< 2 U	< 2 U	5.5		< 2 U	3	< 2 U	< 2 U	110	< 2 U	< 2 U
WHC2-D25C	0	NORM	12/1/2009	< 2 U	8.4	44		9	22	2.6	18	1800 J	< 2 U	< 2 U
WHC2-D26C	0	NORM	12/1/2009	< 2 U	30	300		50	150	7.6	77	4300 J	< 2 U	< 2 U
WHC2-D27C	0	NORM	12/1/2009	< 2 U	24	140		25	79	6.7	42	2400 J	< 2 U	< 2 U
WHC2-D28C	0	NORM	11/30/2009	< 2 U	25	150		26	81	4.8	48	2900 J	< 2 U	< 2 U
WHC2-D29C	0	NORM	11/30/2009	< 2 U	3.7	28		5.1	12	< 2 U	5.5	410	< 2 U	< 2 U
WHC2-JE01	0	NORM	4/26/2010	< 45 U	28	320		59	97	< 0.69 U	20	470	< 310 U	< 54 U
WHC2-JE02	0	NORM	4/26/2010	< 5.7 U	2.4	14		2.5	2.9	< 0.24 U	< 0.21 U	53	< 22 U	< 5.2 U
WHC2-P11C	0	NORM	12/1/2009	< 2.1 U	200	2600		670	940	130	350	33000 J	< 2.1 U	< 2.1 U
WHC2-P12C	0	NORM	12/2/2009	< 2 U	11	88		19	55	< 2 U	20	490	< 2 U	< 2 U
WHC2-P13C	0	NORM	12/4/2009	< 2.8 U	< 2.8 U	< 2.8 U		< 2.8 U	< 2.8 U	< 2.8 U	< 2.8 U	71	< 2.8 U	< 2.8 U
WHC2-P13NE	0	NORM	12/4/2009	< 2.6 U	< 2.6 U	< 2.6 U		< 2.6 U	< 2.6 U	< 2.6 U	< 2.6 U	< 2.6 U	< 2.6 U	< 2.6 U

TABLE B-7 SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 17 of 18)

								Polychlori	inated Biphen	yls (PCBs)				
							7	•	•					
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	PCB 123	PCB 126	PCB 156	PCB 156/157	PCB 157	PCB 167	PCB 169	PCB 189	PCB 209	PCB 77	PCB 81
WHC2-P13NW	0	NORM	12/4/2009	< 2.6 U	< 2.6 U	< 2.6 U		< 2.6 U	< 2.6 U	< 2.6 U	< 2.6 U	< 2.6 U	< 2.6 U	< 2.6 U
WHC2-P13SE	0	NORM	12/4/2009	< 3.1 U	< 3.1 U	< 3.1 U		< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U
WHC2-P13SW	0	NORM	12/4/2009	< 2.4 U	< 2.4 U	< 2.4 U		< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U	27	< 2.4 U	< 2.4 U
WHC3-BM06C	0	NORM	8/9/2010	< 33 U	22	310		65	60	< 0.61 U	16	870	< 330 U	< 55 U
WHC3-D11C	0	NORM	6/24/2010	< 1200 U	820	11000 J		2300	2200	92	970	59000 J	< 5700 U	< 1200 U
WHC3-D26C	0	NORM	8/9/2010	< 37 U	< 0.29 U	100		5.8	27	< 0.36 U	27	22	< 4.1 U	< 0.34 U
WHC3-D27C	0	NORM	8/9/2010	< 15 U	15	150		28	50	3.7	27	2700 J	< 56 U	< 12 U
WHC3-D28C	0	NORM	8/9/2010	< 5.2 U	5.7	55		10	15	< 0.43 U	8.7	680	< 27 U	< 4.4 U
WHC3-JE01	0	NORM	8/9/2010	< 68 U	35	780		160	170	< 0.65 U	28	210	< 290 U	< 100 U
WHC3-P11C	0	NORM	8/9/2010	< 200 U	120	1700 J		280	470 J	24	240 J	23000 J	< 850 U	< 260 U
WHC3-P11C	0	FD	8/9/2010	< 100 U	73	860 J		180	170 J	14	100 J	16000 J	< 440 U	< 130 U
WHC4-D27N	0	NORM	1/6/2012	3.7	6.3	36		36	16	< 0.89 U	11	1200	32	3.1
WHC4-D27S	0	NORM	1/6/2012	< 0.51 U	< 0.59 U	13		13	5.9	< 0.52 U	2.9	230	23	< 0.47 U
WHC6-BG02SW WHC6-BG02SW	0	NORM FD	7/27/2012 7/27/2012	66 < 16 U	110 J 59 J	810 420		810 420	240 130	< 12 U < 8.4 U	90 J < 4.5 UJ	5800 4200	320 240	< 17 U < 16 U
WHC6-BH06NE	0	NORM	7/27/2012	< 9.8 U	< 14 U	170		170	85	< 8.4 U	120	20000	67	< 8.4 U
WHC6-BM06	0	NORM	8/1/2012	< 9.9 U	< 14 U	< 7.2 U		< 7.2 U	< 5.7 U	< 6.6 U	< 3.7 U	< 3.9 U	96	< 8.6 U
WHC6-BM06	0	FD	8/1/2012	< 0.39 U	4.8	110		110	29	< 0.39 U	6.9	520	110	7.9
WHC6-D04	0	NORM	7/27/2012	< 11 U	140	760		760	300	< 14 U	150	1800	190	< 12 U
WHC6-D05	0	NORM	7/27/2012	4.9	16	120		120	40	2.4	17	740	120	27
WHC6-D05	0	NORM	7/27/2012											
WHC6-D06	0	NORM	7/27/2012	8.6	33	240		240	80	4.5	31	1300	160	51
WHC6-D07	0	NORM	7/27/2012	2.3	< 0.88 U	25		25	9.2	< 0.27 U	3.8	160	12	2.4
WHC6-D08	0	NORM	7/27/2012	2.1	2.9	16		16	6	< 0.25 U	< 0.17 U	160	190	50
WHC6-D09	0	NORM	7/27/2012	3.9	9.4	92		92	21	< 0.43 U	9.3	770	130	35
WHC6-D10	0	NORM	7/27/2012	62	53	1200		1200	180	< 12 U	55	5700	1800	530
WHC6-D11	0	NORM	7/27/2012	< 7.9 U	< 16 U	120		120	< 3.9 U	< 5.6 U	< 3.3 U	1400	110	< 7.6 U
WHC6-D15	0	NORM	7/27/2012	7.4	< 0.61 U	13		13	9.6	< 0.27 U	4	700	6.5	4.9
WHC6-D16	0	NORM	7/27/2012	< 0.36 U	< 0.5 U	< 0.29 U		< 0.29 U	< 0.2 U	< 0.27 U	< 0.16 U	400	< 0.28 U	< 0.27 U
WHC6-D17	0	NORM	7/27/2012	< 11 U	< 21 U	< 12 U		< 12 U	< 6.9 U	< 9 U	57	11000	< 16 U	< 16 U
WHC6-D18	0	NORM	7/27/2012	360	650	2400		2400	1500	300	2000	260000 J	1000	390
WHC6-D20	0	NORM	8/1/2012	< 15 U	110	1200		1200	350	< 17 U	180	18000	650	50
WHC6-D27	0	NORM	8/1/2012	< 1.5 U	< 2.3 U	28		28	16	< 1.5 U	< 0.82 U	1600	19	< 1.6 U
WHC6-JE01	0	NORM	8/1/2012	< 0.4 U	5.5	64		64	17	< 0.4 U	3	110	28	3.7
WHC6-P10 WHC6-P11	0	NORM NORM	7/27/2012 7/27/2012	< 0.24 U	3.3 < 19 U	620		10 620	5 120	< 0.29 U < 9.7 U	3.9 49	760 7500	7.5 430	< 0.21 U 80
WHC6-P11 WHC7-BG02SW 3	0	NORM	3/20/2014	< 14 U	< 19 U 52	620	1200	620	370	< 9.7 U	59	7500 14000 J	160	31
WHC7-BG02SW_3	0	FD	3/20/2014	76 J	55 J		1200 1000 J		340 J	14 12 J	54 J	10000 J	190 J	24 J
WHC7-BG02SW_5	0	NORM	5/12/2014	< 23 U	43		390		220	8.5	100	2400 J	190 J 87	12
** ITC / -DOUZS W_S	U	MOKW	3/14/2014	< 23 U	43		390		220	0.3	100	∠+00 J	07	14

SOIL POLYCHLORINATED BIPHENYLS (PCBs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 18 of 18)

								Polychlori	inated Biphen	yls (PCBs)				
							57							
	Depth	Sample	Sample	B 123	B 126	B 156	B 156/157	B 157	B 167	B 169	B 189	B 209	B 77	B 81
Sample ID	(ft bgs)	Type	Date	PCJ	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB
WHC7-BH06NE_3	0	NORM	3/20/2014	0.71 J	1.9 J		8 J		4.2	0.99 J	1.3 J	740	3.1 J	1.7 J
WHC7-BH06NE_5	0	NORM	5/12/2014	< 0.5 U	< 0.57 U		2.8 J		1.8 J	< 0.34 U	1.4 J	220	1.4 J	0.55 J
WHC7-D04_3	0	NORM	3/20/2014	< 15 U	< 16 U		290		100	< 4.7 U	43	1700	150	24
WHC7-D04_5	0	NORM	5/12/2014	< 33 U	58		470		170	9.3	79	2000	300	69
WHC7-D09_3	0	NORM	3/20/2014	100	< 79 U		1700		570	< 19 U	190	11000 J	660	120
WHC7-D09_5	0	NORM	5/12/2014	< 0.56 U	< 0.61 U		0.94 J		0.51 J	< 0.27 U	< 0.31 U	29	0.6 J	< 0.54 U
WHC7-D10_3	0	NORM	3/20/2014	250	< 270 U		4400		1300	< 39 U	370	21000 J	3200	490
WHC7-D10_5	0	NORM	5/12/2014	< 17 U	< 20 U		160		51	< 2.2 U	15	860	130	29
WHC7-D11_3	0	NORM	3/20/2014	4.3	< 2.4 U		35		15	< 0.8 U	6.4	2200	28	10
WHC7-D11_5	0	NORM	5/12/2014	< 26 U	< 29 U		260		79	< 4.4 U	31	1900	160	26
WHC7-D17_3	0	NORM	3/20/2014	< 93 U	160		1700		750	64	480	88000 J	410	63
WHC7-D17_5	0	NORM	5/12/2014	< 12 U	20		130		62	7.7	64	10000 J	34	7.5
WHC7-D17_5	0	FD	5/12/2014	< 10 U	18		120		57	5.9	60	9300 J	31	7.1
WHC7-D18_3	0	NORM	3/20/2014	< 330 U	< 410 U		3000		1700	160	1400	220000 J	1700	340
WHC7-D18_5	0	NORM	5/12/2014	< 5.6 U	10		47		31	4.7	37	5500 J	18	5.2
WHC7-D20_3	0	NORM	3/20/2014	74	78		1000		390	22	160	12000 J	740	88
WHC7-D20_5	0	NORM	5/12/2014	< 160 U	240		2400		780	39	320	21000 J	1900	120
WHC7-P11_3	0	NORM	3/20/2014	< 0.88 U	< 0.99 U		9.2		3.4 J	< 0.35 U	1.4 J	190	6.2	2.9 J
WHC7-P11_5	0	NORM	5/12/2014	1.8 J	1.8 J		20		6.6	< 0.53 U	1.9 J	400	7.3	14
WHC8-D09	0	NORM	6/27/2014	< 6.3 U	< 9.4 U		63		21	< 2.1 U	9	350	73	31
WHC8-D11	0	NORM	6/27/2014	< 0.99 U	< 1.5 U		3.5 J		1.1 J	< 1 U	< 0.82 U	290	< 0.89 U	< 0.87 U
WHC8-D17	0	NORM	6/27/2014	< 0.8 U	< 1.2 U		< 0.86 U		< 0.59 U	< 1 U	< 0.75 U	33 J	< 0.91 U	< 0.9 U
WHC8-D18	0	NORM	6/27/2014	< 2 U	< 3 U		9		4.6	< 1 U	2.8 J	500	3.8 J	< 1.3 U
WHC8-D20	0	NORM	6/27/2014	< 2.8 U	< 3.9 U		25		8.8	< 1.5 U	4 J	320	16	< 1.6 U

Aroclor units in mg/kg; PCB congener units in pg/g.

-- = no sample data.

⁼ Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

⁼ Data not included in risk assessment. Sample location covered with fill material (see text).

TABLE B-8 SOIL RADIONUCLIDES DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 11)

							Radion	nuclides			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Radium-226	Radium-228	Thorium-228	Thorium-230	Thorium-232	Uranium-233/234	Uranium-235/236	Uranium-238
OSC1-BM11	0	NORM	9/21/2009	1.24 J	2.12	1.82	0.467	2.14	0.558 U	0.046 U	1.18
OSC1-BM11	10	NORM	9/21/2009	0.849 J	2.16	1.79	2.04	1.84	0.788	0.0645 U	1.61
OSC1-BN11	0	NORM	9/22/2009	2.31	2.85 J	1.6	1.6	1.44	0.675	-0.0422 U	0.643
OSC1-BN11	5	NORM	9/22/2009	2.25	2.16 J	2.11	0.752	1.76	0.767	0.0793 U	0.824
OSC1-BO11	0	NORM	9/16/2009	1.08	1.93	1.37	2.3	1.6	3.83 J	0.245	2.66
OSC1-BO11	0	FD	9/16/2009	0.884	1.43	1.23	2.46	0.649	2.52 J	0.144 U	2.35
OSC1-BO11	5	NORM	9/16/2009	1.34	1.26	1.6	2.57	1.52	3.88	0.189 U	2.43
OSC1-BP11	0	NORM	9/16/2009	1.57	1.67	1.69	3.13	1.26	7.42	0.391	3.73
OSC1-BP11	5	NORM	9/16/2009	0.284 U	1.6	1.18	1.78	1.4	1.15	0.077 U	1.21
OSC1-BP11NE	0	NORM	1/21/2010	0.794 J-	0.889	0.886	1.02 J	1.43	2.45 J	0 U	1.14 Ј
OSC1-BP11NW	0	NORM	1/21/2010	1.49 J-	0.684 U	0.966	1.5 J	0.864	2.33 J	0.293	2.01 J
OSC1-BP11SE	0	NORM	1/21/2010	0.858 J-	1.34	1.52	1.88 J	1.63	1.69 J	0 U	1.28 J
OSC1-BP11SW	0	NORM	1/21/2010	1.3 J-	0.545 U	0.675	1.82 J	0.713	2.59 J	0.239	2 J
OSC1-JP06	0	NORM	9/22/2009	2.75	2.74 J	1.92	2.63	1.38	6.98	0.572	3.76
OSC1-JP06	5	NORM	9/22/2009	4.4	1.62 J	0.108 U	3.5	0.423 U	4.57	0.149 U	3.23
OSC1-JP06NE	0	NORM	1/20/2010	1.3 J-	1.27	0.911	2.24 J	1.21	4.35 J	0.0453 U	3.1 J
OSC1-JP06NW	0	NORM	1/20/2010	1.3 J-	1.38	1.08	2.68 J	1.01	7.5 J	0.162 U	4.4 J
OSC1-JP06SE	0	NORM	1/20/2010	0.649 J-	1.34	2.18	2.34 J	1.83	4.05 J	0.0619 U	2.44 J
OSC1-JP06SW	0	NORM	1/20/2010	0.918 J-	1.27	2.05	1.79 J	1.08	4.87 J	0.0995 U	3.46 J
OSC1-JP07	0	NORM	9/21/2009	1.2 J	1.51	0.818	3.19	1.33	7.35	0.288	3.09
OSC1-JP07	5	NORM	9/21/2009	1.82 J	1.78	1.41	1.85	1.03	3.73	0.238 U	1.08
OSC1-JP07NE	0	NORM	1/20/2010	0.882 J-	1.33	0.943	0.652 J	0.961	1.63 J	0.157 U	1.57 J
OSC1-JP07NW	0	NORM	1/20/2010	1.42 J-	1.04	1.13	1.86 J	1.18	2.69 J	0.149 U	2.08 J
OSC1-JP07SE	0	NORM	1/20/2010	0.827 J-	1.21	1.46	1.56 J	1.38	1.87 J	0.179 U	2.3 J
OSC1-JP07SW	0	NORM	1/20/2010	1.24 J-	1.31 J	1.58	4.7 J	1.06	9.61 J	0.336	4.75 J
OSC1-JP07SW	0	FD	1/20/2010	1.28 J-	2.44 J	1.53	3.3 J	1.32	6.88 J	0.0828 U	4.02 J
OSC1-JP08	0	NORM	9/21/2009	0.483 UJ	1.56	0.39 U	0.106 U	0.844	1.5	-0.022 U	0.855
OSC1-JP08	10	NORM	9/21/2009	1.96 J	1.77	1.11	1.28	1.23	2.03	0.267	2.42
OSC1-JS10	0	NORM	1/31/2010	1.3 J-	0.797	0.965	0.914 J	1.08	4.27 J	0.271	2.42 J
OSC1-JS10	0	FD	1/21/2010	0.89 J-	1.09	0.629	1.13 J	1.18	4.6 J	-0.0435 U	2.9 J
OSC2-BO11	0	NORM	8/16/2010	1 U	1.61	1.24	2.13 J	0.761	4.92	0.172 U	3.63
OSC2-BP11	0	NORM	8/16/2010	1 U	1.55	1.3	1.39 J	1.26	2.49	0.276 U	1.84
OSC2-JP06	0	NORM	8/10/2010	0.8	2.02 J	1.62	2.73 J	1.22	5.25 J	0.163 U	3.75
OSC2-JP06NE	0	NORM	8/10/2010	1.25	2.2 J	2.07	2.65 J	1.47	3.48 J	0.0975 U	1.72
OSC2-JP06NW	0	NORM	8/10/2010	1.56	1.7 J	1.8	2.66 J	1.47	3.86 J	0.299	2.77
OSC2-JP06SE	0	NORM	8/10/2010	1.61	1.28 J	1.54	4.78 J	1.09	8.46 J	0.277 U	6.03
OSC2-JP06SW	0	NORM	8/10/2010	1.19	1.63 J	1.51	2.23 J	1.57	1.49 J	0.277 C	1.19
OSC2-JP07	0	NORM	8/10/2010	1.85	2.85 J	2	4.82 J	1.34	5.5 J	0.0805 U	2.98
OSC2-JP0/	0	NORM	8/10/2010	1.85	2.85 J	2	4.82 J	1.34	5.5 J	0.0805 U	2.98

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 11)

							Radion	nuclides			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Radium-226	Radium-228	Thorium-228	Thorium-230	Thorium-232	Uranium-233/234	Uranium-235/236	Uranium-238
OSC2-JP07NW	0	NORM	8/10/2010	1.79	2.09 J	1.5	2.33 J	1.25	5.02 J	0.203	3.83
OSC2-JP07SW	0	NORM	8/10/2010	1.49	4.43 J	1.22	3.99 J	1.24	11.8 J	0.263 U	7.55
OSC2-JS10	0	NORM	8/16/2010	1.2	1.52	1.11	2.42 J	0.707	3.11	-0.0487 U	1.13
OSC2-JS10	0	FD	8/16/2010	1 U	1.29	0.552	1.31 J	0.807	2.47	0.278 U	1.06
OSC3-JP06SES	0	NORM	1/6/2012	0.88	1.8	0.704 U	2.73	1.26	4.27	0.266 U	3.5
OSC3-JP07SWS	0	NORM	1/6/2012	1.03	1.37	1.98	2.82	2.41	1.79	0 U	1.31
OSC3-JP07SWW	0	NORM	1/6/2012	1.45 J	0.927 U	1.14	1.83	1.41	4.14	0.0818 U	2.37
OSC3-JP07SWW	0	FD	1/6/2012	0.294 UJ	1.39	1.09	1.46	1.46	4.93	0.182 U	2.75
OSC6-JP06	0	NORM	8/1/2012	1.39	1.89	1.74	5.33	1.8	8.78	0.371 U	5.8
OSC6-JP06SE	0	NORM	8/1/2012	1.58	0.51 U	1.82	4.79	1.52	9.99	0.343 U	5.08
OSC6-JP07	0	NORM	8/1/2012	1.37	0.414 U	0.923	1.69	1.29	3.15	0.0666 U	3
OSC6-JP07NW	0	NORM	8/1/2012	0.934	1.03 U	1.07	3.19	1.22	2.32	0.0272 U	1.96
OSC6-JP07SW	0	NORM	8/1/2012	0.725	2.23 U	2.03	3.01	1.57	2.73	0.0872 U	2.04
WHC1-BF01	0	NORM	11/24/2008	0.849	0.969 J	1.38	1 U	1.45	1.35	0.0965	1.05
WHC1-BF01	12	NORM	11/24/2008	1.66	1.39 J	1.49	1.43	0.86	1.41	-0.0186 U	1.57
WHC1-BF02	0	NORM	11/25/2008	1.12	0.659 U	1.8	1.31	1.23	0.984	0.241	0.967
WHC1-BF02	11	NORM	11/25/2008	1.15	2.26	2.01	1.55	1.48	1.36	0.0637 U	1.35
WHC1-BF03	0	NORM	11/25/2008	0.428	2.3	1.64	0.937	1.21	1.15	0.0364 U	0.745
WHC1-BF03	10	NORM	11/25/2008	1.21	1.21	1.22	2.3	1.3	2.56	0.337	1.53
WHC1-BF04	0	NORM	11/25/2008	0.477	1.9	1.29	0.943	1.46	0.918	-0.0068 U	0.745
WHC1-BF04	0	FD	11/25/2008	0.793	1.49 J-	1.56	1.13	1.99	1.47	0.219 U	0.766
WHC1-BF04	10	NORM	11/25/2008	0.206 U	2.14	1.76	1.43	1.38	1.54	0.103 U	1.37
WHC1-BF05	0	NORM	11/25/2008	0.707	1.08	1.29	1.16	0.884	0.989	0.106 U	1 U
WHC1-BF05	12	NORM	12/10/2008	5.37	0.205 U	1 U	4.98	0.464	4.35	0.059 U	3.47
WHC1-BF06	0	NORM	12/10/2008	0.691	1.1	1 U	1.6	0.644	0.91	0.17 U	1 U
WHC1-BF06	10	NORM	12/10/2008	3.63	0.513 U	1 U	5.69	0.498	6.84	0.147 U	4.87
WHC1-BG01	0	NORM	11/24/2008	0.638	2.34 J	1.59	1 U	1.19	1.17	0.0731 U	1.05
WHC1-BG01	11	NORM	11/24/2008	0.61	1.75 J	1.19	1.37	1.83	1.52	0.112	1.01
WHC1-BG02	0	NORM	11/24/2008	1	1.6 J	1.32	1.34	1.38	1.01	0.071 U	0.964
WHC1-BG02	0	FD	11/24/2008	0.725	2.18 J	1.53	1 U	1.62	1 U	-0.0118 U	0.799
WHC1-BG02	10	NORM	11/24/2008	0.72	1.73	2.09	1.78	1.18	1.61	-0.0344 U	1.26
WHC1-BG03	0	NORM	12/11/2008	1.04	0.514 U	1.67	0.722	1.52	1.79	-0.0123 U	0.829
WHC1-BG03	11	NORM	12/11/2008	1 U	0.809 U	1.2	1.4	1.18	2.36	-0.0373 U	1.57
WHC1-BG04	0	NORM	12/11/2008	0.275 U	0.546 U	2.22	1.15	1.76	1.09	0.515	0.883
WHC1-BG04	10	NORM	12/11/2008	5.24	1.13	0.89	7.54	0.563	12.4	0.766	8.18
WHC1-BG05	0	NORM	11/25/2008	0.778	1.41	1.4	0.878	1.25	1.38	0.169 U	1.16
WHC1-BG05	10	NORM	11/25/2008	3.47	1.54	1.37	2.39	1.08	2.38	0.27	1.69
WHC1-BG06	0	NORM	12/10/2008	1.14	0.614 U	1.56	1.15	1.14	1.05	-0.0106 U	1.12

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 11)

WHC1-B066 10								Radion	nuclides			
WHC1-BH01	_	•	•	Date	- ' '		Thorium-228					Uranium-238
WHC1-BH01		10									* * * * * * * * * * * * * * * * * * * *	10.5
WHC1-BH02											0.1.0	0.852
WHC1-BH02												1.04
WHC1-BH03												1.23
WHC1-BH03												0.775
WHC1-BH04 0 NORM 12/11/2008 1 U 2.65 1.65 1.22 0.971 0.799 0.0709 U 0.799 WHC1-BH04 10 NORM 12/11/2008 1.5 1.43 1.13 1.89 1.25 2.02 0.167 U 1 WHC1-BH05 0 NORM 12/9/2008 0.968 2.15 J 2.19 1.69 1.93 0.385 U -0.152 U 0.4 WHC1-BH05 0 FD 12/9/2008 1.09 1.56 1.95 2.07 2.07 1.14 0.0312 U 0.0 WHC1-BH06 0 NORM 12/9/2008 1.5 0.457 U 1.82 2.21 1.23 2.45 0.12 U 0.0 WHC1-BH06 0 NORM 12/11/2008 1 U 0.405 U 1.12 1.14 1.11 1.19 1.02 3.29 J 0.0619 U 1. WHC1-BH06 0 FD 12/11/2008 1 U 0.405 U 1.12 1.14 1.11												1.31
WHC1-BH04 10 NORM 12/11/2008 1.5 1.43 1.13 1.89 1.25 2.02 0.167 U 1 WHC1-BH05 0 NORM 12/9/2008 0.968 2.15 J 2.19 1.69 1.93 0.385 U -0.152 U 0.4 WHC1-BH05 0 FD 12/9/2008 1.09 1.56 1.95 2.07 2.07 1.14 0.032 U 0.32 U 0.457 U 1.82 2.21 1.23 2.45 0.012 U 0.457 U 1.82 2.21 1.23 2.45 0.012 U 1.1 1.11 1.42 1.05 1.02 3.29 J 0.0619 U 1. WHC1-BH06 0 FD 12/11/2008 1 U 1.11 1.42 1.05 1.02 3.29 J 0.0619 U 1. WHC1-BH06 0 FD 12/11/2008 1 U 1.11 1.42 1.05 1.02 3.29 J 0.0619 U 1. WHC1-BH06 0 FD 12/11/2008 1 U 1.11 1.12 <td< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.18</td></td<>		_										1.18
WHC1-BH05 0 NORM 12/9/2008 0.968 2.15 J 2.19 1.69 1.93 0.385 U -0.152 U 0.4 WHC1-BH05 0 FD 12/9/2008 1.09 1.56 1.95 2.07 2.07 1.14 0.0312 U 0.0 WHC1-BH05 10 NORM 12/9/2008 2.5 0.457 U 1.82 2.21 1.23 2.45 0.12 U 1 WHC1-BH06 0 NORM 12/11/2008 1 U 1.11 1.42 1.05 1.02 3.29 J 0.0619 U 1. WHC1-BH06 0 FD 12/11/2008 1 U 0.405 U 1.12 1.14 1.11 1.97 J -0.0265 U 1. WHC1-BH06 10 NORM 12/11/2008 1 U 0.405 U 1.12 1.14 1.11 1.97 J -0.0265 U 1. WHC1-BH06 10 NORM 12/11/2008 1 U 0.405 U 1.12 1.14 1.11 1.97 J -0.0265 U	WHC1-BH04	0	NORM	12/11/2008	1 U	2.65	1.65	1.22	0.971		0.0709 U	0.778
WHC1-BH05 0 FD 12/9/2008 1.09 1.56 1.95 2.07 2.07 1.14 0.0312 U 0.00 WHC1-BH05 10 NORM 12/9/2008 2.5 0.457 U 1.82 2.21 1.23 2.45 0.12 U 1.1 WHC1-BH06 0 NORM 12/11/2008 1 U 0.11 1.42 1.05 1.02 3.29 J 0.0619 U 1. WHC1-BH06 0 FD 12/11/2008 1 U 0.405 U 1.12 1.14 1.11 1.97 J -0.0265 U 1. WHC1-BH06 10 NORM 12/11/2008 1 U 0.405 U 1.12 1.14 1.11 1.97 J -0.0265 U 1. WHC1-BH06 10 NORM 12/3/2008 0.381 U 1.99 2.07 1.42 1.63 1.16 0.119 U 0.0 WHC1-BI01 11 NORM 12/3/2008 1.45 0.921 U 1.35 1.24 1.32 1.76 0 U	WHC1-BH04	10	NORM	12/11/2008	1.5	1.43	1.13	1.89	1.25	2.02	0.167 U	1.34
WHC1-BH05 10 NORM 12/9/2008 2.5 0.457 U 1.82 2.21 1.23 2.45 0.12 U 1 WHC1-BH06 0 NORM 12/11/2008 1 U 1.11 1.42 1.05 1.02 3.29 J 0.0619 U 1 WHC1-BH06 0 FD 12/11/2008 1 U 0.405 U 1.12 1.14 1.11 1.97 J -0.0265 U 1 WHC1-BH06 10 NORM 12/11/2008 1 U 1.09 1.39 1.72 0.85 1.73 0.0962 U 1 WHC1-BH06 0 NORM 12/3/2008 0.381 U 1.99 2.07 1.42 1.63 1.16 0.119 U 0. WHC1-BI01 11 NORM 12/3/2008 1.45 0.921 U 1.35 1.24 1.32 1.76 0 U 1 WHC1-BI02 0 NORM 12/4/2008 1 UJ 0.383 U 1.87 2.65 1.8 1.53 0.261 1. <td>WHC1-BH05</td> <td>0</td> <td>NORM</td> <td>12/9/2008</td> <td>0.968</td> <td>2.15 J</td> <td>2.19</td> <td>1.69</td> <td>1.93</td> <td>0.385 U</td> <td>-0.152 U</td> <td>0.478 U</td>	WHC1-BH05	0	NORM	12/9/2008	0.968	2.15 J	2.19	1.69	1.93	0.385 U	-0.152 U	0.478 U
WHC1-BH06 0 NORM 12/11/2008 1 U 1.11 1.42 1.05 1.02 3.29 J 0.0619 U 1. WHC1-BH06 0 FD 12/11/2008 1 U 0.405 U 1.12 1.14 1.11 1.97 J -0.0265 U 1. WHC1-BH06 10 NORM 12/11/2008 1 U 1.09 1.39 1.72 0.85 1.73 0.0962 U 1.1 WHC1-BI01 0 NORM 12/3/2008 0.381 U 1.99 2.07 1.42 1.63 1.16 0.119 U 0.0 WHC1-BI01 11 NORM 12/3/2008 1.45 0.921 U 1.35 1.24 1.32 1.76 0 U 1 WHC1-BI02 0 NORM 12/4/2008 1 UJ 0.383 U 1.87 2.65 1.8 1.53 0.261 1 WHC1-BI02 13 NORM 12/4/2008 1 UJ 0.383 U 1.87 2.65 1.8 1.53 0.261 1	WHC1-BH05	0	FD	12/9/2008	1.09	1.56	1.95	2.07	2.07	1.14	0.0312 U	0.721
WHC1-BH06 0 FD 12/11/2008 1 U 0.405 U 1.12 1.14 1.11 1.97 J -0.0265 U 1.0 WHC1-BH06 10 NORM 12/11/2008 1 U 1.09 1.39 1.72 0.85 1.73 0.0962 U 1.1 WHC1-BI01 0 NORM 12/3/2008 0.381 U 1.99 2.07 1.42 1.63 1.16 0.119 U 0.0 WHC1-BI01 11 NORM 12/3/2008 1.45 0.921 U 1.35 1.24 1.32 1.76 0 U 1 WHC1-BI02 0 NORM 12/4/2008 1 UJ 1.84 2.33 2.24 1.55 4.04 0.0481 U 0.0 WHC1-BI02 3 NORM 12/4/2008 1 UJ 0.383 U 1.87 2.65 1.8 1.53 0.261 1. WHC1-BI02 13 NORM 12/4/2008 1.68 J 0.939 1.59 1.58 1.12 1.18 -0.013 U 0.9 <td>WHC1-BH05</td> <td>10</td> <td>NORM</td> <td>12/9/2008</td> <td>2.5</td> <td>0.457 U</td> <td>1.82</td> <td>2.21</td> <td>1.23</td> <td>2.45</td> <td>0.12 U</td> <td>1.68</td>	WHC1-BH05	10	NORM	12/9/2008	2.5	0.457 U	1.82	2.21	1.23	2.45	0.12 U	1.68
WHC1-BH06 10 NORM 12/11/2008 1 U 1.09 1.39 1.72 0.85 1.73 0.0962 U 1. WHC1-BI01 0 NORM 12/3/2008 0.381 U 1.99 2.07 1.42 1.63 1.16 0.119 U 0.0 WHC1-BI01 11 NORM 12/3/2008 1.45 0.921 U 1.35 1.24 1.32 1.76 0 U 1 WHC1-BI02 0 NORM 12/4/2008 1 UJ 1.84 2.33 2.24 1.55 4.04 0.0481 U 0.0 WHC1-BI02 3 NORM 12/4/2008 1 UJ 0.383 U 1.87 2.65 1.8 1.53 0.261 1 WHC1-BI02 13 NORM 12/4/2008 1.68 J 0.939 1.59 1.58 1.12 1.18 -0.0139 U 1. WHC1-BI03 0 NORM 12/4/2008 1 UJ 0.632 U 2.29 1.53 1.95 2.16 0.13 U 0.9	WHC1-BH06	0	NORM	12/11/2008	1 U	1.11	1.42	1.05	1.02	3.29 J	0.0619 U	1.77
WHC1-BI01 0 NORM 12/3/2008 0.381 U 1.99 2.07 1.42 1.63 1.16 0.119 U 0.0 WHC1-BI01 11 NORM 12/3/2008 1.45 0.921 U 1.35 1.24 1.32 1.76 0 U 1 WHC1-BI02 0 NORM 12/4/2008 1 UJ 1.84 2.33 2.24 1.55 4.04 0.0481 U 0 WHC1-BI02 3 NORM 12/4/2008 1 UJ 0.383 U 1.87 2.65 1.8 1.53 0.261 1 WHC1-BI02 13 NORM 12/4/2008 1 UJ 0.383 U 1.87 2.65 1.8 1.53 0.261 1 WHC1-BI03 0 NORM 12/4/2008 1 UJ 0.632 U 2.29 1.53 1.95 2.16 0.13 U 0.9 WHC1-BI03 11 NORM 12/4/2008 1 UJ 0.572 U 1.8 1.92 1.56 1.17 0.185 1.	WHC1-BH06	0	FD	12/11/2008	1 U	0.405 U	1.12	1.14	1.11	1.97 J	-0.0265 U	1.28
WHC1-BI01 11 NORM 12/3/2008 1.45 0.921 U 1.35 1.24 1.32 1.76 0 U 1 WHC1-BI02 0 NORM 12/4/2008 1 UJ 1.84 2.33 2.24 1.55 4.04 0.0481 U 0.0 WHC1-BI02 3 NORM 12/4/2008 1 UJ 0.383 U 1.87 2.65 1.8 1.53 0.261 1 WHC1-BI02 13 NORM 12/4/2008 1.68 J 0.939 1.59 1.58 1.12 1.18 -0.0139 U 1 WHC1-BI03 0 NORM 12/4/2008 1 UJ 0.632 U 2.29 1.53 1.95 2.16 0.13 U 0.9 WHC1-BI03 11 NORM 12/4/2008 1 UJ 0.572 U 1.8 1.92 1.56 1.17 0.185 1. WHC1-BI03 11 NORM 12/4/2008 0.797 2.29 1.56 1.25 1.78 1 0.107 U 0.3 <td>WHC1-BH06</td> <td>10</td> <td>NORM</td> <td>12/11/2008</td> <td>1 U</td> <td>1.09</td> <td>1.39</td> <td>1.72</td> <td>0.85</td> <td>1.73</td> <td>0.0962 U</td> <td>1.25</td>	WHC1-BH06	10	NORM	12/11/2008	1 U	1.09	1.39	1.72	0.85	1.73	0.0962 U	1.25
WHC1-BI02 0 NORM 12/4/2008 1 UJ 1.84 2.33 2.24 1.55 4.04 0.0481 U 0.044 U 0.0481 U 0.044 U 0.044 U 0.044 U 0.044	WHC1-BI01	0	NORM	12/3/2008	0.381 U	1.99	2.07	1.42	1.63	1.16	0.119 U	0.748
WHC1-BI02 3 NORM 12/4/2008 1 UJ 0.383 U 1.87 2.65 1.8 1.53 0.261 1. WHC1-BI02 13 NORM 12/4/2008 1.68 J 0.939 1.59 1.58 1.12 1.18 -0.0139 U 1. WHC1-BI03 0 NORM 12/4/2008 1 UJ 0.632 U 2.29 1.53 1.95 2.16 0.13 U 0.9 WHC1-BI03 11 NORM 12/4/2008 1 UJ 0.572 U 1.8 1.92 1.56 1.17 0.185 1. WHC1-BI04 0 NORM 12/8/2008 0.797 2.29 1.56 1.25 1.78 1 0.107 U 0.3 WHC1-BI04 10 NORM 12/9/2008 0.928 0.981 1.41 1.52 1.29 1.26 0.171 U 1. WHC1-BI05 0 NORM 12/9/2008 0.945 0.637 U 1.61 0.859 1.32 0.782 -0.0546 U 0.7 </td <td>WHC1-BI01</td> <td>11</td> <td>NORM</td> <td>12/3/2008</td> <td>1.45</td> <td>0.921 U</td> <td>1.35</td> <td>1.24</td> <td>1.32</td> <td>1.76</td> <td>0 U</td> <td>1.3</td>	WHC1-BI01	11	NORM	12/3/2008	1.45	0.921 U	1.35	1.24	1.32	1.76	0 U	1.3
WHC1-BI02 3 NORM 12/4/2008 1 UJ 0.383 U 1.87 2.65 1.8 1.53 0.261 1. WHC1-BI02 13 NORM 12/4/2008 1.68 J 0.939 1.59 1.58 1.12 1.18 -0.0139 U 1. WHC1-BI03 0 NORM 12/4/2008 1 UJ 0.632 U 2.29 1.53 1.95 2.16 0.13 U 0.9 WHC1-BI03 11 NORM 12/4/2008 1 UJ 0.572 U 1.8 1.92 1.56 1.17 0.185 1. WHC1-BI04 0 NORM 12/8/2008 0.797 2.29 1.56 1.25 1.78 1 0.107 U 0.3 WHC1-BI04 10 NORM 12/9/2008 0.928 0.981 1.41 1.52 1.29 1.26 0.171 U 1. WHC1-BI05 0 NORM 12/9/2008 0.945 0.637 U 1.61 0.859 1.32 0.782 -0.0546 U 0.7 </td <td>WHC1-BI02</td> <td>0</td> <td>NORM</td> <td>12/4/2008</td> <td>1 UJ</td> <td>1.84</td> <td>2.33</td> <td>2.24</td> <td>1.55</td> <td>4.04</td> <td>0.0481 U</td> <td>0.59</td>	WHC1-BI02	0	NORM	12/4/2008	1 UJ	1.84	2.33	2.24	1.55	4.04	0.0481 U	0.59
WHC1-BI03 0 NORM 12/4/2008 1 UJ 0.632 U 2.29 1.53 1.95 2.16 0.13 U 0.93 WHC1-BI03 11 NORM 12/4/2008 1 UJ 0.572 U 1.8 1.92 1.56 1.17 0.185 1 WHC1-BI04 0 NORM 12/8/2008 0.797 2.29 1.56 1.25 1.78 1 0.107 U 0.3 WHC1-BI04 10 NORM 12/9/2008 0.928 0.981 1.41 1.52 1.29 1.26 0.171 U 1. WHC1-BI05 0 NORM 12/9/2008 0.945 0.637 U 1.61 0.859 1.32 0.782 -0.0546 U 0.7 WHC1-BI05 10 NORM 12/9/2008 1.47 1.06 1.57 1.68 1.4 2.17 0.044 U 1. WHC1-BJ01 0 NORM 12/3/2008 0.706 1.55 1.76 1.3 1.3 1.71 0.168 U 1.	WHC1-BI02	3	NORM	12/4/2008	1 UJ	0.383 U		2.65	1.8	1.53	0.261	1.36
WHC1-BI03 0 NORM 12/4/2008 1 UJ 0.632 U 2.29 1.53 1.95 2.16 0.13 U 0.93 WHC1-BI03 11 NORM 12/4/2008 1 UJ 0.572 U 1.8 1.92 1.56 1.17 0.185 1 WHC1-BI04 0 NORM 12/8/2008 0.797 2.29 1.56 1.25 1.78 1 0.107 U 0.3 WHC1-BI04 10 NORM 12/9/2008 0.928 0.981 1.41 1.52 1.29 1.26 0.171 U 1. WHC1-BI05 0 NORM 12/9/2008 0.945 0.637 U 1.61 0.859 1.32 0.782 -0.0546 U 0.7 WHC1-BI05 10 NORM 12/9/2008 1.47 1.06 1.57 1.68 1.4 2.17 0.044 U 1. WHC1-BJ01 0 NORM 12/3/2008 0.706 1.55 1.76 1.3 1.3 1.71 0.168 U 1.	WHC1-BI02	13	NORM	12/4/2008	1.68 J	0.939	1.59	1.58	1.12	1.18	-0.0139 U	1.33
WHC1-BI04 0 NORM 12/8/2008 0.797 2.29 1.56 1.25 1.78 1 0.107 U 0.3 WHC1-BI04 10 NORM 12/9/2008 0.928 0.981 1.41 1.52 1.29 1.26 0.171 U 1 WHC1-BI05 0 NORM 12/9/2008 0.945 0.637 U 1.61 0.859 1.32 0.782 -0.0546 U 0.7 WHC1-BI05 10 NORM 12/9/2008 1.47 1.06 1.57 1.68 1.4 2.17 0.044 U 1. WHC1-BJ01 0 NORM 12/3/2008 0.706 1.55 1.76 1.3 1.3 1.71 0.168 U 1. WHC1-BJ01 3 NORM 12/3/2008 0.852 1.25 1.82 1.03 1.42 1.16 0.0853 U 1. WHC1-BJ01 13 NORM 12/3/2008 1.25 2.77 1.47 1.35 0.965 2.64 0.393 1. </td <td></td> <td>0</td> <td>NORM</td> <td>12/4/2008</td> <td>1 UJ</td> <td>0.632 U</td> <td>2.29</td> <td>1.53</td> <td>1.95</td> <td>2.16</td> <td>0.13 U</td> <td>0.949</td>		0	NORM	12/4/2008	1 UJ	0.632 U	2.29	1.53	1.95	2.16	0.13 U	0.949
WHC1-BI04 10 NORM 12/9/2008 0.928 0.981 1.41 1.52 1.29 1.26 0.171 U 1. WHC1-BI05 0 NORM 12/9/2008 0.945 0.637 U 1.61 0.859 1.32 0.782 -0.0546 U 0.7 WHC1-BI05 10 NORM 12/9/2008 1.47 1.06 1.57 1.68 1.4 2.17 0.044 U 1. WHC1-BJ01 0 NORM 12/3/2008 0.706 1.55 1.76 1.3 1.3 1.71 0.168 U 1. WHC1-BJ01 3 NORM 12/3/2008 0.852 1.25 1.82 1.03 1.42 1.16 0.0853 U 1. WHC1-BJ01 13 NORM 12/3/2008 1.25 2.77 1.47 1.35 0.965 2.64 0.393 1.	WHC1-BI03	11	NORM	12/4/2008	1 UJ	0.572 U	1.8	1.92	1.56	1.17	0.185	1.08
WHC1-BI05 0 NORM 12/9/2008 0.945 0.637 U 1.61 0.859 1.32 0.782 -0.0546 U 0.782 WHC1-BI05 10 NORM 12/9/2008 1.47 1.06 1.57 1.68 1.4 2.17 0.044 U 1. WHC1-BJ01 0 NORM 12/3/2008 0.706 1.55 1.76 1.3 1.3 1.71 0.168 U 1. WHC1-BJ01 3 NORM 12/3/2008 0.852 1.25 1.82 1.03 1.42 1.16 0.0853 U 1. WHC1-BJ01 13 NORM 12/3/2008 1.25 2.77 1.47 1.35 0.965 2.64 0.393 1.	WHC1-BI04	0	NORM	12/8/2008	0.797	2.29	1.56	1.25	1.78	1	0.107 U	0.801
WHC1-BI05 0 NORM 12/9/2008 0.945 0.637 U 1.61 0.859 1.32 0.782 -0.0546 U 0.782 WHC1-BI05 10 NORM 12/9/2008 1.47 1.06 1.57 1.68 1.4 2.17 0.044 U 1. WHC1-BJ01 0 NORM 12/3/2008 0.706 1.55 1.76 1.3 1.3 1.71 0.168 U 1. WHC1-BJ01 3 NORM 12/3/2008 0.852 1.25 1.82 1.03 1.42 1.16 0.0853 U 1. WHC1-BJ01 13 NORM 12/3/2008 1.25 2.77 1.47 1.35 0.965 2.64 0.393 1.	WHC1-BI04	10	NORM	12/9/2008	0.928	0.981	1.41	1.52	1.29	1.26	0.171 U	1.24
WHC1-BI05 10 NORM 12/9/2008 1.47 1.06 1.57 1.68 1.4 2.17 0.044 U 1. WHC1-BJ01 0 NORM 12/3/2008 0.706 1.55 1.76 1.3 1.3 1.71 0.168 U 1. WHC1-BJ01 3 NORM 12/3/2008 0.852 1.25 1.82 1.03 1.42 1.16 0.0853 U 1. WHC1-BJ01 13 NORM 12/3/2008 1.25 2.77 1.47 1.35 0.965 2.64 0.393 1.	WHC1-BI05	0	NORM	12/9/2008	0.945	0.637 U	1.61	0.859		0.782	-0.0546 U	0.735
WHC1-BJ01 3 NORM 12/3/2008 0.852 1.25 1.82 1.03 1.42 1.16 0.0853 U 1. WHC1-BJ01 13 NORM 12/3/2008 1.25 2.77 1.47 1.35 0.965 2.64 0.393 1.		10	NORM									1.18
WHC1-BJ01 3 NORM 12/3/2008 0.852 1.25 1.82 1.03 1.42 1.16 0.0853 U 1. WHC1-BJ01 13 NORM 12/3/2008 1.25 2.77 1.47 1.35 0.965 2.64 0.393 1.	WHC1-BJ01	0	NORM	12/3/2008	0.706	1.55	1.76	1.3	1.3	1.71	0.168 U	1.11
WHC1-BJ01 13 NORM 12/3/2008 1.25 2.77 1.47 1.35 0.965 2.64 0.393 1.		3	NORM	12/3/2008	0.852	1.25		1.03	1.42	1.16		1.29
WHCLBIO2 0 NORM 12/2/2008 0.525 3.7 I 1.29 1.11 0.994 1.11 0.106 II 0.0		13	NORM									1.49
$ \mathbf{M} 1 \mathbf{C} 1^{-1} \mathbf{J} 0 2 1 0 1 \mathbf{M} \mathbf{M} 1 1^{-1} 2^{-1} 2 0 0 0 0 0 0 0 0$	WHC1-BJ02	0	NORM	12/2/2008	0.525	3.7 J	1.29	1 U	0.994	1 U	0.106 U	0.997
		0	FD				1.49	1		1 U		0.877
	WHC1-BJ02	12	NORM	12/2/2008	1.18		1.08	1.7	1.91	1.69	0.218	1.3
												0.552
										-		0.985
		12										0.832
												0.916
		_								-		0.973
												0.663

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 11)

							Radion	nuclides			
				Radium-226	Radium-228	Thorium-228	Thorium-230	Thorium-232	Uranium-233/234	Uranium-235/236	Uranium-238
	Depth	Sample	Sample	lium	lium	riun	riun	rium	nium	niun	niun
Sample ID	(ft bgs)	Type	Date	Rad	Rad	Tho	Tho	Thc	Ura	Ura	Ura
WHC1-BJ05	10	NORM	12/11/2008	1 U	1.51	2.17	1.27	1.11	1.38	0.0468 U	1.11
WHC1-BK01	0	NORM	12/3/2008	0.597	0.847 U	0.852	1.41	0.957	2.46	0.131 U	1.61
WHC1-BK01	0	FD	12/3/2008	0.482	0.64 U	0.961	1.31	1.26	2.28	0.13 U	1.45
WHC1-BK01	10	NORM	12/3/2008	0.917	1.19	0.981	1.45	0.986	1.69	0.0615 U	1.01
WHC1-BK02	0	NORM	12/8/2008	0.64 U	1 U	1.47	0.784	1.77	1.04	0.046 U	0.907
WHC1-BK02	11	NORM	12/18/2008	0.316 U	0.0195 U	1.91	1.69	1.68	1.19	0 U	1.44
WHC1-BK03	0	NORM	12/15/2008	0.997	1.13	1.62	1.11	1.7	1.19 J	0.293	0.746
WHC1-BK03	12	NORM	12/18/2008	1.97	1.15	1.36	2.12	1.65	1.99	-0.0211 U	2.48
WHC1-BK04	0	NORM	12/4/2008	0.312 UJ	0.0994 U	2	1.71	2.54	1 U	0.051 U	0.704
WHC1-BK04	10	NORM	12/4/2008	1 UJ	0.394 U	2.77	1.85	1.65	1.14	0 U	0.975
WHC1-BK05	0	NORM	12/12/2008	1.12	1.11	1.03	0.717	0.861	0.899	0.187 U	0.737
WHC1-BK05	11	NORM	12/12/2008	0.84	1.56	1.12	0.997	1.07	2.07	-0.0362 U	1.5
WHC1-BL01	0	NORM	12/3/2008	0.758	1.49	1.35	1.51	1.24	1.91	0.0365 U	1.34
WHC1-BL01	10	NORM	12/3/2008	1.57	0.186 U	1.92	1.23	1.74	1.73	0.184 U	1.39
WHC1-BL02	0	NORM	12/2/2008	0.696	1 U	2.07	1.75	1.71	1 U	0.102 U	1.09
WHC1-BL02	10	NORM	12/2/2008	1.11	1.26	2.11	1.48	1.23	1.13	0.083 U	0.604
WHC1-BL03	0	NORM	12/8/2008	0.996	1 U	1.46	1.39	1.26	1.01	0.0171 U	1.13
WHC1-BL03	10	NORM	12/18/2008	0.835	0.621 U	1.78	1.75	0.866	1.36	0 U	1.96
WHC1-BL04	0	NORM	12/17/2008	1.66	1.34	2.98	1.1	1.96	0.63	0.271 U	0.802
WHC1-BL04	12	NORM	12/22/2008	1.25	2.06	2.05	1.05	1.21	1.46	0.0329 U	1.35
WHC1-BL05	0	NORM	11/21/2008	0.223 U	1.35 J	1.77	1 U	1.3	0.877	0.0623 U	0.946
WHC1-BL05	10	NORM	11/21/2008	1.15	2.52 J	1.49	1.15	1.35	1.14	0.0874 U	0.723
WHC1-BL06	0	NORM	11/21/2008	1.4	2.87 J	1.81	1.2	1.92	1.03	0.0417 U	0.767
WHC1-BL06	11	NORM	11/21/2008	1.1	2.85 J	1.96	1.47	1.27	2.2	0.2 U	1.59
WHC1-BL07	0	NORM	11/21/2008	1.94	3.02 J	2.55	1.91	2.13	2.52	0.0298 U	1.83
WHC1-BL07	10	NORM	11/21/2008	2	2.02 J	1.43	1.96	1.31	1.43	0.131 U	1.02
WHC1-BL08	0	NORM	11/18/2008	1.17	1.35 J-	1.53	1.45	1.3	2.71	0.136 U	1.32
WHC1-BL08	10	NORM	11/18/2008	1.31	1.72 J-	1.65	2.13	0.867	1.66	0 U	1.13
WHC1-BL11	0	NORM	11/18/2008	1	0.609 UJ	1.24	1.41	1.4	2.35	0.121 U	1.52
WHC1-BL11	12	NORM	11/18/2008	0.744	0.947 J-	0.881	2.19	1.06	1.59	0.0438 U	1.22
WHC1-BM01	0	NORM	12/3/2008	1.08	0.696 U	1.14	1 U	0.685	1.07	0.0625 U	0.724
WHC1-BM01	10	NORM	12/3/2008	0.891	1.82	1.55	1.53	1.15	1.52	-0.0354 U	1.23
WHC1-BM02	0	NORM	12/2/2008	0.845	1.26	1.98	1 U	1.42	1.16	0.0386 U	0.792
WHC1-BM02	12	NORM	12/2/2008	0.831	2.83	1.78	1 U	1.31	1.11	0.0485 U	1.09
WHC1-BM03	0	NORM	12/8/2008	1.51	0.436 U	1.03	1.18	1	0.659	0.153 U	0.939
WHC1-BM03	10	NORM	12/18/2008	1.32	0.851 U	2.02	1.43	1.37	2.01	0.0482 U	0.962
WHC1-BM04	0	NORM	12/17/2008	1.39	1.01	1.76	1	2.23	0.415 U	0.0687 U	1.41
WHC1-BM04	0	FD	12/17/2008	0.912	0.847 U	1.73	0.912	1.89	0.675	-0.011 U	1.05

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 11)

							Radion	nuclides			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Radium-226	Radium-228	Thorium-228	Thorium-230	Thorium-232	Uranium-233/234	Uranium-235/236	Uranium-238
WHC1-BM04	10	NORM	12/22/2008	0.664	0.72 U	2.14	1.69	1.65	2.09	0.327 U	1.76
WHC1-BM05	0	NORM	11/21/2008	0.534	3.17 J	1.16	1 U	1.25	0.995	0.0859 U	1.01
WHC1-BM05	10	NORM	11/21/2008	0.862	1.38 J	1.41	1.35	1.6	1.77	0.16 U	0.901
WHC1-BM06	0	NORM	11/21/2008	1.18	2.11 J	1.76	1.32	1.85	0.892	0.118	0.67
WHC1-BM06	0	FD	11/21/2008	1.19	1.28 J	1.63	1.81	1.68	0.849	0.09 U	0.966
WHC1-BM06	10	NORM	11/21/2008	2.43	2.31 J	1.34	1.8	1.68	3.21	0.219 U	3.18
WHC1-BM07	0	NORM	11/20/2008	0.768	1.48	1.16	0.911	1.18	0.949	0.119 U	0.939
WHC1-BM07	11	NORM	11/20/2008	1.06	0.852	2	1.59	1.22	1.72	0.0733	1.25
WHC1-BM08	0	NORM	11/18/2008	1.41	1.16 J-	1.53	1.9	1.31	1.27 J	0.0149 U	1.28 J
WHC1-BM08	0	FD	11/18/2008	0.995	0.594 UJ	1.33	1.34	0.863	4.45 J	0.0991 U	2.85 J
WHC1-BM08	11	NORM	11/18/2008	2.22	1.23 J-	1.59	1.33	1.3	0.753	-0.0229 U	1
WHC1-BM09	0	NORM	11/18/2008	0.915	1.02 J-	1.59	2.19	1.29	1.65	0.0456 U	0.978
WHC1-BM10	0	NORM	11/18/2008	1.43	1.13 J-	0.339	2.02	0.741	1.68	0.117 U	1.13
WHC1-BM10	3	NORM	11/18/2008	2.03	1.02 J-	0.909	2.14	0.838	2.11	0.0443 U	1.34
WHC1-BM10	13	NORM	11/18/2008	2.12	0.49 UJ	0.816	6	0.577	5.79	0.348	4.67
WHC1-BN01	0	NORM	12/1/2008	1.22	1.01	1.91	1.55	1.01	1.05	0.0302 U	1.28
WHC1-BN01	12	NORM	12/1/2008	1.18	1.84	1.36	1.55	1.11	1.37	0.113 U	1.38
WHC1-BN02	0	NORM	12/1/2008	1.34	2.63 J	1.27	1.18	0.956	1 U	0.173	0.898
WHC1-BN02	0	FD	12/1/2008	1.79	1.15 J	2.15	1.27	1.73	1.1	0.162	0.817
WHC1-BN02	11	NORM	12/1/2008	1.08	1 U	1.48	1.24	1.26	1.47	0.196	1.19
WHC1-BN03	0	NORM	12/17/2008	1.03	0.875 U	2.03	1.17	1.03	0.83	0.173 U	0.81
WHC1-BN03	10	NORM	12/18/2008	1.59	1.17	1.7	1.15	1.8	0.746	-0.0724 U	0.627
WHC1-BN04	0	NORM	12/17/2008	1.48	0.509 U	1.47	1.05	1.76	1.26	0 U	0.906
WHC1-BN04	7	NORM	12/22/2008	1.33	0.737 U	2.37	1.43	2.27	1.15	0.0657 U	0.89
WHC1-BN04	17	NORM	12/22/2008	0.716	1.67	1.97	1.16	1.15	1.16	-0.0168 U	1.07
WHC1-BN05	0	NORM	11/20/2008	0.788	1.35	3.02	1.22	2.6 J	0.46 U	0.0325 U	0.721
WHC1-BN05	0	FD	11/20/2008	0.305	0.898	2.42	1.35	1.47 J	1.17	-0.033 U	1.3
WHC1-BN05	10	NORM	11/20/2008	1.45	1.45	1.68	1.99	1.24	2.04	0.147 U	1.4
WHC1-BN06	0		11/20/2008	0.569	1.05	1.46	1.17	1.44	1.82	-0.0181 U	1.19
WHC1-BN07	0	NORM	11/21/2008	0.598	2.1 J	1.39	1.22	0.938	1.65	0.0819 U	1.07
WHC1-BN07	3	NORM	11/21/2008	1.32	1.72 J	1.43	1.38	1.71	1.67	0.0966	1.17
WHC1-BN07	13	NORM	11/21/2008	1.22	1.77 J	1.07	1 U	1.12	0.952	0.0778 U	0.838
WHC1-BN08	0	NORM	11/20/2008	0.939	1.59	1.8	0.837	1.59	1.72	0.152 U	1.15
WHC1-BN08	10	NORM	11/20/2008	0.845	0.339 U	0.975	1.09	1.25	1.31	0 U	0.743
WHC1-BN09	0	NORM	12/17/2008	2.86	1.4	2.46	1.61	1.87	1.66	0.0604 U	1.12
WHC1-BN09	11	NORM	12/19/2008	2.1	0.938	1.3	2.38	1.25	5.15	0.197 U	3.69
WHC1-BN10	0	NORM	11/18/2008	2.09	1.24 Ј-	1.55	2.83	1.44	2.53	0.177	1.55
WHC1-BN10	10	NORM	11/18/2008	0.8	1.01 J-	1.94	1.82	1.45	1.2	0.153	0.869

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 11)

Depth Sample Depth Sample Sample Date Date	86 1.04 0.773 1.18 1.88 1.02 1.03 0.704 1.41 1.07 1.66 0.564 0.695
WHC1-BO01 0 FD 12/2/2008 0.785 1.83 1.14 1.17 1.21 1 U -0.0125 U WHC1-BO01 4 NORM 12/2/2008 0.603 1.17 1.59 1.08 1.41 1.13 -0.0218 U WHC1-BO01 14 NORM 12/2/2008 1.62 1.24 1.3 1.51 1.02 2.48 0.0273 U WHC1-BO02 0 NORM 12/1/2008 1.2 1.61 1.61 1 U 1.13 1.07 0.278 WHC1-BO02 12 NORM 12/1/2008 1.59 1.12 1.13 1.04 0.956 2.31 0.0861 WHC1-BO03 0 NORM 12/1/2008 0.714 1.21 1.56 0.811 1.23 1.15 J 0.0278 WHC1-BO03 12 NORM 12/19/2008 0.726 1.64 1.86 1.33 2.1 0.928 J 0.0879 U WHC1-BO04 0 NORM 12/19/2008 0.329 U	0.773 1.18 1.88 1.02 1.03 0.704 1.41 1.07 1.66 0.564 0.695
WHC1-BO01 4 NORM 12/2/2008 0.603 1.17 1.59 1.08 1.41 1.13 -0.0218 U WHC1-BO01 14 NORM 12/2/2008 1.62 1.24 1.3 1.51 1.02 2.48 0.0273 U WHC1-BO02 0 NORM 12/1/2008 1.2 1.61 1.61 1 U 1.13 1.07 0.278 WHC1-BO02 12 NORM 12/15/2008 1.59 1.12 1.13 1.04 0.956 2.31 0.0861 WHC1-BO03 0 NORM 12/15/2008 0.714 1.21 1.56 0.811 1.23 1.151 0.0861 WHC1-BO03 12 NORM 12/15/2008 0.661 1.04 2.13 0.73 1.04 1.07 -0.0157 U WHC1-BO04 0 NORM 12/15/2008 0.726 1.64 1.86 1.33 2.1 0.928 J 0.0879 U WHC1-BO04 12 NORM 12/10/2008 0.614	1.18 1.88 1.02 1.03 0.704 1.41 1.07 1.66 0.564 0.695
WHC1-BO01 14 NORM 12/2/2008 1.62 1.24 1.3 1.51 1.02 2.48 0.0273 U WHC1-BO02 0 NORM 12/1/2008 1.2 1.61 1.61 1 U 1.13 1.07 0.278 WHC1-BO02 12 NORM 12/1/2008 1.59 1.12 1.13 1.04 0.956 2.31 0.0861 WHC1-BO03 0 NORM 12/1/2008 0.714 1.21 1.56 0.811 1.23 1.15 J 0.102 U WHC1-BO03 12 NORM 12/19/2008 0.661 1.04 2.13 0.73 1.04 1.07 -0.0157 U WHC1-BO04 0 NORM 12/19/2008 0.726 1.64 1.86 1.33 2.1 0.928 J 0.0879 U WHC1-BO04 12 NORM 12/19/2008 0.329 U 0.641 U 1.84 1.48 1.02 1.3 0.0709 U WHC1-BO05 0 NORM 11/20/2008 0.614	1.88 1.02 1.03 0.704 1.41 1.07 1.66 0.564 0.695
WHC1-BO02 0 NORM 12/1/2008 1.2 1.61 1.61 1 U 1.13 1.07 0.278 WHC1-BO02 12 NORM 12/1/2008 1.59 1.12 1.13 1.04 0.956 2.31 0.0861 WHC1-BO03 0 NORM 12/15/2008 0.714 1.21 1.56 0.811 1.23 1.15 J 0.102 U WHC1-BO03 12 NORM 12/19/2008 0.661 1.04 2.13 0.73 1.04 1.07 -0.0157 U WHC1-BO04 0 NORM 12/15/2008 0.726 1.64 1.86 1.33 2.1 0.928 J 0.0879 U WHC1-BO04 12 NORM 12/19/2008 0.329 U 0.641 U 1.84 1.48 1.02 1.3 0.0709 U WHC1-BO05 0 NORM 11/20/2008 0.693 0.842 1.85 2.01 1.85 1.44 0.108 U WHC1-BO05 10 NORM 11/20/2008 0.421<	1.02 1.03 0.704 1.41 1.07 1.66 0.564 0.695
WHC1-B002 12 NORM 12/1/2008 1.59 1.12 1.13 1.04 0.956 2.31 0.0861 WHC1-B003 0 NORM 12/15/2008 0.714 1.21 1.56 0.811 1.23 1.15 J 0.102 U WHC1-B003 12 NORM 12/19/2008 0.661 1.04 2.13 0.73 1.04 1.07 -0.0157 U WHC1-B004 0 NORM 12/15/2008 0.726 1.64 1.86 1.33 2.1 0.928 J 0.0879 U WHC1-B004 12 NORM 12/19/2008 0.329 U 0.641 U 1.84 1.48 1.02 1.3 0.0709 U WHC1-B005 0 NORM 11/20/2008 0.693 0.842 1.85 2.01 1.85 1.44 0.108 U WHC1-B005 10 NORM 11/20/2008 0.693 0.842 1.85 2.01 1.85 1.44 0.108 U WHC1-B006 0 NORM 11/20/2008 <td< td=""><td>1.03 0.704 1.41 1.07 1.66 0.564 0.695</td></td<>	1.03 0.704 1.41 1.07 1.66 0.564 0.695
WHC1-BO03 0 NORM 12/15/2008 0.714 1.21 1.56 0.811 1.23 1.15 J 0.102 U WHC1-BO03 12 NORM 12/19/2008 0.661 1.04 2.13 0.73 1.04 1.07 -0.0157 U WHC1-BO04 0 NORM 12/15/2008 0.726 1.64 1.86 1.33 2.1 0.928 J 0.0879 U WHC1-BO04 12 NORM 12/19/2008 0.329 U 0.641 U 1.84 1.48 1.02 1.3 0.0709 U WHC1-BO05 0 NORM 11/20/2008 0.641 1.56 2.33 1.19 1.54 1.38 -0.0352 U WHC1-BO05 10 NORM 11/20/2008 0.693 0.842 1.85 2.01 1.85 1.44 0.108 U WHC1-BO06 0 NORM 11/20/2008 0.421 1.53 1.24 1.34 0.986 0.734 0.312 WHC1-BO06 10 NORM 11/20/2008	0.704 1.41 1.07 1.66 0.564 0.695
WHC1-B003 12 NORM 12/19/2008 0.661 1.04 2.13 0.73 1.04 1.07 -0.0157 U WHC1-B004 0 NORM 12/15/2008 0.726 1.64 1.86 1.33 2.1 0.928 J 0.0879 U WHC1-B004 12 NORM 12/19/2008 0.329 U 0.641 U 1.84 1.48 1.02 1.3 0.0709 U WHC1-B005 0 NORM 11/20/2008 0.614 1.56 2.33 1.19 1.54 1.38 -0.0352 U WHC1-B005 10 NORM 11/20/2008 0.693 0.842 1.85 2.01 1.85 1.44 0.108 U WHC1-B006 0 NORM 11/20/2008 0.421 1.53 1.24 1.34 0.986 0.734 0.312 WHC1-B006 10 NORM 11/20/2008 0.726 1.73 1.85 1.44 1.28 1.94 0.16 U WHC1-B007 0 NORM 11/19/2008	1.41 1.07 1.66 0.564 0.695
WHC1-B004 0 NORM 12/15/2008 0.726 1.64 1.86 1.33 2.1 0.928 J 0.0879 U WHC1-B004 12 NORM 12/19/2008 0.329 U 0.641 U 1.84 1.48 1.02 1.3 0.0709 U WHC1-B005 0 NORM 11/20/2008 0.614 1.56 2.33 1.19 1.54 1.38 -0.0352 U WHC1-B005 10 NORM 11/20/2008 0.693 0.842 1.85 2.01 1.85 1.44 0.108 U WHC1-B006 0 NORM 11/20/2008 0.421 1.53 1.24 1.34 0.986 0.734 0.312 WHC1-B006 10 NORM 11/20/2008 0.726 1.73 1.85 1.44 1.28 1.94 0.16 U WHC1-B007 0 NORM 11/19/2008 0.71 1.13 1.37 1.21 1.73 1.08 0.0348 U WHC1-B008 0 NORM 11/20/2008 0.6	1.07 1.66 0.564 0.695
WHC1-B004 12 NORM 12/19/2008 0.329 U 0.641 U 1.84 1.48 1.02 1.3 0.0709 U WHC1-B005 0 NORM 11/20/2008 0.614 1.56 2.33 1.19 1.54 1.38 -0.0352 U WHC1-B005 10 NORM 11/20/2008 0.693 0.842 1.85 2.01 1.85 1.44 0.108 U WHC1-B006 0 NORM 11/20/2008 0.421 1.53 1.24 1.34 0.986 0.734 0.312 WHC1-B006 10 NORM 11/20/2008 0.726 1.73 1.85 1.44 1.28 1.94 0.16 U WHC1-B007 0 NORM 11/19/2008 0.71 1.13 1.37 1.21 1.73 1.08 0.0348 U WHC1-B007 10 NORM 11/19/2008 0.856 1.09 1.08 1.59 0.96 1.34 0.109 U WHC1-B008 0 NORM 11/20/2008 0.642	1.66 0.564 0.695
WHC1-B005 0 NORM 11/20/2008 0.614 1.56 2.33 1.19 1.54 1.38 -0.0352 U WHC1-B005 10 NORM 11/20/2008 0.693 0.842 1.85 2.01 1.85 1.44 0.108 U WHC1-B006 0 NORM 11/20/2008 0.421 1.53 1.24 1.34 0.986 0.734 0.312 WHC1-B006 10 NORM 11/20/2008 0.726 1.73 1.85 1.44 1.28 1.94 0.16 U WHC1-B007 0 NORM 11/19/2008 0.71 1.13 1.37 1.21 1.73 1.08 0.0348 U WHC1-B007 10 NORM 11/19/2008 0.856 1.09 1.08 1.59 0.96 1.34 0.109 U WHC1-B008 0 NORM 11/20/2008 0.642 0.625 U 1.18 0.943 0.745 2.02 0.0513 U WHC1-B008 0 FD 11/20/2008 2.06 <td>0.564 0.695</td>	0.564 0.695
WHC1-B005 10 NORM 11/20/2008 0.693 0.842 1.85 2.01 1.85 1.44 0.108 U WHC1-B006 0 NORM 11/20/2008 0.421 1.53 1.24 1.34 0.986 0.734 0.312 WHC1-B006 10 NORM 11/20/2008 0.726 1.73 1.85 1.44 1.28 1.94 0.16 U WHC1-B007 0 NORM 11/19/2008 0.71 1.13 1.37 1.21 1.73 1.08 0.0348 U WHC1-B007 10 NORM 11/19/2008 0.856 1.09 1.08 1.59 0.96 1.34 0.109 U WHC1-B008 0 NORM 11/20/2008 0.642 0.625 U 1.18 0.943 0.745 2.02 0.0513 U WHC1-B008 0 FD 11/20/2008 1.16 0.983 0.725 1.18 1.64 1.49 0.0359 U WHC1-B009 0 NORM 11/20/2008 2.06 <td>0.695</td>	0.695
WHC1-B006 0 NORM 11/20/2008 0.421 1.53 1.24 1.34 0.986 0.734 0.312 WHC1-B006 10 NORM 11/20/2008 0.726 1.73 1.85 1.44 1.28 1.94 0.16 U WHC1-B007 0 NORM 11/19/2008 0.71 1.13 1.37 1.21 1.73 1.08 0.0348 U WHC1-B007 10 NORM 11/19/2008 0.856 1.09 1.08 1.59 0.96 1.34 0.109 U WHC1-B008 0 NORM 11/20/2008 0.642 0.625 U 1.18 0.943 0.745 2.02 0.0513 U WHC1-B008 0 FD 11/20/2008 1.16 0.983 0.725 1.18 1.64 1.49 0.0359 U WHC1-B008 11 NORM 11/20/2008 2.06 -0.125 U 1.1 2.56 1.09 2.82 0.0173 U WHC1-B009 0 NORM 11/19/2008 1.12<	
WHC1-B006 10 NORM 11/20/2008 0.726 1.73 1.85 1.44 1.28 1.94 0.16 U WHC1-B007 0 NORM 11/19/2008 0.71 1.13 1.37 1.21 1.73 1.08 0.0348 U WHC1-B007 10 NORM 11/19/2008 0.856 1.09 1.08 1.59 0.96 1.34 0.109 U WHC1-B008 0 NORM 11/20/2008 0.642 0.625 U 1.18 0.943 0.745 2.02 0.0513 U WHC1-B008 0 FD 11/20/2008 1.16 0.983 0.725 1.18 1.64 1.49 0.0359 U WHC1-B008 11 NORM 11/20/2008 2.06 -0.125 U 1.1 2.56 1.09 2.82 0.0173 U WHC1-B009 0 NORM 11/19/2008 1.12 1.06 1.34 1 U 1.58 1.64 0.22 U WHC1-B009 0 FD 11/19/2008 1.49	
WHC1-B007 0 NORM 11/19/2008 0.71 1.13 1.37 1.21 1.73 1.08 0.0348 U WHC1-B007 10 NORM 11/19/2008 0.856 1.09 1.08 1.59 0.96 1.34 0.109 U WHC1-B008 0 NORM 11/20/2008 0.642 0.625 U 1.18 0.943 0.745 2.02 0.0513 U WHC1-B008 0 FD 11/20/2008 1.16 0.983 0.725 1.18 1.64 1.49 0.0359 U WHC1-B008 11 NORM 11/20/2008 2.06 -0.125 U 1.1 2.56 1.09 2.82 0.0173 U WHC1-B009 0 NORM 11/19/2008 1.12 1.06 1.34 1 U 1.58 1.64 0.22 U WHC1-B009 0 FD 11/19/2008 1.49 0.822 1.17 1 U 1.62 1.36 0.00278 U	0.91
WHC1-B007 10 NORM 11/19/2008 0.856 1.09 1.08 1.59 0.96 1.34 0.109 U WHC1-B008 0 NORM 11/20/2008 0.642 0.625 U 1.18 0.943 0.745 2.02 0.0513 U WHC1-B008 0 FD 11/20/2008 1.16 0.983 0.725 1.18 1.64 1.49 0.0359 U WHC1-B008 11 NORM 11/20/2008 2.06 -0.125 U 1.1 2.56 1.09 2.82 0.0173 U WHC1-B009 0 NORM 11/19/2008 1.12 1.06 1.34 1 U 1.58 1.64 0.22 U WHC1-B009 0 FD 11/19/2008 1.49 0.822 1.17 1 U 1.62 1.36 0.00278 U	1.18
WHC1-B008 0 NORM 11/20/2008 0.642 0.625 U 1.18 0.943 0.745 2.02 0.0513 U WHC1-B008 0 FD 11/20/2008 1.16 0.983 0.725 1.18 1.64 1.49 0.0359 U WHC1-B008 11 NORM 11/20/2008 2.06 -0.125 U 1.1 2.56 1.09 2.82 0.0173 U WHC1-B009 0 NORM 11/19/2008 1.12 1.06 1.34 1 U 1.58 1.64 0.22 U WHC1-B009 0 FD 11/19/2008 1.49 0.822 1.17 1 U 1.62 1.36 0.00278 U	0.585
WHC1-B008 0 FD 11/20/2008 1.16 0.983 0.725 1.18 1.64 1.49 0.0359 U WHC1-B008 11 NORM 11/20/2008 2.06 -0.125 U 1.1 2.56 1.09 2.82 0.0173 U WHC1-B009 0 NORM 11/19/2008 1.12 1.06 1.34 1 U 1.58 1.64 0.22 U WHC1-B009 0 FD 11/19/2008 1.49 0.822 1.17 1 U 1.62 1.36 0.00278 U	0.956
WHC1-B008 11 NORM 11/20/2008 2.06 -0.125 U 1.1 2.56 1.09 2.82 0.0173 U WHC1-B009 0 NORM 11/19/2008 1.12 1.06 1.34 1 U 1.58 1.64 0.22 U WHC1-B009 0 FD 11/19/2008 1.49 0.822 1.17 1 U 1.62 1.36 0.00278 U	1.12
WHC1-B008 11 NORM 11/20/2008 2.06 -0.125 U 1.1 2.56 1.09 2.82 0.0173 U WHC1-B009 0 NORM 11/19/2008 1.12 1.06 1.34 1 U 1.58 1.64 0.22 U WHC1-B009 0 FD 11/19/2008 1.49 0.822 1.17 1 U 1.62 1.36 0.00278 U	1.24
WHC1-BO09 0 FD 11/19/2008 1.49 0.822 1.17 1 U 1.62 1.36 0.00278 U	1.66
	1.1
WHC1-BO09 6 NORM 11/19/2008 1.25 1.25 1.88 2.37 1.81 2.43 0.301	1.25
	1.46
WHC1-BO09 16 NORM 11/19/2008 0.517 U 0.909 0.854 1 U 0.955 0.642 U 0.277	0.806
WHC1-B010 0 NORM 11/19/2008 1.84 1.04 1.27 1.79 0.881 6.89 0.852	2.85
WHC1-BP01 0 NORM 12/1/2008 1.03 1.48 1.57 1 U 1.39 1.19 0.11 U	0.779
WHC1-BP01 10 NORM 12/1/2008 1.27 1.68 1.04 1.3 0.598 1.95 0.141	1.06
WHC1-BP02	0.79
WHC1-BP02	1.48
WHC1-BP03	1.02
WHC1-BP03	1.51
WHC1-BP03 11 NORM 12/19/2008 2.71 1.39 2.04 3.63 1.25 2.13 0.179 U	1.56
WHC1-BP04	1.39
WHC1-BP04 12 NORM 12/19/2008 0.93 0.797 2.08 0.944 1.41 1.91 0.24 U	0.751
WHC1-BP05	
WHC1-BP05 10 NORM 12/19/2008 0.255 U 1.38 1.86 1.25 1.71 1.06 0.177 U	0.5
WHC1-BP06	0.5
WHC1-BP06 10 NORM 12/12/2008 1.06 0.691 U 1.56 1.25 1.12 1.36 0.041 U	0.5 0.958
WHC1-BP07	0.5

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 7 of 11)

							Radion	nuclides			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Radium-226	Radium-228	Thorium-228	Thorium-230	Thorium-232	Uranium-233/234	Uranium-235/236	Uranium-238
WHC1-BP07	3	NORM	11/20/2008	0.613	1	1.06	1.29	0.66	2.25	0.0691 U	1.27
WHC1-BP07	13	NORM	11/20/2008	0.816	1.42	0.843	0.966	0.972	1.53	0.0484 U	1.11
WHC1-BP08	0	NORM	11/19/2008	1.4	1.24	1.26	1.83	1.54	2.03	0.0324 U	1.34
WHC1-BP08	4	NORM	11/19/2008	1,44	1.15	2.04	1.88	2.06	2.99	-0.0316 U	1.92
WHC1-BP08	14	NORM	11/19/2008	0.483	2.19	1.6	1.5	1.37	1.34	0.135 U	0.918
WHC1-BP09	0	NORM	11/19/2008	0.872	1.05	1.23	1.02	1.19	2.08	-0.0268 U	1.22
WHC1-BP09	10	NORM	11/19/2008	1.28	1.63	0.908	2.09	1.44	2.46	0.409	1.13
WHC1-BP10	0	NORM	11/19/2008	0.892	0.944	1.14	1.55	1.26	4.09	0.404 U	2.2
WHC1-BP10	10	NORM	11/19/2008	1.11	0.481 U	1.03	1.6	0.841	1.28	0.179	0.858
WHC1-D01	0	NORM	12/5/2008	1.47	1.02 J	2.05	1.48	1.35 J-	1.13	0.0353 U	1.11
WHC1-D01	10	NORM	12/5/2008	1.3	0.568 UJ	2.53	1.34	1.42 J-	1.97	0.133 U	1.54
WHC1-D02	0	NORM	12/5/2008	0.698	1.28 J	2.31	1.5	2.12 J-	1.1	0.042 U	0.638
WHC1-D02	10	NORM	12/5/2008	1.03	0.621 UJ	1.78	2.21	2.01 J-	1.92	0.193	1.39
WHC1-D03	0	NORM	12/5/2008	0.66	0.469 UJ	1.34	1.83	1.15 J-	1 U	-0.0184 U	0.841
WHC1-D03	0	FD	12/5/2008	1.46	1.53 J	2.26	2.29	1.53 J-	1.37	-0.0162 U	0.769
WHC1-D03	10	NORM	12/5/2008	1.33	0.655 UJ	2.64	2.43	1.52 J-	1.62	0.091 U	1.71
WHC1-D04	0	NORM	12/5/2008	1.03	0.367 UJ	2.22	1.75	1.02 J-	1.29	0.119 U	0.932
WHC1-D04	10	NORM	12/5/2008	0.961	1 UJ	1.75	2.1	1.15 J-	2.26	0.314 U	2.58
WHC1-D05	0	NORM	12/5/2008	0.849	0.676 UJ	2.02	2.21	1.75 J-	1 U	0.00207 U	1.02
WHC1-D05	10	NORM	12/5/2008	1.07	1 UJ	1.62	2.15	2.02 J-	1.1	0.0324 U	1.29
WHC1-D06	0	NORM	12/5/2008	0.633	1.14 J	1.85	1.24	0.589 J-	1.41	0.0327 U	1.16
WHC1-D06	10	NORM	12/5/2008	1.58	3.33 J	2.21	2.15	1.53 J-	1.69	0.285	1.77
WHC1-D07	0	NORM	12/5/2008	0.845	2.64 J	1.13	2.19	1.82 J-	1.57	-0.016 U	1.03
WHC1-D07	10	NORM	12/5/2008	0.564	1 UJ	1.75	1.95	1.56 J-	1.05	0.0955 U	0.947
WHC1-D08	0	NORM	12/8/2008	0.885	0.167 U	1.81	1.16	1.91	0.977	0.0965 U	0.999
WHC1-D08	10	NORM	12/9/2008	1.39	1.39 J	1.36	3.43	1.04	1.29	0.0653 U	0.95
WHC1-D09	0	NORM	12/8/2008	1.73	1 U	1.09	1.32	1.14	1.2	0.0519 U	1.46
WHC1-D09	11	NORM	12/9/2008	0.729	1.56	1.61	1.8	1.66	1.61	0.0997 U	1.18
WHC1-D10	0	NORM	12/8/2008	0.258 U	1.19	1.63	1.35	1.16	0.952	0.186	0.94
WHC1-D10	10	NORM	12/9/2008	1.35	1.47	1.77	1.4	1.74	0.949	0.0248 U	1.16
WHC1-D11	0	NORM	12/8/2008	1.6	1 U	1.88	1.29	1.18	1.96	-0.0176 U	1.09
WHC1-D11	10	NORM	12/9/2008	1.62	1.87 J	1.68	1.62	1.41	1.58	0.265 U	1.4
WHC1-D12	0	NORM	12/10/2008	0.926	0.642 U	1.63	1.83	1.15	0.941	-0.194 U	1 U
WHC1-D12	10	NORM	12/10/2008	13.8	0.603 U	1 U	19.6	0.398	20.3	1.38	18.9
WHC1-D13	0	NORM	12/8/2008	2.32	0.991	1.73	4.77	1.66	5.05	-0.014 U	3.47
WHC1-D13	10	NORM	12/8/2008	1.76	1.19	1.09	1.99	0.85	1.82	0.0491 U	2.25
WHC1-D15	0	NORM	12/11/2008	1 U	1.29	1.61	1.01	1.38	0.922	0.0311 U	0.943
WHC1-D15	10	NORM	12/11/2008	2.45	1 U	0.747	4.35	0.802	3.18	0.152 U	2.31

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 8 of 11)

							Radion	nuclides			
									Uranium-233/234	Uranium-235/236	
				9	∞	83	90	32	33/2	35/2	88
				-22	-22	1-22	1-23	1-23	1-23	1-23	1-23
	D4h	C1-	C1-	Ė	Ė	iii.	i ii	i iii	In	, in	inm
G I ID	Depth	Sample	Sample	Radium-226	Radium-228	Thorium-228	Thorium-230	Thorium-232	ran	ran	Uranium-238
Sample ID	(ft bgs)	Type	Date								
WHC1-D16	0	NORM NORM	12/10/2008 12/10/2008	0.99 0.284 U	0.972	1.01 1.45	1 U	1.1 1.08	1.8 2.06	0.165 0.U	1 U 1.38
WHC1-D16 WHC1-D17	0	NORM	12/10/2008	0.284 0	1.02	2.14	1.31	1.86	1.59	0.0581 U	1.74
WHC1-D17	10	NORM	12/10/2008	1.63	0.192 U	1.09	2.46	0.723	2.19	0.108 U	1.69
WHC1-D17 WHC1-D18	0	NORM	12/10/2008	1.03	1.42	1.62	1.33	1.25	1.65	0.108 U	0.952
WHC1-D18	10	NORM	12/11/2008	1.59	1.72	1.76	1.05	1.19	1.17	0.131 U 0.248 U	1.37
WHC1-D19	0	NORM	12/11/2008	1.39 1 U	1.46	1.63	0.69	1.19	0.558	0.248 U	0.588
WHC1-D19	0	FD	12/11/2008	1 U	1.46 1 U	1.89	1.38	1.75	0.558	0.321	0.388
WHC1-D19	10	NORM	12/11/2008	1 U	1.23	1.93	1.04	1.73	1.09	0.0264 U	0.827
WHC1-D19 WHC1-D20	0	NORM	12/11/2008	1.08	0.551 U	1.31	0.598	0.964	1.34	-0.0138 U	0.649
WHC1-D20	10	NORM	12/12/2008	1.49	0.673 U	2.04	1.2	1.31	1.14	0.15 U	1.09
WHC1-D21	0	NORM	12/16/2008	1.4)	1.58	2.88	1.3	1.99 J	1.55	0.104 U	1.05
WHC1-D21	10	NORM	12/16/2008	1.14	2.11	1.87	0.899	1.14 J	1.09	0.0732 U	0.898
WHC1-D22	0	NORM	12/16/2008	1 U	1 U	3.19	1.26	2.15 J	0.926	0.0637 U	1.01
WHC1-D22	10	NORM	12/16/2008	1 U	1.74	2.39	1.19	1.61 J	1.05	0.203 U	0.861
WHC1-D23	0	NORM	12/16/2008	1.13	2.15	2.01	0.979	1.6 J	1.55	0.224 U	1.21
WHC1-D23	10	NORM	12/16/2008	1 U	0.539 U	2.28	1.09	1.97 J	0.863	0.0581 U	1.24
WHC1-D24	0	NORM	12/16/2008	1 U	1.03	2.69	1.13	1.27 J	1.04	0.0417 U	1.12
WHC1-D24	0	FD	12/16/2008	1.03	2.42	1.86	1.3	2.18 J	1.22	0.0604 U	0.759
WHC1-D24	10	NORM	12/16/2008	1.01	1.08	1.9	1.1	1.74 J	1.27	0.0823 U	1.47
WHC1-D25	0	NORM	12/16/2008	1 U	1.63	2.35	1.58	2.38 J	1.4	-0.0165 U	1.04
WHC1-D25	10	NORM	12/16/2008	1 U	1.89	2.7	1.08	1.25 J	1.52	0.137 U	0.781
WHC1-D26	0	NORM	12/12/2008	1.25	1.3	1.18	0.815	1.17	0.898	0.0364 U	0.649
WHC1-D26	10	NORM	12/12/2008	0.862	1.33	1.35	0.883	0.983	1.31	0.0553 U	1.07
WHC1-D27	0	NORM	12/12/2008	1.42	0.594 U	1 UJ	0.756	0.984 J	1.22	0.118 U	1.03
WHC1-D27	0	FD	12/12/2008	0.928	1.11 U	4.09 J	1.16	4.29 J	0.746	0.0904 U	0.82
WHC1-D27	10	NORM	12/12/2008	1.64	1.21	1.66	1.53	1.53	1.49	0.157 U	1.5
WHC1-D28	0	NORM	12/12/2008	0.901	1.76	1.32	1.01	1.01	0.888	0 U	0.889
WHC1-D28	10	NORM	12/12/2008	2.11	1.93	1.63	0.965	0.936	1.25	0.272 U	1.01
WHC1-D29	0	NORM	12/12/2008	0.275 U	1.79	1.29	0.638	1.21	0.87	0.103 U	1.11
WHC1-D29	10	NORM	12/12/2008	0.706 U	1.51	1.96	1.16	1.15	1.27	0.147 U	0.591
WHC1-P01	0	NORM	12/15/2008	0.671	1.82	1.31	0.793	1.13	1.22 J	-0.0163 U	0.976
WHC1-P01	12	NORM	12/19/2008	1.26	1.23	1.28	1.55	1.26	1.13	-0.0244 U	0.845
WHC1-P02	0	NORM	12/1/2008	1.02	1.8	1.84	1.13	1.29	1.09	0.112	0.832
WHC1-P02	10	NORM	12/1/2008	1.65	1.3	1.5	1.63	1.3	2.31	0.236	1.71
WHC1-P03	0	NORM	12/15/2008	1.33	1.54	1.53	0.804	0.947	0.792 J	0.0566 U	0.824
WHC1-P03	3	NORM	12/18/2008	0.608	1.19	2.72	1.68	1.52	1.11	0.167	1.39
WHC1-P03	3	FD	12/18/2008	1.03	0.487 U	2.01	1.29	1.33	1.03	0.054 U	1.05

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 9 of 11)

							Radion	uclides			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Radium-226	Radium-228	Thorium-228	Thorium-230	Thorium-232	Uranium-233/234	Uranium-235/236	Uranium-238
WHC1-P03	13	NORM	12/18/2008	1.25	0.499 U	2.58	1.26	1.49	2.32	0.2 U	1.2
WHC1-P04	0	NORM	12/15/2008	0.594	2.41	1.5	1.03	1.56	1.34 J	0.0524 U	1.49
WHC1-P04	10	NORM	12/18/2008	1.29	1.87	1.86	1.15	1.66	1.58	0.18	1.17
WHC1-P05	0	NORM	12/8/2008	1.13	1.82	1.5	1.1	1.63	1.1	0.244 U	0.959
WHC1-P05	0	FD	12/8/2008	0.502	1.58	2.39	1.35	0.847	0.92	0.189	0.753
WHC1-P05	10	NORM	12/18/2008	1.32	0.125 U	2	1.62	1.94	1.41	0.0769 U	1.39
WHC1-P06	0	NORM	12/2/2008	0.621	1.71	1.51	1.54	1.44	1 U	0.0455 U	0.668
WHC1-P06	12	NORM	12/2/2008	0.553	1.73	1.77	1.12	1.21	1.34	0.0595 U	0.755
WHC1-P07	0	NORM	12/2/2008	0.755	5.37	1.39	1.17	1.14	1.56	0.133 U	0.872
WHC1-P07	3	NORM	12/2/2008	0.663	1.18	1.77	1.29	1.05	1.12	0.0558 U	0.802
WHC1-P07	13	NORM	12/2/2008	0.897	1.61	1.4	1.51	1.47	2.65	0.183 U	1.5
WHC1-P08	0	NORM	12/3/2008	0.886	0.319 UJ	2.35	2.07	1.86 J-	1 U	0.0168 U	0.573
WHC1-P08	11	NORM	12/3/2008	1.25	2.18	1.73	2.07	1.39	1.36	0.125 U	1.07
WHC1-P09	0	NORM	12/4/2008	1 UJ	0.596 U	2.07	2.05 J	0.791	1.32	-0.0143 U	0.605
WHC1-P09	0	FD	12/4/2008	1 UJ	1.09	2.26	3.28 J	1.78	1.03	0.05 U	1.13
WHC1-P09	10	NORM	12/4/2008	1 UJ	0.619	1.69	2.76	1.06	2.06	0.176 U	1.21
WHC1-P10	0	NORM	11/25/2008	1.92	1.77	1.26	1 U	1.19	1 U	0.126 U	0.891
WHC1-P10	10	NORM	11/25/2008	1.98	1.18	0.866	1.97	0.98	1.74	0.233	1.09
WHC1-P11	0	NORM	12/8/2008	1.35	1 U	1.38	1.08	1.18	2.33 J	0.122 U	1.64
WHC1-P11	0	FD	12/8/2008	1.14	0.176 U	1.78	1.92	1.09	3.4 J	0.347	2.4
WHC1-P11	10	NORM	12/9/2008	1.28	0.882	1.47	0.755	1.34	1.65	0.846	1.63
WHC1-P12	0	NORM	12/5/2008	0.889	0.794 UJ	2.6	2.36	1.44 J-	1.08	0.149 U	1.4
WHC1-P12	11	NORM	12/5/2008	1.07	1.64 J	1.74	1.81	0.927 J-	2.09	0.189 U	1.27
WHC1-P13	0	NORM	12/9/2008	0.756	1.81	1.74	2.73	1.4	1.46	-0.0488 U	0.566
WHC1-P13	10	NORM	12/9/2008	8.51 J	1.98 J	1.63	7.11 J	1.31	6.43 J	0.561	5.38 J
WHC1-P13	10	FD	12/9/2008	3.32 J	0.635 UJ	1.23	4.82 J	1.09	4.38 J	0.227 U	3.35 J
WHC1-P14	0	NORM	12/17/2008	1.99	0.33 U	1.78	1.79	1.22	1.93	0.179 U	1.13
WHC1-P15	0	NORM	12/8/2008	1.14	1 U	2.25	1.87	1.84	1.86	0.121 U	0.93
WHC1-P15	1.5	NORM	12/8/2008	0.828	0.631 U	0.925	0.37	1.22	1.8	-0.0141 U	0.892
WHC1-P15	10	NORM	12/18/2008	1.07	0.956	1.95	1.37	1.15	2.93	0 U	1.43
WHC1-P16	0	NORM	12/1/2008	0.629	0.237 U	1.62	1 U	1.39	1 U	0.0485 U	0.619
WHC1-P16	11	NORM	12/1/2008	1.31	1.14	1.55	1.66	1.29	1.57	0.171 U	1.41
WHC1-P17	0	NORM	12/15/2008	1.04	1.98	1.56	1.04	1.44	0.846 J	0.0961 U	1.05
WHC1-P17	12	NORM	12/19/2008	0.84	0.941 J	2.78	1.19	1.12	1.43	0 U	0.664
WHC1-P17	12	FD	12/19/2008	0.784	-0.0741 UJ	2.49	1.22	1.35	1.97	0 U	1.06
WHC1-P18	0	NORM	12/1/2008	1.45	1.72	1.17	1 U	0.739	1.15	0.149	1.02
WHC1-P18	12	NORM	12/1/2008	1.33	1.15	1.17	1.97	1.14	2.68	0.337	1.97
WHC2-BF05C	12	NORM	12/3/2009	6.04 J	0.95 U	0.236 UJ	8.54	1.07	9.42	0.379	5.59 J

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 10 of 11)

							Radion	nuclides			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Radium-226	Radium-228	Thorium-228	Thorium-230	Thorium-232	Uranium-233/234	Uranium-235/236	Uranium-238
WHC2-BF05C	12	FD	12/3/2009	2.63 J	1.65	2.21 J	5.78	1.96	6.19	0.207 U	4.37 J
WHC2-BF05NE	12	NORM	12/3/2009	1.08	1.37	0.877	1.59	0.376	2.06	0.219 U	1.57
WHC2-BF05NW	12	NORM	12/3/2009	3.08	1.03	0.497 U	3	0.547	4.84	0.14 U	2.22
WHC2-BF05SE	12	NORM	12/3/2009	2.16	1.16	0.782	4.71	0.439	6.39	0.684	3.81
WHC2-BF05SW	12	NORM	12/3/2009	2.92	0.551 U	0.685	5.39	0.742	6.07	0.227 U	4.41
WHC2-BF06C	10	NORM	12/3/2009	0.678	1.12	1.06	1.67	0.852	3.31	-0.0172 U	1.83
WHC2-BF06NE	10	NORM	12/3/2009	2.73	1.44	0.737	6.67	0.814	7.34	0.643	5.15
WHC2-BF06NW	10	NORM	12/3/2009	1.93	1.31	0.32 U	10.8	0.67	14.8	0.563	9.37
WHC2-BF06SE	10	NORM	12/3/2009	4.1	0.893	0.724	6.68	0.426	5.86	0.603	6.23
WHC2-BF06SW	10	NORM	12/3/2009	4.95	1.2	0.532 U	5	0.237 U	4.46	0.35 U	4.32
WHC2-BG04C	10	NORM	12/4/2009	9.29 J	2.31	0.832	22.3	1.71	33	1.22	21.6
WHC2-BG04NE	10	NORM	12/4/2009	12.6 J	1.19	0.533 U	25.9	0.522	11.6	0.971	9.91
WHC2-BG04NW	10	NORM	12/4/2009	5.84 J	0.932	0.688	12.9	0.0459 U	23	1.02	14.9
WHC2-BG04SE	10	NORM	12/4/2009	6.61 J	0.894	0.254 U	10.9	0.37	17.1	0.746	12.1
WHC2-BG04SW	10	NORM	12/4/2009	6.19 J	1.25	1.23	9.79	0.722	15.9	0.692	10.3
WHC2-BG06C	10	NORM	12/3/2009	8.85	0.67 U	0.809	25.4	0.936	4.02	0.0635 U	3.3
WHC2-BG06NE	10	NORM	12/3/2009	7.97	0.304 U	0.732	11.6	1.13	6.48	0.241 U	4.71
WHC2-BG06NW	10	NORM	12/3/2009	2.64	1.17	0.611 U	4.51	0.751	2.53	0.157 U	1.07
WHC2-BG06SE	10	NORM	12/3/2009	5.36 J	0.925	0.412 U	6.38 J	0.497	3.43	0.0535 U	2.26
WHC2-BG06SW	10	NORM	12/3/2009	0.922	0.558 U	0.454 U	2.72	0.825	1.94	0.209 U	1.33
WHC2-BL07	0	NORM	8/9/2010	1.08	1.17	3.02	1.08	1.32	1.01	0 U	0.776
WHC2-BM08C	0	NORM	11/25/2009	1.5	1.01	2.01	0.962	1.04	2.66 J	0.128 U	3.19
WHC2-BM08C	0	FD	11/25/2009	0.822	1.45	1.84	1.03	1.09	4.19 J	0.0839 U	2.8
WHC2-BM10C	13	NORM	11/25/2009	2.59	1.3	0.791	8.26	0.418	13.2	0.412	9.3
WHC2-BM10C	13	FD	11/25/2009	3.46	0.452 U	0.631 U	12.6	0.96	19.6	0.576	12.5
WHC2-BM10NE	13	NORM	11/25/2009	0.958	0.302 U	0.395 U	2.63	0.806	2.25	0.179 U	1.32
WHC2-BM10NW	13	NORM	11/25/2009	1.59	1.37	1.58	1.33	1.48	1.6	-0.0238 U	1.35
WHC2-BM10SE	13	NORM	11/25/2009	1.26	1.39	0.861	2.98	1.06	2.67	-0.0212 U	1.52
WHC2-BM10SW	13	NORM	11/25/2009	1.66	1.06	0.83	1.71	0.795	2.32	0.26 U	1.43
WHC2-BN09C	11	NORM	11/25/2009	1.09	1.05	1.36	1.76	0.937	1.26	0.068 U	0.762
WHC2-BN09C	11	FD	11/25/2009	0.355 U	0.738 U	1.01	0.905	0.977	1.7	0.0981 U	1.33
WHC2-BN09NE	11	NORM	11/25/2009	0.76	0.946	1.9	1.28	1.11	2.15	-0.0838 U	0.803
WHC2-BN09NW	11	NORM	11/25/2009	0.764	0.639 U	1.15	1.42	1.68	1.2	-0.0792 U	0.686
WHC2-BN09SE	11	NORM	11/25/2009	0.537	1.87	1.1	1.64	1.23	1.63	0.0787 U	1.53
WHC2-BN09SW	11	NORM	11/25/2009	0.622	0.845 U	1.86	0.913	1.07	1.88	0.156 U	0.686
WHC2-BO10C	0	NORM	11/25/2009	1.24	1.23	1.9	2.88 J	1.55	4.97	0.233 U	2.4
WHC2-BO10C	0	FD	11/30/2009	1.28	0.56 U	1.12	1.71 J	1.28	4.92	0.0935 U	2.18
WHC2-D12C	10	NORM	11/25/2009	6.84	0.97	0.0985 U	6.09	0.385	4.54	0.161 U	3.21

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 11 of 11)

226 -228 -230 -233/234	Uranium-235/236 Uranium-238	
Chamic C		
	.393 U 5.29	
	0.14 U 5.64	
	.169 U 1.49	
WHC2-D13SE 10 NORM 12/3/2009 0.164 U 1.18 0.471 U 4.64 0.617 4.87 0.	.178 U 4.19	
WHC2-D13SW 10 NORM 12/3/2009 4.04 0.43 U 0.519 U 5.02 0.413 U 9.16 0.4	0.424 U 6.5	
WHC2-D14C 0 NORM 12/2/2009 4.4 1.23 0.685 3.62 J 0.572 4.05 0.2	0.205 U 2.62	
WHC2-D27C 0 NORM 12/1/2009 0.788 1.69 2.02 0.715 J 2.41 1.22 -0.0	.0453 U 0.955	5
WHC2-P07C 0 NORM 12/1/2009 0.582 0.642 U 1.58 0.581 J 1.77 0.667 0.0	.0572 U 0.899)
WHC2-P13C 10 NORM 12/4/2009 2.73 J 0.967 U 0.877 U 3.26 0.858 4.96 0.6	0.093 U 3.08	
WHC2-P13NE 10 NORM 12/4/2009 3.68 J 1.81 0.752 5.5 0.928 6.96 0.	.178 U 4.02	
WHC2-P13NW 10 NORM 12/4/2009 2.31 J 0.63 U 0.75 2.91 0.596 4.16	0 U 1.79	
WHC2-P13SE 10 NORM 12/4/2009 2.54 J 1.74 1.61 2.22 1.3 4.37 0.	.185 U 2.77	
WHC2-P13SW 10 NORM 12/4/2009 1.72 J 1.62 0.945 2.66 1.21 3.71 0.0	.0967 U 2.58	
WHC3-D14C 0 NORM 8/9/2010 8.87 1.13 0.381 U 8.58 0.395 14.1 0	0.257 9.5	
WHC3-D27C 0 NORM 8/9/2010 1 U 1.56 0.847 1 U 1.62 0.934	0 U 0.998	3
WHC3-P11C 0 NORM 8/9/2010 1 U 1.79 2.17 2 1.89 0.799	0 U 1.31	
WHC6-BP06 0 NORM 8/1/2012 0.832 1.59 U 1.79 1.92 1.81 0.787 U	0 U 1.14	
WHC6-D14 0 NORM 7/27/2012 13 3.47 -0.0183 U 11.8 0.396 16.7 J 0.4	0.461 U 10.1	
WHC6-D14 0 FD 7/27/2012 8.49 0.673 U 0.0963 U 11.1 0.252 8.35 J 0.4	0.443 U 7.14	
WHC6-P11 0 NORM 7/27/2012 0.723 2.13 1.8 1.87 J 1.69 0.548 U -0.0	.0195 U 0.445	5
WHC7-D14_3 0 NORM 3/20/2014 5.99 J 1.46 U 0.851 5.25 0.306 U 8.22 J 0.3	0.303 U 5.03	
WHC7-D14_5 0 NORM 5/12/2014 2.61 1.09 0.766 4.46 0.834 4.78 J 0.	0.13 U 2.94	

All units in pCi/g.

-- = no sample data.

⁼ Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

⁼ Data not included in risk assessment. Sample location covered with fill material (see text).

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 63)

				Alde	hydes			Semi-V	olatile Organic	Compounds (S	SVOCs)		
	Depth	Sample	Sample	Acetaldehyde	Formaldehyde	,2,4,5-Tetrachloro- enzene	.2-Diphenylhydrazine	4-Dioxane	2'-Dichlorobenzil	,4,5-Trichlorophenol	2,4,6-Trichlorophenol	4-Dichlorophenol	.4-Dimethylphenol
Sample ID	(ft bgs)	Sample Type	Sample Date	cet	orn	,2,4 enz	,2-1	,4-I	.2,	2,4,	,4,6	4,	,4-I
OSC1-BM11	(It bgs)	NORM	9/21/2009	< 0.306 U	0.324	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U
OSC1-BM11	10	NORM	9/21/2009	< 0.355 U	0.633	< 0.0774 U	< 0.0774 U	< 0.0774 U	< 0.128 U	< 0.0774 U	< 0.0774 U	< 0.0774 U	< 0.0774 U
OSC1-BN11	0	NORM	9/22/2009	< 0.306 U	0.438	< 0.068 U	< 0.068 U	< 0.068 U	< 0.112 U	< 0.068 U	< 0.068 U	< 0.068 U	< 0.068 U
OSC1-BN11	5	NORM	9/22/2009	< 0.33 U	0.3	< 0.0711 U	< 0.0711 U	< 0.0711 U	< 0.117 U	< 0.0711 U	< 0.0711 U	< 0.0711 U	< 0.0711 U
OSC1-BO11	0	NORM	9/16/2009	< 0.373 U	< 0.249 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U
OSC1-BO11	0	FD	9/16/2009	< 0.324 U	< 0.216 U	< 0.0745 U	< 0.0745 U	< 0.0745 U	< 0.123 U	< 0.0745 U	< 0.0745 U	< 0.0745 U	< 0.0745 U
OSC1-BO11	5	NORM	9/16/2009	< 0.35 U	< 0.233 U	< 0.0743 U	< 0.0743 U	< 0.0743 U	< 0.123 U	< 0.0743 U	< 0.0743 U	< 0.0743 U	< 0.0743 U
OSC1-BP11	0	NORM	9/16/2009	0.46	0.674	< 0.0731 U	< 0.0731 U	< 0.0731 U	< 0.121 U	< 0.0731 U	< 0.0731 U	< 0.0731 U	< 0.0731 U
OSC1-BP11	5	NORM	9/16/2009	< 0.366 U	0.286	< 0.0755 U	< 0.0755 U	< 0.0755 U	< 0.125 U	< 0.0755 U	< 0.0755 U	< 0.0755 U	< 0.0755 U
OSC1-JP06	0	NORM	9/22/2009	< 0.403 U	0.369	< 0.071 U	< 0.071 U	< 0.071 U	< 0.117 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.071 U
OSC1-JP06	5	NORM	9/22/2009	< 0.382 U	< 0.255 U	< 0.0774 U	< 0.0774 U	< 0.0774 U	< 0.128 U	< 0.0774 U	< 0.0774 U	< 0.0774 U	< 0.0774 U
OSC1-JP07	0	NORM	9/21/2009	< 0.339 U	0.231	< 0.0722 U	< 0.0722 U	< 0.0722 U	< 0.119 U	< 0.0722 U	< 0.0722 U	< 0.0722 U	< 0.0722 U
OSC1-JP07	5	NORM	9/21/2009	< 0.387 U	0.27	< 0.0847 U	< 0.0847 U	< 0.0847 U	< 0.14 U	< 0.0847 U	< 0.0847 U	< 0.0847 U	< 0.0847 U
OSC1-JP08	0	NORM	9/21/2009	< 0.339 U	0.7	< 0.0752 U	< 0.0752 U	< 0.0752 U	< 0.124 U	< 0.0752 U	< 0.0752 U	< 0.0752 U	< 0.0752 U
OSC1-JP08	10	NORM	9/21/2009	< 0.341 U	< 0.227 U	< 0.075 U	< 0.075 U	< 0.075 U	< 0.124 U	< 0.075 U	< 0.075 U	< 0.075 U	< 0.075 U
WHC1-BF01	0	NORM	11/24/2008	< 0.152 U	0.207 J	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.112 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.0678 U
WHC1-BF01	12	NORM	11/24/2008	< 0.156 U	0.436 J	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U
WHC1-BF02	0	NORM	11/25/2008	< 0.151 U	0.245 J	< 0.067 U	< 0.067 U	< 0.067 U	< 0.111 U	< 0.067 U	< 0.067 U	< 0.067 U	< 0.067 U
WHC1-BF02	11	NORM	11/25/2008	< 0.155 U	0.219 J	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U
WHC1-BF03	0	NORM	11/25/2008	< 0.16 U	< 0.107 U	< 0.0677 U	< 0.0677 U	< 0.0677 U	< 0.112 U	< 0.0677 U	< 0.0677 U	< 0.0677 U	< 0.0677 U
WHC1-BF03	10	NORM	11/25/2008	< 0.166 U	0.209 J	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U
WHC1-BF04	0	NORM	11/25/2008	< 0.151 U	0.167 J	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.112 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.0678 U
WHC1-BF04	0	FD	11/25/2008	< 0.155 U	0.252 J	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U
WHC1-BF04	10	NORM	11/25/2008	< 0.156 U	0.209 J	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U
WHC1-BF05	0	NORM	11/25/2008	< 0.306 U	0.211 J	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U
WHC1-BF05	12	NORM	12/10/2008	< 0.42 U	1.8	< 0.0911 UJ	< 0.0911 UJ	< 0.0911 UJ	< 0.15 UJ	< 0.0911 UJ	< 0.0911 UJ	< 0.0911 UJ	< 0.0911 UJ
WHC1-BF06	0	NORM	12/10/2008	< 0.309 U	0.252 J	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U
WHC1-BF06	10	NORM	12/10/2008	< 0.409 U	0.606 J	< 0.0927 U	< 0.0927 U	< 0.0927 U	< 0.153 U	< 0.0927 U	< 0.0927 U	< 0.0927 U	< 0.0927 U
WHC1-BG01	0	NORM	11/24/2008	< 0.151 U	0.263 J	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U
WHC1-BG01	11	NORM	11/24/2008	< 0.155 U	0.598	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U
WHC1-BG02	0	NORM	11/24/2008	< 0.152 U	0.162 J	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.111 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.0675 U
WHC1-BG02	0	FD	11/24/2008	< 0.152 U	0.311 J	< 0.0672 U	< 0.0672 U	< 0.0672 U	< 0.111 U	< 0.0672 U	< 0.0672 U	< 0.0672 U	< 0.0672 U
WHC1-BG02	10	NORM	11/24/2008	< 0.155 U	0.226 J	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U
WHC1-BG03	0	NORM	12/11/2008	< 0.308 U	0.317 J	< 0.0702 U	< 0.0702 U	< 0.0702 UJ	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U
WHC1-BG03	11	NORM	12/11/2008	< 0.315 U	0.292 J	< 0.0702 U	< 0.0702 U	< 0.0702 UJ	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U
WHC1-BG04	0	NORM	12/11/2008	< 0.305 U	0.375 J	< 0.0688 U	< 0.0688 U	< 0.0688 UJ	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U
WHC1-BG04	10	NORM	12/11/2008	< 0.394 U	0.351 J	< 0.0891 U	< 0.0891 U	< 0.0891 UJ	< 0.147 U	< 0.0891 U	< 0.0891 U	< 0.0891 U	< 0.0891 U
WHC1-BG05	0	NORM	11/25/2008	< 0.161 U	< 0.204 U	< 0.0728 U	< 0.0728 U	< 0.0728 U	< 0.12 U	< 0.0728 U	< 0.0728 U	< 0.0728 U	< 0.0728 U
WHC1-BG05	10	NORM	11/25/2008	< 0.17 U	0.229 J	< 0.0812 U	< 0.0812 U	< 0.0812 U	< 0.134 U	< 0.0812 U	< 0.0812 U	< 0.0812 U	< 0.0812 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 63)

				Alde	hydes			Semi-V	olatile Organic	Compounds (S	SVOCs)		
	Depth	Sample	Sample	Acetaldehyde	Formaldehyde	,2,4,5-Tetrachloro- enzene	.2-Diphenylhydrazine	.4-Dioxane	2'-Dichlorobenzil	.4,5-Trichlorophenol	,4,6-Trichlorophenol	4-Dichlorophenol	.4-Dimethylphenol
Sample ID	(ft bgs)	Type	Date			1. b	1,	1,	2,	ζ,	7	2,	ζ,
WHC1-BG06	0	NORM	12/10/2008	0.433 J	< 0.212 U	< 0.0695 UJ	< 0.0695 UJ	< 0.0695 UJ	< 0.115 UJ	< 0.0695 UJ	< 0.0695 UJ	< 0.0695 UJ	< 0.0695 UJ
WHC1-BG06	10	NORM	12/10/2008	< 0.451 U	0.614 J	< 0.0965 U	< 0.0965 U	< 0.0965 U	< 0.159 U	< 0.0965 U	< 0.0965 U	< 0.0965 U	< 0.0965 U
WHC1-BH01	0	NORM	12/3/2008	< 0.311 U	0.409 J	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U
WHC1-BH01	11	NORM	12/3/2008	< 0.313 U	0.298 J	< 0.0687 U	< 0.0687 U	< 0.0687 UJ	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U
WHC1-BH02	0	NORM	12/4/2008	< 0.309 U	0.59 J	< 0.0704 U	< 0.0704 U	< 0.0704 U	< 0.116 U	< 0.0704 U	< 0.0704 U	< 0.0704 U	< 0.0704 U
WHC1-BH02	10	NORM	12/4/2008	< 0.306 U	< 0.362 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U
WHC1-BH03	0	NORM	12/9/2008	< 0.307 U	0.329 J	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.112 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.0681 U
WHC1-BH03	10	NORM	12/9/2008	< 0.312 U	0.251 J	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 U
WHC1-BH04	0	NORM	12/11/2008	< 0.303 U	0.458 J	< 0.0688 U	< 0.0688 U	< 0.0688 UJ	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U
WHC1-BH04	10	NORM	12/11/2008	< 0.312 U	0.209 J	< 0.0691 U	< 0.0691 U	< 0.0691 UJ	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U
WHC1-BH05	0	NORM	12/9/2008	< 0.31 U	0.293 J	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U
WHC1-BH05	0	FD	12/9/2008	< 0.309 U	0.303 J	< 0.0694 U	< 0.0694 U	< 0.0694 UJ	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U
WHC1-BH05	10	NORM	12/9/2008	< 0.36 U	0.394 J	< 0.0716 U	< 0.0716 U	< 0.0716 U	< 0.118 U	< 0.0716 U	< 0.0716 U	< 0.0716 U	< 0.0716 U
WHC1-BH06	0	NORM	12/11/2008	< 0.33 U	0.375 J	< 0.0757 U	< 0.0757 U	< 0.0757 UJ	< 0.125 U	< 0.0757 U	< 0.0757 U	< 0.0757 U	< 0.0757 U
WHC1-BH06	0	FD	12/11/2008	< 0.341 U	0.416 J	< 0.071 U	< 0.071 U	< 0.071 UJ	< 0.117 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.071 U
WHC1-BH06	10	NORM	12/11/2008	< 0.346 U	< 0.23 U	< 0.0781 U	< 0.0781 U	< 0.0781 UJ	< 0.129 U	< 0.0781 U	< 0.0781 U	< 0.0781 U	< 0.0781 U
WHC1-BI01	0	NORM	12/3/2008	< 0.314 U	0.292 J	< 0.0702 U	< 0.0702 U	< 0.0702 UJ	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U
WHC1-BI01	11	NORM	12/3/2008	< 0.313 U	0.366 J	< 0.07 U	< 0.07 U	< 0.07 UJ	< 0.115 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U
WHC1-BI02	0	NORM	12/4/2008	< 0.311 U	1.57	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U
WHC1-BI02	3	NORM	12/4/2008	< 0.307 U	0.669 J	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.0686 U
WHC1-BI02	13	NORM	12/4/2008	< 0.307 U	0.617 J	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U
WHC1-BI03	0	NORM	12/4/2008	< 0.306 U	0.856 J	< 0.0689 U	< 0.0689 U	< 0.0689 U	< 0.114 U	< 0.0689 U	< 0.0689 U	< 0.0689 U	< 0.0689 U
WHC1-BI03	11	NORM	12/4/2008	< 0.305 U	0.656 J	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U
WHC1-BI04	0	NORM	12/8/2008	< 0.309 U	0.409	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.112 U	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.0679 U
WHC1-BI04	10	NORM	12/9/2008	< 0.308 U	< 0.205 U	< 0.071 U	< 0.071 U	< 0.071 UJ	< 0.117 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.071 U
WHC1-BI05	0	NORM	12/9/2008	< 0.305 U	< 1.02 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U
WHC1-BI05	10	NORM	12/9/2008	< 0.312 U	< 0.208 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U
WHC1-BJ01	0	NORM	12/3/2008	< 0.31 U	0.208 J	< 0.0692 U	< 0.0692 U	< 0.0692 UJ	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U
WHC1-BJ01	3	NORM	12/3/2008	< 0.312 U	0.404 J	< 0.0697 U	< 0.0697 U	< 0.0697 UJ	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U
WHC1-BJ01	13	NORM	12/3/2008	< 0.316 U	0.306 J	< 0.0706 U	< 0.0706 U	< 0.0706 UJ	< 0.116 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.0706 U
WHC1-BJ02	0	NORM	12/2/2008	< 0.313 U	< 0.238 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U
WHC1-BJ02	0	FD	12/2/2008	< 0.311 U	< 0.236 U	< 2.78 U	< 2.78 U	< 2.78 U	< 4.59 U	< 2.78 U	< 2.78 U	< 2.78 U	< 2.78 U
WHC1-BJ02	12	NORM	12/2/2008	< 0.311 U	< 0.214 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.305 U	0.879 J	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U
WHC1-BJ03	0	FD	12/4/2008	< 0.306 U	0.66 J	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.0698 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.300 U	0.526 J	< 0.069 U	< 0.069 U	< 0.069 U	< 0.113 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U
WHC1-BJ03 WHC1-BJ04	0	NORM	12/4/2008	< 0.305 U	0.842 J	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U
WHC1-BJ04 WHC1-BJ04	11	NORM	12/4/2008	< 0.303 U	< 0.431 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U
WHC1-BJ04 WHC1-BJ05	0	NORM	12/4/2008	< 0.309 U < 0.314 U	< 0.431 U < 0.209 U	< 0.069 U	< 0.069 U	< 0.069 U < 0.0678 UJ	< 0.114 U	< 0.0678 U	< 0.069 U	< 0.0678 U	< 0.069 U
WUCI-DIO	U	INORIVI	12/11/2008	< 0.314 U	< 0.209 €	< 0.0078 U	< 0.0078 U	< 0.0078 UJ	< 0.112 U	< 0.00/8 U	< 0.0078 U	< 0.0078 U	< 0.0078 U

TABLE B-9 SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA

BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 63)

				Alde	hydes			Semi-V	olatile Organio	Compounds (S	SVOCs)		
						,2,4,5-Tetrachloro- enzene	.2-Diphenylhydrazine		enzil	,5-Trichlorophenol	4,6-Trichlorophenol	4-Dichlorophenol	.4-Dimethylphenol
				Acetaldehyde	Formal dehyde	Fetrac	nenylk	,4-Dioxane	2'-Dichlorobenzil	ichlor	ichlor	ılorop	ethylŗ
	Donth	Comple	Cample	alde	ıald	1,2,4,5-7 oenzene	lqiC)jo	Dic	Ţ	-Tr)icł	∑im
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	rcet	orn	,2,4 enz	,2-I	,4-I		4,			
WHC1-BJ05	10	NORM	12/11/2008	< 0.315 U	0.365 J	م ب < 0.0697 U	< 0.0697 U	< 0.0697 UJ	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U
WHC1-BK01	0	NORM	12/3/2008	< 0.313 U	< 0.208 U	< 0.0097 U	< 0.0097 U	< 0.0097 UJ	< 0.115 U	< 0.0097 U	< 0.0097 U	< 0.0097 U	< 0.0097 U
WHC1-BK01	0	FD	12/3/2008	< 0.312 U	< 0.209 U	< 0.0696 U	< 0.0696 U	< 0.0696 UJ	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U
WHC1-BK01	10	NORM	12/3/2008	< 0.313 U	0.341 J	< 0.0701 U	< 0.0701 U	< 0.0000 UJ	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U
WHC1-BK02	0	NORM	12/8/2008	< 0.308 U	0.435	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U
WHC1-BK02	11	NORM	12/18/2008	< 0.315 U	0.411 J	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U
WHC1-BK03	0	NORM	12/15/2008	< 0.307 U	< 1.02 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U
WHC1-BK03	12	NORM	12/18/2008	< 0.313 U	0.253 J	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.118 U	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.0713 U
WHC1-BK04	0	NORM	12/4/2008	< 0.311 U	< 0.479 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U
WHC1-BK04	10	NORM	12/4/2008	< 0.308 U	< 0.475 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U
WHC1-BK05	0	NORM	12/12/2008	< 0.309 U	0.281 J	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U
WHC1-BK05	11	NORM	12/12/2008	< 0.315 U	0.338 J	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.0698 U
WHC1-BL01	0	NORM	12/3/2008	< 0.311 U	0.243 J	< 0.0692 U	< 0.0692 U	< 0.0692 UJ	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U
WHC1-BL01	10	NORM	12/3/2008	< 0.315 U	0.226 J	< 0.0702 U	< 0.0702 U	< 0.0702 UJ	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U
WHC1-BL02	0	NORM	12/2/2008	< 0.312 U	< 0.45 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U
WHC1-BL02	10	NORM	12/2/2008	< 0.311 U	< 0.233 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.112 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.0681 U
WHC1-BL03	0	NORM	12/8/2008	< 0.31 U	0.401	< 0.0682 U	< 0.0682 U	< 0.0682 U	< 0.113 U	< 0.0682 U	< 0.0682 U	< 0.0682 U	< 0.0682 U
WHC1-BL03	10	NORM	12/18/2008	< 0.343 U	0.465 J	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.116 U	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.0703 U
WHC1-BL04	0	NORM	12/17/2008	< 0.316 U	1.03 J	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.0705 U
WHC1-BL04	12	NORM	12/22/2008	< 0.309 U	0.469 J	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U
WHC1-BL05	0	NORM	11/21/2008	< 0.152 U	0.211 J	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.111 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.0675 UJ
WHC1-BL05	10	NORM	11/21/2008	0.159 J	0.332 J	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 UJ
WHC1-BL06	0	NORM	11/21/2008	< 0.151 U	0.265 J	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.117 U	< 0.0708 U	< 0.0708 U	< 0.0708 U	R
WHC1-BL06	11	NORM	11/21/2008	< 0.158 U	0.226 J	< 0.07 U	< 0.07 U	< 0.07 U	< 0.116 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 UJ
WHC1-BL07	0		11/21/2008	< 0.168 U	0.43 J	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 UJ
WHC1-BL07	10		11/21/2008	< 0.174 U	0.175 J	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 UJ
WHC1-BL08	0		11/18/2008	< 0.162 U	0.132 J	< 0.0693 U	< 0.0693 U	< 0.0693 UJ	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U
WHC1-BL08	10		11/18/2008	< 0.156 U	0.137 J	< 0.07 U	< 0.07 U	< 0.07 UJ	< 0.116 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U
WHC1-BL11	0		11/18/2008	< 0.155 U	0.121 J	< 0.0699 U	< 0.0699 U	< 0.0699 UJ	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U
WHC1-BL11	12		11/18/2008	< 0.156 U	0.147 J	< 0.0702 U	< 0.0702 U	< 0.0702 UJ	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U
WHC1-BM01	0	NORM	12/3/2008	< 0.314 U	1.08	< 0.071 U	< 0.071 U	< 0.071 UJ	< 0.117 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.071 U
WHC1-BM01	10	NORM	12/3/2008	< 0.308 U	0.235 J	< 0.0692 U	< 0.0692 U	< 0.0692 UJ	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U
WHC1-BM02	0	NORM	12/2/2008	< 0.311 U	< 0.532 U	< 0.0717 U	< 0.0717 U	< 0.0717 U	< 0.118 U	< 0.0717 U	< 0.0717 U	< 0.0717 U	< 0.0717 U
WHC1-BM02	12	NORM	12/2/2008	< 0.315 U	< 0.509 U	< 0.0707 U	< 0.0707 U	< 0.0707 U	< 0.117 U	< 0.0707 U	< 0.0707 U	< 0.0707 U	< 0.0707 U
WHC1-BM03	0	NORM	12/8/2008	< 0.311 U	0.571	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U
WHC1-BM03	10	NORM	12/18/2008	< 0.316 U	0.454 J	< 0.072 U	< 0.072 U	< 0.072 U	< 0.119 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.072 U
WHC1-BM04	0	NORM	12/17/2008	< 0.315 U	0.583 J	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U
WHC1-BM04	0	FD	12/17/2008	< 0.314 U	1.14	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U
WHC1-BM04	10	NORM	12/22/2008	< 0.31 U	0.387 J	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.0714 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 63)

				Alde	hydes			Semi-V	olatile Organic	Compounds (S	SVOCs)		
						-	.2-Diphenylhydrazine			4,5-Trichlorophenol	.4,6-Trichlorophenol		Ic
						orc	dra		nzi	ohe	ohe	ous	enc
				0	le	chl	lhy		pe	rop	roj	phe	hdl
				yd	hyċ	tra	iny]	ne	orc	hlc	hlc	oro	hy
				Jeh	del	e-T	ohe	oxa	chl	řic	řic	, ji	net
	Depth	Sample	Sample	talc	nal	,2,4,5-Tetrachloro- enzene	Dit	,4-Dioxane	2'-Dichlorobenzil	2-T	2-T	4-Dichlorophenol	.4-Dimethylphenol
Sample ID	(ft bgs)	Type	Date	Acetaldehyde	Formal dehy de	,2,	-2,	4,	,2,			4,	
WHC1-BM05	0		11/21/2008	< 0.151 U	0.253 J	< 0.0674 U	< 0.0674 U	< 0.0674 U	< 0.111 U	< 0.0674 U	< 0.0674 U	< 0.0674 U	< 0.0674 UJ
WHC1-BM05	10		11/21/2008	< 0.333 U	0.265 J	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.116 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.0706 UJ
WHC1-BM06	0		11/21/2008	< 0.308 U	0.405 J	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.112 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.0678 UJ
WHC1-BM06	0	FD	11/21/2008	< 0.306 U	< 0.204 U	< 0.0709 U	< 0.0709 U	< 0.0709 U	< 0.117 U	< 0.0709 U	< 0.0709 U	< 0.0709 U	< 0.0709 UJ
WHC1-BM06	10	NORM	11/21/2008	< 0.154 U	0.428 J	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.118 U	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.0715 UJ
WHC1-BM07	0		11/20/2008	< 0.305 U	0.235 J	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U
WHC1-BM07	11		11/20/2008	< 0.318 U	0.285 J	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.0698 U
WHC1-BM08	0	NORM	11/18/2008	< 0.156 U	0.204 J	< 0.0716 U	< 0.0716 U	< 0.0716 UJ	< 0.118 U	< 0.0716 U	< 0.0716 U	< 0.0716 U	< 0.0716 U
WHC1-BM08	0	FD	11/18/2008	< 0.166 U	0.132 J	< 0.077 U	< 0.077 U	< 0.077 UJ	< 0.127 U	< 0.077 U	< 0.077 U	< 0.077 U	< 0.077 U
WHC1-BM08	11	NORM	11/18/2008	< 0.158 U	0.161 J	< 0.0722 U	< 0.0722 U	< 0.0722 UJ	< 0.119 U	< 0.0722 U	< 0.0722 U	< 0.0722 U	< 0.0722 U
WHC1-BM09	0	NORM	11/18/2008	< 0.164 U	0.131 J	< 0.0706 U	< 0.0706 U	< 0.0706 UJ	< 0.117 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.0706 U
WHC1-BM09	12	NORM	11/18/2008	< 0.159 U	0.116 J								
WHC1-BM10	0	NORM	11/18/2008	< 0.16 U	< 0.107 U	< 0.0709 U	< 0.0709 U	< 0.0709 UJ	< 0.117 U	< 0.0709 U	< 0.0709 U	< 0.0709 U	< 0.0709 U
WHC1-BM10	3	NORM	11/18/2008	< 0.157 U	0.118 J	< 0.0715 U	< 0.0715 U	< 0.0715 UJ	< 0.118 U	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.0715 U
WHC1-BM10	13	NORM	11/18/2008	< 0.196 U	0.17 J	< 0.0805 U	< 0.0805 U	< 0.0805 UJ	< 0.133 U	< 0.0805 U	< 0.0805 U	< 0.0805 U	< 0.0805 U
WHC1-BN01	0	NORM	12/1/2008	< 0.159 U	0.271 J	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U
WHC1-BN01	12	NORM	12/1/2008	< 0.158 U	0.178 J	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U
WHC1-BN02	0	NORM	12/1/2008	< 0.159 U	0.174 J	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U
WHC1-BN02	0	FD	12/1/2008	< 0.158 U	0.178 J	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U
WHC1-BN02	11	NORM	12/1/2008	< 0.153 U	0.169 J	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U
WHC1-BN03	0	NORM	12/17/2008	< 0.321 U	3.38	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.118 U	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.0713 U
WHC1-BN03	10		12/18/2008	< 0.314 U	0.484 J	< 0.0751 U	< 0.0751 U	< 0.0751 U	< 0.124 U	< 0.0751 U	< 0.0751 U	< 0.0751 U	< 0.0751 U
WHC1-BN04	0		12/17/2008	< 0.313 U	0.526 J	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.0698 U
WHC1-BN04	7	NORM	12/22/2008	< 0.314 U	0.327 J	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.0705 U
WHC1-BN04	17	NORM	12/22/2008	< 0.32 U	0.51 J	< 0.0709 U	< 0.0709 U	< 0.0709 U	< 0.117 U	< 0.0709 U	< 0.0709 U	< 0.0709 U	< 0.0709 U
WHC1-BN05	0		11/20/2008	< 0.152 U	0.249 J	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.112 U	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.0679 U
WHC1-BN05	0	FD	11/20/2008	< 0.152 U	0.317 J	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U
WHC1-BN05	10	NORM	11/20/2008	< 0.314 U	0.333 J	< 0.0707 U	< 0.0707 U	< 0.0707 U	< 0.117 U	< 0.0707 U	< 0.0707 U	< 0.0707 U	< 0.0707 U
WHC1-BN06	0		11/20/2008	< 0.309 U	0.227 J	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U
WHC1-BN06	10		11/20/2008	< 0.318 U	0.218 J								
WHC1-BN07	0		11/21/2008	< 0.154 U	0.192 J	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 UJ
WHC1-BN07	3		11/21/2008	< 0.159 U	0.195 J	0.0915 J	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.0714 UJ
WHC1-BN07	13		11/21/2008	< 0.158 U	0.258 J	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.0698 UJ
WHC1-BN08	0		11/20/2008	< 0.306 U	0.244 J	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 U
WHC1-BN08	10		11/20/2008	< 0.31 U	0.457 J	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U
WHC1-BN09 WHC1-BN09	0	NORM	12/17/2008 12/19/2008	< 0.318 U < 0.329 U	0.398 J 0.455 J	< 0.0715 U < 0.0726 U	< 0.0715 U < 0.0726 UJ	< 0.0715 U < 0.0726 U	< 0.118 U < 0.12 U	< 0.0715 U < 0.0726 U	< 0.0715 U < 0.0726 U	< 0.0715 U < 0.0726 UJ	< 0.0715 U
	0												< 0.0726 U
WHC1-BN10 WHC1-BN10	10	NORM	11/18/2008	< 0.157 U < 0.182 U	< 0.105 U < 0.122 U	< 0.0757 U < 0.0784 U	< 0.0757 U < 0.0784 U	< 0.0757 UJ < 0.0784 UJ	< 0.125 U < 0.129 U	< 0.0757 U < 0.0784 U	< 0.0757 U < 0.0784 U	< 0.0757 U < 0.0784 U	< 0.0757 U < 0.0784 U
WITCI-DINIU	10	MMON	11/10/2008	< 0.104 U	< 0.122 U	< 0.0704 U	< 0.0764 U	∖ ∪.∪/04 ∪J	√ 0.129 U	< 0.0764 U	< 0.0704 U	< 0.0704 U	< 0.0704 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 63)

				Alde	hydes			Semi-V	olatile Organic	Compounds (S	SVOCs)		
				Acetaldehyde	Formaldehyde	,2,4,5-Tetrachloro- enzene	,2-Diphenylhydrazine	.4-Dioxane	2'-Dichlorobenzil	,4,5-Trichlorophenol	2,4,6-Trichlorophenol	4-Dichlorophenol	.4-Dimethylphenol
	Depth	Sample	Sample	stalc	mal	,2,4,5- ⁻]	-Dig	Ä	-Di	J-2,	L-9,	ĎiĆ	-Dir
Sample ID	(ft bgs)	Type	Date	Ace	For	1,2 ben	1,2	1,4	2,2	2,4	2,4	2,4	2,4
WHC1-BO01	0	NORM	12/2/2008	< 0.312 U	< 0.494 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 U
WHC1-BO01	0	FD	12/2/2008	< 0.314 U	< 0.463 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U
WHC1-BO01	4	NORM	12/2/2008	< 0.336 U	< 0.604 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U
WHC1-BO01	14	NORM	12/2/2008	< 0.319 U	< 0.534 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.119 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.072 U
WHC1-BO02	0	NORM	12/1/2008	< 0.155 U	0.126 J	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.0686 U
WHC1-BO02	12	NORM	12/1/2008	< 0.156 U	< 0.104 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U
WHC1-BO03	0	NORM	12/15/2008	< 0.31 U	< 1.03 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U
WHC1-BO03	12	NORM	12/19/2008	< 0.313 U	0.409 J	< 0.0692 U	< 0.0692 UJ	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 UJ	< 0.0692 U
WHC1-BO04	0	NORM	12/15/2008	< 0.365 U	< 1.22 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.0705 U
WHC1-BO04	12	NORM	12/19/2008	0.382 J	0.28 J	< 0.0695 U	< 0.0695 UJ	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0695 UJ	< 0.0695 U
WHC1-BO05	0	NORM	11/20/2008	< 0.152 U	0.159 J	< 0.0669 U	< 0.0669 U	< 0.0669 U	< 0.11 U	< 0.0669 U	< 0.0669 U	< 0.0669 U	< 0.0669 U
WHC1-BO05	10	NORM	11/20/2008	< 0.168 U	0.199 J	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U
WHC1-BO06	0	NORM	11/20/2008	< 0.155 U	0.198 J	< 0.0673 U	< 0.0673 U	< 0.0673 U	< 0.111 U	< 0.0673 U	< 0.0673 U	< 0.0673 U	< 0.0673 U
WHC1-BO06	10	NORM	11/20/2008	< 0.172 U	0.133 J	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U
WHC1-BO07	0	NORM	11/19/2008	< 0.152 U		< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U
WHC1-BO07	10	NORM	11/19/2008	< 0.155 U		< 0.0717 U	< 0.0717 U	< 0.0717 U	< 0.118 U	< 0.0717 U	< 0.0717 U	< 0.0717 U	< 0.0717 U
WHC1-BO08	0	NORM	11/20/2008	< 0.315 U	0.27 J	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.116 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.0706 U
WHC1-BO08	0	FD	11/20/2008	< 0.314 U	0.305 J	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U
WHC1-BO08	11	NORM	11/20/2008	< 0.313 U	0.351 J	< 0.0722 U	< 0.0722 U	< 0.0722 U	< 0.119 U	< 0.0722 U	< 0.0722 U	< 0.0722 U	< 0.0722 U
WHC1-BO09	0	NORM	11/19/2008	< 0.154 U		< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U
WHC1-BO09	0	FD	11/19/2008	< 0.153 U		< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U
WHC1-BO09	6	NORM	11/19/2008			< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U
WHC1-BO09	16	NORM	11/19/2008	< 0.158 U		< 0.076 U	< 0.076 U	< 0.076 U	< 0.125 U	< 0.076 U	< 0.076 U	< 0.076 U	< 0.076 U
WHC1-BO10	0	NORM	11/19/2008	< 0.162 U		< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U
WHC1-BO10	10	NORM	11/19/2008	< 0.158 U									
WHC1-BP01	0	NORM	12/1/2008	< 0.158 U	0.158 J	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U
WHC1-BP01	10	NORM	12/1/2008	< 0.156 U	0.132 J	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U
WHC1-BP02	0	NORM	12/1/2008	< 0.155 U	0.167 J	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U
WHC1-BP02	11	NORM	12/1/2008	< 0.158 U	0.126 J	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.0714 U
WHC1-BP03	0	NORM	12/15/2008	< 0.306 U	< 1.02 U	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.112 U	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.0679 U
WHC1-BP03	0	FD	12/15/2008	< 0.305 U	< 1.02 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.112 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.0681 U
WHC1-BP03	11	NORM	12/19/2008	< 0.322 U	0.36 J	< 0.0721 U	< 0.0721 UJ	< 0.0721 U	< 0.119 U	< 0.0721 U	< 0.0721 U	< 0.0721 UJ	< 0.0721 U
WHC1-BP04	0	NORM	12/15/2008	< 0.308 U	< 1.03 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U
WHC1-BP04	12	NORM	12/19/2008	< 0.312 U	0.43 J	< 0.0694 U	< 0.0694 UJ	< 0.0694 U	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0694 UJ	< 0.0694 U
WHC1-BP05	0	NORM	12/15/2008	< 0.306 U	< 1.02 U	< 0.0689 U	< 0.0689 U	< 0.0689 U	< 0.114 U	< 0.0689 U	< 0.0689 U	< 0.0689 U	< 0.0689 U
WHC1-BP05	10	NORM	12/19/2008	< 0.338 U	< 0.225 U	< 0.0714 U	< 0.0714 UJ	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0714 UJ	< 0.0714 U
WHC1-BP06	0	NORM	12/12/2008	< 0.311 U	0.382 J	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.112 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.0681 U
WHC1-BP06	10	NORM	12/12/2008	< 0.312 U	0.291 J	< 0.0692 U	< 0.0692 U	< 0.0692 UJ	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U
WHC1-BP07	0	NORM	11/20/2008	< 0.334 U	0.297 J	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.118 U	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.0715 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 63)

				Alde	hydes			Semi-V	olatile Organio	Compounds (S	SVOCs)		
	Depth	Sample	Sample	Acetaldehyde	Formaldehyde	,2,4,5-Tetrachloro- enzene	2-Diphenylhydrazine	4-Dioxane	2'-Dichlorobenzil	.5-Trichlorophenol	4,6-Trichlorophenol	4-Dichlorophenol	.4-Dimethylphenol
Sample ID	(ft bgs)	Type	Date	4ce	ori	,2,	-2,	4,	.'2.'	4,	4,	-,4-	-4,4
WHC1-BP07	3	NORM	11/20/2008	< 0.319 U	0.228 J	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.0705 U
WHC1-BP07	13	NORM	11/20/2008	< 0.165 U	0.178 J	< 0.0716 U	< 0.0716 U	< 0.0716 U	< 0.118 U	< 0.0716 U	< 0.0716 U	< 0.0716 U	< 0.0716 U
WHC1-BP08	0	NORM	11/19/2008			< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.116 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ
WHC1-BP08	4	NORM	11/19/2008	< 0.163 U	+-	< 0.0714 UJ	< 0.0714 UJ	< 0.0714 UJ	< 0.118 UJ	< 0.0714 UJ	< 0.0714 UJ	< 0.0714 UJ	< 0.0714 UJ
WHC1-BP08	14	NORM	11/19/2008	< 0.161 U		< 0.0718 U	< 0.0718 U	< 0.0718 U	< 0.118 U	< 0.0718 U	< 0.0718 U	< 0.0718 U	< 0.0718 U
WHC1-BP09	0		11/19/2008	< 0.156 U		< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U
WHC1-BP09	10	NORM	11/19/2008	< 0.176 U		< 0.08 U	< 0.08 U	< 0.08 U	< 0.132 U	< 0.08 U	< 0.08 U	< 0.08 U	< 0.08 U
WHC1-BP10	0		11/19/2008	< 0.152 U		< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U
WHC1-BP10	10	NORM	11/19/2008	< 0.154 U		< 0.0945 U	< 0.0945 U	< 0.0945 U	< 0.156 U	< 0.0945 U	< 0.0945 U	< 0.0945 U	< 0.0945 U
WHC1-D01	0	NORM	12/5/2008	< 0.314 U	0.425 J	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U
WHC1-D01	10	NORM	12/5/2008	< 0.311 U	0.441 J	< 0.0696 UJ	< 0.0696 UJ	< 0.0696 UJ	< 0.115 UJ	< 0.0696 UJ	< 0.0696 UJ	< 0.0696 UJ	< 0.0696 UJ
WHC1-D02	0	NORM	12/5/2008	< 0.318 U	1.25	< 0.0715 UJ	< 0.0715 UJ	< 0.0715 UJ	< 0.118 UJ	< 0.0715 UJ	< 0.0715 UJ	< 0.0715 UJ	< 0.0715 UJ
WHC1-D02	10	NORM	12/5/2008	< 0.317 U	0.439 J	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U
WHC1-D03	0	NORM	12/5/2008	< 0.313 U	0.724 J	< 0.0697 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.115 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0697 UJ
WHC1-D03	0	FD	12/5/2008	< 0.315 U	0.631 J	< 0.0699 UJ	< 0.0699 UJ	< 0.0699 UJ	< 0.115 UJ	< 0.0699 UJ	< 0.0699 UJ	< 0.0699 UJ	< 0.0699 UJ
WHC1-D03	10	NORM	12/5/2008	< 0.312 U	0.552 J	< 0.0706 UJ	< 0.0706 UJ	< 0.0706 UJ	< 0.116 UJ	< 0.0706 UJ	< 0.0706 UJ	< 0.0706 UJ	< 0.0706 UJ
WHC1-D04	0	NORM	12/5/2008	< 0.323 U	0.864 J	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.116 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.0706 U
WHC1-D04	10	NORM	12/5/2008	< 0.309 U	0.45 J	< 0.069 UJ	< 0.069 UJ	< 0.069 UJ	< 0.114 UJ	< 0.069 UJ	< 0.069 UJ	< 0.069 UJ	< 0.069 UJ
WHC1-D05	0	NORM	12/5/2008	< 0.315 U	0.636 J	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.115 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ
WHC1-D05	10	NORM	12/5/2008	< 0.31 U	0.416 J	< 0.0689 UJ	< 0.0689 UJ	< 0.0689 UJ	< 0.114 UJ	< 0.0689 UJ	< 0.0689 UJ	< 0.0689 UJ	< 0.0689 UJ
WHC1-D06	0	NORM	12/5/2008	< 0.317 U	0.627 J	< 0.0732 U	< 0.0732 U	< 0.0732 U	< 0.121 U	< 0.0732 U	< 0.0732 U	< 0.0732 U	< 0.0732 U
WHC1-D06	10	NORM	12/5/2008	< 0.315 U	0.503 J	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.116 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ
WHC1-D07	0	NORM	12/5/2008	< 0.307 U	0.447 J	< 0.069 UJ	< 0.069 UJ	< 0.069 UJ	< 0.114 U	< 0.069 UJ	< 0.069 UJ	< 0.069 UJ	< 0.069 UJ
WHC1-D07	10	NORM	12/5/2008	< 0.31 U	0.311 J	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.0686 U
WHC1-D08	0	NORM	12/8/2008	< 0.31 U	0.233	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U
WHC1-D08	10	NORM	12/9/2008	< 0.321 U	< 0.214 U	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.117 U	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.0708 U
WHC1-D09	0	NORM	12/8/2008	< 0.31 U	0.392	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U
WHC1-D09	11	NORM	12/9/2008	< 0.311 U	< 0.207 U	< 0.0701 UJ	< 0.0701 UJ	< 0.0701 UJ	< 0.116 UJ	< 0.0701 UJ	< 0.0701 UJ	< 0.0701 UJ	< 0.0701 UJ
WHC1-D10	0	NORM	12/8/2008	< 0.312 U	0.336	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U
WHC1-D10	10	NORM	12/9/2008	< 0.332 U	< 0.221 U	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.116 U	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.0703 U
WHC1-D11	0	NORM	12/8/2008	< 0.324 U	0.478	0.141 J	< 0.069 U	< 0.069 U	0.374	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U
WHC1-D11	10	NORM	12/9/2008	< 0.31 U	0.253 J	< 0.0732 U	< 0.0732 U	< 0.0732 U	< 0.121 U	< 0.0732 U	< 0.0732 U	< 0.0732 U	< 0.0732 U
WHC1-D12	0	NORM	12/10/2008	< 0.331 U	< 0.221 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U
WHC1-D12	10	NORM	12/10/2008	< 0.388 U	0.381 J	< 0.0923 U	< 0.0923 U	< 0.0923 U	< 0.152 U	< 0.0923 U	< 0.0923 U	< 0.0923 U	< 0.0923 U
WHC1-D13	0	NORM	12/8/2008	< 0.312 U	0.245 J	< 0.0712 U	< 0.0712 U	< 0.0712 U	< 0.118 U	< 0.0712 U	< 0.0712 U	< 0.0712 U	< 0.0712 U
WHC1-D13	10	NORM	12/8/2008	< 0.386 U	0.478 J	< 0.101 U	< 0.101 U	< 0.101 U	< 0.167 U	< 0.101 U	< 0.101 U	< 0.101 U	< 0.101 U
WHC1-D15	0	NORM	12/11/2008	< 0.317 U	0.294 J	< 0.0687 U	< 0.0687 U	< 0.0687 UJ	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U
WHC1-D15	10	NORM	12/11/2008	< 0.399 U	0.684 J	< 0.0846 U	< 0.0846 U	< 0.0846 UJ	< 0.14 U	< 0.0846 U	< 0.0846 U	< 0.0846 U	< 0.0846 U
WHC1-D16	0	NORM	12/10/2008	< 0.327 U	0.242 J	< 0.0763 U	< 0.0763 U	< 0.0763 U	< 0.126 U	< 0.0763 U	< 0.0763 U	< 0.0763 U	< 0.0763 U

TABLE B-9 SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 7 of 63)

				Alde	hvdes			Semi-V	olatile Organic	Compounds (S	SVOCs)		
							9			•	ĺ		
				υ	le	,2,4,5-Tetrachloro- enzene	.2-Diphenylhydrazine		2'-Dichlorobenzil	4,5-Trichlorophenol	.4,6-Trichlorophenol	4-Dichlorophenol	.4-Dimethylphenol
				Acetaldehyde	Formal dehy de	5-Tetra	pheny	,4-Dioxane	ichlorc	Prichle	Frichle	chlorc	methy
	Depth	Sample	Sample	etal	тта	,2,4,5-7 enzene	Ä	Ä		2,	, ,	Ä	Ä
Sample ID	(ft bgs)	Type	Date	Αc	For	1,2 ber	1,2	1,4	2,2	2,4	2,4	2,4	2,
WHC1-D16	10	NORM	12/10/2008	< 0.342 U	0.229 J	< 0.0785 U	< 0.0785 U	< 0.0785 U	< 0.13 U	< 0.0785 U	< 0.0785 U	< 0.0785 U	< 0.0785 U
WHC1-D17	0	NORM	12/10/2008	< 0.324 U	0.487 J	< 0.0712 U	< 0.0712 U	< 0.0712 U	< 0.117 U	< 0.0712 U	< 0.0712 U	< 0.0712 U	< 0.0712 U
WHC1-D17	10	NORM	12/10/2008	< 0.339 U	0.285 J	< 0.0779 U	< 0.0779 U	< 0.0779 U	< 0.129 U	< 0.0779 U	< 0.0779 U	< 0.0779 U	< 0.0779 U
WHC1-D18	0	NORM	12/11/2008	< 0.368 U	0.422 J	< 0.0691 U	< 0.0691 U	< 0.0691 UJ	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U
WHC1-D18	10	NORM	12/11/2008	< 0.311 U	0.336 J	< 0.0698 U	< 0.0698 U	< 0.0698 UJ	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.0698 U
WHC1-D19	0	NORM	12/11/2008	< 0.32 U	0.34 J	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U
WHC1-D19	0	FD	12/11/2008	< 0.314 U	0.603 J	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U
WHC1-D19	10	NORM	12/11/2008	< 0.316 U	0.286 J	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.116 U	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.0703 U
WHC1-D20	0	NORM	12/12/2008	< 0.309 U	0.296 J	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U
WHC1-D20	10	NORM	12/12/2008	< 0.312 U	0.28 J	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U
WHC1-D21	0	NORM	12/16/2008	< 0.318 U	0.351 J	< 0.0708 U	< 0.0708 U	< 0.0708 UJ	< 0.117 U	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.0708 U
WHC1-D21	10	NORM	12/16/2008	< 0.312 U	0.29 J	< 0.0699 U	< 0.0699 U	< 0.0699 UJ	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U
WHC1-D22	0	NORM	12/16/2008	< 0.326 U	0.518 J	< 0.072 U	< 0.072 U	< 0.072 UJ	< 0.119 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.072 U
WHC1-D22	10	NORM	12/16/2008	< 0.322 U	0.227 J	< 0.0706 U	< 0.0706 U	< 0.0706 UJ	< 0.117 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.0706 U
WHC1-D23	0	NORM	12/16/2008	< 0.311 U	0.366 J	< 0.0702 U	< 0.0702 U	< 0.0702 UJ	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U
WHC1-D23	10	NORM	12/16/2008	< 0.311 U	0.257 J	< 0.0699 U	< 0.0699 U	< 0.0699 UJ	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U
WHC1-D24	0	NORM	12/16/2008	< 0.326 U	0.374 J	< 0.0728 U	< 0.0728 U	< 0.0728 UJ	< 0.12 U	< 0.0728 U	< 0.0728 U	< 0.0728 U	< 0.0728 U
WHC1-D24	0	FD	12/16/2008	< 0.314 U	0.313 J	< 0.0721 U	< 0.0721 U	< 0.0721 UJ	< 0.119 U	< 0.0721 U	< 0.0721 U	< 0.0721 U	< 0.0721 U
WHC1-D24	10	NORM	12/16/2008	< 0.315 U	0.276 J	< 0.0693 U	< 0.0693 U	< 0.0693 UJ	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U
WHC1-D25	0	NORM	12/16/2008	< 0.33 U	0.495 J	< 0.0727 U	< 0.0727 U	< 0.0727 U	< 0.12 U	< 0.0727 U	< 0.0727 U	< 0.0727 U	< 0.0727 U
WHC1-D25	10	NORM	12/16/2008	< 0.312 U	0.395 J	< 0.069 U	< 0.069 U	< 0.069 UJ	< 0.114 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U
WHC1-D26	0	NORM	12/12/2008	< 0.312 U	0.274 J	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U
WHC1-D26	10	NORM	12/12/2008	< 0.333 U	0.428 J	< 0.0753 U	< 0.0753 U	< 0.0753 U	< 0.124 U	< 0.0753 U	< 0.0753 U	< 0.0753 U	< 0.0753 U
WHC1-D27	0	NORM	12/12/2008	< 0.315 U	< 0.21 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U
WHC1-D27	0	FD	12/12/2008	< 0.315 U	0.515 J	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U
WHC1-D27	10	NORM	12/12/2008	< 0.343 U	0.344 J	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U
WHC1-D28	0	NORM	12/12/2008	< 0.313 U	0.469 J	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U
WHC1-D28	10	NORM	12/12/2008	< 0.312 U	0.59 J	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U
WHC1-D29	0	NORM	12/12/2008	< 0.324 U	0.334 J	< 0.0691 U	< 0.0691 U	< 0.0691 UJ	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U
WHC1-D29	10	NORM	12/12/2008	< 0.319 U	< 0.213 U	< 0.0733 U	< 0.0733 U	< 0.0733 UJ	< 0.121 U	< 0.0733 U	< 0.0733 U	< 0.0733 U	< 0.0733 U
WHC1-P01	0	NORM	12/15/2008	< 0.308 U	< 0.205 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U
WHC1-P01	12	NORM	12/19/2008	< 0.314 U	0.297 J	< 0.0719 U	< 0.0719 UJ	< 0.0719 U	< 0.119 U	< 0.0719 U	< 0.0719 U	< 0.0719 UJ	< 0.0719 U
WHC1-P02	0	NORM	12/1/2008	< 0.154 U	0.119 J	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U
WHC1-P02	10	NORM	12/1/2008	< 0.153 U	0.246 J	< 0.068 U	< 0.068 U	< 0.068 U	< 0.112 U	< 0.068 U	< 0.068 U	< 0.068 U	< 0.068 U
WHC1-P03	0	NORM	12/15/2008	< 0.309 U	< 1.03 U	< 0.0683 U	< 0.0683 U	< 0.0683 U	< 0.113 U	< 0.0683 U	< 0.0683 U	< 0.0683 U	< 0.0683 U
WHC1-P03	3	NORM	12/18/2008	< 0.309 U	0.302 J	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U
WHC1-P03	3	FD	12/18/2008	< 0.31 U	0.273 J	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U
WHC1-P03	13	NORM	12/18/2008	< 0.312 U	< 0.208 U	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.118 U	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.0713 U
WHC1-P04	0	NORM	12/15/2008	< 0.318 U	< 1.06 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U

TABLE B-9 SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 8 of 63)

				Alde	hydes			Semi-V	olatile Organic	Compounds (S	SVOCs)		
				ehyde	Formaldehyde	,2,4,5-Tetrachloro- enzene	2-Diphenylhydrazine	капе	2'-Dichlorobenzil	4,5-Trichlorophenol	.4,6-Trichlorophenol	.4-Dichlorophenol	4-Dimethylphenol
	Depth	Sample	Sample	Acetaldehyde	rmald	1,2,4,5-1 oenzene	2-Dipl	4-Dioxane	2'-Dic	4,5-Tr	4,6-Tr	4-Dicł	4-Dim
Sample ID	(ft bgs)	Type	Date	_		1. bo	1,	1,	2,	6,	ζ,	2,	2,
WHC1-P04	10	NORM	12/18/2008	< 0.31 U	0.315 J	< 0.0744 U	< 0.0744 U	< 0.0744 U	< 0.123 U	< 0.0744 U	< 0.0744 U	< 0.0744 U	< 0.0744 U
WHC1-P05	0	NORM	12/8/2008	< 0.312 U	0.393	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U
WHC1-P05	0	FD	12/8/2008	< 0.322 U	0.314	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U
WHC1-P05	10	NORM	12/18/2008	< 0.314 U	0.469 J	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U
WHC1-P06	0	NORM	12/2/2008	< 0.315 U	< 0.255 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 U
WHC1-P06	0	NORM	12/2/2008	< 0.31 U	< 0.207 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U
WHC1-P07	-	NORM	12/2/2008	< 0.313 U	< 0.234 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.116 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U
WHC1-P07 WHC1-P07	13	NORM NORM	12/2/2008	< 0.308 U < 0.31 U	< 0.38 U < 0.206 U	< 0.0684 U < 0.07 U	< 0.0684 U < 0.07 U	< 0.0684 U < 0.07 U	< 0.113 U < 0.115 U	< 0.0684 U < 0.07 U	< 0.0684 U < 0.07 U	< 0.0684 U < 0.07 U	< 0.0684 U < 0.07 U
WHC1-P07 WHC1-P08	0	NORM	12/2/2008	< 0.31 U < 0.309 U	0.368 J	< 0.07 U < 0.0683 UJ	< 0.07 U < 0.0683 UJ	< 0.07 U < 0.0683 UJ	< 0.113 UJ	< 0.07 U < 0.0683 UJ	< 0.07 U < 0.0683 UJ	< 0.07 U < 0.0683 UJ	< 0.07 U < 0.0683 UJ
WHC1-P08	11	NORM	12/3/2008	< 0.309 U < 0.311 U	0.345 J	< 0.0685 UJ	< 0.0685 UJ	< 0.0685 UJ	< 0.115 UJ	< 0.0685 UJ	< 0.0685 UJ < 0.0696 U	< 0.0685 UJ	< 0.0685 UJ
WHC1-P08	0	NORM	12/4/2008	< 0.311 U	0.343 J 0.769 J	< 0.0696 U < 0.0687 U	< 0.0696 U	< 0.0696 UJ	< 0.113 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U < 0.0687 U
WHC1-P09	0	FD	12/4/2008	< 0.303 U	0.769 J 0.717 J	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U
WHC1-P09	10	NORM	12/4/2008	< 0.302 U	0.653 J	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U
WHC1-P10	0	NORM	11/25/2008	< 0.153 U	0.055 J 0.265 J	< 0.0685 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0685 U	< 0.0695 U	< 0.0695 U	< 0.0695 U
WHC1-P10	10	NORM	11/25/2008	< 0.153 UJ	< 0.556 UJ	< 0.0093 U	< 0.0093 U	< 0.0093 U	< 0.113 U	< 0.0093 U	< 0.0093 U	< 0.0093 U	< 0.0767 U
WHC1-P11	0	NORM	12/8/2008	< 0.305 U	0.431	0.117 J	< 0.0707 U	< 0.0707 U	0.331 J	< 0.0707 U	< 0.0707 U	< 0.0707 U	< 0.0707 U
WHC1-P11	0	FD	12/8/2008	< 0.306 U	0.377	0.117 J	< 0.138 U	< 0.138 U	< 0.228 U	< 0.138 U	< 0.138 U	< 0.138 U	< 0.138 U
WHC1-P11	10	NORM	12/9/2008	< 0.342 U	< 0.228 U	< 0.0702 U	< 0.0702 U	< 0.0702 UJ	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U
WHC1-P12	0	NORM	12/5/2008	< 0.313 U	0.452 J	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U
WHC1-P12	11	NORM	12/5/2008	< 0.313 U	0.355 J	< 0.0697 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.115 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0697 UJ
WHC1-P13	0	NORM	12/9/2008	< 0.312 U	< 0.208 U	< 0.07 U	< 0.007 U	< 0.007 U	< 0.115 U	< 0.007 U	< 0.07 U	< 0.007 U	< 0.07 U
WHC1-P13	10	NORM	12/9/2008	< 0.427 U	< 0.284 U	< 0.0915 U	< 0.0915 U	< 0.0915 U	< 0.113 U	< 0.0915 U	< 0.0915 U	< 0.0915 U	< 0.0915 U
WHC1-P13	10	FD	12/9/2008	< 0.406 U	< 1.35 U	< 0.0778 U	< 0.0778 U	< 0.0778 U	< 0.131 U	< 0.0778 U	< 0.0713 U	< 0.0778 U	< 0.0778 U
WHC1-P14	0	NORM	12/17/2008	< 0.363 U	2.73	< 0.0803 U	< 0.0803 U	< 0.0803 U	< 0.132 U	< 0.0803 U	< 0.0803 U	< 0.0803 U	< 0.0803 U
WHC1-P15	0	NORM	12/8/2008	< 0.306 U	0.278	< 0.074 U	< 0.074 U	< 0.074 U	< 0.132 U	< 0.074 U	< 0.074 U	< 0.074 U	< 0.074 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.324 U	0.243	< 0.074 U	< 0.074 U	< 0.074 U	< 0.112 U	< 0.074 U	< 0.074 U	< 0.074 U	< 0.074 U
WHC1-P15	10	NORM	12/18/2008	< 0.316 U	0.407 J	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.0714 U
WHC1-P16	0	NORM	12/1/2008	< 0.155 U	0.136 J	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.111 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.0675 U
WHC1-P16	11	NORM	12/1/2008	< 0.309 U	0.228 J	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U
WHC1-P17	0	NORM	12/15/2008	< 0.312 U	< 1.04 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U
WHC1-P17	12	NORM	12/19/2008	< 0.312 U	1.08	< 0.0694 U	< 0.0694 UJ	< 0.0694 U	< 0.113 U	< 0.0694 U	< 0.0694 U	< 0.0694 UJ	< 0.0694 U
WHC1-P17	12	FD	12/19/2008	< 0.317 U	0.346 J	< 0.0696 U	< 0.0696 UJ	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0696 UJ	< 0.0696 U
WHC1-P18	0	NORM	12/1/2008	< 0.154 U	0.155 J	< 0.068 U	< 0.068 U	< 0.068 U	< 0.113 U	< 0.068 U	< 0.068 U	< 0.068 U	< 0.068 U
WHC1-P18	12	NORM	12/1/2008	< 0.155 U	0.109 J	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.0686 U
WHC2-D02C	0	NORM	12/2/2009			< 0.0672 U	< 0.0672 U	< 0.0672 U	< 0.111 U	< 0.0672 U	< 0.0672 U	< 0.0672 U	< 0.0672 U
WHC2-D04C	0	NORM	12/2/2009			< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.111 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.0686 U
WHC2-D05C	0	NORM	12/2/2009			0.244 J	< 0.0676 U	< 0.0676 U	1.23	< 0.0676 U	< 0.0676 U	< 0.0676 U	< 0.0676 U
WHC2-D11C	0	NORM	12/2/2009			0.283 J	< 0.0677 U	< 0.0677 U	< 0.112 U	< 0.0677 U	< 0.0677 U	< 0.0677 U	< 0.0677 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 9 of 63)

				Aldel	hydes			Semi-V	olatile Organic	Compounds (S	SVOCs)		
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Acetaldehyde	Formaldehyde	1,2,4,5-Tetrachloro- benzene	1,2-Diphenylhydrazine	1,4-Dioxane	2,2'-Dichlorobenzil	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol
WHC2-D13C	0	NORM	12/3/2009			< 0.103 U	< 0.103 U	< 0.103 U	< 0.169 U	< 0.103 U	< 0.103 U	< 0.103 U	< 0.103 U
WHC2-D13NE	0	NORM	12/3/2009			< 0.108 U	< 0.108 U	< 0.108 U	< 0.178 U	< 0.108 U	< 0.108 U	< 0.108 U	< 0.108 U
WHC2-D13NW	0	NORM	12/3/2009			< 0.0793 U	< 0.0793 U	< 0.0793 U	< 0.131 U	< 0.0793 U	< 0.0793 U	< 0.0793 U	< 0.0793 U
WHC2-D13SE	0	NORM	12/3/2009			< 0.107 U	< 0.107 U	< 0.107 U	< 0.176 U	< 0.107 U	< 0.107 U	< 0.107 U	< 0.107 U
WHC2-D13SW	0	NORM	12/3/2009			< 0.0998 U	< 0.0998 U	< 0.0998 U	< 0.165 U	< 0.0998 U	< 0.0998 U	< 0.0998 U	< 0.0998 U
WHC2-D14C	0	NORM	12/2/2009	0.576 J	0.349 J	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.117 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.0706 U
WHC2-D17C	0	NORM	12/1/2009			< 0.0731 U	< 0.0731 U	< 0.0731 U	< 0.121 U	< 0.0731 U	< 0.0731 U	< 0.0731 U	< 0.0731 U
WHC2-D18C	0	NORM	12/1/2009			< 0.0674 U	< 0.0674 U	< 0.0674 U	< 0.111 U	< 0.0674 U	< 0.0674 U	< 0.0674 U	< 0.0674 U
WHC2-D18C	0	FD	12/1/2009			< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.111 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.0675 U
WHC2-D25C	0	NORM	12/1/2009			< 0.0676 U	< 0.0676 U	< 0.0676 U	< 0.112 U	< 0.0676 U	< 0.0676 U	< 0.0676 U	< 0.0676 U
WHC2-P11C	0	NORM	12/1/2009			0.13 J	< 0.0683 U	< 0.0683 U	0.359	< 0.0683 U	< 0.0683 U	< 0.0683 U	< 0.0683 U
WHC6-D05	0	NORM	7/27/2012			< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U
WHC6-D11	0	NORM	7/27/2012			< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U
WHC6-P11	0	NORM	7/27/2012			< 0.0676 U	< 0.0676 U	< 0.0676 U	< 0.112 U	< 0.0676 U	< 0.0676 U	< 0.0676 U	< 0.0676 U

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 10 of 63)

							Semi-V	olatile Organic	c Compounds (S	SVOCs)			
	Depth	Sample	Sample	.4-Dinitrophenol	.4-Dinitrotoluene	.6-Dinitrotoluene	2-Chloronaphthalene	Chlorophenol	2-Methylnaphthalene	2-Nitroaniline	2-Nitrophenol	.3-Dichlorobenzidine	3-Nitroaniline
Sample ID	(ft bgs)	Type	Date	, Zi	2,	ζ,		2-				ά,	
OSC1-BM11	0	NORM	9/21/2009	< 0.133 U	< 0.0351 U	< 0.0351 U	< 0.0123 U	< 0.0701 U	< 0.00701 U	< 0.0701 U	< 0.0351 U	< 0.105 U	< 0.0701 U
OSC1-BM11	10	NORM	9/21/2009	< 0.147 U	< 0.0387 U	< 0.0387 U	< 0.0135 U	< 0.0774 U	< 0.00774 U	< 0.0774 U	< 0.0387 U	< 0.116 U	< 0.0774 U
OSC1-BN11	0	NORM	9/22/2009	< 0.129 U	< 0.034 U	< 0.034 U	< 0.0119 U	< 0.068 U	< 0.0068 U	< 0.068 U	< 0.034 U	< 0.102 U	< 0.068 U
OSC1-BN11	5	NORM	9/22/2009	< 0.135 U	< 0.0356 U	< 0.0356 U	< 0.0124 U	< 0.0711 U	< 0.00711 U	< 0.0711 U	< 0.0356 U	< 0.107 U	< 0.0711 U
OSC1-BO11	0	NORM	9/16/2009	< 0.132 U	< 0.0347 U	< 0.0347 U	< 0.0121 U	< 0.0694 U	< 0.00694 U	< 0.0694 U	< 0.0347 U	< 0.104 U	< 0.0694 U
OSC1-BO11	0	FD	9/16/2009	< 0.141 U	< 0.0372 U	< 0.0372 U	< 0.013 U	< 0.0745 U	< 0.00745 U	< 0.0745 U	< 0.0372 U	< 0.112 U	< 0.0745 U
OSC1-BO11	5	NORM	9/16/2009	< 0.141 U	< 0.0371 U	< 0.0371 U	< 0.013 U	< 0.0743 U	< 0.00743 U	< 0.0743 U	< 0.0371 U	< 0.111 U	< 0.0743 U
OSC1-BP11	0	NORM	9/16/2009	< 0.139 U	< 0.0365 U	< 0.0365 U	< 0.0128 U	< 0.0731 U	< 0.00731 U	< 0.0731 U	< 0.0365 U	< 0.11 U	< 0.0731 U
OSC1-BP11	5	NORM	9/16/2009	< 0.143 U	< 0.0378 U	< 0.0378 U	< 0.0132 U	< 0.0755 U	< 0.00755 U	< 0.0755 U	< 0.0378 U	< 0.113 U	< 0.0755 U
OSC1-JP06	0	NORM	9/22/2009	< 0.135 U	< 0.0355 U	< 0.0355 U	< 0.0124 U	< 0.071 U	< 0.0071 U	< 0.071 U	< 0.0355 U	< 0.106 U	< 0.071 U
OSC1-JP06	5	NORM	9/22/2009	< 0.147 U	< 0.0387 U	< 0.0387 U	< 0.0136 U	< 0.0774 U	< 0.00774 U	< 0.0774 U	< 0.0387 U	< 0.116 U	< 0.0774 U
OSC1-JP07	0	NORM	9/21/2009	< 0.137 U	< 0.0361 U	< 0.0361 U	< 0.0126 U	< 0.0722 U	< 0.00722 U	< 0.0722 U	< 0.0361 U	< 0.108 U	< 0.0722 U
OSC1-JP07	5	NORM	9/21/2009	< 0.161 U	< 0.0423 U	< 0.0423 U	< 0.0148 U	< 0.0847 U	< 0.00847 U	< 0.0847 U	< 0.0423 U	< 0.127 U	< 0.0847 U
OSC1-JP08	0	NORM	9/21/2009	< 0.143 U	< 0.0376 U	< 0.0376 U	< 0.0132 U	< 0.0752 U	< 0.00752 U	< 0.0752 U	< 0.0376 U	< 0.113 U	< 0.0752 U
OSC1-JP08	10	NORM	9/21/2009	< 0.142 U	< 0.0375 U	< 0.0375 U	< 0.0131 U	< 0.075 U	< 0.0075 U	< 0.075 U	< 0.0375 U	< 0.112 U	< 0.075 U
WHC1-BF01	0	NORM	11/24/2008	< 0.129 U	< 0.0339 U	< 0.0339 U	< 0.0119 U	< 0.0678 U	< 0.00678 U	< 0.0678 U	< 0.0339 U	< 0.102 U	< 0.0678 UJ
WHC1-BF01	12	NORM	11/24/2008	< 0.132 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0693 U	< 0.00693 U	< 0.0693 U	< 0.0346 U	< 0.104 U	< 0.0693 UJ
WHC1-BF02	0	NORM	11/25/2008	< 0.127 U	< 0.0335 U	< 0.0335 U	< 0.0117 U	< 0.067 U	< 0.0067 U	< 0.067 U	< 0.0335 U	< 0.101 U	< 0.067 U
WHC1-BF02	11	NORM	11/25/2008	< 0.131 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0691 U	< 0.00691 U	< 0.0691 U	< 0.0346 U	< 0.104 U	< 0.0691 U
WHC1-BF03	0	NORM	11/25/2008	< 0.129 U	< 0.0338 U	< 0.0338 U	< 0.0118 U	< 0.0677 U	< 0.00677 U	< 0.0677 U	< 0.0338 U	< 0.102 U	< 0.0677 U
WHC1-BF03	10	NORM	11/25/2008	< 0.132 U	< 0.0347 U	< 0.0347 U	< 0.0121 U	< 0.0693 U	< 0.00693 U	< 0.0693 U	< 0.0347 U	< 0.104 U	< 0.0693 U
WHC1-BF04	0	NORM	11/25/2008	< 0.129 U	< 0.0339 U	< 0.0339 U	< 0.0119 U	< 0.0678 U	< 0.00678 U	< 0.0678 U	< 0.0339 U	< 0.102 U	< 0.0678 U
WHC1-BF04	0	FD	11/25/2008	< 0.131 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0692 U	< 0.00692 U	< 0.0692 U	< 0.0346 U	< 0.104 U	< 0.0692 U
WHC1-BF04	10	NORM	11/25/2008	< 0.133 U	< 0.035 U	< 0.035 U	< 0.0122 U	< 0.0699 U	< 0.00699 U	< 0.0699 U	< 0.035 U	< 0.105 U	< 0.0699 U
WHC1-BF05	0	NORM	11/25/2008	< 0.132 U	< 0.0347 U	< 0.0347 U	< 0.0121 U	< 0.0694 U	< 0.00694 U	< 0.0694 U	< 0.0347 U	< 0.104 U	< 0.0694 UJ
WHC1-BF05	12	NORM	12/10/2008	< 0.173 U	< 0.0456 U	< 0.0456 U	< 0.0159 UJ	< 0.0911 UJ	< 0.00911 UJ	< 0.0911 UJ	< 0.0456 U	< 0.137 U	< 0.0911 UJ
WHC1-BF06	0	NORM	12/10/2008	< 0.132 U	< 0.0348 U	< 0.0348 U	< 0.0122 U	< 0.0696 U	< 0.00696 U	< 0.0696 U	< 0.0348 U	< 0.104 U	< 0.0696 UJ
WHC1-BF06	10	NORM	12/10/2008	< 0.176 U	< 0.0464 U	< 0.0464 U	< 0.0162 U	< 0.0927 U	< 0.00927 U	< 0.0927 U	< 0.0464 U	< 0.139 U	< 0.0927 UJ
WHC1-BG01	0	NORM	11/24/2008	< 0.131 U	< 0.0343 U	< 0.0343 U	< 0.012 U	< 0.0687 U	< 0.00687 U	< 0.0687 U	< 0.0343 U	< 0.103 U	< 0.0687 UJ
WHC1-BG01	11	NORM	11/24/2008	< 0.133 U	< 0.035 U	< 0.035 U	< 0.0123 U	< 0.0701 U	< 0.00701 U	< 0.0701 U	< 0.035 U	< 0.105 U	< 0.0701 UJ
WHC1-BG02	0	NORM	11/24/2008	< 0.128 U	< 0.0338 U	< 0.0338 U	< 0.0118 U	< 0.0675 U	< 0.00675 U	< 0.0675 U	< 0.0338 U	< 0.101 U	< 0.0675 UJ
WHC1-BG02	0	FD	11/24/2008	< 0.128 U	< 0.0336 U	< 0.0336 U	< 0.0118 U	< 0.0672 U	< 0.00672 U	< 0.0672 U	< 0.0336 U	< 0.101 U	< 0.0672 UJ
WHC1-BG02	10	NORM	11/24/2008	< 0.132 U	< 0.0348 U	< 0.0348 U	< 0.0122 U	< 0.0697 U	< 0.00697 U	< 0.0697 U	< 0.0348 U	< 0.105 U	< 0.0697 UJ
WHC1-BG03	0	NORM	12/11/2008	< 0.133 U	< 0.0351 U	< 0.0351 U	< 0.0123 U	< 0.0702 U	< 0.00702 U	< 0.0702 U	< 0.0351 U	< 0.105 U	< 0.0702 U
WHC1-BG03	11	NORM	12/11/2008	< 0.133 U	< 0.0351 U	< 0.0351 U	< 0.0123 U	< 0.0702 U	< 0.00702 U	< 0.0702 U	< 0.0351 U	< 0.105 U	< 0.0702 U
WHC1-BG04	0	NORM	12/11/2008	< 0.133 U	< 0.0344 U	< 0.0344 U	< 0.012 U	< 0.0688 U	< 0.00688 U	< 0.0688 U	< 0.0344 U	< 0.103 U	< 0.0688 U
WHC1-BG04	10	NORM	12/11/2008	< 0.169 U	< 0.0446 U	< 0.0446 U	< 0.012 U	< 0.0891 U	< 0.00891 U	< 0.0891 U	< 0.0446 U	< 0.134 U	< 0.0891 U
WHC1-BG05	0	NORM	11/25/2008	< 0.138 U	< 0.0364 U	< 0.0364 U	< 0.0130 U	< 0.0728 U	< 0.00728 U	< 0.0728 U	< 0.0364 U	< 0.109 U	< 0.0728 U
WHC1-BG05	10	NORM	11/25/2008	< 0.154 U	< 0.0406 U	< 0.0406 U	< 0.0127 U	< 0.0728 U	< 0.00728 U	< 0.0728 U	< 0.0406 U	< 0.107 U	< 0.0728 U
77110171000	10	11/1/1/1/1	11/43/4000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ v.v+vu U	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~ 0.001∠ U	V.00014 U	~ 0.0014 U	~ 0.0100 U	N 0.144 U	N 0.0014 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 11 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			
				.4-Dinitrophenol	.4-Dinitrotoluene	6-Dinitrotoluene	2-Chloronaphthalene	Chlorophenol	2-Methylnaphthalene	2-Nitroaniline	2-Nitrophenol	3-Dichlorobenzidine	3-Nitroaniline
				nit	nit	nit	OTO.	oro	hyl	oan	ldo	chl	oan
	Depth	Sample	Sample	Ξ̈́	įĢ	įĢ	l jij	Į Įį	[et]	litr	litr.	įĢ	litr
Sample ID	(ft bgs)	Type	Date	4,7	2,4	2,6	Z-C	Z-C	2-N	2-N	2-N	3,3	3-N
WHC1-BG06	0	NORM	12/10/2008	< 0.132 UJ	< 0.0347 UJ	< 0.0347 UJ	< 0.0122 UJ	< 0.0695 UJ	< 0.00695 UJ	< 0.0695 UJ	< 0.0347 UJ	< 0.104 UJ	< 0.0695 UJ
WHC1-BG06	10	NORM	12/10/2008	< 0.183 U	< 0.0483 U	< 0.0483 U	< 0.0169 U	< 0.0965 U	< 0.00965 U	< 0.0965 U	< 0.0483 U	< 0.145 U	< 0.0965 UJ
WHC1-BH01	0	NORM	12/3/2008	< 0.13 U	< 0.0342 U	< 0.0342 U	< 0.012 U	< 0.0684 U	< 0.00684 U	< 0.0684 U	< 0.0342 U	< 0.103 U	< 0.0684 U
WHC1-BH01	11	NORM	12/3/2008	< 0.13 U	< 0.0343 U	< 0.0343 U	< 0.012 U	< 0.0687 U	< 0.00687 U	< 0.0687 U	< 0.0343 U	< 0.103 U	< 0.0687 UJ
WHC1-BH02	0	NORM	12/4/2008	< 0.134 UJ	< 0.0352 U	< 0.0352 U	< 0.0123 U	< 0.0704 U	< 0.00704 U	< 0.0704 U	< 0.0352 U	< 0.106 U	< 0.0704 U
WHC1-BH02	10	NORM	12/4/2008	< 0.13 UJ	< 0.0343 U	< 0.0343 U	< 0.012 U	< 0.0685 U	< 0.00685 U	< 0.0685 U	< 0.0343 U	< 0.103 U	< 0.0685 U
WHC1-BH03	0	NORM	12/9/2008	< 0.129 U	< 0.0341 U	< 0.0341 U	< 0.0119 U	< 0.0681 U	< 0.00681 U	< 0.0681 U	< 0.0341 U	< 0.102 U	< 0.0681 U
WHC1-BH03	10	NORM	12/9/2008	< 0.132 U	< 0.0348 U	< 0.0348 U	< 0.0122 U	< 0.0695 U	< 0.00695 U	< 0.0695 U	< 0.0348 U	< 0.104 U	< 0.0695 U
WHC1-BH04	0	NORM	12/11/2008	< 0.131 U	< 0.0344 U	< 0.0344 U	< 0.012 U	< 0.0688 U	< 0.00688 U	< 0.0688 U	< 0.0344 U	< 0.103 U	< 0.0688 U
WHC1-BH04	10	NORM	12/11/2008	< 0.131 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0691 U	< 0.00691 U	< 0.0691 U	< 0.0346 U	< 0.104 U	< 0.0691 U
WHC1-BH05	0	NORM	12/9/2008	< 0.131 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0691 U	< 0.00691 U	< 0.0691 U	< 0.0346 U	< 0.104 U	< 0.0691 U
WHC1-BH05	0	FD	12/9/2008	< 0.132 U	< 0.0347 U	< 0.0347 U	< 0.0121 U	< 0.0694 U	< 0.00694 U	< 0.0694 U	< 0.0347 U	< 0.104 U	< 0.0694 U
WHC1-BH05	10	NORM	12/9/2008	< 0.136 U	< 0.0358 U	< 0.0358 U	< 0.0125 U	< 0.0716 U	< 0.00716 U	< 0.0716 U	< 0.0358 U	< 0.107 U	< 0.0716 U
WHC1-BH06	0	NORM	12/11/2008	< 0.144 U	< 0.0378 U	< 0.0378 U	< 0.0132 U	< 0.0757 U	< 0.00757 U	< 0.0757 U	< 0.0378 U	< 0.113 U	< 0.0757 U
WHC1-BH06	0	FD	12/11/2008	< 0.135 U	< 0.0355 U	< 0.0355 U	< 0.0124 U	< 0.071 U	< 0.0071 U	< 0.071 U	< 0.0355 U	< 0.107 U	< 0.071 U
WHC1-BH06	10	NORM	12/11/2008	< 0.148 U	< 0.039 U	< 0.039 U	< 0.0137 U	< 0.0781 U	< 0.00781 U	< 0.0781 U	< 0.039 U	< 0.117 U	< 0.0781 U
WHC1-BI01	0	NORM	12/3/2008	< 0.133 U	< 0.0351 U	< 0.0351 U	< 0.0123 U	< 0.0702 U	< 0.00702 U	< 0.0702 U	< 0.0351 U	< 0.105 U	< 0.0702 UJ
WHC1-BI01	11	NORM	12/3/2008	< 0.133 U	< 0.035 U	< 0.035 U	< 0.0122 U	< 0.07 U	< 0.007 U	< 0.07 U	< 0.035 U	< 0.105 U	< 0.07 UJ
WHC1-BI02	0	NORM	12/4/2008	< 0.132 UJ	< 0.0349 U	< 0.0349 U	< 0.0122 U	< 0.0697 U	< 0.00697 U	< 0.0697 U	< 0.0349 U	< 0.105 U	< 0.0697 U
WHC1-BI02	3	NORM	12/4/2008	< 0.13 UJ	< 0.0343 U	< 0.0343 U	< 0.012 U	< 0.0686 U	< 0.00686 U	< 0.0686 U	< 0.0343 U	< 0.103 U	< 0.0686 U
WHC1-BI02	13	NORM	12/4/2008	< 0.132 UJ	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0692 U	< 0.00692 U	< 0.0692 U	< 0.0346 U	< 0.104 U	< 0.0692 U
WHC1-BI03	0	NORM	12/4/2008	< 0.131 UJ	< 0.0344 U	< 0.0344 U	< 0.0121 U	< 0.0689 U	< 0.00689 U	< 0.0689 U	< 0.0344 U	< 0.103 U	< 0.0689 U
WHC1-BI03	11	NORM	12/4/2008	< 0.131 UJ	< 0.0344 U	< 0.0344 U	< 0.012 U	< 0.0687 U	< 0.00687 U	< 0.0687 U	< 0.0344 U	< 0.103 U	< 0.0687 U
WHC1-BI04	0	NORM	12/8/2008	< 0.129 U	< 0.0339 U	< 0.0339 U	< 0.0119 U	< 0.0679 U	< 0.00679 U	< 0.0679 U	< 0.0339 U	< 0.102 U	< 0.0679 U
WHC1-BI04	10	NORM	12/9/2008	< 0.135 U	< 0.0355 U	< 0.0355 U	< 0.0124 U	< 0.071 U	< 0.0071 U	< 0.071 U	< 0.0355 U	< 0.106 U	< 0.071 U
WHC1-BI05	0	NORM	12/9/2008	< 0.13 U	< 0.0342 U	< 0.0342 U	< 0.012 U	< 0.0685 U	< 0.00685 U	< 0.0685 U	< 0.0342 U	< 0.103 U	< 0.0685 U
WHC1-BI05	10	NORM	12/9/2008	< 0.131 U	< 0.0345 U	< 0.0345 U	< 0.0121 U	< 0.0691 U	< 0.00691 U	< 0.0691 U	< 0.0345 U	< 0.104 U	< 0.0691 U
WHC1-BJ01	0	NORM	12/3/2008	< 0.132 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0692 U	< 0.00692 U	< 0.0692 U	< 0.0346 U	< 0.104 U	< 0.0692 UJ
WHC1-BJ01	3	NORM	12/3/2008	< 0.132 U	< 0.0348 U	< 0.0348 U	< 0.0122 U	< 0.0697 U	< 0.00697 U	< 0.0697 U	< 0.0348 U	< 0.105 U	< 0.0697 UJ
WHC1-BJ01	13	NORM	12/3/2008	< 0.134 U	< 0.0353 U	< 0.0353 U	< 0.0124 U	< 0.0706 U	< 0.00706 U	< 0.0706 U	< 0.0353 U	< 0.106 U	< 0.0706 UJ
WHC1-BJ02	0	NORM	12/2/2008	< 0.132 U	< 0.0348 U	< 0.0348 U	< 0.0122 U	< 0.0697 U	0.0166 J	< 0.0697 U	< 0.0348 U	< 0.105 U	< 0.0697 U
WHC1-BJ02	0	FD	12/2/2008	< 5.28 U	< 1.39 U	< 1.39 U	< 0.486 U	< 2.78 U	< 0.278 U	< 2.78 U	< 1.39 U	< 4.17 U	< 2.78 U
WHC1-BJ02	12	NORM	12/2/2008	< 0.132 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0692 U	< 0.00692 U	< 0.0692 U	< 0.0346 U	< 0.104 U	< 0.0692 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.133 UJ	< 0.035 U	< 0.035 U	< 0.0122 U	< 0.0699 U	< 0.00699 U	< 0.0699 U	< 0.035 U	< 0.105 U	< 0.0699 U
WHC1-BJ03	0	FD	12/4/2008	< 0.133 UJ	< 0.0349 U	< 0.0349 U	< 0.0122 U	< 0.0698 U	< 0.00698 U	< 0.0698 U	< 0.0349 U	< 0.105 U	< 0.0698 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.131 UJ	< 0.0345 U	< 0.0345 U	< 0.0121 U	< 0.069 U	< 0.0069 U	< 0.069 U	< 0.0345 U	< 0.104 U	< 0.069 U
WHC1-BJ04	0	NORM	12/4/2008	< 0.132 UJ	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0692 U	< 0.00692 U	< 0.0692 U	< 0.0346 U	< 0.104 U	< 0.0692 U
WHC1-BJ04	11	NORM	12/4/2008	< 0.131 UJ	< 0.0345 U	< 0.0345 U	< 0.0121 U	< 0.069 U	< 0.0069 U	< 0.069 U	< 0.0345 U	< 0.103 U	< 0.069 U
WHC1-BJ05	0	NORM	12/11/2008	< 0.129 U	< 0.0339 U	< 0.0339 U	< 0.0119 U	< 0.0678 U	< 0.00678 U	< 0.0678 U	< 0.0339 U	< 0.102 U	< 0.0678 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 12 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			
Seconda III	Depth	Sample	Sample	.4-Dinitrophenol	.4-Dinitrotoluene	.6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Nitroaniline	2-Nitrophenol	.3-Dichlorobenzidine	3-Nitroaniline
Sample ID	(ft bgs)	Type	Date	6 122 II	60 0349 11	6 6		< 0.0697 U			< 0.0348 U	რ - 0.105 II	< 0.0697 U
WHC1-BJ05	10	NORM	12/11/2008	< 0.132 U	< 0.0348 U	< 0.0348 U	< 0.0122 U		< 0.00697 U	< 0.0697 U		< 0.105 U	
WHC1-BK01	0	NORM FD	12/3/2008	< 0.133 U	< 0.035 U	< 0.035 U	< 0.0122 U	< 0.07 U	< 0.007 U	< 0.07 U	< 0.035 U	< 0.105 U	< 0.07 UJ
WHC1-BK01			12/3/2008	< 0.132 U	< 0.0348 U	< 0.0348 U	< 0.0122 U	< 0.0696 U	< 0.00696 U	< 0.0696 U	< 0.0348 U	< 0.104 U	< 0.0696 UJ
WHC1-BK01	10	NORM	12/3/2008	< 0.133 U	< 0.035 U	< 0.035 U	< 0.0123 U	< 0.0701 U	< 0.00701 U	< 0.0701 U	< 0.035 U	< 0.105 U	< 0.0701 UJ
WHC1-BK02	0	NORM	12/8/2008	< 0.13 U	< 0.0343 U	< 0.0343 U	< 0.012 U	< 0.0687 U	< 0.00687 U	< 0.0687 U	< 0.0343 U	< 0.103 U	< 0.0687 U
WHC1-BK02	11	NORM	12/18/2008	< 0.132 U	< 0.0348 U	< 0.0348 U	< 0.0122 U	< 0.0696 U	< 0.00696 U	< 0.0696 U	< 0.0348 U	< 0.104 U	< 0.0696 U
WHC1-BK03	0	NORM	12/15/2008	< 0.131 U	< 0.0344 U	< 0.0344 U	< 0.012 U	< 0.0688 U	< 0.00688 U	< 0.0688 U	< 0.0344 U	< 0.103 U	< 0.0688 U
WHC1-BK03	12	NORM	12/18/2008	< 0.136 U	< 0.0357 U	< 0.0357 U	< 0.0125 U	< 0.0713 U	< 0.00713 U	< 0.0713 U	< 0.0357 U	< 0.107 U	< 0.0713 U
WHC1-BK04	0	NORM	12/4/2008	< 0.131 UJ	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0691 U	< 0.00691 U	< 0.0691 U	< 0.0346 U	< 0.104 U	< 0.0691 U
WHC1-BK04	10	NORM	12/4/2008	< 0.132 UJ	< 0.0348 U	< 0.0348 U	< 0.0122 U	< 0.0697 U	< 0.00697 U	< 0.0697 U	< 0.0348 U	< 0.105 U	< 0.0697 U
WHC1-BK05	0	NORM	12/12/2008	< 0.13 U	< 0.0342 U	< 0.0342 U	< 0.012 U	< 0.0684 U	< 0.00684 U	< 0.0684 U	< 0.0342 U	< 0.103 U	< 0.0684 U
WHC1-BK05	11	NORM	12/12/2008	< 0.133 U	< 0.0349 U	< 0.0349 U	< 0.0122 U	< 0.0698 U	< 0.00698 U	< 0.0698 U	< 0.0349 U	< 0.105 U	< 0.0698 U
WHC1-BL01	0	NORM	12/3/2008	< 0.131 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0692 U	< 0.00692 U	< 0.0692 U	< 0.0346 U	< 0.104 U	< 0.0692 UJ
WHC1-BL01	10	NORM	12/3/2008	< 0.133 U	< 0.0351 U	< 0.0351 U	< 0.0123 U	< 0.0702 U	< 0.00702 U	< 0.0702 U	< 0.0351 U	< 0.105 U	< 0.0702 UJ
WHC1-BL02	0	NORM	12/2/2008	< 0.132 U	< 0.0347 U	< 0.0347 U	< 0.0121 U	< 0.0694 U	< 0.00694 U	< 0.0694 U	< 0.0347 U	< 0.104 U	< 0.0694 U
WHC1-BL02	10	NORM	12/2/2008	< 0.129 U	< 0.0341 U	< 0.0341 U	< 0.0119 U	< 0.0681 U	< 0.00681 U	< 0.0681 U	< 0.0341 U	< 0.102 U	< 0.0681 U
WHC1-BL03	0	NORM	12/8/2008	< 0.13 U	< 0.0341 U	< 0.0341 U	< 0.0119 U	< 0.0682 U	< 0.00682 U	< 0.0682 U	< 0.0341 U	< 0.102 U	< 0.0682 U
WHC1-BL03	10	NORM	12/18/2008	< 0.134 U	< 0.0352 U	< 0.0352 U	< 0.0123 U	< 0.0703 U	< 0.00703 U	< 0.0703 U	< 0.0352 U	< 0.106 U	< 0.0703 U
WHC1-BL04	0	NORM	12/17/2008	< 0.134 U	< 0.0353 U	< 0.0353 U	< 0.0123 U	< 0.0705 U	< 0.00705 U	< 0.0705 U	< 0.0353 U	< 0.106 U	< 0.0705 U
WHC1-BL04	12	NORM	12/22/2008	< 0.131 U	< 0.0344 U	< 0.0344 U	< 0.012 U	< 0.0688 U	< 0.00688 U	< 0.0688 U	< 0.0344 U	< 0.103 U	< 0.0688 U
WHC1-BL05	0	NORM	11/21/2008	< 0.128 U	< 0.0337 U	< 0.0337 U	< 0.0118 U	< 0.0675 U	< 0.00675 U	< 0.0675 U	< 0.0337 U	< 0.101 U	< 0.0675 U
WHC1-BL05	10	NORM	11/21/2008	< 0.132 U	< 0.0347 U	< 0.0347 U	< 0.0122 U	< 0.0695 U	< 0.00695 U	< 0.0695 U	< 0.0347 U	< 0.104 U	< 0.0695 U
WHC1-BL06	0	NORM	11/21/2008	< 0.135 U	< 0.0354 U	< 0.0354 U	< 0.0124 U	< 0.0708 U	< 0.00708 U	< 0.0708 U	< 0.0354 U	< 0.106 U	< 0.0708 U
WHC1-BL06	11	NORM	11/21/2008	< 0.133 U	< 0.035 U	< 0.035 U	< 0.0123 U	< 0.07 U	< 0.007 U	< 0.07 U	< 0.035 U	< 0.105 U	< 0.07 U
WHC1-BL07	0	NORM	11/21/2008	< 0.133 U	< 0.035 U	< 0.035 U	< 0.0122 U	< 0.07 U	< 0.007 U	< 0.07 U	< 0.035 U	< 0.105 U	< 0.07 U
WHC1-BL07	10	NORM	11/21/2008	< 0.132 U	< 0.0347 U	< 0.0347 U	< 0.0121 U	< 0.0694 U	< 0.00694 U	< 0.0694 U	< 0.0347 U	< 0.104 U	< 0.0694 U
WHC1-BL08	0	NORM	11/18/2008	< 0.132 U	< 0.0347 U	< 0.0347 U	< 0.0121 U	< 0.0693 U	< 0.00693 U	< 0.0693 U	< 0.0347 U	< 0.104 U	< 0.0693 UJ
WHC1-BL08	10	NORM	11/18/2008	< 0.133 U	< 0.035 U	< 0.035 U	< 0.0123 U	< 0.07 U	< 0.007 U	< 0.07 U	< 0.035 U	< 0.105 U	< 0.07 UJ
WHC1-BL11	0	NORM	11/18/2008	< 0.133 U	< 0.035 U	< 0.035 U	< 0.0122 U	< 0.0699 U	< 0.00699 U	< 0.0699 U	< 0.035 U	< 0.105 U	< 0.0699 UJ
WHC1-BL11	12	NORM	11/18/2008	< 0.133 U	< 0.0351 U	< 0.0351 U	< 0.0123 U	< 0.0702 U	< 0.00702 U	< 0.0702 U	< 0.0351 U	< 0.105 U	< 0.0702 UJ
WHC1-BM01	0	NORM	12/3/2008	< 0.135 U	< 0.0355 U	< 0.0355 U	< 0.0124 U	< 0.071 U	< 0.0071 U	< 0.071 U	< 0.0355 U	< 0.107 U	< 0.071 UJ
WHC1-BM01	10	NORM	12/3/2008	< 0.131 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0692 U	< 0.00692 U	< 0.0692 U	< 0.0346 U	< 0.104 U	< 0.0692 UJ
WHC1-BM02	0	NORM	12/2/2008	< 0.136 U	< 0.0358 U	< 0.0358 U	< 0.0125 U	< 0.0717 U	< 0.00717 U	< 0.0717 U	< 0.0358 U	< 0.108 U	< 0.0717 U
WHC1-BM02	12	NORM	12/2/2008	< 0.134 U	< 0.0353 U	< 0.0353 U	< 0.0124 U	< 0.0707 U	< 0.00707 U	< 0.0707 U	< 0.0353 U	< 0.106 U	< 0.0707 U
WHC1-BM03	0	NORM	12/8/2008	< 0.13 U	< 0.0342 U	< 0.0342 U	< 0.012 U	< 0.0684 U	< 0.00684 U	< 0.0684 U	< 0.0342 U	< 0.103 U	< 0.0684 U
WHC1-BM03	10	NORM	12/18/2008	< 0.137 U	< 0.036 U	< 0.036 U	< 0.0126 U	< 0.072 U	< 0.0072 U	< 0.072 U	< 0.036 U	< 0.108 U	< 0.072 U
WHC1-BM04	0		12/17/2008	< 0.133 U	< 0.035 U	< 0.035 U	< 0.0122 U	< 0.07 U	< 0.007 U	< 0.07 U	< 0.035 U	< 0.105 U	< 0.07 U
WHC1-BM04	0	FD	12/17/2008	< 0.133 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0692 U	< 0.00692 U	< 0.0692 U	< 0.0346 U	< 0.103 U	< 0.0692 U
WHC1-BM04	10		12/22/2008	< 0.132 U	< 0.0357 U	< 0.0357 U	< 0.0121 U	< 0.0032 U	< 0.00714 U	< 0.0714 U	< 0.0357 U	< 0.104 U	< 0.0714 U
THE DIVICT	10	TIOINI	12/22/2000	< 0.130 U	\ 0.0331 U	\ 0.0331 U	< 0.0123 U	\ 0.0/1 + U	\ 0.00/1 + U	\ 0.0/1 7 U	\ 0.0331 U	\ 0.107 U	\ 0.0/1 7 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 13 of 63)

Sample ID Depth Sample (ft bgs) Type Date Ty	U U U U U U U U U U
Sample ID WHG1-BM05	 < 0.0674 U < 0.0706 U < 0.0678 U < 0.0709 U < 0.0715 U < 0.0684 U < 0.0698 U < 0.0716 UJ < 0.077 UJ < 0.0722 UJ
WHC1-BM05	 < 0.0674 U < 0.0706 U < 0.0678 U < 0.0709 U < 0.0715 U < 0.0684 U < 0.0698 U < 0.0716 UJ < 0.077 UJ < 0.0722 UJ
WHC1-BM05	 < 0.0678 U < 0.0709 U < 0.0715 U < 0.0684 U < 0.0698 U < 0.0716 UJ < 0.077 UJ < 0.0722 UJ
WHC1-BM06	 < 0.0678 U < 0.0709 U < 0.0715 U < 0.0684 U < 0.0698 U < 0.0716 UJ < 0.077 UJ < 0.0722 UJ
WHC1-BM06	 < 0.0709 U < 0.0715 U < 0.0684 U < 0.0698 U < 0.0716 UJ < 0.077 UJ < 0.0722 UJ
WHC1-BM06	< 0.0715 U < 0.0684 U < 0.0698 U < 0.0716 UJ < 0.077 UJ < 0.0722 UJ
WHC1-BM07	<0.0684 U <0.0698 U <0.0716 UJ <0.077 UJ <0.0722 UJ
WHC1-BM07 11 NORM 11/20/2008 < 0.133 U < 0.0349 U < 0.0122 U < 0.0698 U < 0.0698 U < 0.0349 U < 0.015 U WHC1-BM08 0 NORM 11/18/2008 < 0.136 U	<0.0698 U <0.0716 UJ <0.077 UJ <0.0722 UJ
WHC1-BM08 0 NORM 11/18/2008 < 0.0358 U < 0.0358 U < 0.0125 U < 0.00716 U < 0.00716 U < 0.0378 U < 0.107 U WHC1-BM08 0 FD 11/18/2008 < 0.146 U	< 0.0716 UJ < 0.077 UJ < 0.0722 UJ
WHC1-BM08 0 FD 11/18/2008 < 0.0385 U < 0.0385 U < 0.0135 U < 0.0077 U < 0.0077 U < 0.0385 U < 0.116 U WHC1-BM08 11 NORM 11/18/2008 < 0.137 U	< 0.077 UJ < 0.0722 UJ
WHC1-BM08 11 NORM 11/18/2008 < 0.137 U < 0.0361 U < 0.0126 U < 0.0722 U < 0.0722 U < 0.0722 U < 0.0361 U < 0.108 U WHC1-BM09 0 NORM 11/18/2008 < 0.134 U	< 0.0722 UJ
WHC1-BM09 0 NORM 11/18/2008 < 0.134 U < 0.0353 U < 0.0124 U < 0.0706 U < 0.0353 U < 0.106 U WHC1-BM09 12 NORM 11/18/2008	
WHC1-BM09 12 NORM 11/18/2008 <td></td>	
WHC1-BM10 0 NORM 11/18/2008 < 0.135 U < 0.0354 U < 0.0354 U < 0.0124 U < 0.0709 U < 0.0709 U < 0.0709 U < 0.0354 U < 0.106 U WHC1-BM10 3 NORM 11/18/2008 < 0.136 U	
WHC1-BM10 3 NORM 11/18/2008 < 0.136 U < 0.0357 U < 0.0357 U < 0.0125 U < 0.0715 U < 0.0715 U < 0.03715 U < 0.0357 U < 0.107 U WHC1-BM10 13 NORM 11/18/2008 < 0.153 U	< 0.0709 UJ
WHC1-BM10 13 NORM 11/18/2008 < 0.153 U < 0.0402 U < 0.0402 U < 0.0414 U < 0.0805 U < 0.0805 U < 0.0805 U < 0.0402 U < 0.121 U WHC1-BN01 0 NORM 12/1/2008 < 0.131 UJ	< 0.0715 UJ
WHC1-BN01 0 NORM 12/1/2008 < 0.131 UJ < 0.0343 U < 0.012 U < 0.0687 U < 0.0687 U < 0.0687 U < 0.0343 U < 0.103 U WHC1-BN01 12 NORM 12/1/2008 < 0.132 UJ < 0.0347 U < 0.012 U < 0.0694 U < 0.0694 U < 0.0694 U < 0.0347 U < 0.103 U WHC1-BN02 0 NORM 12/1/2008 < 0.133 UJ < 0.0351 U < 0.0351 U < 0.0123 U < 0.0702 U < 0.0702 U < 0.0351 U < 0.105 U WHC1-BN02 0 FD 12/1/2008 < 0.133 UJ < 0.035 U < 0.035 U < 0.0123 U < 0.0701 U < 0.0701 U < 0.035 U < 0.105 U WHC1-BN02 11 NORM 12/1/2008 < 0.131 UJ < 0.035 U < 0.035 U < 0.0123 U < 0.0701 U < 0.0701 U < 0.035 U < 0.105 U WHC1-BN03 0 NORM 12/1/2008 < 0.135 U < 0.0357 U < 0.0357 U < 0.0125 U < 0.0687 U < 0.0687 U < 0.0687 U < 0.0344 U < 0.103 U	< 0.0805 UJ
WHC1-BN01 12 NORM 12/1/2008 < 0.132 UJ < 0.0347 U < 0.0347 U < 0.0121 U < 0.0694 U < 0.0694 U < 0.0694 U < 0.0347 U < 0.104 U WHC1-BN02 0 NORM 12/1/2008 < 0.133 UJ	< 0.0687 U
WHC1-BN02 0 NORM 12/1/2008 < 0.133 UJ < 0.0351 U < 0.0123 U < 0.0702 U < 0.0702 U < 0.0702 U < 0.0351 U < 0.105 U WHC1-BN02 0 FD 12/1/2008 < 0.133 UJ	< 0.0694 U
WHC1-BN02 0 FD 12/1/2008 < 0.133 UJ < 0.035 U < 0.0123 U < 0.0701 U < 0.0701 U < 0.0701 U < 0.0701 U < 0.035 U < 0.105 U WHC1-BN02 11 NORM 12/1/2008 < 0.131 UJ	< 0.0702 U
WHC1-BN02 11 NORM 12/1/2008 < 0.131 UJ < 0.0344 U < 0.012 U < 0.0687 U < 0.0687 U < 0.0687 U < 0.0344 U < 0.103 U WHC1-BN03 0 NORM 12/17/2008 < 0.135 U	< 0.0701 U
WHC1-BN03 0 NORM 12/17/2008 < 0.135 U < 0.0357 U < 0.0357 U < 0.0125 U < 0.0713 U < 0.0713 U < 0.0713 U < 0.0357 U < 0.107 U WHC1-BN03 10 NORM 12/18/2008 < 0.143 U	< 0.0687 U
WHC1-BN03 10 NORM 12/18/2008 < 0.143 U < 0.0376 U < 0.0376 U < 0.0131 U < 0.0751 U < 0.0751 U < 0.0376 U < 0.113 U WHC1-BN04 0 NORM 12/17/2008 < 0.133 U	< 0.0713 U
	< 0.0751 U
WHICH DAMA TO AND A LAMA AND A LA	< 0.0698 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.0705 U
WHC1-BN04 17 NORM 12/22/2008 < 0.135 U < 0.0354 U < 0.0354 U < 0.0124 U < 0.0709 U < 0.00709 U < 0.0709 U < 0.0354 U < 0.106 U	< 0.0709 U
WHC1-BN05 0 NORM $11/20/2008 < 0.129 \text{ U} < 0.034 \text{ U} < 0.034 \text{ U} < 0.0119 \text{ U} < 0.0679 \text{ U} < 0.0679 \text{ U} < 0.0679 \text{ U} < 0.034 \text{ U} < 0.102 \text{ U}$	< 0.0679 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.0684 U
WHC1-BN05 10 NORM 11/20/2008 < 0.134 U < 0.0353 U < 0.0353 U < 0.0124 U < 0.0707 U < 0.00707 U < 0.0707 U < 0.0707 U < 0.0353 U < 0.106 U	< 0.0707 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.0696 U
WHC1-BN06	
WHC1-BN07 0 NORM $11/21/2008 < 0.132$ U < 0.0346 U < 0.0346 U < 0.0121 U < 0.0693 U < 0.00693 U < 0.0693 U < 0.0693 U < 0.0346 U < 0.104 U	< 0.0693 U
WHC1-BN07 3 NORM 11/21/2008 < 0.136 U < 0.0357 U < 0.0357 U < 0.0125 U < 0.0714 U < 0.00714 U < 0.0714 U < 0.0714 U < 0.0357 U < 0.107 U	< 0.0714 U
WHC1-BN07 13 NORM 11/21/2008 < 0.133 U < 0.0349 U < 0.0349 U < 0.0122 U < 0.0698 U < 0.0698 U < 0.0698 U < 0.0698 U < 0.0349 U < 0.105 U	< 0.0698 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.0695 U
WHC1-BN08 10 NORM 11/20/2008 $< 0.131 \cdot \text{U} < 0.0346 \cdot \text{U} < 0.0346 \cdot \text{U} < 0.0121 \cdot \text{U} < 0.0692 \cdot \text{U} < 0.0692 \cdot \text{U} < 0.0692 \cdot \text{U} < 0.0346 \cdot \text{U} < 0.104 \cdot \text{U}$	< 0.0692 U
WHC1-BN09 0 NORM 12/17/2008 < 0.136 U < 0.0358 U < 0.0358 U < 0.0125 U < 0.0715 U < 0.00715 U < 0.0715 U < 0.0715 U < 0.0358 U < 0.107 U	10.0004
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.0715 U
WHC1-BN10 0 NORM 11/18/2008 < 0.144 U < 0.0378 U < 0.0378 U < 0.0132 U < 0.0757 U < 0.00757 U < 0.0757 U < 0.0378 U < 0.114 U	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< 0.0715 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 14 of 63)

							Semi-V	olatile Organio	c Compounds (S	SVOCs)			
				4-Dinitrophenol	,4-Dinitrotoluene	6-Dinitrotoluene	-Chloronaphthalene	enol	2-Methylnaphthalene	e ne	loı	3-Dichlorobenzidine	ne
				nitroj	nitrot	nitrot	oronaj	Chlorophenol	hylna	Nitroaniline	2-Nitrophenol	chlor	3-Nitroaniline
	Depth	Sample	Sample	Ρ̈́	-Di	-Ďi	Ä	ğ	1 etl	litr.	litr.	-Ď	Zitro
Sample ID	(ft bgs)	Type	Date	2,4	2,4	2,6	2-C	2-C	2-N	2-N	2-N	3,3	3-2
WHC1-BO01	0	NORM	12/2/2008	< 0.132 U	< 0.0347 U	< 0.0347 U	< 0.0122 U	< 0.0695 U	< 0.00695 U	< 0.0695 U	< 0.0347 U	< 0.104 U	< 0.0695 U
WHC1-BO01	0	FD	12/2/2008	< 0.131 U	< 0.0345 U	< 0.0345 U	< 0.0121 U	< 0.0691 U	< 0.00691 U	< 0.0691 U	< 0.0345 U	< 0.104 U	< 0.0691 U
WHC1-BO01	4	NORM	12/2/2008	< 0.13 U	< 0.0343 U	< 0.0343 U	< 0.012 U	< 0.0685 U	< 0.00685 U	< 0.0685 U	< 0.0343 U	< 0.103 U	< 0.0685 U
WHC1-BO01	14	NORM	12/2/2008	< 0.137 U	< 0.036 U	< 0.036 U	< 0.0126 U	< 0.072 U	< 0.0072 U	< 0.072 U	< 0.036 U	< 0.108 U	< 0.072 U
WHC1-BO02	0	NORM	12/1/2008	< 0.13 UJ	< 0.0343 U	< 0.0343 U	< 0.012 U	< 0.0686 U	< 0.00686 U	< 0.0686 U	< 0.0343 U	< 0.103 U	< 0.0686 U
WHC1-BO02	12	NORM	12/1/2008	< 0.131 UJ	< 0.0345 U	< 0.0345 U	< 0.0121 U	< 0.069 U	< 0.0069 U	< 0.069 U	< 0.0345 U	< 0.103 U	< 0.069 U
WHC1-BO03	0	NORM	12/15/2008	< 0.132 U	< 0.0347 U	< 0.0347 U	< 0.0121 U	< 0.0693 U	< 0.00693 U	< 0.0693 U	< 0.0347 U	< 0.104 U	< 0.0693 U
WHC1-BO03	12	NORM	12/19/2008	< 0.132 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0692 U	< 0.00692 U	< 0.0692 U	< 0.0346 U	< 0.104 U	< 0.0692 U
WHC1-BO04	0	NORM	12/15/2008	< 0.134 U	< 0.0353 U	< 0.0353 U	< 0.0123 U	< 0.0705 U	< 0.00705 U	< 0.0705 U	< 0.0353 U	< 0.106 U	< 0.0705 U
WHC1-BO04	12	NORM	12/19/2008	< 0.132 U	< 0.0348 U	< 0.0348 U	< 0.0122 U	< 0.0695 U	< 0.00695 U	< 0.0695 U	< 0.0348 U	< 0.104 U	< 0.0695 U
WHC1-BO05	0	NORM	11/20/2008	< 0.127 U	< 0.0334 U	< 0.0334 U	< 0.0117 U	< 0.0669 U	< 0.00669 U	< 0.0669 U	< 0.0334 U	< 0.1 U	< 0.0669 U
WHC1-BO05	10	NORM	11/20/2008	< 0.131 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0692 U	< 0.00692 U	< 0.0692 U	< 0.0346 U	< 0.104 U	< 0.0692 U
WHC1-BO06	0	NORM	11/20/2008	< 0.128 U	< 0.0336 U	< 0.0336 U	< 0.0118 U	< 0.0673 U	< 0.00673 U	< 0.0673 U	< 0.0336 U	< 0.101 U	< 0.0673 U
WHC1-BO06	10	NORM	11/20/2008	< 0.133 U	< 0.035 U	< 0.035 U	< 0.0122 U	< 0.0699 U	< 0.00699 U	< 0.0699 U	< 0.035 U	< 0.105 U	< 0.0699 U
WHC1-BO07	0	NORM	11/19/2008	< 0.131 U	< 0.0344 U	< 0.0344 U	< 0.012 U	< 0.0688 U	< 0.00688 U	< 0.0688 U	< 0.0344 U	< 0.103 U	< 0.0688 UJ
WHC1-BO07	10	NORM	11/19/2008	< 0.136 U	< 0.0359 U	< 0.0359 U	< 0.0126 U	< 0.0717 U	< 0.00717 U	< 0.0717 U	< 0.0359 U	< 0.108 U	< 0.0717 U
WHC1-BO08	0	NORM	11/20/2008	< 0.134 U	< 0.0353 U	< 0.0353 U	< 0.0124 U	< 0.0706 U	< 0.00706 U	< 0.0706 U	< 0.0353 U	< 0.106 U	< 0.0706 U
WHC1-BO08	0	FD	11/20/2008	< 0.131 U	< 0.0345 U	< 0.0345 U	< 0.0121 U	< 0.0691 U	< 0.00691 U	< 0.0691 U	< 0.0345 U	< 0.104 U	< 0.0691 U
WHC1-BO08	11	NORM	11/20/2008	< 0.137 U	< 0.0361 U	< 0.0361 U	< 0.0126 U	< 0.0722 U	< 0.00722 U	< 0.0722 U	< 0.0361 U	< 0.108 U	< 0.0722 U
WHC1-BO09	0	NORM	11/19/2008	< 0.13 U	< 0.0342 U	< 0.0342 U	< 0.012 U	< 0.0684 U	< 0.00684 U	< 0.0684 U	< 0.0342 U	< 0.103 U	< 0.0684 UJ
WHC1-BO09	0	FD	11/19/2008	< 0.13 U	< 0.0343 U	< 0.0343 U	< 0.012 U	< 0.0687 U	< 0.00687 U	< 0.0687 U	< 0.0343 U	< 0.103 U	< 0.0687 UJ
WHC1-BO09	6	NORM	11/19/2008	< 0.13 U	< 0.0343 U	< 0.0343 U	< 0.012 U	< 0.0685 U	< 0.00685 U	< 0.0685 U	< 0.0343 U	< 0.103 U	< 0.0685 UJ
WHC1-BO09	16	NORM	11/19/2008	< 0.144 U	< 0.038 U	< 0.038 U	< 0.0133 U	< 0.076 U	< 0.0076 U	< 0.076 U	< 0.038 U	< 0.114 U	< 0.076 UJ
WHC1-BO10	0		11/19/2008	< 0.132 U	< 0.0348 U	< 0.0348 U	< 0.0122 U	< 0.0697 U	< 0.00697 U	< 0.0697 U	< 0.0348 U	< 0.105 U	< 0.0697 UJ
WHC1-BO10	10	NORM	11/19/2008										
WHC1-BP01	0	NORM	12/1/2008	< 0.133 UJ	< 0.0349 U	< 0.0349 U	< 0.0122 U	< 0.0699 U	< 0.00699 U	< 0.0699 U	< 0.0349 U	< 0.105 U	< 0.0699 U
WHC1-BP01	10	NORM	12/1/2008	< 0.132 UJ	< 0.0347 U	< 0.0347 U	< 0.0121 U	< 0.0694 U	< 0.00694 U	< 0.0694 U	< 0.0347 U	< 0.104 U	< 0.0694 U
WHC1-BP02	0	NORM	12/1/2008	< 0.13 UJ	< 0.0342 U	< 0.0342 U	< 0.012 U	< 0.0684 U	< 0.00684 U	< 0.0684 U	< 0.0342 U	< 0.103 U	< 0.0684 U
WHC1-BP02	11	NORM	12/1/2008	< 0.136 UJ	< 0.0357 U	< 0.0357 U	< 0.0125 U	< 0.0714 U	< 0.00714 U	< 0.0714 U	< 0.0357 U	< 0.107 U	< 0.0714 U
WHC1-BP03	0	NORM	12/15/2008	< 0.129 U	< 0.0339 U	< 0.0339 U	< 0.0119 U	< 0.0679 U	< 0.00679 U	< 0.0679 U	< 0.0339 U	< 0.102 U	< 0.0679 U
WHC1-BP03	0	FD	12/15/2008	< 0.129 U	< 0.0341 U	< 0.0341 U	< 0.0119 U	< 0.0681 U	< 0.00681 U	< 0.0681 U	< 0.0341 U	< 0.102 U	< 0.0681 U
WHC1-BP03	11	NORM	12/19/2008	< 0.137 U	< 0.0361 U	< 0.0361 U	< 0.0126 U	< 0.0721 U	< 0.00721 U	< 0.0721 U	< 0.0361 U	< 0.108 U	< 0.0721 U
WHC1-BP04	0		12/15/2008	< 0.13 U	< 0.0342 U	< 0.0342 U	< 0.012 U	< 0.0684 U	< 0.00684 U	< 0.0684 U	< 0.0342 U	< 0.103 U	< 0.0684 U
WHC1-BP04	12	NORM	12/19/2008	< 0.132 U	< 0.0347 U	< 0.0347 U	< 0.0121 U	< 0.0694 U	< 0.00694 U	< 0.0694 U	< 0.0347 U	< 0.104 U	< 0.0694 U
WHC1-BP05	0		12/15/2008	< 0.131 U	< 0.0344 U	< 0.0344 U	< 0.0121 U	< 0.0689 U	< 0.00689 U	< 0.0689 U	< 0.0344 U	< 0.103 U	< 0.0689 U
WHC1-BP05	10		12/19/2008	< 0.136 U	< 0.0357 U	< 0.0357 U	< 0.0125 U	< 0.0714 U	< 0.00714 U	< 0.0714 U	< 0.0357 U	< 0.107 U	< 0.0714 U
WHC1-BP06	0		12/12/2008	< 0.129 U	< 0.034 U	< 0.034 U	< 0.0119 U	< 0.0681 U	< 0.00681 U	< 0.0681 U	< 0.034 U	< 0.102 U	< 0.0681 U
WHC1-BP06	10	NORM	12/12/2008	< 0.132 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0692 U	< 0.00692 U	< 0.0692 U	< 0.0346 U	< 0.104 U	< 0.0692 U
WHC1-BP07	0	NORM	11/20/2008	< 0.136 U	< 0.0357 U	< 0.0357 U	< 0.0125 U	< 0.0715 U	< 0.00715 U	< 0.0715 U	< 0.0357 U	< 0.107 U	< 0.0715 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 15 of 63)

							Semi-V	olatile Organio	c Compounds (S	SVOCs)			
				_	v	o	-Chloronaphthalene	J	2-Methylnaphthalene	Í		3-Dichlorobenzidine	
				4-Dinitrophenol	,4-Dinitrotoluene	6-Dinitrotoluene	hal		thal			zue	
				phe	tolt	tolt	pht	Chlorophenol	.idd	ine	lot	oqo.	ine
				tro	tro	tro	ona	hdd	lna	Nitroaniline	2-Nitrophenol	lor	3-Nitroaniline
				iii	jį.	i <u>li</u>	lorc	lorc	thy	roa	rop	ich	roa
	Depth	Sample	Sample	1 -	7	<u>5</u> -Ω	Chi	딩	Me	Zi.	N. Zit	3-D	Zi.
Sample ID	(ft bgs)	Type	Date	2,	2	2,	5	2-		2-		3,	
WHC1-BP07	3		11/20/2008	< 0.134 U	< 0.0352 U	< 0.0352 U	< 0.0123 U	< 0.0705 U	< 0.00705 U	< 0.0705 U	< 0.0352 U	< 0.106 U	< 0.0705 U
WHC1-BP07	13	NORM	11/20/2008	< 0.136 U	< 0.0358 U	< 0.0358 U	< 0.0125 U	< 0.0716 U	< 0.00716 U	< 0.0716 U	< 0.0358 U	< 0.107 U	< 0.0716 U
WHC1-BP08	0	NORM	11/19/2008	< 0.133 UJ	< 0.035 UJ	< 0.035 UJ	< 0.0123 UJ	< 0.07 UJ	< 0.007 UJ	< 0.07 UJ	< 0.035 UJ	< 0.105 UJ	< 0.07 UJ
WHC1-BP08	4	NORM	11/19/2008	< 0.136 UJ	< 0.0357 UJ	< 0.0357 UJ	< 0.0125 UJ	< 0.0714 UJ	< 0.00714 UJ	< 0.0714 UJ	< 0.0357 UJ	< 0.107 UJ	< 0.0714 UJ
WHC1-BP08	14		11/19/2008	< 0.136 U	< 0.0359 U	< 0.0359 U	< 0.0126 U	< 0.0718 U	< 0.00718 U	< 0.0718 U	< 0.0359 U	< 0.108 U	< 0.0718 UJ
WHC1-BP09	0		11/19/2008	< 0.13 U	< 0.0342 U	< 0.0342 U	< 0.012 U	< 0.0684 U	< 0.00684 U	< 0.0684 U	< 0.0342 U	< 0.103 U	< 0.0684 UJ
WHC1-BP09	10		11/19/2008	< 0.152 U	< 0.04 U	< 0.04 U	< 0.014 U	< 0.08 U	< 0.008 U	< 0.08 U	< 0.04 U	< 0.12 U	< 0.08 UJ
WHC1-BP10	0	NORM	11/19/2008	< 0.13 U	< 0.0343 U	< 0.0343 U	< 0.012 U	< 0.0685 U	< 0.00685 U	< 0.0685 U	< 0.0343 U	< 0.103 U	< 0.0685 UJ
WHC1-BP10	10		11/19/2008	< 0.18 U	< 0.0473 U	< 0.0473 U	< 0.0165 U	< 0.0945 U	< 0.00945 U	< 0.0945 U	< 0.0473 U	< 0.142 U	< 0.0945 UJ
WHC1-D01	0	NORM	12/5/2008	< 0.132 U	< 0.0347 U	< 0.0347 U	< 0.0121 U	< 0.0694 U	< 0.00694 U	< 0.0694 U	< 0.0347 U	< 0.104 U	< 0.0694 U
WHC1-D01	10	NORM	12/5/2008	< 0.132 UJ	< 0.0348 UJ	< 0.0348 UJ	< 0.0122 UJ	< 0.0696 UJ	< 0.00696 UJ	< 0.0696 UJ	< 0.0348 UJ	< 0.104 UJ	< 0.0696 UJ
WHC1-D02	0	NORM	12/5/2008	< 0.136 UJ	< 0.0357 UJ	< 0.0357 UJ	< 0.0125 UJ	< 0.0715 UJ	< 0.00715 UJ	< 0.0715 UJ	< 0.0357 UJ	< 0.107 UJ	< 0.0715 UJ
WHC1-D02	10	NORM	12/5/2008	< 0.133 U	< 0.0351 U	< 0.0351 U	< 0.0123 U	< 0.0702 U	< 0.00702 U	< 0.0702 U	< 0.0351 U	< 0.105 U	< 0.0702 U
WHC1-D03	0	NORM	12/5/2008	< 0.132 U	< 0.0349 UJ	< 0.0349 UJ	< 0.0122 UJ	< 0.0697 UJ	< 0.00697 UJ	< 0.0697 UJ	< 0.0349 UJ	< 0.105 UJ	< 0.0697 UJ
WHC1-D03	0	FD	12/5/2008	< 0.133 UJ	< 0.035 UJ	< 0.035 UJ	< 0.0122 UJ	< 0.0699 UJ	< 0.00699 UJ	< 0.0699 UJ	< 0.035 UJ	< 0.105 UJ	< 0.0699 UJ
WHC1-D03	10	NORM	12/5/2008	< 0.134 UJ	< 0.0353 UJ	< 0.0353 UJ	< 0.0124 UJ	< 0.0706 UJ	< 0.00706 UJ	< 0.0706 UJ	< 0.0353 UJ	< 0.106 UJ	< 0.0706 UJ
WHC1-D04	0	NORM	12/5/2008	< 0.134 U	< 0.0353 U	< 0.0353 U	< 0.0123 U	< 0.0706 U	< 0.00706 U	< 0.0706 U	< 0.0353 U	< 0.106 U	< 0.0706 U
WHC1-D04	10	NORM	12/5/2008	< 0.131 UJ	< 0.0345 UJ	< 0.0345 UJ	< 0.0121 UJ	< 0.069 UJ	< 0.0069 UJ	< 0.069 UJ	< 0.0345 UJ	< 0.104 UJ	< 0.069 UJ
WHC1-D05	0	NORM	12/5/2008	< 0.133 UJ	< 0.035 UJ	< 0.035 UJ	< 0.0122 UJ	< 0.07 UJ	< 0.007 UJ	< 0.07 UJ	< 0.035 UJ	< 0.105 UJ	< 0.07 UJ
WHC1-D05	10	NORM	12/5/2008	< 0.131 UJ	< 0.0344 UJ	< 0.0344 UJ	< 0.0121 UJ	< 0.0689 UJ	< 0.00689 UJ	< 0.0689 UJ	< 0.0344 UJ	< 0.103 UJ	< 0.0689 UJ
WHC1-D06	0	NORM	12/5/2008	< 0.139 U	< 0.0366 U	< 0.0366 U	< 0.0128 U	< 0.0732 U	< 0.00732 U	< 0.0732 U	< 0.0366 U	< 0.11 U	< 0.0732 U
WHC1-D06	10	NORM	12/5/2008	< 0.133 UJ	< 0.035 UJ	< 0.035 UJ	< 0.0123 UJ	< 0.07 UJ	< 0.007 UJ	< 0.07 UJ	< 0.035 UJ	< 0.105 UJ	< 0.07 UJ
WHC1-D07	0	NORM	12/5/2008	< 0.131 U	< 0.0345 U	< 0.0345 U	< 0.0121 U	< 0.069 UJ	< 0.0069 UJ	< 0.069 UJ	< 0.0345 U	< 0.104 U	< 0.069 UJ
WHC1-D07	10	NORM	12/5/2008	< 0.13 U	< 0.0343 U	< 0.0343 U	< 0.012 U	< 0.0686 U	< 0.00686 U	< 0.0686 U	< 0.0343 U	< 0.103 U	< 0.0686 U
WHC1-D08	0	NORM	12/8/2008	< 0.131 U	< 0.0344 U	< 0.0344 U	< 0.012 U	< 0.0687 U	< 0.00687 U	< 0.0687 U	< 0.0344 U	< 0.103 U	< 0.0687 U
WHC1-D08	10	NORM	12/9/2008	< 0.134 U	< 0.0354 U	< 0.0354 U	< 0.0124 U	< 0.0708 U	< 0.00708 U	< 0.0708 U	< 0.0354 U	< 0.106 U	< 0.0708 U
WHC1-D09	0	NORM	12/8/2008	< 0.131 U	< 0.0344 U	< 0.0344 U	< 0.012 U	< 0.0687 U	< 0.00687 U	< 0.0687 U	< 0.0344 U	< 0.103 U	< 0.0687 U
WHC1-D09	11	NORM	12/9/2008	< 0.133 UJ	< 0.0351 UJ	< 0.0351 UJ	< 0.0123 UJ	< 0.0701 UJ	< 0.00701 UJ	< 0.0701 UJ	< 0.0351 UJ	< 0.105 UJ	< 0.0701 UJ
WHC1-D10	0	NORM	12/8/2008	< 0.131 U	< 0.0344 U	< 0.0344 U	< 0.012 U	< 0.0688 U	< 0.00688 U	< 0.0688 U	< 0.0344 U	< 0.103 U	< 0.0688 U
WHC1-D10	10	NORM	12/9/2008	< 0.134 U	< 0.0351 U	< 0.0351 U	< 0.0123 U	< 0.0703 U	< 0.00703 U	< 0.0703 U	< 0.0351 U	< 0.105 U	< 0.0703 U
WHC1-D11	0	NORM	12/8/2008	< 0.131 U	< 0.0345 U	< 0.0345 U	< 0.0121 U	< 0.069 U	< 0.0069 U	< 0.069 U	< 0.0345 U	< 0.103 U	< 0.069 U
WHC1-D11	10	NORM	12/9/2008	< 0.139 U	< 0.0366 U	< 0.0366 U	< 0.0128 U	< 0.0732 U	< 0.00732 U	< 0.0732 U	< 0.0366 U	< 0.11 U	< 0.0732 U
WHC1-D12	0		12/10/2008	< 0.133 U	< 0.035 U	< 0.035 U	< 0.0123 U	< 0.0701 U	< 0.00701 U	< 0.0701 U	< 0.035 U	< 0.105 U	< 0.0701 UJ
WHC1-D12	10	NORM	12/10/2008	< 0.175 U	< 0.0461 U	< 0.0461 U	< 0.0161 U	< 0.0923 U	< 0.00923 U	< 0.0923 U	< 0.0461 U	< 0.138 U	< 0.0923 UJ
WHC1-D13	0	NORM	12/8/2008	< 0.135 U	< 0.0356 U	< 0.0356 U	< 0.0125 U	< 0.0712 U	< 0.00712 U	< 0.0712 U	< 0.0356 U	< 0.107 U	< 0.0712 UJ
WHC1-D13	10	NORM	12/8/2008	< 0.192 U	< 0.0505 U	< 0.0505 U	< 0.0177 U	< 0.101 U	< 0.0101 U	< 0.101 U	< 0.0505 U	< 0.151 U	< 0.101 UJ
WHC1-D15	0		12/11/2008	< 0.131 U	< 0.0344 U	< 0.0344 U	< 0.012 U	< 0.0687 U	< 0.00687 U	< 0.0687 U	< 0.0344 U	< 0.103 U	< 0.0687 U
WHC1-D15	10		12/11/2008	< 0.161 U	< 0.0423 U	< 0.0423 U	< 0.0148 U	< 0.0846 U	< 0.00846 U	< 0.0846 U	< 0.0423 U	< 0.127 U	< 0.0846 U
WHC1-D16	0	NORM	12/10/2008	< 0.145 U	< 0.0382 U	< 0.0382 U	< 0.0134 U	< 0.0763 U	< 0.00763 U	< 0.0763 U	< 0.0382 U	< 0.114 U	< 0.0763 UJ

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 16 of 63)

							Semi-V	olatile Organio	: Compounds (S	SVOCs)			
Samula ID	Depth (ft has)	Sample	Sample	2,4-Dinitrophenol	,4-Dinitrotoluene	,6-Dinitrotoluene	2-Chloronaphthalene	-Chlorophenol	2-Methylnaphthalene	2-Nitroaniline	2-Nitrophenol	,3-Dichlorobenzidine	3-Nitroaniline
Sample ID WHC1-D16	(ft bgs)	Type NORM	Date		< 0.0393 U	< 0.0393 U	< 0.0137 U	< 0.0785 U	< 0.00785 U	< 0.0785 U	< 0.0393 U	 < 0.118 U	< 0.0785 UJ
			12/10/2008	< 0.149 U		< 0.0393 U < 0.0356 U			< 0.00783 U < 0.00712 U		< 0.0393 U < 0.0356 U	< 0.118 U	< 0.0785 UJ < 0.0712 UJ
WHC1-D17 WHC1-D17	10	NORM NORM	12/10/2008 12/10/2008	< 0.135 U < 0.148 U	< 0.0356 U < 0.039 U	< 0.0336 U	< 0.0125 U < 0.0136 U	< 0.0712 U < 0.0779 U	< 0.00712 U < 0.00779 U	< 0.0712 U < 0.0779 U	< 0.0336 U < 0.039 U	< 0.107 U	< 0.0712 UJ
WHC1-D17 WHC1-D18	0	NORM	12/11/2008	< 0.148 U	< 0.039 U	< 0.039 U	< 0.0136 U	< 0.0779 U	< 0.00779 U	< 0.0691 U	< 0.039 U	< 0.117 U	< 0.0691 U
WHC1-D18	10	NORM	12/11/2008	< 0.131 U	< 0.0349 U	< 0.0349 U	< 0.0121 U	< 0.0698 U	< 0.00698 U	< 0.0698 U	< 0.0340 U	< 0.104 U	< 0.0698 U
WHC1-D19	0	NORM	12/11/2008	< 0.133 U	< 0.0349 U	< 0.0349 U	< 0.0122 U	< 0.0696 U	< 0.00696 U	< 0.0696 U	< 0.0349 U	< 0.103 U	< 0.0696 UJ
WHC1-D19	0	FD	12/11/2008	< 0.132 U	< 0.0348 U	< 0.0346 U	< 0.0122 U	< 0.0693 U	< 0.00698 U	< 0.0693 U	< 0.0348 U	< 0.104 U	< 0.0693 UJ
WHC1-D19	10		12/11/2008	< 0.132 U	< 0.0352 U	< 0.0352 U	< 0.0121 U	< 0.0703 U	< 0.00703 U	< 0.0703 U	< 0.0352 U	< 0.104 U	< 0.0703 UJ
WHC1-D19	0	NORM	12/11/2008	< 0.134 U	< 0.0344 U	< 0.0344 U	< 0.0123 U	< 0.0688 U	< 0.00688 U	< 0.0688 U	< 0.0344 U	< 0.103 U	< 0.0688 U
WHC1-D20	10		12/12/2008	< 0.131 U	< 0.035 U	< 0.035 U	< 0.012 U	< 0.0701 U	< 0.00701 U	< 0.0701 U	< 0.035 U	< 0.105 U	< 0.0701 U
WHC1-D21	0		12/16/2008	< 0.135 U	< 0.0354 U	< 0.0354 U	< 0.0123 U	< 0.0701 U	< 0.00701 U	< 0.0701 U	< 0.0354 U	< 0.105 U	< 0.0701 U
WHC1-D21	10	NORM	12/16/2008	< 0.133 U	< 0.0354 U	< 0.035 U	< 0.0124 U	< 0.0699 U	< 0.00699 U	< 0.0699 U	< 0.035 U	< 0.105 U	< 0.0699 U
WHC1-D22	0		12/16/2008	< 0.133 U	< 0.036 U	< 0.036 U	< 0.0122 U	< 0.072 U	< 0.0072 U	< 0.072 U	< 0.036 U	< 0.108 U	< 0.072 U
WHC1-D22	10		12/16/2008	< 0.134 U	< 0.0353 U	< 0.0353 U	< 0.0124 U	< 0.072 U	< 0.0072 U	< 0.072 U	< 0.0353 U	< 0.106 U	< 0.0706 U
WHC1-D23	0		12/16/2008	< 0.133 U	< 0.0353 U	< 0.0353 U	< 0.0123 U	< 0.0702 U	< 0.00702 U	< 0.0702 U	< 0.0353 U	< 0.105 U	< 0.0702 U
WHC1-D23	10	NORM	12/16/2008	< 0.133 U	< 0.0349 U	< 0.0349 U	< 0.0123 U	< 0.0699 U	< 0.00699 U	< 0.0699 U	< 0.0349 U	< 0.105 U	< 0.0699 U
WHC1-D24	0		12/16/2008	< 0.138 U	< 0.0364 U	< 0.0364 U	< 0.0122 U	< 0.0728 U	< 0.00728 U	< 0.0728 U	< 0.0364 U	< 0.109 U	< 0.0728 U
WHC1-D24	0	FD	12/16/2008	< 0.137 U	< 0.036 U	< 0.036 U	< 0.0126 U	< 0.0721 U	< 0.00721 U	< 0.0721 U	< 0.036 U	< 0.108 U	< 0.0721 U
WHC1-D24	10		12/16/2008	< 0.132 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0693 U	< 0.00693 U	< 0.0693 U	< 0.0346 U	< 0.104 U	< 0.0693 U
WHC1-D25	0	NORM	12/16/2008	< 0.138 U	< 0.0363 U	< 0.0363 U	< 0.0127 U	< 0.0727 U	< 0.00727 U	< 0.0727 U	< 0.0363 U	< 0.109 U	< 0.0727 U
WHC1-D25	10	NORM	12/16/2008	< 0.131 U	< 0.0345 U	< 0.0345 U	< 0.0121 U	< 0.069 U	< 0.0069 U	< 0.069 U	< 0.0345 U	< 0.104 U	< 0.069 U
WHC1-D26	0	NORM	12/12/2008	< 0.131 U	< 0.0343 U	< 0.0343 U	< 0.012 U	< 0.0687 U	< 0.00687 U	< 0.0687 U	< 0.0343 U	< 0.103 U	< 0.0687 U
WHC1-D26	10	NORM	12/12/2008	< 0.143 U	< 0.0376 U	< 0.0376 U	< 0.0132 U	< 0.0753 U	< 0.00753 U	< 0.0753 U	< 0.0376 U	< 0.113 U	< 0.0753 U
WHC1-D27	0	NORM	12/12/2008	< 0.133 U	< 0.035 U	< 0.035 U	< 0.0123 U	< 0.0701 U	< 0.00701 U	< 0.0701 U	< 0.035 U	< 0.105 U	< 0.0701 U
WHC1-D27	0	FD	12/12/2008	< 0.133 U	< 0.035 U	< 0.035 U	< 0.0122 U	< 0.07 U	< 0.007 U	< 0.07 U	< 0.035 U	< 0.105 U	< 0.07 U
WHC1-D27	10	NORM	12/12/2008	< 0.133 U	< 0.035 U	< 0.035 U	< 0.0123 U	< 0.0701 U	< 0.00701 U	< 0.0701 U	< 0.035 U	< 0.105 U	< 0.0701 U
WHC1-D28	0	NORM	12/12/2008	< 0.132 U	< 0.0347 U	< 0.0347 U	< 0.0121 U	< 0.0694 U	< 0.00694 U	< 0.0694 U	< 0.0347 U	< 0.104 U	< 0.0694 U
WHC1-D28	10	NORM	12/12/2008	< 0.133 U	< 0.0349 U	< 0.0349 U	< 0.0122 U	< 0.0699 U	< 0.00699 U	< 0.0699 U	< 0.0349 U	< 0.105 U	< 0.0699 U
WHC1-D29	0		12/12/2008	< 0.131 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0691 U	< 0.00691 U	< 0.0691 U	< 0.0346 U	< 0.104 U	< 0.0691 U
WHC1-D29	10	NORM	12/12/2008	< 0.139 U	< 0.0366 U	< 0.0366 U	< 0.0128 U	< 0.0733 U	< 0.00733 U	< 0.0733 U	< 0.0366 U	< 0.11 U	< 0.0733 U
WHC1-P01	0	NORM	12/15/2008	< 0.13 U	< 0.0342 U	< 0.0342 U	< 0.012 U	< 0.0685 U	< 0.00685 U	< 0.0685 U	< 0.0342 U	< 0.103 U	< 0.0685 U
WHC1-P01	12	NORM	12/19/2008	< 0.137 U	< 0.036 U	< 0.036 U	< 0.0126 U	< 0.0719 U	< 0.00719 U	< 0.0719 U	< 0.036 U	< 0.108 U	< 0.0719 U
WHC1-P02	0	NORM	12/1/2008	< 0.131 UJ	< 0.0344 U	< 0.0344 U	< 0.012 U	< 0.0688 U	< 0.00688 U	< 0.0688 U	< 0.0344 U	< 0.103 U	< 0.0688 U
WHC1-P02	10	NORM	12/1/2008	< 0.129 UJ	< 0.034 U	< 0.034 U	< 0.0119 U	< 0.068 U	< 0.0068 U	< 0.068 U	< 0.034 U	< 0.102 U	< 0.068 U
WHC1-P03	0	NORM	12/15/2008	< 0.13 U	< 0.0341 U	< 0.0341 U	< 0.0119 U	< 0.0683 U	< 0.00683 U	< 0.0683 U	< 0.0341 U	< 0.102 U	< 0.0683 U
WHC1-P03	3	NORM	12/18/2008	< 0.131 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0692 U	< 0.00692 U	< 0.0692 U	< 0.0346 U	< 0.104 U	< 0.0692 U
WHC1-P03	3	FD	12/18/2008	< 0.131 U	< 0.0343 U	< 0.0343 U	< 0.012 U	< 0.0687 U	< 0.00687 U	< 0.0687 U	< 0.0343 U	< 0.103 U	< 0.0687 U
WHC1-P03	13	NORM	12/18/2008	< 0.136 U	< 0.0357 U	< 0.0357 U	< 0.0125 U	< 0.0713 U	< 0.00713 U	< 0.0713 U	< 0.0357 U	< 0.107 U	< 0.0713 U
WHC1-P04	0	NORM	12/15/2008	< 0.131 U	< 0.0345 U	< 0.0345 U	< 0.0121 U	< 0.069 U	< 0.0069 U	< 0.069 U	< 0.0345 U	< 0.104 U	< 0.069 U

TABLE B-9 SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 17 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	,4-Dinitrophenol	,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Nitroaniline	2-Nitrophenol	,3-Dichlorobenzidine	3-Nitroaniline
WHC1-P04	10	NORM	12/18/2008	< 0.141 U	< 0.0372 U	< 0.0372 U	< 0.013 U	< 0.0744 U	< 0.00744 U	< 0.0744 U	< 0.0372 U	< 0.112 U	< 0.0744 U
WHC1-P05	0	NORM	12/8/2008	< 0.141 U	< 0.0372 U	< 0.0372 U	< 0.013 U	< 0.0744 U	< 0.00744 U	< 0.07 U	< 0.0372 U	< 0.112 U	< 0.07 U
WHC1-P05	0	FD	12/8/2008	< 0.133 U	< 0.033 U	< 0.0348 U	< 0.0122 U	< 0.0696 U	< 0.007 U	< 0.0696 U	< 0.033 U	< 0.103 U	< 0.0696 U
WHC1-P05	10	NORM	12/8/2008	< 0.132 U	< 0.0348 U	< 0.0348 U	< 0.0122 U	< 0.0696 U	< 0.00702 U	< 0.0696 U < 0.0702 U	< 0.0348 U	< 0.104 U	< 0.0696 U
WHC1-P06	0	NORM	12/2/2008	< 0.133 U	< 0.0348 U	< 0.0331 U	< 0.0123 U	< 0.0702 U	< 0.00702 U	< 0.0695 U	< 0.0331 U	< 0.103 U	
WHC1-P06 WHC1-P06	12	NORM	12/2/2008	< 0.132 U < 0.131 U	< 0.0348 U < 0.0344 U	< 0.0348 U < 0.0344 U	< 0.0122 U	< 0.0698 U	< 0.00695 U	< 0.0693 U < 0.0688 U	< 0.0348 U < 0.0344 U	< 0.104 U < 0.103 U	< 0.0695 U
WHC1-P06 WHC1-P07	0	NORM	12/2/2008		< 0.0344 U < 0.035 U	< 0.0344 U < 0.035 U	< 0.012 U < 0.0123 U	< 0.0688 U < 0.07 U	< 0.00688 U < 0.007 U	< 0.0688 U < 0.07 U	< 0.0344 U < 0.035 U	< 0.103 U < 0.105 U	< 0.0688 U < 0.07 U
WHC1-P07 WHC1-P07	3	NORM	12/2/2008	< 0.133 U < 0.13 U	< 0.033 U < 0.0342 U	< 0.033 U < 0.0342 U	< 0.0123 U	< 0.07 U < 0.0684 U	< 0.007 U < 0.00684 U	< 0.07 U < 0.0684 U	< 0.033 U < 0.0342 U	< 0.103 U	< 0.07 U < 0.0684 U
WHC1-P07	13	NORM	12/2/2008		< 0.0342 U	< 0.0342 U	< 0.012 U	< 0.0684 U	< 0.0084 U	< 0.0684 U	< 0.0342 U	< 0.105 U	< 0.0684 U
WHC1-P07 WHC1-P08	0	NORM	12/2/2008	< 0.133 U < 0.13 UJ	< 0.033 U < 0.0342 UJ	< 0.033 U < 0.0342 UJ	< 0.0122 U < 0.012 UJ	< 0.07 U < 0.0683 UJ	< 0.007 U < 0.00683 UJ	< 0.07 U < 0.0683 UJ	< 0.033 U < 0.0342 UJ	< 0.103 U < 0.102 UJ	< 0.07 U
WHC1-P08	11	NORM	12/3/2008	< 0.13 UJ	< 0.0342 UJ	< 0.0342 UJ	< 0.012 UJ	< 0.0685 UJ	< 0.00683 UJ	< 0.0685 UJ	< 0.0342 UJ	< 0.102 UJ	< 0.0685 UJ
WHC1-P08	0	NORM	12/4/2008	< 0.132 U < 0.131 UJ	< 0.0348 U	< 0.0348 U	< 0.0122 U	< 0.0696 U	< 0.00696 U	< 0.0696 U < 0.0687 U	< 0.0348 U	< 0.104 U	< 0.0696 UJ < 0.0687 U
WHC1-P09	0	FD	12/4/2008	< 0.131 UJ < 0.13 UJ	< 0.0343 U	< 0.0343 U	< 0.012 U	< 0.0687 U	< 0.00687 U	< 0.0687 U	< 0.0343 U	< 0.103 U	< 0.0687 U
WHC1-P09	10	NORM	12/4/2008	< 0.13 UJ	< 0.0344 U	< 0.0343 U	< 0.012 U	< 0.0687 U	< 0.00687 U	< 0.0687 U	< 0.0344 U	< 0.103 U	< 0.0688 U
WHC1-P10	0		11/25/2008	< 0.131 UJ	< 0.0344 U	< 0.0344 U	< 0.012 U	< 0.0688 U	< 0.00688 U	< 0.0688 U < 0.0695 U	< 0.0344 U	< 0.103 U	< 0.0688 U
WHC1-P10 WHC1-P11	10	NORM NORM	11/25/2008 12/8/2008	< 0.146 UJ	< 0.0383 U	< 0.0383 U < 0.0353 U	< 0.0134 U	< 0.0767 U < 0.0705 U	< 0.00767 U	< 0.0767 U < 0.0705 U	< 0.0383 U	< 0.115 U < 0.106 U	< 0.0767 U < 0.0705 U
	-			< 0.134 U	< 0.0353 U		< 0.0123 U		< 0.00705 U		< 0.0353 U		
WHC1-P11 WHC1-P11	10	FD NORM	12/8/2008	< 0.263 U < 0.133 U	< 0.0691 U < 0.0351 U	< 0.0691 U < 0.0351 U	< 0.0242 U	< 0.138 U < 0.0702 U	< 0.0138 U < 0.00702 U	< 0.138 U < 0.0702 U	< 0.0691 U < 0.0351 U	< 0.207 U < 0.105 U	< 0.138 U < 0.0702 U
WHC1-P11 WHC1-P12	0						< 0.0123 U						
	-	NORM	12/5/2008	< 0.133 U	< 0.0351 U	< 0.0351 U	< 0.0123 U	< 0.0701 U	< 0.00701 U	< 0.0701 U	< 0.0351 U	< 0.105 U	< 0.0701 U
WHC1-P12	11	NORM	12/5/2008	< 0.132 UJ	< 0.0348 UJ	< 0.0348 UJ	< 0.0122 UJ	< 0.0697 UJ	< 0.00697 UJ	< 0.0697 UJ	< 0.0348 UJ	< 0.105 UJ	< 0.0697 UJ
WHC1-P13	0	NORM	12/9/2008	< 0.133 U	< 0.035 U	< 0.035 U	< 0.0122 U	< 0.07 U	< 0.007 U	< 0.07 U	< 0.035 U	< 0.105 U	< 0.07 U
WHC1-P13	10	NORM	12/9/2008	< 0.174 U	< 0.0457 U	< 0.0457 U	< 0.016 U	< 0.0915 U	< 0.00915 U	< 0.0915 U	< 0.0457 U	< 0.137 U	< 0.0915 U
WHC1-P13	10	FD	12/9/2008	< 0.148 U	< 0.0389 U	< 0.0389 U	< 0.0136 U	< 0.0778 U	< 0.00778 U	< 0.0778 U	< 0.0389 U	< 0.117 U	< 0.0778 U
WHC1-P14	0	NORM	12/17/2008	< 0.153 U	< 0.0401 U	< 0.0401 U	< 0.014 U	< 0.0803 U	< 0.00803 U	< 0.0803 U	< 0.0401 U	< 0.12 U	< 0.0803 U
WHC1-P15	0	NORM	12/8/2008	< 0.141 U	< 0.037 U	< 0.037 U	< 0.013 U	< 0.074 U	< 0.0074 U	< 0.074 U	< 0.037 U	< 0.111 U	< 0.074 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.137 U	< 0.036 U	< 0.036 U	< 0.0126 U	< 0.072 U	< 0.0072 U	< 0.072 U	< 0.036 U	< 0.108 U	< 0.072 U
WHC1-P15	10	NORM	12/18/2008	< 0.136 U	< 0.0357 U	< 0.0357 U	< 0.0125 U	< 0.0714 U	< 0.00714 U	< 0.0714 U	< 0.0357 U	< 0.107 U	< 0.0714 U
WHC1-P16	0	NORM	12/1/2008	< 0.128 UJ	< 0.0337 U	< 0.0337 U	< 0.0118 U	< 0.0675 U	< 0.00675 U	< 0.0675 U	< 0.0337 U	< 0.101 U	< 0.0675 U
WHC1-P16	11	NORM	12/1/2008	< 0.131 UJ	< 0.0345 U	< 0.0345 U	< 0.0121 U	< 0.069 U	< 0.0069 U	< 0.069 U	< 0.0345 U	< 0.103 U	< 0.069 U
WHC1-P17	0	NORM	12/15/2008	< 0.133 U	< 0.0349 U	< 0.0349 U	< 0.0122 U	< 0.0699 U	< 0.00699 U	< 0.0699 U	< 0.0349 U	< 0.105 U	< 0.0699 U
WHC1-P17	12	NORM	12/19/2008	< 0.132 U	< 0.0347 U	< 0.0347 U	< 0.0121 U	< 0.0694 U	< 0.00694 U	< 0.0694 U	< 0.0347 U	< 0.104 U	< 0.0694 U
WHC1-P17	12	FD	12/19/2008	< 0.132 U	< 0.0348 U	< 0.0348 U	< 0.0122 U	< 0.0696 U	< 0.00696 U	< 0.0696 U	< 0.0348 U	< 0.104 U	< 0.0696 U
WHC1-P18	0	NORM	12/1/2008	< 0.129 UJ	< 0.034 U	< 0.034 U	< 0.0119 U	< 0.068 U	< 0.0068 U	< 0.068 U	< 0.034 U	< 0.102 U	< 0.068 U
WHC1-P18	12	NORM	12/1/2008	< 0.13 UJ	< 0.0343 U	< 0.0343 U	< 0.012 U	< 0.0686 U	< 0.00686 U	< 0.0686 U	< 0.0343 U	< 0.103 U	< 0.0686 U
WHC2-D02C	0	NORM	12/2/2009	< 0.128 U	< 0.0336 U	< 0.0336 U	< 0.0118 U	< 0.0672 U	< 0.00672 U	< 0.0672 U	< 0.0336 U	< 0.101 U	< 0.0672 U
WHC2-D04C	0	NORM	12/2/2009	< 0.13 U	< 0.0343 U	< 0.0343 U	< 0.012 U	< 0.0686 U	< 0.00686 U	< 0.0686 U	< 0.0343 U	< 0.103 U	< 0.0686 UJ
WHC2-D05C	0	NORM	12/2/2009	< 0.128 U	< 0.0338 U	< 0.0338 U	< 0.0118 U	< 0.0676 U	< 0.00676 U	< 0.0676 U	< 0.0338 U	< 0.101 U	< 0.0676 UJ
WHC2-D11C	0	NORM	12/2/2009	< 0.129 U	< 0.0338 U	< 0.0338 U	< 0.0118 U	< 0.0677 U	< 0.00677 U	< 0.0677 U	< 0.0338 U	< 0.102 U	< 0.0677 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 18 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Nitroaniline	2-Nitrophenol	3,3-Dichlorobenzidine	3-Nitroaniline
WHC2-D13C	0	NORM	12/3/2009	< 0.195 U	< 0.0513 U	< 0.0513 U	< 0.0179 U	< 0.103 U	< 0.0103 U	< 0.103 U	< 0.0513 U	< 0.154 U	< 0.103 U
WHC2-D13NE	0	NORM	12/3/2009	< 0.205 U	< 0.0539 U	< 0.0539 U	< 0.0189 U	< 0.108 U	< 0.0108 U	< 0.108 U	< 0.0539 U	< 0.162 U	< 0.108 U
WHC2-D13NW	0	NORM	12/3/2009	< 0.151 U	< 0.0396 U	< 0.0396 U	< 0.0139 U	< 0.0793 U	< 0.00793 U	< 0.0793 U	< 0.0396 U	< 0.119 U	< 0.0793 U
WHC2-D13SE	0	NORM	12/3/2009	< 0.203 U	< 0.0534 U	< 0.0534 U	< 0.0187 U	< 0.107 U	< 0.0107 U	< 0.107 U	< 0.0534 U	< 0.16 U	< 0.107 U
WHC2-D13SW	0	NORM	12/3/2009	< 0.19 U	< 0.0499 U	< 0.0499 U	< 0.0175 U	< 0.0998 U	< 0.00998 U	< 0.0998 U	< 0.0499 U	< 0.15 U	< 0.0998 U
WHC2-D14C	0	NORM	12/2/2009	< 0.134 U	< 0.0353 U	< 0.0353 U	< 0.0124 U	< 0.0706 U	< 0.00706 U	< 0.0706 U	< 0.0353 U	< 0.106 U	< 0.0706 U
WHC2-D17C	0	NORM	12/1/2009	< 0.139 U	< 0.0365 U	< 0.0365 U	< 0.0128 U	< 0.0731 U	< 0.00731 U	< 0.0731 U	< 0.0365 U	< 0.11 U	< 0.0731 U
WHC2-D18C	0	NORM	12/1/2009	< 0.128 U	< 0.0337 U	< 0.0337 U	< 0.0118 U	< 0.0674 U	< 0.00674 U	< 0.0674 U	< 0.0337 U	< 0.101 U	< 0.0674 U
WHC2-D18C	0	FD	12/1/2009	< 0.128 U	< 0.0338 U	< 0.0338 U	< 0.0118 U	< 0.0675 U	< 0.00675 U	< 0.0675 U	< 0.0338 U	< 0.101 U	< 0.0675 U
WHC2-D25C	0	NORM	12/1/2009	< 0.128 U	< 0.0338 U	< 0.0338 U	< 0.0118 U	< 0.0676 U	< 0.00676 U	< 0.0676 U	< 0.0338 U	< 0.101 U	< 0.0676 U
WHC2-P11C	0	NORM	12/1/2009	< 0.13 U	< 0.0341 U	< 0.0341 U	< 0.0119 U	< 0.0683 U	< 0.00683 U	< 0.0683 U	< 0.0341 U	< 0.102 U	< 0.0683 U
WHC6-D05	0	NORM	7/27/2012	< 0.133 U	< 0.0351 U	< 0.0351 U	< 0.0123 U	< 0.0701 U	< 0.00701 U	< 0.0701 U	< 0.0351 U	< 0.105 U	< 0.0701 UJ
WHC6-D11	0		7/27/2012	< 0.131 U	< 0.0346 U	< 0.0346 U	< 0.0121 U	< 0.0691 U	< 0.00691 U	< 0.0691 U	< 0.0346 U	< 0.104 U	< 0.0691 UJ
WHC6-P11	0	NORM	7/27/2012	< 0.128 U	< 0.0338 U	< 0.0338 U	< 0.0118 U	< 0.0676 U	< 0.00676 U	< 0.0676 U	< 0.0338 U	< 0.101 U	< 0.0676 UJ

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 19 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			
				ıyl		ıyl	nnisole		1	9			
	Donth	Comple	Comple	4-Bromophenyl phenyl ether	4-Chloro-3- methylphenol	4-Chlorophenyl phenyl ether	Chlorothioanisole	Nitroanili ne	4-Nitrophenol	Acetophenone	ine	Benzenethiol	Benzoic acid
Sample ID	Depth (ft bgs)	Sample	Sample Date	-Br hen	-Ch	-Ch	ς̈́	Ę	Ϋ́	cet	Aniline	enz	enz
OSC1-BM11	(ft bgs)	Type NORM	9/21/2009	< 0.0351 U	< 0.0351 U	< 0.0351 U	< 0.116 U	< 0.0701 UJ	< 0.0701 U	< 0.0351 U	< 0.123 U	 < 0.116 U	 < 0.175 U
OSC1-BM11	10	NORM	9/21/2009	< 0.0331 U	< 0.0387 U	< 0.0331 U	< 0.110 U	< 0.0774 UJ	< 0.0774 U	< 0.0331 U	< 0.125 U	< 0.110 U	< 0.173 U
OSC1-BN11	0	NORM	9/22/2009	< 0.034 U	< 0.034 U	< 0.034 U	< 0.112 U	< 0.068 U	< 0.068 U	< 0.034 U	< 0.119 U	< 0.112 U	< 0.17 U
OSC1-BN11	5	NORM	9/22/2009	< 0.0356 U	< 0.0356 U	< 0.0356 U	< 0.112 U	< 0.000 C	< 0.0711 U	< 0.0356 U	< 0.117 U	< 0.112 U	< 0.17 U
OSC1-BO11	0	NORM	9/16/2009	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.117 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.124 U	< 0.117 U	< 0.173 U
OSC1-BO11	0	FD	9/16/2009	< 0.0372 U	< 0.0372 U	< 0.0372 U	< 0.123 U	< 0.0745 U	< 0.0745 U	< 0.0377 U	< 0.13 U	< 0.123 U	< 0.186 U
OSC1-BO11	5	NORM	9/16/2009	< 0.0372 U	< 0.0371 U	< 0.0371 U	< 0.123 U	< 0.0743 U	< 0.0743 U	< 0.0371 U	< 0.13 U	< 0.123 U	< 0.186 U
OSC1-BP11	0	NORM	9/16/2009	< 0.0365 U	< 0.0365 U	< 0.0365 U	< 0.123 U	< 0.0731 U	< 0.0731 U	< 0.0365 U	< 0.128 U	< 0.123 U	< 0.183 U
OSC1-BP11	5	NORM	9/16/2009	< 0.0378 U	< 0.0378 U	< 0.0378 U	< 0.121 U	< 0.0755 U	< 0.0755 U	< 0.0378 U	< 0.132 U	< 0.121 U	< 0.189 U
OSC1-JP06	0	NORM	9/22/2009	< 0.0355 U	< 0.0355 U	< 0.0355 U	< 0.117 U	< 0.071 U	< 0.071 U	< 0.0355 U	< 0.124 U	< 0.117 U	< 0.177 U
OSC1-JP06	5	NORM	9/22/2009	< 0.0387 U	< 0.0387 U	< 0.0387 U	< 0.128 U	< 0.0774 U	< 0.0774 U	< 0.0387 U	< 0.136 U	< 0.128 U	< 0.194 U
OSC1-JP07	0	NORM	9/21/2009	< 0.0361 U	< 0.0361 U	< 0.0361 U	< 0.119 U	< 0.0722 UJ	< 0.0722 U	< 0.0361 U	< 0.126 U	< 0.119 U	< 0.18 U
OSC1-JP07	5	NORM	9/21/2009	< 0.0423 U	< 0.0423 U	< 0.0423 U	< 0.14 U	< 0.0847 UJ	< 0.0847 U	< 0.0423 U	< 0.148 U	< 0.14 U	< 0.212 U
OSC1-JP08	0	NORM	9/21/2009	< 0.0376 U	< 0.0376 U	< 0.0376 U	< 0.124 U	< 0.0752 UJ	< 0.0752 U	< 0.0376 U	< 0.132 U	< 0.124 U	< 0.188 U
OSC1-JP08	10	NORM	9/21/2009	< 0.0375 U	< 0.0375 U	< 0.0375 U	< 0.124 U	< 0.075 UJ	< 0.075 U	< 0.0375 U	< 0.131 U	< 0.124 U	< 0.187 U
WHC1-BF01	0	NORM	11/24/2008	< 0.0339 U	< 0.0339 U	< 0.0339 U	< 0.112 U	< 0.0678 U	< 0.0678 U	< 0.0339 U	< 0.119 U	< 0.112 U	< 0.17 U
WHC1-BF01	12	NORM	11/24/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BF02	0	NORM	11/25/2008	< 0.0335 U	< 0.0335 U	< 0.0335 U	< 0.111 U	< 0.067 UJ	< 0.067 U	< 0.0335 U	< 0.117 U	< 0.111 U	< 0.168 U
WHC1-BF02	11	NORM	11/25/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0691 UJ	< 0.0691 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BF03	0	NORM	11/25/2008	< 0.0338 U	< 0.0338 U	< 0.0338 U	< 0.112 U	< 0.0677 UJ	< 0.0677 U	< 0.0338 U	< 0.118 U	< 0.112 U	< 0.169 U
WHC1-BF03	10	NORM	11/25/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.114 U	< 0.0693 UJ	< 0.0693 U	< 0.0347 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BF04	0	NORM	11/25/2008	< 0.0339 U	< 0.0339 U	< 0.0339 U	< 0.112 U	< 0.0678 UJ	< 0.0678 U	< 0.0339 U	< 0.119 U	< 0.112 U	< 0.169 U
WHC1-BF04	0	FD	11/25/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0692 UJ	< 0.0692 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BF04	10	NORM	11/25/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.115 U	< 0.0699 UJ	< 0.0699 U	< 0.035 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-BF05	0	NORM	11/25/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.114 U	< 0.0694 UJ	< 0.0694 U	< 0.0347 U	< 0.121 U	< 0.114 U	< 0.173 UJ
WHC1-BF05	12	NORM	12/10/2008	< 0.0456 U	< 0.0456 U	< 0.0456 U	< 0.15 UJ	< 0.0911 UJ	< 0.0911 UJ	< 0.0456 U	< 0.159 UJ	< 0.15 UJ	< 0.228 UJ
WHC1-BF06	0	NORM	12/10/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0696 UJ	< 0.0696 U	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 UJ
WHC1-BF06	10	NORM	12/10/2008	< 0.0464 U	< 0.0464 U	< 0.0464 U	< 0.153 U	< 0.0927 UJ	< 0.0927 U	< 0.0464 U	< 0.162 U	< 0.153 U	< 0.232 UJ
WHC1-BG01	0	NORM	11/24/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-BG01	11	NORM	11/24/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.035 U	< 0.123 U	< 0.116 U	< 0.175 U
WHC1-BG02	0	NORM	11/24/2008	< 0.0338 U	< 0.0338 U	< 0.0338 U	< 0.111 U	< 0.0675 U	< 0.0675 U	< 0.0338 U	< 0.118 U	< 0.111 U	< 0.169 U
WHC1-BG02	0	FD	11/24/2008	< 0.0336 U	< 0.0336 U	< 0.0336 U	< 0.111 U	< 0.0672 U	< 0.0672 U	< 0.0336 U	< 0.118 U	< 0.111 U	< 0.168 U
WHC1-BG02	10	NORM	11/24/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BG03	0	NORM	12/11/2008	< 0.0351 U	< 0.0351 U	< 0.0351 U	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 U	< 0.123 U	< 0.116 U	< 0.175 U
WHC1-BG03	11	NORM	12/11/2008	< 0.0351 U	< 0.0351 U	< 0.0351 U	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 U	< 0.123 U	< 0.116 U	< 0.175 U
WHC1-BG04	0	NORM	12/11/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-BG04	10	NORM	12/11/2008	< 0.0446 U	< 0.0446 U	< 0.0446 U	< 0.147 U	< 0.0891 U	< 0.0891 U	< 0.0446 U	< 0.156 U	< 0.147 U	< 0.223 U
WHC1-BG05	0	NORM	11/25/2008	< 0.0364 U	< 0.0364 U	< 0.0364 U	< 0.12 U	< 0.0728 UJ	< 0.0728 U	< 0.0364 U	< 0.127 U	< 0.12 U	< 0.182 U
WHC1-BG05	10	NORM	11/25/2008	< 0.0406 U	< 0.0406 U	< 0.0406 U	< 0.134 U	< 0.0812 UJ	< 0.0812 U	< 0.0406 U	< 0.142 U	< 0.134 U	< 0.203 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 20 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			Ī
										, , , , , , , , , , , , , , , , , , ,			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	4-Bromophenyl phenyl ether	4-Chloro-3- methylphenol	4-Chlorophenyl phenyl ether	4-Chlorothioanisole	t-Nitroaniline	4-Nitrophenol	Acetophenone	Aniline	Benzenethiol	Benzoic acid
WHC1-BG06	0	NORM	12/10/2008	< 0.0347 UJ	< 0.0347 UJ	< 0.0347 UJ	< 0.115 UJ	< 0.0695 UJ	< 0.0695 UJ	< 0.0347 UJ	< 0.122 UJ	< 0.115 UJ	< 0.174 UJ
WHC1-BG06	10	NORM	12/10/2008	< 0.0483 U	< 0.0483 U	< 0.0483 U	< 0.159 U	< 0.0965 UJ	< 0.0965 U	< 0.0483 U	< 0.169 U	< 0.159 U	< 0.241 UJ
WHC1-BH01	0	NORM	12/3/2008	< 0.0342 U	< 0.0342 U	< 0.0342 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC1-BH01	11	NORM	12/3/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-BH02	0	NORM	12/4/2008	< 0.0352 U	< 0.0352 U	< 0.0352 U	< 0.116 U	< 0.0704 U	< 0.0704 U	< 0.0352 U	< 0.123 U	< 0.116 U	< 0.176 U
WHC1-BH02	10	NORM	12/4/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC1-BH03	0	NORM	12/9/2008	< 0.0341 U	< 0.0341 U	< 0.0341 U	< 0.112 U	< 0.0681 U	< 0.0681 U	< 0.0341 U	< 0.119 U	< 0.112 U	< 0.17 U
WHC1-BH03	10	NORM	12/9/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BH04	0	NORM	12/11/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.12 U	< 0.114 U	< 0.172 U
WHC1-BH04	10	NORM	12/11/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BH05	0	NORM	12/9/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BH05	0	FD	12/9/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BH05	10	NORM	12/9/2008	< 0.0358 U	< 0.0358 U	< 0.0358 U	< 0.118 U	< 0.0716 U	< 0.0716 U	< 0.0358 U	< 0.125 U	< 0.118 U	< 0.179 U
WHC1-BH06	0	NORM	12/11/2008	< 0.0378 U	< 0.0378 U	< 0.0378 U	< 0.125 U	< 0.0757 U	< 0.0757 U	< 0.0378 U	< 0.132 U	< 0.125 U	< 0.189 U
WHC1-BH06	0	FD	12/11/2008	< 0.0355 U	< 0.0355 U	< 0.0355 U	< 0.117 U	< 0.071 U	< 0.071 U	< 0.0355 U	< 0.124 U	< 0.117 U	< 0.178 U
WHC1-BH06	10	NORM	12/11/2008	< 0.039 U	< 0.039 U	< 0.039 U	< 0.129 U	< 0.0781 U	< 0.0781 U	< 0.039 U	< 0.137 U	< 0.129 U	< 0.195 U
WHC1-BI01	0	NORM	12/3/2008	< 0.0351 U	< 0.0351 U	< 0.0351 U	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 U	< 0.123 U	< 0.116 U	< 0.176 U
WHC1-BI01	11	NORM	12/3/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-BI02	0	NORM	12/4/2008	< 0.0349 U	< 0.0349 U	< 0.0349 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0349 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BI02	3	NORM	12/4/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-BI02	13	NORM	12/4/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BI03	0	NORM	12/4/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.114 U	< 0.0689 U	< 0.0689 U	< 0.0344 U	< 0.121 U	< 0.114 U	< 0.172 U
WHC1-BI03	11	NORM	12/4/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0344 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-BI04	0	NORM	12/8/2008	< 0.0339 U	< 0.0339 U	< 0.0339 U	< 0.112 U	< 0.0679 U	< 0.0679 U	< 0.0339 U	< 0.119 U	< 0.112 U	< 0.17 U
WHC1-BI04	10	NORM	12/9/2008	< 0.0355 U	< 0.0355 U	< 0.0355 U	< 0.117 U	< 0.071 U	< 0.071 U	< 0.0355 U	< 0.124 U	< 0.117 U	< 0.177 U
WHC1-BI05	0	NORM	12/9/2008	< 0.0342 U	< 0.0342 U	< 0.0342 U	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0342 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC1-BI05	10	NORM	12/9/2008	< 0.0345 U	< 0.0345 U	< 0.0345 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0345 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BJ01	0	NORM	12/3/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BJ01	3	NORM	12/3/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BJ01	13	NORM	12/3/2008	< 0.0353 U	< 0.0353 U	< 0.0353 U	< 0.116 U	< 0.0706 U	< 0.0706 U	< 0.0353 U	< 0.124 U	< 0.116 U	< 0.176 U
WHC1-BJ02	0	NORM	12/2/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BJ02	0	FD	12/2/2008	< 1.39 U	< 1.39 U	< 1.39 U	< 4.59 U	< 2.78 U	< 2.78 U	< 1.39 U	< 4.86 U	< 4.59 U	< 6.95 U
WHC1-BJ02	12	NORM	12/2/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.035 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-BJ03	0	FD	12/4/2008	< 0.0349 U	< 0.0349 U	< 0.0349 U	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0349 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.0345 U	< 0.0345 U	< 0.0345 U	< 0.114 U	< 0.069 U	< 0.069 U	< 0.0345 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BJ04	0	NORM	12/4/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BJ04	11	NORM	12/4/2008	< 0.0345 U	< 0.0345 U	< 0.0345 U	< 0.114 U	< 0.069 U	< 0.069 U	< 0.0345 U	< 0.121 U	< 0.114 U	< 0.172 U
WHC1-BJ05	0	NORM	12/11/2008	< 0.0339 U	< 0.0339 U	< 0.0339 U	< 0.112 U	< 0.0678 U	< 0.0678 U	< 0.0339 U	< 0.119 U	< 0.112 U	< 0.169 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 21 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			
										/			
				4-Bromophenyl ohenyl ether	4-Chloro-3- nethylphenol	4-Chlorophenyl phenyl ether	4-Chlorothioanisole	+-Nitroaniline	4-Nitrophenol	Acetophenone	ə	enzenethiol	ic acid
	Depth	Sample	Sample	roi	hlc thy	Jhlc iny)hic	litr	litr	sto]	iii	ıze	ozı
Sample ID	(ft bgs)	Type	Date	4-Brom phenyl	4-C	4-C	0-	Z-	Y	Ace	Aniline	Вег	Benzoic
WHC1-BJ05	10	NORM	12/11/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BK01	0	NORM	12/3/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-BK01	0	FD	12/3/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BK01	10	NORM	12/3/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.035 U	< 0.123 U	< 0.116 U	< 0.175 U
WHC1-BK02	0	NORM	12/8/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-BK02	11	NORM	12/18/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0696 U	< 0.0696 UJ	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BK03	0	NORM	12/15/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-BK03	12	NORM	12/18/2008	< 0.0357 U	< 0.0357 U	< 0.0357 U	< 0.118 U	< 0.0713 U	< 0.0713 UJ	< 0.0357 U	< 0.125 U	< 0.118 U	< 0.178 U
WHC1-BK04	0	NORM	12/4/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BK04	10	NORM	12/4/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BK05	0	NORM	12/12/2008	< 0.0342 U	< 0.0342 U	< 0.0342 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC1-BK05	11	NORM	12/12/2008	< 0.0349 U	< 0.0349 U	< 0.0349 U	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0349 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BL01	0	NORM	12/3/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BL01	10	NORM	12/3/2008	< 0.0351 U	< 0.0351 U	< 0.0351 U	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 U	< 0.123 U	< 0.116 U	< 0.176 U
WHC1-BL02	0	NORM	12/2/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BL02	10	NORM	12/2/2008	< 0.0341 U	< 0.0341 U	< 0.0341 U	< 0.112 U	< 0.0681 U	< 0.0681 U	< 0.0341 U	< 0.119 U	< 0.112 U	< 0.17 U
WHC1-BL03	0	NORM	12/8/2008	< 0.0341 U	< 0.0341 U	< 0.0341 U	< 0.113 U	< 0.0682 U	< 0.0682 U	< 0.0341 U	< 0.119 U	< 0.113 U	< 0.171 U
WHC1-BL03	10	NORM	12/18/2008	< 0.0352 U	< 0.0352 U	< 0.0352 U	< 0.116 U	< 0.0703 U	< 0.0703 UJ	< 0.0352 U	< 0.123 U	< 0.116 U	< 0.176 U
WHC1-BL04	0	NORM	12/17/2008	< 0.0353 U	< 0.0353 U	< 0.0353 U	< 0.116 U	< 0.0705 U	< 0.0705 UJ	< 0.0353 U	< 0.123 U	< 0.116 U	< 0.176 U
WHC1-BL04	12	NORM	12/22/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-BL05	0	NORM	11/21/2008	< 0.0337 U	< 0.0337 U	< 0.0337 U	< 0.111 U	< 0.0675 U	< 0.0675 U	< 0.0337 U	< 0.118 U	< 0.111 U	< 0.169 U
WHC1-BL05	10	NORM	11/21/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0347 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BL06	0	NORM	11/21/2008	< 0.0354 U	< 0.0354 U	< 0.0354 U	< 0.117 U	< 0.0708 U	< 0.0708 U	< 0.0354 U	< 0.124 U	< 0.117 U	< 0.177 U
WHC1-BL06	11	NORM	11/21/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.116 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.123 U	< 0.116 U	< 0.175 U
WHC1-BL07	0	NORM	11/21/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-BL07	10	NORM	11/21/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BL08	0	NORM	11/18/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.114 U	< 0.0693 UJ	< 0.0693 U	< 0.0347 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BL08	10	NORM	11/18/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.116 U	< 0.07 UJ	< 0.07 U	< 0.035 U	< 0.123 U	< 0.116 U	< 0.175 U
WHC1-BL11	0	NORM	11/18/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.115 U	< 0.0699 UJ	< 0.0699 U	< 0.035 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-BL11	12	NORM	11/18/2008	< 0.0351 U	< 0.0351 U	< 0.0351 U	< 0.116 U	< 0.0702 UJ	< 0.0702 U	< 0.0351 U	< 0.123 U	< 0.116 U	< 0.175 U
WHC1-BM01	0	NORM	12/3/2008	< 0.0355 U	< 0.0355 U	< 0.0355 U	< 0.117 U	< 0.071 U	< 0.071 U	< 0.0355 U	< 0.124 U	< 0.117 U	< 0.178 U
WHC1-BM01	10	NORM	12/3/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BM02	0	NORM	12/2/2008	< 0.0358 U	< 0.0358 U	< 0.0358 U	< 0.118 U	< 0.0717 U	< 0.0717 U	< 0.0358 U	< 0.125 U	< 0.118 U	< 0.179 U
WHC1-BM02	12	NORM	12/2/2008	< 0.0353 U	< 0.0353 U	< 0.0353 U	< 0.117 U	< 0.0707 U	< 0.0707 U	< 0.0353 U	< 0.124 U	< 0.117 U	< 0.177 U
WHC1-BM03	0	NORM	12/8/2008	< 0.0342 U	< 0.0342 U	< 0.0342 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC1-BM03	10	NORM	12/18/2008	< 0.036 U	< 0.036 U	< 0.036 U	< 0.119 U	< 0.072 U	< 0.072 UJ	< 0.036 U	< 0.126 U	< 0.119 U	< 0.18 U
WHC1-BM04	0	NORM	12/17/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.115 U	< 0.07 U	< 0.07 UJ	< 0.035 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-BM04	0	FD	12/17/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0692 U	< 0.0692 UJ	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BM04	10	NORM	12/22/2008	< 0.0357 U	< 0.0357 U	< 0.0357 U	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0357 U	< 0.125 U	< 0.118 U	< 0.179 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 22 of 63)

1							Semi-V	olatile Organio	Compounds (S	SVOCs)			
				enyl r	lol	enyl r	oanisole	ne	lol	one		lo	d
	Depth	Sample	Sample	4-Bromophenyl phenyl ether	4-Chloro-3- methylphenol	4-Chlorophenyl phenyl ether	4-Chlorothioanisole	Nitroanili ne	t-Nitrophenol	Acetophenone	Aniline	Benzenethiol	Benzoic acid
	(ft bgs)	Type	Date			1		4	7	7			
WHC1-BM05	0	NORM	11/21/2008	< 0.0337 U	< 0.0337 U	< 0.0337 U	< 0.111 U	< 0.0674 U	< 0.0674 U	< 0.0337 U	< 0.118 U	< 0.111 U	< 0.168 U
WHC1-BM05	10	NORM	11/21/2008	< 0.0353 U	< 0.0353 U	< 0.0353 U	< 0.116 U	< 0.0706 U	< 0.0706 U	< 0.0353 U	< 0.123 U	< 0.116 U	< 0.176 U
WHC1-BM06	0	NORM	11/21/2008	< 0.0339 U	< 0.0339 U	< 0.0339 U	< 0.112 U	< 0.0678 U	< 0.0678 U	< 0.0339 U	< 0.119 U	< 0.112 U	< 0.17 U
WHC1-BM06	0	FD	11/21/2008	< 0.0354 U	< 0.0354 U	< 0.0354 U	< 0.117 U	< 0.0709 U	< 0.0709 U	< 0.0354 U	< 0.124 U	< 0.117 U	< 0.177 U
WHC1-BM06	10	NORM	11/21/2008	< 0.0357 U	< 0.0357 U	< 0.0357 U	< 0.118 U	< 0.0715 U	< 0.0715 U	< 0.0357 U	< 0.125 U	< 0.118 U	< 0.179 U
WHC1-BM07	0	NORM	11/20/2008	< 0.0342 U	< 0.0342 U	< 0.0342 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC1-BM07	11	NORM	11/20/2008	< 0.0349 U	< 0.0349 U	< 0.0349 U	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0349 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BM08	0		11/18/2008	< 0.0358 U	< 0.0358 U	< 0.0358 U	< 0.118 U	< 0.0716 UJ	< 0.0716 U	< 0.0358 U	< 0.125 U	< 0.118 U	< 0.179 U
WHC1-BM08	0	FD	11/18/2008	< 0.0385 U	< 0.0385 U	< 0.0385 U	< 0.127 U	< 0.077 UJ	< 0.077 U	< 0.0385 U	< 0.135 U	< 0.127 U	< 0.193 U
WHC1-BM08	11		11/18/2008	< 0.0361 U	< 0.0361 U	< 0.0361 U	< 0.119 U	< 0.0722 UJ	< 0.0722 U	< 0.0361 U	< 0.126 U	< 0.119 U	< 0.18 U
WHC1-BM09	0		11/18/2008	< 0.0353 U	< 0.0353 U	< 0.0353 U	< 0.117 U	< 0.0706 UJ	< 0.0706 U	< 0.0353 U	< 0.124 U	< 0.117 U	< 0.177 U
WHC1-BM09	12	NORM	11/18/2008										
WHC1-BM10	0		11/18/2008	< 0.0354 U	< 0.0354 U	< 0.0354 U	< 0.117 U	< 0.0709 UJ	< 0.0709 U	< 0.0354 U	< 0.124 U	< 0.117 U	< 0.177 U
WHC1-BM10	3	NORM	11/18/2008	< 0.0357 U	< 0.0357 U	< 0.0357 U	< 0.118 U	< 0.0715 UJ	< 0.0715 U	< 0.0357 U	< 0.125 U	< 0.118 U	< 0.179 U
WHC1-BM10	13	NORM	11/18/2008	< 0.0402 U	< 0.0402 U	< 0.0402 U	< 0.133 U	< 0.0805 UJ	< 0.0805 U	< 0.0402 U	< 0.141 U	< 0.133 U	< 0.201 U
WHC1-BN01	0	NORM	12/1/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-BN01	12	NORM	12/1/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BN02	0	NORM	12/1/2008	< 0.0351 U	< 0.0351 U	< 0.0351 U	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 U	< 0.123 U	< 0.116 U	< 0.176 U
WHC1-BN02	0	FD	12/1/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.035 U	< 0.123 U	< 0.116 U	< 0.175 U
WHC1-BN02	11	NORM	12/1/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0344 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-BN03	0	NORM	12/17/2008	< 0.0357 U	< 0.0357 U	< 0.0357 U	< 0.118 U	< 0.0713 U	< 0.0713 U	< 0.0357 U	< 0.125 U	< 0.118 U	< 0.178 UJ
WHC1-BN03	10	NORM	12/18/2008	< 0.0376 U	< 0.0376 U	< 0.0376 U	< 0.124 U	< 0.0751 U	< 0.0751 UJ	< 0.0376 U	< 0.131 U	< 0.124 U	< 0.188 U
WHC1-BN04	0	NORM	12/17/2008	< 0.0349 U	< 0.0349 U	< 0.0349 U	< 0.115 U	< 0.0698 U	< 0.0698 UJ	< 0.0349 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BN04	7	NORM	12/22/2008	< 0.0352 U	< 0.0352 U	< 0.0352 U	< 0.116 U	< 0.0705 U	< 0.0705 U	< 0.0352 U	< 0.123 U	< 0.116 U	< 0.176 U
WHC1-BN04	17	NORM	12/22/2008	< 0.0354 U	< 0.0354 U	< 0.0354 U	< 0.117 U	< 0.0709 U	< 0.0709 U	< 0.0354 U	< 0.124 U	< 0.117 U	< 0.177 U
WHC1-BN05	0	NORM	11/20/2008	< 0.034 U	< 0.034 U	< 0.034 U	< 0.112 U	< 0.0679 U	< 0.0679 U	< 0.034 U	< 0.119 U	< 0.112 U	< 0.17 U
WHC1-BN05	0	FD	11/20/2008	< 0.0342 U	< 0.0342 U	< 0.0342 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC1-BN05	10	NORM	11/20/2008	< 0.0353 U	< 0.0353 U	< 0.0353 U	< 0.117 U	< 0.0707 U	< 0.0707 U	< 0.0353 U	< 0.124 U	< 0.117 U	< 0.177 U
WHC1-BN06	0	NORM	11/20/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BN06	10	NORM	11/20/2008										
WHC1-BN07	0	NORM	11/21/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BN07	3	NORM	11/21/2008	< 0.0357 U	< 0.0357 U	< 0.0357 U	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0357 U	< 0.125 U	< 0.118 U	< 0.178 U
WHC1-BN07	13	NORM	11/21/2008	< 0.0349 U	< 0.0349 U	< 0.0349 U	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0349 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BN08	0	NORM	11/20/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BN08	10	NORM	11/20/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BN09	0	NORM	12/17/2008	< 0.0358 U	< 0.0358 U	< 0.0358 U	< 0.118 U	< 0.0715 U	< 0.0715 UJ	< 0.0358 U	< 0.125 U	< 0.118 U	< 0.179 U
WHC1-BN09	11	NORM	12/19/2008	< 0.0363 U	< 0.0363 U	< 0.0363 U	< 0.12 U	< 0.0726 U	< 0.0726 U	< 0.0363 U	< 0.127 U	< 0.12 U	< 0.181 U
WHC1-BN10	0	NORM	11/18/2008	< 0.0378 U	< 0.0378 U	< 0.0378 U	< 0.125 U	< 0.0757 UJ	< 0.0757 U	< 0.0378 U	< 0.132 U	< 0.125 U	< 0.189 U
WHC1-BN10	10	NORM	11/18/2008	< 0.0392 U	< 0.0392 U	< 0.0392 U	< 0.129 U	< 0.0784 UJ	< 0.0784 U	< 0.0392 U	< 0.137 U	< 0.129 U	< 0.196 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 23 of 63)

	I						Semi-V	olatile Organio	Compounds (S	SVOCs)			
				ıyı		ıyl	-Chlorothioanisole	0	_	a			
				hen er	}- nol	Chlorophenyl ıenyl ether	ni Ož	line	-Nitrophenol	cetophenone		iol	acid
				opl eth	o-3	rophe	oth	ani	phe	hen		eth	s ac
	Depth	Sample	Sample	mo. Iyı	ıloı _İ lyı	ıloı ıyl	ıloı	tro	tro	[dot]	ine	sen	zoic
Sample ID	(ft bgs)	Туре	Date	4-Bromophenyl phenyl ether	4-Chloro-3- methylphenol	4-Chlor phenyl	Ç	t-Nitroaniline	Ę	9	Aniline	Benzenethiol	Benzoic
WHC1-BO01	(It bgs)	NORM	12/2/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0347 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BO01	0	FD	12/2/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.113 U	< 0.0691 U	< 0.0691 U	< 0.0347 U	< 0.122 U	< 0.113 U	< 0.174 U
WHC1-BO01	4	NORM	12/2/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.114 U	< 0.0685 U	< 0.0685 U	< 0.0343 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BO01	14	NORM	12/2/2008	< 0.036 U	< 0.036 U	< 0.036 U	< 0.119 U	< 0.072 U	< 0.072 U	< 0.036 U	< 0.12 C	< 0.119 U	< 0.18 U
WHC1-BO02	0	NORM	12/1/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC1-BO02	12	NORM	12/1/2008	< 0.0345 U	< 0.0345 U	< 0.0345 U	< 0.114 U	< 0.069 U	< 0.069 U	< 0.0345 U	< 0.121 U	< 0.114 U	< 0.172 U
WHC1-BO03	0	NORM	12/15/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0347 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BO03	12	NORM	12/19/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BO04	0	NORM	12/15/2008	< 0.0353 U	< 0.0353 U	< 0.0353 U	< 0.116 U	< 0.0705 U	< 0.0705 U	< 0.0353 U	< 0.123 U	< 0.116 U	< 0.176 U
WHC1-BO04	12	NORM	12/19/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BO05	0	NORM	11/20/2008	< 0.0334 U	< 0.0334 U	< 0.0334 U	< 0.11 U	< 0.0669 U	< 0.0669 U	< 0.0334 U	< 0.117 U	< 0.11 U	< 0.167 U
WHC1-BO05	10	NORM	11/20/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BO06	0	NORM	11/20/2008	< 0.0336 U	< 0.0336 U	< 0.0336 U	< 0.111 U	< 0.0673 U	< 0.0673 U	< 0.0336 U	< 0.118 U	< 0.111 U	< 0.168 U
WHC1-BO06	10	NORM	11/20/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.035 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-BO07	0	NORM	11/19/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.12 U	< 0.114 U	< 0.172 U
WHC1-BO07	10	NORM	11/19/2008	< 0.0359 U	< 0.0359 U	< 0.0359 U	< 0.118 U	< 0.0717 U	< 0.0717 U	< 0.0359 U	< 0.126 U	< 0.118 U	< 0.179 U
WHC1-BO08	0	NORM	11/20/2008	< 0.0353 U	< 0.0353 U	< 0.0353 U	< 0.116 U	< 0.0706 U	< 0.0706 U	< 0.0353 U	< 0.124 U	< 0.116 U	< 0.176 U
WHC1-BO08	0	FD	11/20/2008	< 0.0345 U	< 0.0345 U	< 0.0345 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0345 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-BO08	11		11/20/2008	< 0.0361 U	< 0.0361 U	< 0.0361 U	< 0.119 U	< 0.0722 U	< 0.0722 U	< 0.0361 U	< 0.126 U	< 0.119 U	< 0.181 U
WHC1-BO09	0	NORM	11/19/2008	< 0.0342 U	< 0.0342 U	< 0.0342 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC1-BO09	0	FD	11/19/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-BO09	6		11/19/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC1-BO09	16		11/19/2008	< 0.038 U	< 0.038 U	< 0.038 U	< 0.125 U	< 0.076 U	< 0.076 U	< 0.038 U	< 0.133 U	< 0.125 U	< 0.19 U
WHC1-BO10	0		11/19/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-BO10	10		11/19/2008										
WHC1-BP01	0	NORM	12/1/2008	< 0.0349 U	< 0.0349 U	< 0.0349 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0349 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-BP01	10	NORM	12/1/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.121 U	< 0.115 U	< 0.174 U
WHC1-BP02	0	NORM	12/1/2008	< 0.0342 U	< 0.0342 U	< 0.0342 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC1-BP02	11	NORM	12/1/2008	< 0.0357 U	< 0.0357 U	< 0.0357 U	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0357 U	< 0.125 U	< 0.118 U	< 0.179 U
WHC1-BP03	0	NORM	12/15/2008	< 0.0339 U	< 0.0339 U	< 0.0339 U	< 0.112 U	< 0.0679 U	< 0.0679 U	< 0.0339 U	< 0.119 U	< 0.112 U	< 0.17 U
WHC1-BP03	0	FD	12/15/2008	< 0.0341 U	< 0.0341 U	< 0.0341 U	< 0.112 U	< 0.0681 U	< 0.0681 U	< 0.0341 U	< 0.119 U	< 0.112 U	< 0.17 U
WHC1-BP03	11	NORM	12/19/2008	< 0.0361 U	< 0.0361 U	< 0.0361 U	< 0.119 U	< 0.0721 U	< 0.0721 U	< 0.0361 U	< 0.126 U	< 0.119 U	< 0.18 U
WHC1-BP04	0		12/15/2008	< 0.0342 U	< 0.0342 U	< 0.0342 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC1-BP04	0		12/19/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.121 U	< 0.115 U	< 0.174 U
WHC1-BP05			12/15/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.114 U	< 0.0689 U	< 0.0689 U	< 0.0344 U	< 0.121 U	< 0.114 U	< 0.172 U
WHC1-BP05	10		12/19/2008	< 0.0357 U	< 0.0357 U	< 0.0357 U	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0357 U	< 0.125 U	< 0.118 U	< 0.178 U
WHC1-BP06	10	NORM NORM	12/12/2008 12/12/2008	< 0.034 U	< 0.034 U < 0.0346 U	< 0.034 U < 0.0346 U	< 0.112 U < 0.114 U	< 0.0681 U	< 0.0681 U < 0.0692 U	< 0.034 U	< 0.119 U < 0.121 U	< 0.112 U < 0.114 U	< 0.17 U < 0.173 U
WHC1-BP06 WHC1-BP07	0		11/20/2008	< 0.0346 U < 0.0357 U	< 0.0346 U < 0.0357 U	< 0.0346 U < 0.0357 U	< 0.114 U < 0.118 U	< 0.0692 U < 0.0715 U	< 0.0692 U < 0.0715 U	< 0.0346 U < 0.0357 U	< 0.121 U < 0.125 U	< 0.114 U < 0.118 U	< 0.173 U < 0.179 U
WIICI-DEU/	U	NOKW	11/20/2008	< 0.0337 U	< 0.0337 U	< 0.0337 U	< 0.116 U	< 0.0713 U	< 0.0713 U	< 0.0337 U	< 0.125 U	< 0.116 U	< 0.179 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 24 of 63)

							Semi-V	olatile Organio	c Compounds (S	SVOCs)			1
									1				
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	4-Bromophenyl phenyl ether	4-Chloro-3- methylphenol	4-Chlorophenyl phenyl ether	4-Chlorothioanisole	t-Nitroaniline	t-Nitrophenol	Acetophenone	Aniline	Benzenethiol	Benzoic acid
WHC1-BP07	3	NORM	11/20/2008	< 0.0352 U	< 0.0352 U	< 0.0352 U	< 0.116 U	< 0.0705 U	< 0.0705 U	< 0.0352 U	< 0.123 U	< 0.116 U	< 0.176 U
WHC1-BP07	13	NORM	11/20/2008	< 0.0358 U	< 0.0358 U	< 0.0358 U	< 0.118 U	< 0.0716 U	< 0.0716 U	< 0.0358 U	< 0.125 U	< 0.118 U	< 0.179 U
WHC1-BP08	0	NORM	11/19/2008	< 0.035 UJ	< 0.035 UJ	< 0.035 UJ	< 0.116 UJ	< 0.07 UJ	< 0.07 UJ	< 0.035 UJ	< 0.123 UJ	< 0.116 UJ	< 0.175 UJ
WHC1-BP08	4	NORM	11/19/2008	< 0.0357 UJ	< 0.0357 UJ	< 0.0357 UJ	< 0.118 UJ	< 0.0714 UJ	< 0.0714 UJ	< 0.0357 UJ	< 0.125 UJ	< 0.118 UJ	< 0.178 UJ
WHC1-BP08	14	NORM	11/19/2008	< 0.0359 U	< 0.0359 U	< 0.0359 U	< 0.118 U	< 0.0718 U	< 0.0718 U	< 0.0359 U	< 0.126 U	< 0.118 U	< 0.179 U
WHC1-BP09	0		11/19/2008	< 0.0342 U	< 0.0342 U	< 0.0342 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC1-BP09	10	NORM	11/19/2008	< 0.04 U	< 0.04 U	< 0.04 U	< 0.132 U	< 0.08 U	< 0.08 U	< 0.04 U	< 0.14 U	< 0.132 U	< 0.2 U
WHC1-BP10	0	NORM	11/19/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC1-BP10	10	NORM	11/19/2008	< 0.0473 U	< 0.0473 U	< 0.0473 U	< 0.156 U	< 0.0945 U	< 0.0945 U	< 0.0473 U	< 0.165 U	< 0.156 U	< 0.236 U
WHC1-D01	0	NORM	12/5/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.121 U	< 0.115 U	< 0.174 U
WHC1-D01	10	NORM	12/5/2008	< 0.0348 UJ	< 0.0348 UJ	< 0.0348 UJ	< 0.115 UJ	< 0.0696 UJ	< 0.0696 UJ	< 0.0348 UJ	< 0.122 UJ	< 0.115 UJ	< 0.174 UJ
WHC1-D02	0	NORM	12/5/2008	< 0.0357 UJ	< 0.0357 UJ	< 0.0357 UJ	< 0.118 UJ	< 0.0715 UJ	< 0.0715 UJ	< 0.0357 UJ	< 0.125 UJ	< 0.118 UJ	< 0.179 UJ
WHC1-D02	10	NORM	12/5/2008	< 0.0351 U	< 0.0351 U	< 0.0351 U	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 U	< 0.123 U	< 0.116 U	< 0.175 UJ
WHC1-D03	0	NORM	12/5/2008	< 0.0349 UJ	< 0.0349 UJ	< 0.0349 UJ	< 0.115 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0349 UJ	< 0.122 UJ	< 0.115 UJ	0.389 J
WHC1-D03	0	FD	12/5/2008	< 0.035 UJ	< 0.035 UJ	< 0.035 UJ	< 0.115 UJ	< 0.0699 UJ	< 0.0699 UJ	< 0.035 UJ	< 0.122 UJ	< 0.115 UJ	< 0.175 UJ
WHC1-D03	10	NORM	12/5/2008	< 0.0353 UJ	< 0.0353 UJ	< 0.0353 UJ	< 0.116 UJ	< 0.0706 UJ	< 0.0706 UJ	< 0.0353 UJ	< 0.124 UJ	< 0.116 UJ	< 0.176 UJ
WHC1-D04	0	NORM	12/5/2008	< 0.0353 U	< 0.0353 U	< 0.0353 U	< 0.116 U	< 0.0706 U	< 0.0706 U	< 0.0353 U	< 0.123 U	< 0.116 U	< 0.176 U
WHC1-D04	10	NORM	12/5/2008	< 0.0345 UJ	< 0.0345 UJ	< 0.0345 UJ	< 0.114 UJ	< 0.069 UJ	< 0.069 UJ	< 0.0345 UJ	< 0.121 UJ	< 0.114 UJ	< 0.173 UJ
WHC1-D05	0	NORM	12/5/2008	< 0.035 UJ	< 0.035 UJ	< 0.035 UJ	< 0.115 UJ	< 0.07 UJ	< 0.07 UJ	< 0.035 UJ	< 0.122 UJ	< 0.115 UJ	< 0.175 UJ
WHC1-D05	10	NORM	12/5/2008	< 0.0344 UJ	< 0.0344 UJ	< 0.0344 UJ	< 0.114 UJ	< 0.0689 UJ	< 0.0689 UJ	< 0.0344 UJ	< 0.121 UJ	< 0.114 UJ	< 0.172 UJ
WHC1-D06	0	NORM	12/5/2008	< 0.0366 U	< 0.0366 U	< 0.0366 U	< 0.121 U	< 0.0732 U	< 0.0732 U	< 0.0366 U	< 0.128 U	< 0.121 U	< 0.183 U
WHC1-D06	10	NORM	12/5/2008	< 0.035 UJ	< 0.035 UJ	< 0.035 UJ	< 0.116 UJ	< 0.07 UJ	< 0.07 UJ	< 0.035 UJ	< 0.123 UJ	< 0.116 UJ	< 0.175 UJ
WHC1-D07	0	NORM	12/5/2008	< 0.0345 U	< 0.0345 U	< 0.0345 U	< 0.114 U	< 0.069 UJ	< 0.069 UJ	< 0.0345 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-D07	10	NORM	12/5/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-D08	0	NORM	12/8/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0344 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-D08	10	NORM	12/9/2008	< 0.0354 U	< 0.0354 U	< 0.0354 U	< 0.117 U	< 0.0708 U	< 0.0708 U	< 0.0354 U	< 0.124 U	< 0.117 U	< 0.177 U
WHC1-D09	0	NORM	12/8/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0344 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-D09	11	NORM	12/9/2008	< 0.0351 UJ	< 0.0351 UJ	< 0.0351 UJ	< 0.116 UJ	< 0.0701 UJ	< 0.0701 UJ	< 0.0351 UJ	< 0.123 UJ	< 0.116 UJ	< 0.175 UJ
WHC1-D10	0	NORM	12/8/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.12 U	< 0.114 U	< 0.172 U
WHC1-D10	10	NORM	12/9/2008	< 0.0351 U	< 0.0351 U	< 0.0351 U	< 0.116 U	< 0.0703 U	< 0.0703 U	< 0.0351 U	< 0.123 U	< 0.116 U	< 0.176 U
WHC1-D11	0	NORM	12/8/2008	< 0.0345 U	< 0.0345 U	< 0.0345 U	< 0.114 U	< 0.069 U	< 0.069 U	< 0.0345 U	< 0.121 U	< 0.114 U	0.571 J
WHC1-D11	10	NORM	12/9/2008	< 0.0366 U	< 0.0366 U	< 0.0366 U	< 0.121 U	< 0.0732 U	< 0.0732 U	< 0.0366 U	< 0.128 U	< 0.121 U	< 0.183 U
WHC1-D12	0	NORM	12/10/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.116 U	< 0.0701 UJ	< 0.0701 U	< 0.035 U	< 0.123 U	< 0.116 U	< 0.175 UJ
WHC1-D12	10	NORM	12/10/2008	< 0.0461 U	< 0.0461 U	< 0.0461 U	< 0.152 U	< 0.0923 UJ	< 0.0923 U	< 0.0461 U	< 0.161 U	< 0.152 U	< 0.231 UJ
WHC1-D13	0	NORM	12/8/2008	< 0.0356 U	< 0.0356 U	< 0.0356 U	< 0.118 U	< 0.0712 UJ	< 0.0712 U	< 0.0356 U	< 0.125 U	< 0.118 U	< 0.178 UJ
WHC1-D13	10	NORM	12/8/2008	< 0.0505 U	< 0.0505 U	< 0.0505 U	< 0.167 U	< 0.101 UJ	< 0.101 U	< 0.0505 U	< 0.177 U	< 0.167 U	< 0.252 UJ
WHC1-D15	0	NORM	12/11/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0344 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-D15	10	NORM	12/11/2008	< 0.0423 U	< 0.0423 U	< 0.0423 U	< 0.14 U	< 0.0846 U	< 0.0846 U	< 0.0423 U	< 0.148 U	< 0.14 U	< 0.211 U
WHC1-D16	0	NORM	12/10/2008	< 0.0382 U	< 0.0382 U	< 0.0382 U	< 0.126 U	< 0.0763 UJ	< 0.0763 U	< 0.0382 U	< 0.134 U	< 0.126 U	< 0.191 UJ

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 25 of 63)

				1			Semi-V	olatile Organio	Compounds (S	SVOCs)			1
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	4-Bromophenyl phenyl ether	4-Chloro-3- methylphenol	4-Chlorophenyl phenyl ether	4-Chlorothioanisole	t-Nitroaniline	4-Nitrophenol	Acetophenone	Aniline	Benzenethiol	Benzoic acid
WHC1-D16	10	NORM	12/10/2008	< 0.0393 U	< 0.0393 U	< 0.0393 U	< 0.13 U	< 0.0785 UJ	< 0.0785 U	< 0.0393 U	< 0.137 U	< 0.13 U	< 0.196 UJ
WHC1-D17	0	NORM	12/10/2008	< 0.0356 U	< 0.0356 U	< 0.0356 U	< 0.117 U	< 0.0712 UJ	< 0.0712 U	< 0.0356 U	< 0.125 U	< 0.117 U	< 0.178 UJ
WHC1-D17	10	NORM	12/10/2008	< 0.039 U	< 0.039 U	< 0.039 U	< 0.129 U	< 0.0779 UJ	< 0.0779 U	< 0.039 U	< 0.136 U	< 0.129 U	< 0.195 UJ
WHC1-D18	0	NORM	12/11/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0346 U	< 0.121 U	< 0.114 U	0.377 J
WHC1-D18	10	NORM	12/11/2008	< 0.0349 U	< 0.0349 U	< 0.0349 U	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0349 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-D19	0	NORM	12/11/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0696 UJ	< 0.0696 UJ	< 0.0348 U	< 0.122 U	< 0.115 UJ	< 0.174 U
WHC1-D19	0	FD	12/11/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0693 UJ	< 0.0693 UJ	< 0.0346 U	< 0.121 U	< 0.114 UJ	< 0.173 U
WHC1-D19	10	NORM	12/11/2008	< 0.0352 U	< 0.0352 U	< 0.0352 U	< 0.116 U	< 0.0703 UJ	< 0.0703 UJ	< 0.0352 U	< 0.123 U	< 0.116 UJ	< 0.176 U
WHC1-D20	0	NORM	12/12/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.12 U	< 0.114 U	< 0.172 U
WHC1-D20	10	NORM	12/12/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.035 U	< 0.123 U	< 0.116 U	< 0.175 U
WHC1-D21	0	NORM	12/16/2008	< 0.0354 U	< 0.0354 U	< 0.0354 U	< 0.117 U	< 0.0708 U	< 0.0708 U	< 0.0354 UJ	< 0.124 U	< 0.117 U	< 0.177 UJ
WHC1-D21	10	NORM	12/16/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.035 UJ	< 0.122 U	< 0.115 U	< 0.175 UJ
WHC1-D22	0	NORM	12/16/2008	< 0.036 U	< 0.036 U	< 0.036 U	< 0.119 U	< 0.072 U	< 0.072 U	< 0.036 UJ	< 0.126 U	< 0.119 U	< 0.18 UJ
WHC1-D22	10	NORM	12/16/2008	< 0.0353 U	< 0.0353 U	< 0.0353 U	< 0.117 U	< 0.0706 U	< 0.0706 U	< 0.0353 UJ	< 0.124 U	< 0.117 U	< 0.177 UJ
WHC1-D23	0	NORM	12/16/2008	< 0.0351 U	< 0.0351 U	< 0.0351 U	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 UJ	< 0.123 U	< 0.116 U	< 0.175 UJ
WHC1-D23	10	NORM	12/16/2008	< 0.0349 U	< 0.0349 U	< 0.0349 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0349 UJ	< 0.122 U	< 0.115 U	< 0.175 UJ
WHC1-D24	0	NORM	12/16/2008	< 0.0364 U	< 0.0364 U	< 0.0364 U	< 0.12 U	< 0.0728 U	< 0.0728 U	< 0.0364 UJ	< 0.127 U	< 0.12 U	< 0.182 UJ
WHC1-D24	0	FD	12/16/2008	< 0.036 U	< 0.036 U	< 0.036 U	< 0.119 U	< 0.0721 U	< 0.0721 U	< 0.036 UJ	< 0.126 U	< 0.119 U	< 0.18 UJ
WHC1-D24	10	NORM	12/16/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0346 UJ	< 0.121 U	< 0.114 U	< 0.173 UJ
WHC1-D25	0	NORM	12/16/2008	< 0.0363 U	< 0.0363 U	< 0.0363 U	< 0.12 U	< 0.0727 U	< 0.0727 U	< 0.0363 U	< 0.127 U	< 0.12 U	< 0.182 U
WHC1-D25	10	NORM	12/16/2008	< 0.0345 U	< 0.0345 U	< 0.0345 U	< 0.114 U	< 0.069 U	< 0.069 U	< 0.0345 UJ	< 0.121 U	< 0.114 U	< 0.173 UJ
WHC1-D26	0	NORM	12/12/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-D26	10	NORM	12/12/2008	< 0.0376 U	< 0.0376 U	< 0.0376 U	< 0.124 U	< 0.0753 U	< 0.0753 U	< 0.0376 U	< 0.132 U	< 0.124 U	< 0.188 U
WHC1-D27	0	NORM	12/12/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.035 U	< 0.123 U	< 0.116 U	< 0.175 U
WHC1-D27	0	FD	12/12/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-D27	10	NORM	12/12/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.035 U	< 0.123 U	< 0.116 U	< 0.175 U
WHC1-D28	0	NORM	12/12/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.121 U	< 0.115 U	< 0.174 U
WHC1-D28	10	NORM	12/12/2008	< 0.0349 U	< 0.0349 U	< 0.0349 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0349 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-D29	0	NORM	12/12/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-D29	10	NORM	12/12/2008	< 0.0366 U	< 0.0366 U	< 0.0366 U	< 0.121 U	< 0.0733 U	< 0.0733 U	< 0.0366 U	< 0.128 U	< 0.121 U	< 0.183 U
WHC1-P01	0	NORM	12/15/2008	< 0.0342 U	< 0.0342 U	< 0.0342 U	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0342 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC1-P01	12	NORM	12/19/2008	< 0.036 U	< 0.036 U	< 0.036 U	< 0.119 U	< 0.0719 U	< 0.0719 U	< 0.036 U	< 0.126 U	< 0.119 U	< 0.18 U
WHC1-P02	0	NORM	12/1/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.12 U	< 0.114 U	< 0.172 U
WHC1-P02	10	NORM	12/1/2008	< 0.034 U	< 0.034 U	< 0.034 U	< 0.112 U	< 0.068 U	< 0.068 U	< 0.034 U	< 0.119 U	< 0.112 U	< 0.17 U
WHC1-P03	0	NORM	12/15/2008	< 0.0341 U	< 0.0341 U	< 0.0341 U	< 0.113 U	< 0.0683 U	< 0.0683 U	< 0.0341 U	< 0.119 U	< 0.113 U	< 0.171 U
WHC1-P03	3	NORM	12/18/2008	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0692 U	< 0.0692 UJ	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-P03	3	FD	12/18/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0687 U	< 0.0687 UJ	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-P03	13	NORM	12/18/2008	< 0.0357 U	< 0.0357 U	< 0.0357 U	< 0.118 U	< 0.0713 U	< 0.0713 UJ	< 0.0357 U	< 0.125 U	< 0.118 U	< 0.178 U
WHC1-P04	0	NORM	12/15/2008	< 0.0345 U	< 0.0345 U	< 0.0345 U	< 0.114 U	< 0.069 U	< 0.069 U	< 0.0345 U	< 0.121 U	< 0.114 U	< 0.173 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 26 of 63)

							Semi-V	olatile Organio	c Compounds (S	SVOCs)			
								3					
				4-Bromophenyl phenyl ether	4-Chloro-3- methylphenol	4-Chlorophenyl phenyl ether	Chlorothioanisole	4-Nitroaniline	-Nitrophenol	Acetophenone	e.	Benzenethiol	Benzoic acid
	Depth	Sample	Sample	Bro	Chl	Chl eny	Chi	1 2	Äit	četo	Aniline	ınze	ınzc
Sample ID	(ft bgs)	Type	Date	1	,	-4 pt	4		4	_			
WHC1-P04	10	NORM	12/18/2008	< 0.0372 U	< 0.0372 U	< 0.0372 U	< 0.123 U	< 0.0744 U	< 0.0744 UJ	< 0.0372 U	< 0.13 U	< 0.123 U	< 0.186 U
WHC1-P05	0	NORM	12/8/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-P05	0	FD	12/8/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-P05	10	NORM	12/18/2008	< 0.0351 U	< 0.0351 U	< 0.0351 U	< 0.116 U	< 0.0702 U	< 0.0702 UJ	< 0.0351 U	< 0.123 U	< 0.116 U	< 0.176 U
WHC1-P06	0	NORM	12/2/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-P06	12	NORM	12/2/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.12 U	< 0.114 U	< 0.172 U
WHC1-P07	0	NORM	12/2/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.116 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.123 U	< 0.116 U	< 0.175 U
WHC1-P07	3	NORM	12/2/2008	< 0.0342 U	< 0.0342 U	< 0.0342 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC1-P07	13	NORM	12/2/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-P08	0	NORM	12/3/2008	< 0.0342 UJ	< 0.0342 UJ	< 0.0342 UJ	< 0.113 UJ	< 0.0683 UJ	< 0.0683 UJ	< 0.0342 UJ	< 0.12 UJ	< 0.113 UJ	< 0.171 UJ
WHC1-P08	11	NORM	12/3/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-P09	0	NORM	12/4/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-P09	0	FD	12/4/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-P09	10	NORM	12/4/2008	< 0.0344 U	< 0.0344 U	< 0.0344 U	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC1-P10	0	NORM	11/25/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0347 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-P10	10		11/25/2008	< 0.0383 U	< 0.0383 U	< 0.0383 U	< 0.127 U	< 0.0767 U	< 0.0767 U	< 0.0383 U	< 0.134 U	< 0.127 U	< 0.192 U
WHC1-P11	0	NORM	12/8/2008	< 0.0353 U	< 0.0353 U	< 0.0353 U	< 0.116 U	< 0.0705 U	< 0.0705 U	< 0.0353 U	< 0.123 U	< 0.116 U	0.647 J
WHC1-P11	0	FD	12/8/2008	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.228 U	< 0.138 U	< 0.138 U	< 0.0691 U	< 0.242 U	< 0.228 U	< 0.346 U
WHC1-P11	10	NORM	12/9/2008	< 0.0351 U	< 0.0351 U	< 0.0351 U	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 U	< 0.123 U	< 0.116 U	< 0.175 U
WHC1-P12	0	NORM	12/5/2008	< 0.0351 U	< 0.0351 U	< 0.0351 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0351 U	< 0.123 U	< 0.116 U	< 0.175 U
WHC1-P12	11	NORM	12/5/2008	< 0.0348 UJ	< 0.0348 UJ	< 0.0348 UJ	< 0.115 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0348 UJ	< 0.122 UJ	< 0.115 UJ	< 0.174 UJ
WHC1-P13	0	NORM	12/9/2008	< 0.035 U	< 0.035 U	< 0.035 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-P13	10	NORM	12/9/2008	< 0.0457 U	< 0.0457 U	< 0.0457 U	< 0.151 U	< 0.0915 U	< 0.0915 U	< 0.0457 U	< 0.16 U	< 0.151 U	< 0.229 U
WHC1-P13	10	FD	12/9/2008	< 0.0389 U	< 0.0389 U	< 0.0389 U	< 0.128 U	< 0.0778 U	< 0.0778 U	< 0.0389 U	< 0.136 U	< 0.128 U	< 0.194 U
WHC1-P14	0	NORM	12/17/2008	< 0.0401 U	< 0.0401 U	< 0.0401 U	< 0.132 U	< 0.0803 U	< 0.0803 UJ	< 0.0401 U	< 0.14 U	< 0.132 U	< 0.201 U
WHC1-P15	0	NORM	12/8/2008	< 0.037 U	< 0.037 U	< 0.037 U	< 0.122 U	< 0.074 U	< 0.074 U	< 0.037 U	< 0.13 U	< 0.122 U	< 0.185 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.036 U	< 0.036 U	< 0.036 U	< 0.119 U	< 0.072 U	< 0.072 U	< 0.036 U	< 0.126 U	< 0.119 U	< 0.18 U
WHC1-P15	10	NORM	12/18/2008	< 0.0357 U	< 0.0357 U	< 0.0357 U	< 0.118 U	< 0.0714 U	< 0.0714 UJ	< 0.0357 U	< 0.125 U	< 0.118 U	< 0.178 U
WHC1-P16	0	NORM	12/1/2008	< 0.0337 U	< 0.0337 U	< 0.0337 U	< 0.111 U	< 0.0675 U	< 0.0675 U	< 0.0337 U	< 0.118 U	< 0.111 U	< 0.169 U
WHC1-P16	11	NORM	12/1/2008	< 0.0345 U	< 0.0345 U	< 0.0345 U	< 0.114 U	< 0.069 U	< 0.069 U	< 0.0345 U	< 0.121 U	< 0.114 U	< 0.172 U
WHC1-P17	0	NORM	12/15/2008	< 0.0349 U	< 0.0349 U	< 0.0349 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0349 U	< 0.122 U	< 0.115 U	< 0.175 U
WHC1-P17	12	NORM	12/19/2008	< 0.0347 U	< 0.0347 U	< 0.0347 U	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC1-P17	12	FD	12/19/2008	< 0.0348 U	< 0.0348 U	< 0.0348 U	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0348 U	< 0.122 U	< 0.115 U	< 0.174 U
WHC1-P18	0	NORM	12/1/2008	< 0.034 U	< 0.034 U	< 0.034 U	< 0.112 U	< 0.068 U	< 0.068 U	< 0.034 U	< 0.119 U	< 0.112 U	< 0.17 U
WHC1-P18	12	NORM	12/1/2008	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.172 U
WHC2-D02C	0	NORM	12/2/2009	< 0.0336 U	< 0.0336 U	< 0.0336 U	< 0.111 U	< 0.0672 U	< 0.0672 U	< 0.0336 U	< 0.118 U	< 0.111 U	< 0.168 U
WHC2-D04C	0	NORM	12/2/2009	< 0.0343 U	< 0.0343 U	< 0.0343 U	< 0.113 U	< 0.0686 UJ	< 0.0686 UJ	< 0.0343 U	< 0.12 U	< 0.113 U	< 0.171 U
WHC2-D05C	0	NORM	12/2/2009	< 0.0338 U	< 0.0338 U	< 0.0338 U	< 0.112 U	< 0.0676 UJ	< 0.0676 UJ	< 0.0338 U	< 0.118 U	< 0.112 U	0.185 J
WHC2-D11C	0	NORM	12/2/2009	< 0.0338 U	< 0.0338 U	< 0.0338 U	< 0.112 U	< 0.0677 U	< 0.0677 U	< 0.0338 U	< 0.118 U	< 0.112 U	< 0.169 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 27 of 63)

							Semi-V	olatile Organic	Compounds (S	SVOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	4-Bromophenyl phenyl ether	4-Chloro-3- methylphenol	4-Chlorophenyl phenyl ether	4-Chlorothioanisole	4-Nitroaniline	4-Nitrophenol	Acetophenone	Aniline	Benzenethiol	Benzoic acid
WHC2-D13C	0	NORM		< 0.0513 U	< 0.0513 U	< 0.0513 U	< 0.169 U	< 0.103 U	< 0.103 U	< 0.0513 U	< 0.179 U	< 0.169 U	< 0.256 U
WHC2-D13NE	0	NORM		< 0.0539 U	< 0.0539 U	< 0.0539 U	< 0.178 U	< 0.108 U	< 0.108 U	< 0.0539 U	< 0.189 U	< 0.178 U	< 0.27 U
WHC2-D13NW	0	NORM		< 0.0396 U	< 0.0396 U	< 0.0396 U	< 0.131 U	< 0.0793 U	< 0.0793 U	< 0.0396 U	< 0.139 U	< 0.131 U	< 0.198 U
WHC2-D13SE	0	NORM	12/3/2009	< 0.0534 U	< 0.0534 U	< 0.0534 U	< 0.176 U	< 0.107 U	< 0.107 U	< 0.0534 U	< 0.187 U	< 0.176 U	< 0.267 U
WHC2-D13SW	0	NORM		< 0.0499 U	< 0.0499 U	< 0.0499 U	< 0.165 U	< 0.0998 U	< 0.0998 U	< 0.0499 U	< 0.175 U	< 0.165 U	< 0.25 U
WHC2-D14C	0	NORM	12/2/2009	< 0.0353 U	< 0.0353 U	< 0.0353 U	< 0.117 U	< 0.0706 U	< 0.0706 U	< 0.0353 U	< 0.124 U	< 0.117 U	< 0.177 U
WHC2-D17C	0	NORM	12/1/2009	< 0.0365 U	< 0.0365 U	< 0.0365 U	< 0.121 U	< 0.0731 U	< 0.0731 U	< 0.0365 U	< 0.128 U	< 0.121 U	< 0.183 U
WHC2-D18C	0	NORM		< 0.0337 U	< 0.0337 U	< 0.0337 U	< 0.111 U	< 0.0674 U	< 0.0674 U	< 0.0337 U	< 0.118 U	< 0.111 U	< 0.168 U
WHC2-D18C	0	FD	12/1/2009	< 0.0338 U	< 0.0338 U	< 0.0338 U	< 0.111 U	< 0.0675 U	< 0.0675 U	< 0.0338 U	< 0.118 U	< 0.111 U	< 0.169 U
WHC2-D25C	0	NORM	12/1/2009	< 0.0338 U	< 0.0338 U	< 0.0338 U	< 0.112 U	< 0.0676 U	< 0.0676 U	< 0.0338 U	< 0.118 U	< 0.112 U	< 0.169 U
WHC2-P11C	0	NORM	12/1/2009	< 0.0341 U	< 0.0341 U	< 0.0341 U	< 0.113 U	< 0.0683 U	< 0.0683 U	< 0.0341 U	< 0.119 U	< 0.113 U	< 0.171 U
WHC6-D05	0	NORM	7/27/2012	< 0.0351 U	< 0.0351 U	< 0.0351 U	< 0.116 U	< 0.0701 U	< 0.0701 UJ	< 0.0351 U	< 0.123 U	< 0.116 U	< 0.175 U
WHC6-D11	0	NORM	7/27/2012	< 0.0346 U	< 0.0346 U	< 0.0346 U	< 0.114 U	< 0.0691 U	< 0.0691 UJ	< 0.0346 U	< 0.121 U	< 0.114 U	< 0.173 U
WHC6-P11	0	NORM	7/27/2012	< 0.0338 U	< 0.0338 U	< 0.0338 U	< 0.112 U	< 0.0676 U	< 0.0676 UJ	< 0.0338 U	< 0.118 U	< 0.112 U	< 0.169 U

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 28 of 63)

1							Semi-V	olatile Organio	Compounds (S	SVOCs)			
]	1	,			
Good M	Depth	Sample	Sample	Benzyl alcohol	ois(2-Chloroethoxy) methane	bis(2-Chloroethyl) ether	bis(2-Chloroisopropyl) ether	ois(2-Ethylhexyl) phthalate	ois(p-Chlorophenyl) sulfone	bis(p-Chlorophenyl) disulfide	Butylbenzyl phthalate	Carbazole	Dibenzofuran
Sample ID	(ft bgs)	Type	Date										
OSC1-BM11	0	NORM	9/21/2009	< 0.105 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 U	< 0.0701 U
OSC1-BM11	10	NORM	9/21/2009	< 0.116 U	< 0.0774 U	< 0.0774 U	< 0.0774 U	< 0.0774 U	< 0.128 U	< 0.128 U	< 0.0774 U	< 0.0116 U	< 0.0774 U
OSC1-BN11	0	NORM	9/22/2009	< 0.102 U	< 0.068 U	< 0.068 U	< 0.068 U	< 0.068 U	< 0.112 U	< 0.112 U	< 0.068 U	< 0.0102 U	< 0.068 U
OSC1-BN11	5	NORM	9/22/2009	< 0.107 U	< 0.0711 U	< 0.0711 U	< 0.0711 U	< 0.0711 U	< 0.117 U	< 0.117 U	< 0.0711 U	< 0.0107 U	< 0.0711 U
OSC1-BO11	0	NORM	9/16/2009	< 0.104 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	0.216 J	< 0.115 U	< 0.0694 U	< 0.0104 U	< 0.0694 U
OSC1-BO11	0	FD	9/16/2009	< 0.112 U	< 0.0745 U	< 0.0745 U	< 0.0745 U	< 0.0745 U	< 0.123 U	< 0.123 U	< 0.0745 U	< 0.0112 U	< 0.0745 U
OSC1-BO11	5	NORM	9/16/2009	< 0.111 U	< 0.0743 U	< 0.0743 U	< 0.0743 U	< 0.0743 U	< 0.123 U	< 0.123 U	< 0.0743 U	< 0.0111 U	< 0.0743 U
OSC1-BP11	0	NORM	9/16/2009	< 0.11 U	< 0.0731 U	< 0.0731 U	< 0.0731 U	< 0.0731 U	< 0.121 U	< 0.121 U	< 0.0731 U	< 0.011 U	< 0.0731 U
OSC1-BP11	5	NORM	9/16/2009	< 0.113 U	< 0.0755 U	< 0.0755 U	< 0.0755 U	< 0.0755 U	< 0.125 U	< 0.125 U	< 0.0755 U	< 0.0113 U	< 0.0755 U
OSC1-JP06	0	NORM	9/22/2009	< 0.106 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.117 U	< 0.117 U	< 0.071 U	< 0.0106 U	< 0.071 U
OSC1-JP06	5	NORM	9/22/2009	< 0.116 U	< 0.0774 U	< 0.0774 U	< 0.0774 U	< 0.0774 U	< 0.128 U	< 0.128 U	< 0.0774 U	< 0.0116 U	< 0.0774 U
OSC1-JP07	0	NORM	9/21/2009	< 0.108 U	< 0.0722 U	< 0.0722 U	< 0.0722 U	< 0.0722 U	< 0.119 U	< 0.119 U	< 0.0722 U	< 0.0108 U	< 0.0722 U
OSC1-JP07	5	NORM	9/21/2009	< 0.127 U	< 0.0847 U	< 0.0847 U	< 0.0847 U	< 0.0847 U	< 0.14 U	< 0.14 U	< 0.0847 U	< 0.0127 U	< 0.0847 U
OSC1-JP08	0	NORM	9/21/2009	< 0.113 U	< 0.0752 U	< 0.0752 U	< 0.0752 U	< 0.0752 U	< 0.124 U	< 0.124 U	< 0.0752 U	< 0.0113 U	< 0.0752 U
OSC1-JP08	10	NORM	9/21/2009	< 0.112 U	< 0.075 U	< 0.075 U	< 0.075 U	< 0.075 U	< 0.124 U	< 0.124 U	< 0.075 U	< 0.0112 U	< 0.075 U
WHC1-BF01	0	NORM	11/24/2008	< 0.102 UJ	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.112 U	< 0.112 U	< 0.0678 U	< 0.0102 U	< 0.0678 U
WHC1-BF01	12		11/24/2008	< 0.104 UJ	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.114 U	< 0.0693 U	< 0.0104 U	< 0.0693 U
WHC1-BF02	0		11/25/2008	< 0.101 U	< 0.067 U	< 0.067 U	< 0.067 U	< 0.067 U	< 0.111 U	< 0.111 U	< 0.067 U	< 0.0101 U	< 0.067 U
WHC1-BF02	11	NORM	11/25/2008	< 0.104 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0104 U	< 0.0691 U
WHC1-BF03	0		11/25/2008	< 0.102 U	< 0.0677 U	< 0.0677 U	< 0.0677 U	< 0.0677 U	< 0.112 U	< 0.112 U	< 0.0677 U	< 0.0102 U	< 0.0677 U
WHC1-BF03	10	NORM	11/25/2008	< 0.104 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.114 U	< 0.0693 U	< 0.0104 U	< 0.0693 U
WHC1-BF04	0		11/25/2008	< 0.102 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.112 U	< 0.112 U	< 0.0678 U	< 0.0102 U	< 0.0678 U
WHC1-BF04	0	FD	11/25/2008	< 0.104 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U	< 0.0692 U
WHC1-BF04	10		11/25/2008	< 0.105 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.115 U	< 0.0699 U	< 0.0105 U	< 0.0699 U
WHC1-BF05	0	NORM	11/25/2008	< 0.104 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.114 U	< 0.0694 U	< 0.0104 UJ	< 0.0694 U
WHC1-BF05	12	NORM	12/10/2008	< 0.137 U	< 0.0911 UJ	< 0.0911 UJ	< 0.0911 UJ	< 0.0911 UJ	< 0.15 UJ	< 0.15 UJ	< 0.0911 UJ	< 0.0137 UJ	< 0.0911 UJ
WHC1-BF06	0	NORM	12/10/2008	< 0.104 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.115 U	< 0.0696 U	< 0.0104 UJ	< 0.0696 U
WHC1-BF06	10	NORM	12/10/2008	< 0.139 U	< 0.0927 U	< 0.0927 U	< 0.0927 U	< 0.0927 U	< 0.153 U	< 0.153 U	< 0.0927 U	< 0.0139 UJ	< 0.0927 U
WHC1-BG01	0	NORM	11/24/2008	< 0.103 UJ	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U	< 0.0687 U
WHC1-BG01	11		11/24/2008	< 0.105 UJ	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 U	< 0.0701 U
WHC1-BG02	0	NORM	11/24/2008	< 0.101 UJ	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.111 U	< 0.111 U	< 0.0675 U	< 0.0101 U	< 0.0675 U
WHC1-BG02	0	FD	11/24/2008	< 0.101 UJ	< 0.0672 U	< 0.0672 U	< 0.0672 U	< 0.0672 U	0.154 J	< 0.111 U	< 0.0672 U	< 0.0101 U	< 0.0672 U
WHC1-BG02	10	NORM	11/24/2008	< 0.105 UJ	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.115 U	< 0.0697 U	< 0.0105 U	< 0.0697 U
WHC1-BG03	0	NORM	12/11/2008	< 0.105 UJ	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 UJ	< 0.0702 U
WHC1-BG03	11	NORM	12/11/2008	< 0.105 UJ	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 UJ	< 0.0702 U
WHC1-BG04	0	NORM	12/11/2008	< 0.103 UJ	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.113 U	< 0.0688 U	< 0.0103 UJ	< 0.0688 U
WHC1-BG04	10	NORM	12/11/2008	< 0.134 UJ	< 0.0891 U	< 0.0891 U	< 0.0891 U	< 0.0891 U	< 0.147 U	< 0.147 U	< 0.0891 U	< 0.0134 UJ	< 0.0891 U
WHC1-BG05	0	NORM	11/25/2008	< 0.109 U	< 0.0728 U	< 0.0728 U	< 0.0728 U	< 0.0728 U	< 0.12 U	< 0.12 U	< 0.0728 U	< 0.0109 U	< 0.0728 U
WHC1-BG05	10	NORM	11/25/2008	< 0.122 U	< 0.0812 U	< 0.0812 U	< 0.0812 U	< 0.0812 U	< 0.134 U	< 0.134 U	< 0.0812 U	< 0.0122 U	< 0.0812 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 29 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			
											0		
					Š	_	Chloroisopropyl)		Ę	Ę	Butylbenzyl phthalate		
					XOI	Chloroethyl)	pro	£	eny	eny	tha		
				lot	eth	eth	iso	exy	ph	ph	hd		=
				coł	oro	oro	oro	ylh	oro	oro	zy1	4)	ura
				[a]	Jhl.	Jh.	Jh.	3th;	ld S	g Shi	enz	Sole	ĵofi
	Depth	Sample	Sample	Zy	2-C har			2-F	p-d one	P #	ylb	baz	enz
Sample ID	(ft bgs)	Type	Date	Benzyl alcohol	bis(2-Chloroethoxy) methane	bis(2-e	bis(2- ether	bis(2-Ethylhexyl) phthalate	bis(p-Chlorophenyl) sulfone	bis(p-Chlorophenyl) disulfide	3ut	Carbazole	Dibenzofuran
WHC1-BG06	0	NORM	12/10/2008	< 0.104 UJ	< 0.0695 UJ	< 0.0695 UJ	< 0.0695 UJ	< 0.0695 UJ	< 0.115 UJ	< 0.115 UJ	< 0.0695 UJ	< 0.0104 UJ	< 0.0695 UJ
WHC1-BG06	10	NORM	12/10/2008	< 0.145 U	< 0.0965 U	< 0.0965 U	< 0.0965 U	< 0.0963 UJ	< 0.159 U	< 0.159 U	< 0.0965 U	< 0.0145 UJ	< 0.0965 U
WHC1-BH01	0	NORM	12/3/2008	< 0.103 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0683 UJ	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 U	< 0.0684 U
WHC1-BH01	11	NORM	12/3/2008	< 0.103 UJ	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 UJ	< 0.0687 U
WHC1-BH02	0	NORM	12/4/2008	< 0.106 UJ	< 0.0704 U	< 0.0704 U	< 0.0704 U	< 0.0704 U	< 0.116 U	< 0.116 U	< 0.0704 U	< 0.0106 U	< 0.0704 U
WHC1-BH02	10	NORM	12/4/2008	< 0.103 UJ	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.113 U	< 0.0685 U	< 0.0103 U	< 0.0685 U
WHC1-BH03	0	NORM	12/9/2008	< 0.102 UJ	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.112 U	< 0.112 U	< 0.0681 U	< 0.0102 U	< 0.0681 U
WHC1-BH03	10	NORM	12/9/2008	< 0.104 UJ	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.115 U	< 0.0695 U	< 0.0104 U	< 0.0695 U
WHC1-BH04	0	NORM	12/11/2008	< 0.103 UJ	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.114 U	< 0.0688 U	< 0.0103 UJ	< 0.0688 U
WHC1-BH04	10	NORM	12/11/2008	< 0.104 UJ	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0104 UJ	< 0.0691 U
WHC1-BH05	0	NORM	12/9/2008	< 0.104 UJ	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0104 U	< 0.0691 U
WHC1-BH05	0	FD	12/9/2008	< 0.104 UJ	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	0.164 J	< 0.114 U	< 0.0694 U	< 0.0104 UJ	< 0.0694 U
WHC1-BH05	10	NORM	12/9/2008	< 0.107 UJ	< 0.0716 U	< 0.0716 U	< 0.0716 U	< 0.0714 UJ	< 0.118 U	< 0.118 U	< 0.0716 U	< 0.0107 U	< 0.0716 U
WHC1-BH06	0	NORM	12/11/2008	< 0.113 UJ	< 0.0757 U	< 0.0757 U	< 0.0757 U	< 0.0757 U	< 0.125 U	< 0.125 U	< 0.0757 U	< 0.0113 UJ	< 0.0757 U
WHC1-BH06	0	FD	12/11/2008	< 0.107 UJ	< 0.071 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.117 U	< 0.117 U	< 0.071 U	< 0.0107 UJ	< 0.071 U
WHC1-BH06	10	NORM	12/11/2008	< 0.117 UJ	< 0.0781 U	< 0.0781 U	< 0.0781 U	< 0.0781 U	< 0.129 U	< 0.129 U	< 0.0781 U	< 0.0117 UJ	< 0.0781 U
WHC1-BI01	0	NORM	12/3/2008	< 0.105 UJ	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 UJ	< 0.0702 U
WHC1-BI01	11	NORM	12/3/2008	< 0.105 UJ	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.115 U	< 0.07 U	< 0.0105 UJ	< 0.07 U
WHC1-BI02	0	NORM	12/4/2008	< 0.105 UJ	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.115 U	< 0.0697 U	< 0.0105 U	< 0.0697 U
WHC1-BI02	3	NORM	12/4/2008	< 0.103 UJ	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.113 U	< 0.0686 U	< 0.0103 U	< 0.0686 U
WHC1-BI02	13	NORM	12/4/2008	< 0.104 UJ	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U	< 0.0692 U
WHC1-BI03	0	NORM	12/4/2008	< 0.103 UJ	< 0.0689 U	< 0.0689 U	< 0.0689 U	< 0.0689 U	< 0.114 U	< 0.114 U	< 0.0689 U	< 0.0103 U	< 0.0689 U
WHC1-BI03	11	NORM	12/4/2008	< 0.103 UJ	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U	< 0.0687 U
WHC1-BI04	0	NORM	12/8/2008	< 0.102 UJ	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.112 U	< 0.112 U	< 0.0679 U	< 0.0102 U	< 0.0679 U
WHC1-BI04	10	NORM	12/9/2008	< 0.106 UJ	< 0.071 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.117 U	< 0.117 U	< 0.071 U	< 0.0106 UJ	< 0.071 U
WHC1-BI05	0	NORM	12/9/2008	< 0.103 UJ	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.113 U	< 0.0685 U	< 0.0103 U	< 0.0685 U
WHC1-BI05	10	NORM NORM	12/9/2008 12/3/2008	< 0.104 UJ	< 0.0691 U < 0.0692 U	< 0.0691 U < 0.0692 U	< 0.0691 U	< 0.0691 U	< 0.114 U < 0.114 U	< 0.114 U	< 0.0691 U < 0.0692 U	< 0.0104 U < 0.0104 UJ	< 0.0691 U < 0.0692 U
WHC1-BJ01 WHC1-BJ01	3	NORM	12/3/2008	< 0.104 UJ < 0.105 UJ	< 0.0692 U < 0.0697 U	< 0.0692 U < 0.0697 U	< 0.0692 U < 0.0697 U	< 0.0692 U < 0.0697 U	< 0.114 U < 0.115 U	< 0.114 U	< 0.0692 U < 0.0697 U	< 0.0104 UJ < 0.0105 UJ	< 0.0692 U < 0.0697 U
WHC1-BJ01 WHC1-BJ01	13	NORM	12/3/2008	< 0.105 UJ	< 0.0697 U < 0.0706 U	< 0.0697 U < 0.0706 U	< 0.0697 U < 0.0706 U	< 0.0697 U < 0.0706 U	< 0.115 U	< 0.115 U < 0.116 U	< 0.0697 U < 0.0706 U	< 0.0105 UJ	< 0.0697 U < 0.0706 U
WHC1-BJ02	0	NORM	12/3/2008	< 0.106 UJ < 0.105 UJ	< 0.0706 U < 0.0697 U	< 0.0706 U < 0.0697 U	< 0.0706 U < 0.0697 U	< 0.0706 U < 0.0697 U	< 0.116 U < 0.115 U	< 0.116 U < 0.115 U	< 0.0706 U < 0.0697 U	< 0.0106 UJ < 0.0105 U	< 0.0706 U < 0.0697 U
WHC1-BJ02	0	FD	12/2/2008	< 4.17 UJ	< 2.78 U	< 2.78 U	< 2.78 U	< 0.0697 U	< 4.59 U	< 4.59 U	< 0.0697 U	< 0.417 U	< 0.0697 U < 2.78 U
WHC1-BJ02	12	NORM	12/2/2008	< 0.104 UJ	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U	< 0.0692 U
WHC1-BJ02 WHC1-BJ03	0	NORM	12/4/2008	< 0.104 UJ	< 0.0692 U	< 0.0692 U	< 0.0699 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U	< 0.0692 U
WHC1-BJ03	0	FD	12/4/2008	< 0.105 UJ	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.115 U	< 0.0698 U	< 0.0105 U	< 0.0698 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.103 UJ	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.113 U	< 0.113 U	< 0.069 U	< 0.0103 U	< 0.069 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.104 UJ	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U	< 0.0692 U
WHC1-BJ04	11	NORM	12/4/2008	< 0.104 UJ	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 U	< 0.114 U	< 0.069 U	< 0.0104 U	< 0.069 U
WHC1-BJ05	0	NORM	12/11/2008	< 0.103 UJ	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.114 U	< 0.114 U	< 0.0678 U	< 0.0103 U	< 0.0678 U
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	v	1101011	12/11/2000	\ 0.102 UJ	\ 0.0070 U	\ 0.0070 U	\ 0.0070 U	\ 0.0070 U	\ 0.112 U	\ 0.112 U	\ 0.0070 U	\ 0.0102 UJ	\ 0.0070 O

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 30 of 63)

							Semi-V	olatile Organic	c Compounds (S	SVOCs)			
								l	Composition (c	1 2 22/	0		
	D 1	g ,	g i	Benzyl alcohol	bis(2-Chloroethoxy) methane	bis(2-Chloroethyl) ether	bis(2-Chloroisopropyl)	bis(2-Ethylhexyl) phthalate	bis(p-Chlorophenyl) sulfone	bis(p-Chlorophenyl) disulfide	Butylbenzyl phthalate	arbazole	Dibenzofuran
	Depth	Sample	Sample	zue	s(2 eth	bis(2-	ois(2-	s(2 ntha	ois(p-C	g(p sult	uty	arb	ibe
Sample ID	(ft bgs)	Type	Date					d q				Ö	
WHC1-BJ05	10	NORM	12/11/2008	< 0.105 UJ	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.115 U	< 0.0697 U	< 0.0105 UJ	< 0.0697 U
WHC1-BK01	0	NORM	12/3/2008	< 0.105 UJ	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.115 U	< 0.07 U	< 0.0105 UJ	< 0.07 U
WHC1-BK01	0	FD	12/3/2008	< 0.104 UJ	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.115 U	< 0.0696 U	< 0.0104 UJ	< 0.0696 U
WHC1-BK01	10	NORM	12/3/2008	< 0.105 UJ	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 UJ	< 0.0701 U
WHC1-BK02	0	NORM	12/8/2008	< 0.103 UJ	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U	< 0.0687 U
WHC1-BK02	11	NORM	12/18/2008	< 0.104 UJ	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.115 U	< 0.0696 U	< 0.0104 UJ	< 0.0696 U
WHC1-BK03	0		12/15/2008	< 0.103 UJ	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.113 U	< 0.0688 U	< 0.0103 UJ	< 0.0688 U
WHC1-BK03	12	NORM	12/18/2008	< 0.107 UJ	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.118 U	< 0.118 U	< 0.0713 U	< 0.0107 UJ	< 0.0713 U
WHC1-BK04	0	NORM	12/4/2008	< 0.104 UJ	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0104 U	< 0.0691 U
WHC1-BK04	10	NORM	12/4/2008	< 0.105 UJ	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.115 U	< 0.0697 U	< 0.0105 U	< 0.0697 U
WHC1-BK05	0	NORM	12/12/2008	< 0.103 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 U	< 0.0684 U
WHC1-BK05	11		12/12/2008	< 0.105 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.115 U	< 0.0698 U	< 0.0105 U	< 0.0698 U
WHC1-BL01	0	NORM	12/3/2008	< 0.104 UJ	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 UJ	< 0.0692 U
WHC1-BL01	10	NORM	12/3/2008	< 0.105 UJ	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 UJ	< 0.0702 U
WHC1-BL02	0	NORM	12/2/2008	< 0.104 UJ	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.114 U	< 0.0694 U	< 0.0104 U	< 0.0694 U
WHC1-BL02	10	NORM	12/2/2008	< 0.102 UJ	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.112 U	< 0.112 U	< 0.0681 U	< 0.0102 U	< 0.0681 U
WHC1-BL03	0	NORM	12/8/2008	< 0.102 UJ	< 0.0682 U	< 0.0682 U	< 0.0682 U	< 0.0682 U	< 0.113 U	< 0.113 U	< 0.0682 U	< 0.0102 U	< 0.0682 U
WHC1-BL03	10	NORM	12/18/2008	< 0.106 UJ	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.116 U	< 0.116 U	< 0.0703 U	< 0.0106 UJ	< 0.0703 U
WHC1-BL04	0		12/17/2008	< 0.106 UJ	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.116 U	< 0.0705 U	< 0.0106 UJ	< 0.0705 U
WHC1-BL04	12		12/22/2008	< 0.103 UJ	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.113 U	< 0.0688 U	< 0.0103 UJ	< 0.0688 U
WHC1-BL05	0		11/21/2008	< 0.101 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.111 U	< 0.111 U	< 0.0675 U	< 0.0101 U	< 0.0675 U
WHC1-BL05	10		11/21/2008	< 0.104 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.115 U	< 0.0695 U	< 0.0104 U	< 0.0695 U
WHC1-BL06	0		11/21/2008	< 0.106 U	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.117 U	< 0.117 U	< 0.0708 U	< 0.0106 U	< 0.0708 U
WHC1-BL06	11		11/21/2008	< 0.105 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.116 U	< 0.116 U	< 0.07 U	< 0.0105 U	< 0.07 U
WHC1-BL07	0		11/21/2008	< 0.105 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.115 U	< 0.07 U	< 0.0105 U	< 0.07 U
WHC1-BL07	10		11/21/2008	< 0.104 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.114 U	< 0.0694 U	< 0.0104 U	< 0.0694 U
WHC1-BL08	0		11/18/2008	< 0.104 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.114 U	< 0.0693 U	< 0.0104 UJ	< 0.0693 U
WHC1-BL08	10		11/18/2008	< 0.105 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.116 U	< 0.116 U	< 0.07 U	< 0.0105 UJ	< 0.07 U
WHC1-BL11	0		11/18/2008	< 0.105 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U		< 0.115 U	< 0.0699 U	< 0.0105 UJ	< 0.0699 U
WHC1-BL11	12		11/18/2008	< 0.105 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 UJ	< 0.0702 U
WHC1-BM01	0	NORM	12/3/2008	< 0.107 U	< 0.071 U	< 0.071 U	< 0.071 U	0.282	< 0.117 U	< 0.117 U	< 0.071 U	< 0.0107 UJ	< 0.071 U
WHC1-BM01	10	NORM	12/3/2008	< 0.104 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 UJ	< 0.0692 U
WHC1-BM02	0	NORM	12/2/2008	< 0.108 UJ	< 0.0717 U	< 0.0717 U	< 0.0717 U	< 0.0717 U	< 0.118 U	< 0.118 U	< 0.0717 U	< 0.0108 U	< 0.0717 U
WHC1-BM02	12	NORM	12/2/2008	< 0.106 UJ	< 0.0707 U	< 0.0707 U	< 0.0707 U	< 0.0707 U	< 0.117 U	< 0.117 U	< 0.0707 U	< 0.0106 U	< 0.0707 U
WHC1-BM03	0	NORM	12/8/2008	< 0.103 UJ	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 U	< 0.0684 U
WHC1-BM03	10	NORM	12/18/2008	< 0.108 UJ	< 0.072 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.119 U	< 0.119 U	< 0.072 U	< 0.0108 UJ	< 0.072 U
WHC1-BM04	0		12/17/2008	< 0.105 UJ	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.115 U	< 0.07 U	< 0.0105 UJ	< 0.07 U
WHC1-BM04	0	FD	12/17/2008	< 0.104 UJ	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 UJ	< 0.0692 U
WHC1-BM04	10	NORM	12/22/2008	< 0.107 UJ	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.118 U	< 0.0714 U	< 0.0107 UJ	< 0.0714 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 31 of 63)

							Somi V	Alatila Organia	Compounds (S	SVOC _e)			
								oranne Organic	l Compounds (S	(SVOCS)			
			a .	Benzyl alcohol	ois(2-Chloroethoxy) nethane	ois(2-Chloroethyl) ether	ois(2-Chloroisopropyl) sther	bis(2-Ethylhexyl) phthalate	ois(p-Chlorophenyl) tulfone	bis(p-Chlorophenyl) disulfide	Butylbenzyl phthalate	arbazole	Dibenzofuran
	Depth	Sample	Sample	zuc	s(2) eths	bis(2.	ois(2-	bis(2-] phthal	ois(p-C	d)s Ins	lty]	urba	per
Sample ID	(ft bgs)	Type	Date		1	1	1		S			C	
WHC1-BM05	0	NORM	11/21/2008	< 0.101 U	< 0.0674 U	< 0.0674 U	< 0.0674 U	< 0.0674 U	< 0.111 U	< 0.111 U	< 0.0674 U	< 0.0101 U	< 0.0674 U
WHC1-BM05	10	NORM	11/21/2008	< 0.106 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.116 U	< 0.116 U	< 0.0706 U	< 0.0106 U	< 0.0706 U
WHC1-BM06	0	NORM	11/21/2008	< 0.102 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.112 U	< 0.112 U	< 0.0678 U	< 0.0102 U	< 0.0678 U
WHC1-BM06	0	FD	11/21/2008	< 0.106 U	< 0.0709 U	< 0.0709 U	< 0.0709 U	< 0.0709 U	< 0.117 U	< 0.117 U	< 0.0709 U	< 0.0106 U	< 0.0709 U
WHC1-BM06	10	NORM	11/21/2008	< 0.107 U	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.118 U	< 0.118 U	< 0.0715 U	< 0.0107 U	< 0.0715 U
WHC1-BM07	0	NORM	11/20/2008	< 0.103 UJ	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 U	< 0.0684 U
WHC1-BM07	11	NORM	11/20/2008	< 0.105 UJ	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.115 U	< 0.0698 U	< 0.0105 U	< 0.0698 U
WHC1-BM08 WHC1-BM08	0	NORM FD	11/18/2008 11/18/2008	< 0.107 U	< 0.0716 U < 0.077 U	< 0.0716 U < 0.077 U	< 0.0716 U < 0.077 U	< 0.0716 U < 0.077 U	< 0.118 U < 0.127 U	< 0.118 U < 0.127 U	< 0.0716 U < 0.077 U	< 0.0107 UJ	< 0.0716 U < 0.077 U
WHC1-BM08	11	NORM	11/18/2008	< 0.116 U < 0.108 U	< 0.077 U	< 0.077 U	< 0.077 U	< 0.077 U	< 0.127 U < 0.119 U	< 0.127 U < 0.119 U	< 0.077 U	< 0.0116 UJ < 0.0108 UJ	< 0.077 U
WHC1-BM09	0	NORM	11/18/2008	< 0.108 U	< 0.0722 U < 0.0706 U	< 0.0722 U < 0.0706 U	< 0.0722 U < 0.0706 U	< 0.0722 U < 0.0706 U	< 0.119 U < 0.117 U	< 0.119 U < 0.117 U	< 0.0722 U < 0.0706 U		< 0.0722 U < 0.0706 U
WHC1-BM09	12	NORM	11/18/2008	< 0.106 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.117 U	< 0.117 U	< 0.0706 U	< 0.0106 UJ	< 0.0706 U
WHC1-BM10	0	NORM	11/18/2008	< 0.106 U	< 0.0709 U	< 0.0709 U	< 0.0709 U	< 0.0709 U	< 0.117 U	< 0.117 U	< 0.0709 U	< 0.0106 UJ	< 0.0709 U
WHC1-BM10	3	NORM	11/18/2008	< 0.100 U	< 0.0709 U	< 0.0709 U	< 0.0709 U	< 0.0709 U	< 0.117 U	< 0.117 U	< 0.0709 U	< 0.0100 UJ	< 0.0715 U
WHC1-BM10	13	NORM	11/18/2008	< 0.121 U	< 0.0805 U	< 0.0805 U	< 0.0805 U	< 0.0805 U	< 0.118 U	< 0.113 U	< 0.0805 U	< 0.0107 UJ	< 0.0805 U
WHC1-BN01	0	NORM	12/1/2008	< 0.103 UJ	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0121 UJ	< 0.0687 U
WHC1-BN01	12	NORM	12/1/2008	< 0.104 UJ	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.113 U	< 0.113 U	< 0.0694 U	< 0.0103 U	< 0.0694 U
WHC1-BN02	0	NORM	12/1/2008	< 0.105 UJ	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 U	< 0.0702 U
WHC1-BN02	0	FD	12/1/2008	< 0.105 UJ	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 U	< 0.0701 U
WHC1-BN02	11	NORM	12/1/2008	< 0.103 UJ	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U	< 0.0687 U
WHC1-BN03	0	NORM	12/17/2008	< 0.107 U	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.118 U	< 0.118 U	< 0.0713 U	< 0.0107 U	< 0.0713 U
WHC1-BN03	10	NORM	12/18/2008	< 0.113 UJ	< 0.0751 U	< 0.0751 U	< 0.0751 U	< 0.0751 U	< 0.124 U	< 0.124 U	< 0.0751 U	< 0.0113 UJ	< 0.0751 U
WHC1-BN04	0	NORM	12/17/2008	< 0.105 UJ	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.115 U	< 0.0698 U	< 0.0105 UJ	< 0.0698 U
WHC1-BN04	7	NORM	12/22/2008	< 0.106 UJ	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.116 U	< 0.0705 U	< 0.0106 UJ	< 0.0705 U
WHC1-BN04	17	NORM	12/22/2008	< 0.106 UJ	< 0.0709 U	< 0.0709 U	< 0.0709 U	< 0.0709 U	< 0.117 U	< 0.117 U	< 0.0709 U	< 0.0106 UJ	< 0.0709 U
WHC1-BN05	0	NORM	11/20/2008	< 0.102 UJ	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.112 U	< 0.112 U	< 0.0679 U	< 0.0102 U	< 0.0679 U
WHC1-BN05	0	FD	11/20/2008	< 0.103 UJ	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 U	< 0.0684 U
WHC1-BN05	10	NORM	11/20/2008	< 0.106 UJ	< 0.0707 U	< 0.0707 U	< 0.0707 U	< 0.0707 U	< 0.117 U	< 0.117 U	< 0.0707 U	< 0.0106 U	< 0.0707 U
WHC1-BN06	0	NORM	11/20/2008	< 0.104 UJ	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.115 U	< 0.0696 U	< 0.0104 U	< 0.0696 U
WHC1-BN06	10	NORM	11/20/2008										
WHC1-BN07	0	NORM	11/21/2008	< 0.104 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.114 U	< 0.0693 U	< 0.0104 U	< 0.0693 U
WHC1-BN07	3	NORM	11/21/2008	< 0.107 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	0.155 J	< 0.118 U	< 0.0714 U	< 0.0107 U	< 0.0714 U
WHC1-BN07	13	NORM	11/21/2008	< 0.105 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.115 U	< 0.0698 U	< 0.0105 U	< 0.0698 U
WHC1-BN08	0		11/20/2008	< 0.104 UJ	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	0.494	0.165 J	< 0.0695 U	< 0.0104 U	< 0.0695 U
WHC1-BN08	10	NORM	11/20/2008	< 0.104 UJ	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U	< 0.0692 U
WHC1-BN09	0	NORM	12/17/2008	< 0.107 UJ	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.118 U	< 0.118 U	< 0.0715 U	< 0.0107 UJ	< 0.0715 U
WHC1-BN09	11	NORM	12/19/2008	< 0.109 UJ	< 0.0726 U	< 0.0726 U	< 0.0726 U	< 0.0726 U	< 0.12 U	< 0.12 U	< 0.0726 U	< 0.0109 UJ	< 0.0726 U
WHC1-BN10	0		11/18/2008	< 0.114 U	< 0.0757 U	< 0.0757 U	< 0.0757 U	< 0.0965 U	< 0.125 U	< 0.125 U	< 0.0757 U	< 0.0114 UJ	< 0.0757 U
WHC1-BN10	10	NORM	11/18/2008	< 0.118 U	< 0.0784 U	< 0.0784 U	< 0.0784 U	< 0.0784 U	< 0.129 U	< 0.129 U	< 0.0784 U	< 0.0118 UJ	< 0.0784 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 32 of 63)

							Semi-V	olatile Organio	c Compounds (S	SVOCs)			1
					oxy)	y1)	Chloroisopropyl)	(1)	nyl)	nyl)	Butylbenzyl phthalate		
				lohc	bis(2-Chloroethoxy) methane	Chloroethyl)	roisol	bis(2-Ethylhexyl) phthalate	bis(p-Chlorophenyl) sulfone	bis(p-Chlorophenyl) disulfide	/l pht		.au
				Benzyl alcohol	Chlor	Chlo	Chlo	3thy] ate	Chlo	Chlor	enzy	sole	Dibenzofuran
	Depth	Sample	Sample	enzy	bis(2-Ch methane	bis(2-6	bis(2-6	bis(2-Eth phthalate	ois(p-C	ois(p-Ch Iisulfide	utylb	Carbazole	penz
Sample ID	(ft bgs)	Type	Date										
WHC1-BO01	0	NORM	12/2/2008	< 0.104 UJ	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.115 U	< 0.0695 U	< 0.0104 U	< 0.0695 U
WHC1-BO01	0	FD	12/2/2008	< 0.104 UJ	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0104 U	< 0.0691 U
WHC1-BO01	4	NORM	12/2/2008	< 0.103 UJ	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.113 U	< 0.0685 U	< 0.0103 U	< 0.0685 U
WHC1-BO01	14	NORM	12/2/2008	< 0.108 UJ	< 0.072 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.119 U	< 0.119 U	< 0.072 U	< 0.0108 U	< 0.072 U
WHC1-BO02	0	NORM	12/1/2008	< 0.103 UJ	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.113 U	< 0.0686 U	< 0.0103 U	< 0.0686 U
WHC1-BO02	12	NORM	12/1/2008	< 0.103 UJ	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 U	< 0.114 U	< 0.069 U	< 0.0103 U	< 0.069 U
WHC1-BO03	0 12	NORM	12/15/2008	< 0.104 UJ	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.114 U	< 0.0693 U	< 0.0104 UJ	< 0.0693 U
WHC1-BO03 WHC1-BO04	0	NORM NORM	12/19/2008 12/15/2008	< 0.104 UJ < 0.106 UJ	< 0.0692 U < 0.0705 U	< 0.0692 U < 0.0705 U	< 0.0692 U < 0.0705 U	< 0.0692 U < 0.0705 U	< 0.114 U < 0.116 U	< 0.114 U < 0.116 U	< 0.0692 U < 0.0705 U	< 0.0104 UJ < 0.0106 UJ	< 0.0692 U < 0.0705 U
WHC1-BO04	12			< 0.106 UJ < 0.104 UJ	< 0.0703 U < 0.0695 U	< 0.0703 U < 0.0695 U			< 0.116 U			< 0.0106 UJ < 0.0104 UJ	< 0.0695 U
WHC1-BO04 WHC1-BO05	0		12/19/2008 11/20/2008		< 0.0693 U < 0.0669 U	< 0.0693 U	< 0.0695 U < 0.0669 U	< 0.0695 U < 0.0669 U	< 0.113 U	< 0.115 U	< 0.0695 U < 0.0669 U	< 0.0104 UJ	< 0.0693 U
WHC1-BO05	10		11/20/2008	< 0.1 UJ < 0.104 UJ	< 0.0669 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.11 U	< 0.11 U < 0.114 U	< 0.0699 U	< 0.01 U	< 0.0699 U
WHC1-B005 WHC1-B006	0		11/20/2008	< 0.104 UJ	< 0.0673 U	< 0.0673 U	< 0.0673 U	< 0.0673 U	< 0.114 U	< 0.114 U	< 0.0673 U	< 0.0104 U	< 0.0673 U
WHC1-BO06	10		11/20/2008	< 0.101 UJ	< 0.0673 U	< 0.0673 U	< 0.0673 U	< 0.0673 U < 0.0699 U	< 0.111 U	< 0.111 U	< 0.0673 U	< 0.0101 U	< 0.0673 U < 0.0699 U
WHC1-BO06 WHC1-BO07	0		11/20/2008	< 0.103 UJ	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U < 0.0688 U	< 0.113 U	< 0.113 U	< 0.0699 U	< 0.0103 UJ	< 0.0699 U < 0.0688 U
WHC1-BO07	10		11/19/2008	< 0.103 U < 0.108 UJ	< 0.0688 U	< 0.0088 U < 0.0717 U	< 0.0088 U < 0.0717 U	< 0.0088 U < 0.0717 U	< 0.114 U	< 0.114 U	< 0.0688 U < 0.0717 U	< 0.0103 UJ	< 0.0688 U < 0.0717 U
WHC1-B007	10		11/19/2008	< 0.108 UJ	< 0.0717 U	< 0.0717 U	< 0.0717 U	< 0.0717 U	< 0.116 U	< 0.116 U	< 0.0717 U	< 0.0108 UJ	< 0.0717 U
WHC1-BO08	0	FD	11/20/2008	< 0.100 UJ	< 0.0700 U	< 0.0691 U	< 0.0691 U	< 0.0700 U	< 0.110 U	< 0.110 U	< 0.0691 U	< 0.0104 U	< 0.0691 U
WHC1-BO08	11		11/20/2008	< 0.104 UJ	< 0.0091 U	< 0.0722 U	< 0.0091 U	< 0.0091 U	< 0.114 U	< 0.114 U	< 0.0091 U	< 0.0104 U	< 0.0091 U < 0.0722 U
WHC1-BO09	0	NORM	11/19/2008	< 0.108 UJ	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 UJ	< 0.0684 U
WHC1-B009	0	FD	11/19/2008	< 0.103 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 UJ	< 0.0687 U
WHC1-B009	6	NORM	11/19/2008	< 0.103 U	< 0.0685 U	< 0.0687 U	< 0.0687 U	0.0714 J	< 0.113 U	< 0.113 U	< 0.0685 U	< 0.0103 UJ	< 0.0685 U
WHC1-BO09	16		11/19/2008	< 0.103 U	< 0.0085 U	< 0.076 U	< 0.076 U	< 0.0714 J	< 0.115 U	< 0.115 U	< 0.0085 U	< 0.0103 UJ	< 0.0085 U
WHC1-BO10	0		11/19/2008	< 0.114 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	0.0717 J	< 0.115 U	< 0.125 U	< 0.0697 U	< 0.0114 UJ	< 0.0697 U
WHC1-BO10	10		11/19/2008	× 0.105 €	× 0.0077 C	< 0.0077 €	< 0.0077 €	0.07173	< 0.113 €	× 0.113 C	× 0.0077 C	< 0.0103 C3	₹ 0.0077 €
WHC1-BP01	0	NORM	12/1/2008	< 0.105 UJ	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.115 U	< 0.0699 U	< 0.0105 U	< 0.0699 U
WHC1-BP01	10	NORM	12/1/2008	< 0.103 UJ	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.115 U	< 0.115 U	< 0.0694 U	< 0.0103 U	< 0.0694 U
WHC1-BP02	0	NORM	12/1/2008	< 0.103 UJ	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0104 U	< 0.0684 U
WHC1-BP02	11	NORM	12/1/2008	< 0.103 UJ	< 0.0034 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.113 U	< 0.0714 U	< 0.0103 U	< 0.0034 U
WHC1-BP03	0	NORM	12/15/2008	< 0.107 UJ	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.110 U	< 0.110 U	< 0.0679 U	< 0.0107 UJ	< 0.0679 U
WHC1-BP03	0	FD	12/15/2008	< 0.102 UJ	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.112 U	< 0.112 U	< 0.0681 U	< 0.0102 UJ	< 0.0681 U
WHC1-BP03	11	NORM	12/19/2008	< 0.102 UJ	< 0.0721 U	< 0.0721 U	< 0.0721 U	< 0.0721 U	< 0.112 U	< 0.112 U	< 0.0721 U	< 0.0102 UJ	< 0.0721 U
WHC1-BP04	0	NORM	12/15/2008	< 0.103 UJ	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 UJ	< 0.0684 U
WHC1-BP04	12	NORM	12/19/2008	< 0.103 UJ	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.115 U	< 0.115 U	< 0.0694 U	< 0.0103 UJ	< 0.0694 U
WHC1-BP05	0		12/15/2008	< 0.104 UJ	< 0.0689 U	< 0.0689 U	< 0.0689 U	< 0.0689 U	< 0.113 U	< 0.113 U	< 0.0689 U	< 0.0104 UJ	< 0.0689 U
WHC1-BP05	10	NORM	12/19/2008	< 0.103 UJ	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.114 U	< 0.114 U	< 0.0714 U	< 0.0103 UJ	< 0.0714 U
WHC1-BP06	0	NORM	12/12/2008	< 0.107 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.112 U	< 0.112 U	< 0.0681 U	< 0.0107 U	< 0.0681 U
WHC1-BP06	10	NORM	12/12/2008	< 0.102 UJ	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.112 U	< 0.112 U	< 0.0692 U	< 0.0102 U	< 0.0692 U
WHC1-BP07	0		11/20/2008	< 0.107 UJ	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.118 U	< 0.118 U	< 0.0715 U	< 0.0107 U	< 0.0715 U
BI 07	·	1,01011	11/20/2000	. 0.107 03	. 0.0713 0	. 0.0713 0	10.0713	10.0713 0	\ 0.110 0	(0.1100	. 0.0713 0	10.0107 0	10.0713 0

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 33 of 63)

	l						Semi-V	olatile Organio	Compounds (S	SVOCs)			
										/	0		
				Benzyl alcohol	bis(2-Chloroethoxy) methane	bis(2-Chloroethyl) ether	bis(2-Chloroisopropyl) ether	bis(2-Ethylhexyl) phthalate	bis(p-Chlorophenyl) sulfone	bis(p-Chlorophenyl) disulfide	Butylbenzyl phthalate	arbazole	Dibenzofuran
	Depth	Sample	Sample	nzy	bis(2-Ch methane	(2-0	(2-c	(2-] hal	bis(p-C sulfone	(p-c	ly lik	.pa	nəc
Sample ID	(ft bgs)	Type	Date	Bei	bis	bis(2-	bis(2-	bis	bis	bis(p-Ch disulfide	Bul	Ca	Dil
WHC1-BP07	3	NORM	11/20/2008	< 0.106 UJ	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.116 U	< 0.0705 U	< 0.0106 U	< 0.0705 U
WHC1-BP07	13	NORM	11/20/2008	< 0.107 UJ	< 0.0716 U	< 0.0716 U	< 0.0716 U	< 0.0716 U	< 0.118 U	< 0.118 U	< 0.0716 U	< 0.0107 U	< 0.0716 U
WHC1-BP08	0	NORM	11/19/2008	< 0.105 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.0698 U	< 0.116 UJ	< 0.116 UJ	< 0.07 UJ	< 0.0105 UJ	< 0.07 UJ
WHC1-BP08	4	NORM	11/19/2008	< 0.107 UJ	< 0.0714 UJ	< 0.0714 UJ	< 0.0714 UJ	< 0.0712 U	< 0.118 UJ	< 0.118 UJ	< 0.0714 UJ	< 0.0107 UJ	< 0.0714 UJ
WHC1-BP08	14	NORM	11/19/2008	< 0.108 U	< 0.0718 U	< 0.0718 U	< 0.0718 U	< 0.0718 U	< 0.118 U	< 0.118 U	< 0.0718 U	< 0.0108 UJ	< 0.0718 U
WHC1-BP09	0	NORM	11/19/2008	< 0.103 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 UJ	< 0.0684 U
WHC1-BP09	10	NORM	11/19/2008	< 0.12 U	< 0.08 U	< 0.08 U	< 0.08 U	< 0.08 U	< 0.132 U	< 0.132 U	< 0.08 U	< 0.012 UJ	< 0.08 U
WHC1-BP10	0	NORM	11/19/2008	< 0.103 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.113 U	< 0.0685 U	< 0.0103 UJ	< 0.0685 U
WHC1-BP10	10	NORM	11/19/2008	< 0.142 U	< 0.0945 U	< 0.0945 U	< 0.0945 U	< 0.0945 U	< 0.156 U	< 0.156 U	< 0.0945 U	< 0.0142 UJ	< 0.0945 U
WHC1-D01	0	NORM	12/5/2008	< 0.104 UJ	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	0.417	< 0.115 U	< 0.0694 U	< 0.0104 U	< 0.0694 U
WHC1-D01	10	NORM	12/5/2008	< 0.104 UJ	< 0.0696 UJ	< 0.0696 UJ	< 0.0696 UJ	< 0.0696 UJ	< 0.115 UJ	< 0.115 UJ	< 0.0696 UJ	< 0.0104 UJ	< 0.0696 UJ
WHC1-D02	0	NORM	12/5/2008	< 0.107 UJ	< 0.0715 UJ	< 0.0715 UJ	< 0.0715 UJ	< 0.0715 UJ	0.705 J-	< 0.118 UJ	< 0.0715 UJ	< 0.0107 UJ	< 0.0715 UJ
WHC1-D02	10	NORM	12/5/2008	< 0.105 UJ	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	0.199 J	< 0.116 U	< 0.0702 U	< 0.0105 U	< 0.0702 U
WHC1-D03	0	NORM	12/5/2008	< 0.105 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0697 U	< 0.115 UJ	< 0.115 UJ	< 0.0697 UJ	< 0.0105 UJ	< 0.0697 UJ
WHC1-D03	0	FD	12/5/2008	< 0.105 UJ	< 0.0699 UJ	< 0.0699 UJ	< 0.0699 UJ	< 0.0699 UJ	< 0.115 UJ	< 0.115 UJ	< 0.0699 UJ	< 0.0105 UJ	< 0.0699 UJ
WHC1-D03	10	NORM	12/5/2008	< 0.106 UJ	< 0.0706 UJ	< 0.0706 UJ	< 0.0706 UJ	< 0.0704 U	< 0.116 UJ	< 0.116 UJ	< 0.0706 UJ	< 0.0106 UJ	< 0.0706 UJ
WHC1-D04	0	NORM	12/5/2008	< 0.106 UJ	< 0.0706 U	< 0.0706 U	< 0.0706 U	0.179 J-	0.22 J	0.286 J-	< 0.0706 U	< 0.0106 U	< 0.0706 U
WHC1-D04	10	NORM	12/5/2008	< 0.104 UJ	< 0.069 UJ	< 0.069 UJ	< 0.069 UJ	< 0.069 UJ	< 0.114 UJ	< 0.114 UJ	< 0.069 UJ	< 0.0104 UJ	< 0.069 UJ
WHC1-D05	0	NORM	12/5/2008	< 0.105 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.115 UJ	< 0.115 UJ	< 0.07 UJ	< 0.0105 UJ	< 0.07 UJ
WHC1-D05	10	NORM	12/5/2008	< 0.103 UJ	< 0.0689 UJ	< 0.0689 UJ	< 0.0689 UJ	< 0.0689 UJ	< 0.114 UJ	< 0.114 UJ	< 0.0689 UJ	< 0.0103 UJ	< 0.0689 UJ
WHC1-D06	0	NORM	12/5/2008	< 0.11 UJ	< 0.0732 U	< 0.0732 U	< 0.0732 U	< 0.0732 U	< 0.121 U	< 0.121 U	< 0.0732 U	< 0.011 U	< 0.0732 U
WHC1-D06	10	NORM	12/5/2008	< 0.105 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	0.171 J-	< 0.116 UJ	< 0.07 UJ	< 0.0105 UJ	< 0.07 UJ
WHC1-D07	0	NORM	12/5/2008	< 0.104 UJ	< 0.069 UJ	< 0.069 UJ	< 0.069 UJ	< 0.069 UJ	0.114 J-	< 0.114 U	< 0.069 UJ	< 0.0104 U	< 0.069 UJ
WHC1-D07	10	NORM	12/5/2008	< 0.103 UJ	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.113 U	< 0.0686 U	< 0.0103 U	< 0.0686 U
WHC1-D08	0	NORM	12/8/2008	< 0.103 UJ	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	0.179 J	< 0.113 U	< 0.0687 U	< 0.0103 U	< 0.0687 U
WHC1-D08	10	NORM	12/9/2008	< 0.106 UJ	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.117 U	< 0.117 U	< 0.0708 U	< 0.0106 U	< 0.0708 U
WHC1-D09	0	NORM	12/8/2008	< 0.103 UJ	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U	< 0.0687 U
WHC1-D09	11	NORM	12/9/2008	< 0.105 UJ	< 0.0701 UJ	< 0.0701 UJ	< 0.0701 UJ	< 0.0701 UJ	< 0.116 UJ	< 0.116 UJ	< 0.0701 UJ	< 0.0105 UJ	< 0.0701 UJ
WHC1-D10	0	NORM	12/8/2008	< 0.103 UJ	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	0.165 J	< 0.114 U	< 0.0688 U	< 0.0103 U	< 0.0688 U
WHC1-D10	10	NORM	12/9/2008	< 0.105 UJ	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.116 U	< 0.116 U	< 0.0703 U	< 0.0105 U	< 0.0703 U
WHC1-D11	0	NORM	12/8/2008	< 0.103 UJ	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U	4.08	2.22	< 0.069 U	< 0.0103 U	< 0.069 U
WHC1-D11	10	NORM	12/9/2008	< 0.11 UJ	< 0.0732 U	< 0.0732 U	< 0.0732 U	< 0.0732 U	< 0.121 U	< 0.121 U	< 0.0732 U	< 0.011 U	< 0.0732 U
WHC1-D12	0	NORM	12/10/2008	< 0.105 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 UJ	< 0.0701 U
WHC1-D12	10	NORM NORM	12/10/2008	< 0.138 U	< 0.0923 U < 0.0712 U	< 0.0923 U	< 0.0923 U < 0.0712 U	< 0.0923 U	< 0.152 U	< 0.152 U	< 0.0923 U < 0.0712 U	< 0.0138 UJ < 0.0107 UJ	< 0.0923 U < 0.0712 U
WHC1-D13	-		12/8/2008	< 0.107 U		< 0.0712 U		< 0.0712 U	< 0.118 U	< 0.118 U			
WHC1-D13 WHC1-D15	10	NORM NORM	12/8/2008	< 0.151 U	< 0.101 U < 0.0687 U	< 0.101 U < 0.0687 U	< 0.101 U < 0.0687 U	< 0.101 U < 0.0687 U	< 0.167 U < 0.113 U	< 0.167 U < 0.113 U	< 0.101 U < 0.0687 U	< 0.0151 UJ < 0.0103 UJ	< 0.101 U < 0.0687 U
		NORM		< 0.103 UJ									
WHC1-D15	10		12/11/2008	< 0.127 UJ	< 0.0846 U	< 0.0846 U	< 0.0846 U	< 0.0846 U	< 0.14 U	< 0.14 U	< 0.0846 U	< 0.0127 UJ	< 0.0846 U
WHC1-D16	U	NORM	12/10/2008	< 0.114 U	< 0.0763 U	< 0.0763 U	< 0.0763 U	< 0.0763 U	< 0.126 U	< 0.126 U	< 0.0763 U	< 0.0114 UJ	< 0.0763 U

TABLE B-9 SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA

BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 34 of 63)

							Semi-V	olatile Organi	c Compounds (S	SVOCs)			
			ŀ				ī		- compounds (c		d)		
				Benzyl alcohol	bis(2-Chloroethoxy) methane	bis(2-Chloroethyl) ether	bis(2-Chloroisopropyl) ether	is(2-Ethylhexyl) hthalate	bis(p-Chlorophenyl) sulfone	bis(p-Chlorophenyl) disulfide	Butylbenzyl phthalate	ಲ	Dibenzofuran
				уlа	ile Ç	Ę.	Ę.	Ett	e C	Ę Ģ	ber	ozi	IZO
	Depth	Sample	Sample	izu	bis(2-Ch methane	bis(2-	bis(2-	bis(2-Ethy phthalate	ois(p-C	bis(p-Ch)	ıtyl	arbazole	ber
Sample ID	(ft bgs)	Type	Date					þ				Ü	
WHC1-D16	10	NORM	12/10/2008	< 0.118 U	< 0.0785 U	< 0.0785 U	< 0.0785 U	< 0.0785 U	< 0.13 U	< 0.13 U	< 0.0785 U	< 0.0118 UJ	< 0.0785 U
WHC1-D17	0		12/10/2008	< 0.107 U	< 0.0712 U	< 0.0712 U	< 0.0712 U	< 0.0712 U	< 0.117 U	< 0.117 U	< 0.0712 U	< 0.0107 UJ	< 0.0712 U
WHC1-D17	10		12/10/2008	< 0.117 U	< 0.0779 U	< 0.0779 U	< 0.0779 U	< 0.0779 U	< 0.129 U	< 0.129 U	< 0.0779 U	< 0.0117 UJ	< 0.0779 U
WHC1-D18	0		12/11/2008	< 0.104 UJ	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	0.457	< 0.114 U	< 0.0691 U	< 0.0104 UJ	< 0.0691 U
WHC1-D18	10		12/11/2008	< 0.105 UJ	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.115 U	< 0.0698 U	< 0.0105 UJ	< 0.0698 U
WHC1-D19	0		12/11/2008	< 0.104 UJ	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.115 U	< 0.0696 U	< 0.0104 UJ	< 0.0696 U
WHC1-D19	0	FD	12/11/2008	< 0.104 UJ	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.114 U	< 0.0693 U	< 0.0104 UJ	< 0.0693 U
WHC1-D19	10		12/11/2008	< 0.105 UJ	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.116 U	< 0.116 U	< 0.0703 U	< 0.0105 UJ	< 0.0703 U
WHC1-D20	0		12/12/2008	< 0.103 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.114 U	< 0.0688 U	< 0.0103 U	< 0.0688 U
WHC1-D20	10		12/12/2008	< 0.105 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 U	< 0.0701 U
WHC1-D21	0		12/16/2008	< 0.106 U	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.0708 U		0.161 J	< 0.0708 U	< 0.0106 U	< 0.0708 U
WHC1-D21	10		12/16/2008	< 0.105 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.115 U	< 0.0699 U	< 0.0105 U	< 0.0699 U
WHC1-D22	0		12/16/2008	< 0.108 U	< 0.072 U	< 0.072 U	< 0.072 U	0.239	< 0.119 U	< 0.119 U	< 0.072 U	< 0.0108 U	< 0.072 U
WHC1-D22	10		12/16/2008	< 0.106 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.117 U	< 0.117 U	< 0.0706 U	< 0.0106 U	< 0.0706 U
WHC1-D23	0		12/16/2008	< 0.105 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 U	< 0.0702 U
WHC1-D23	10	NORM	12/16/2008	< 0.105 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.115 U	< 0.0699 U	< 0.0105 U	< 0.0699 U
WHC1-D24	0		12/16/2008	< 0.109 U	< 0.0728 U	< 0.0728 U	< 0.0728 U	< 0.0728 U	< 0.12 U	< 0.12 U	< 0.0728 U	< 0.0109 U	< 0.0728 U
WHC1-D24	0	FD	12/16/2008	< 0.108 U	< 0.0721 U	< 0.0721 U	< 0.0721 U	< 0.0721 U	< 0.119 U	< 0.119 U	< 0.0721 U	< 0.0108 U	< 0.0721 U
WHC1-D24	10		12/16/2008	< 0.104 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.114 U	< 0.0693 U	< 0.0104 U	< 0.0693 U
WHC1-D25	0		12/16/2008	< 0.109 UJ	< 0.0727 U	< 0.0727 U	< 0.0727 U	< 0.0727 U	0.355 J-	1.02 J-	< 0.0727 U	< 0.0109 UJ	< 0.0727 U
WHC1-D25	10		12/16/2008	< 0.104 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 U	< 0.114 U	< 0.069 U	< 0.0104 U	< 0.069 U
WHC1-D26	0		12/12/2008	< 0.103 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U	< 0.0687 U
WHC1-D26	10		12/12/2008	< 0.113 U	< 0.0753 U	< 0.0753 U	< 0.0753 U	< 0.0753 U	< 0.124 U	< 0.124 U	< 0.0753 U	< 0.0113 U	< 0.0753 U
WHC1-D27	0		12/12/2008	< 0.105 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 U	< 0.0701 U
WHC1-D27	0	FD	12/12/2008	< 0.105 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.115 U	< 0.07 U	< 0.0105 U	< 0.07 U
WHC1-D27	10		12/12/2008	< 0.105 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 U	< 0.0701 U
WHC1-D28	0		12/12/2008	< 0.104 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.115 U	< 0.115 U	< 0.0694 U	< 0.0104 U	< 0.0694 U
WHC1-D28	10		12/12/2008	< 0.105 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.115 U	< 0.0699 U	< 0.0105 U	< 0.0699 U
WHC1-D29	0		12/12/2008	< 0.104 UJ	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0104 U	< 0.0691 U
WHC1-D29	10		12/12/2008	< 0.11 UJ	< 0.0733 U	< 0.0733 U	< 0.0733 U	< 0.0733 U	< 0.121 U	< 0.121 U	< 0.0733 U	< 0.011 U	< 0.0733 U
WHC1-P01	0		12/15/2008	< 0.103 UJ	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.113 U	< 0.0685 U	< 0.0103 UJ	< 0.0685 U
WHC1-P01	12		12/19/2008	< 0.108 UJ	< 0.0719 U	< 0.0719 U	< 0.0719 U	< 0.0719 U	< 0.119 U	< 0.119 U	< 0.0719 U	< 0.0108 UJ	< 0.0719 U
WHC1-P02	0	NORM	12/1/2008	< 0.103 UJ	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.114 U	< 0.0688 U	< 0.0103 U	< 0.0688 U
WHC1-P02	10	NORM	12/1/2008	< 0.102 UJ	< 0.068 U	< 0.068 U	< 0.068 U	< 0.068 U	< 0.112 U	< 0.112 U	< 0.068 U	< 0.0102 U	< 0.068 U
WHC1-P03	0		12/15/2008	< 0.102 UJ	< 0.0683 U	< 0.0683 U	< 0.0683 U	< 0.0683 U	< 0.113 U	< 0.113 U	< 0.0683 U	< 0.0102 UJ	< 0.0683 U
WHC1-P03	3	NORM	12/18/2008	< 0.104 UJ	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 UJ	< 0.0692 U
WHC1-P03	3	FD	12/18/2008	< 0.103 UJ	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 UJ	< 0.0687 U
WHC1-P03	13		12/18/2008	< 0.107 UJ	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.118 U	< 0.118 U	< 0.0713 U	< 0.0107 UJ	< 0.0713 U
WHC1-P04	0	NORM	12/15/2008	< 0.104 UJ	< 0.069 U	< 0.069 U	< 0.069 U	0.115 J	< 0.114 U	< 0.114 U	< 0.069 U	< 0.0104 UJ	< 0.069 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 35 of 63)

							Semi-V	olatile Organio	c Compounds (S	SVOCs)			
										,	n		
				Benzyl alcohol	bis(2-Chloroethoxy) methane	bis(2-Chloroethyl) ether	bis(2-Chloroisopropyl) ether	ois(2-Ethylhexyl) phthalate	ois(p-Chlorophenyl) sulfone	bis(p-Chlorophenyl) disulfide	Butylbenzyl phthalate	Carbazole	Dibenzofuran
	Depth	Sample	Sample	zyl	2-C han	2-C	2-C	2-E	p-C	p-C Iffic	/lb	oaz	zue
Sample ID	(ft bgs)	Туре	Date	en	ois(2-Ch	bis(2-	bis(2.	bis(2-Eth	bis(p-Cl	bis(p-Ch.	uts	art	ibe
WHC1-P04	10	NORM	12/18/2008	< 0.112 UJ	<u>ء</u> < 0.0744 U	<u>دہ عہ</u> < 0.0744 U	<u>ت</u> ع < 0.0744 U	< 0.0744 U	< 0.123 U	< 0.123 U	< 0.0744 U	< 0.0112 UJ	< 0.0744 U
WHC1-P05	0	NORM	12/8/2008	< 0.112 UJ	< 0.07 U	< 0.07 U	< 0.07 U	< 0.0744 C	< 0.115 U	< 0.115 U	< 0.07 U	< 0.0112 U3	< 0.07 U
WHC1-P05	0	FD	12/8/2008	< 0.103 UJ	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.115 U	< 0.0696 U	< 0.0103 U	< 0.0696 U
WHC1-P05	10	NORM	12/18/2008	< 0.105 UJ	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 UJ	< 0.0702 U
WHC1-P06	0	NORM	12/2/2008	< 0.104 UJ	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.115 U	< 0.0695 U	< 0.0104 U	< 0.0695 U
WHC1-P06	12	NORM	12/2/2008	< 0.103 UJ	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.114 U	< 0.0688 U	< 0.0103 U	< 0.0688 U
WHC1-P07	0	NORM	12/2/2008	< 0.105 UJ	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.116 U	< 0.116 U	< 0.07 U	< 0.0105 U	< 0.07 U
WHC1-P07	3	NORM	12/2/2008	< 0.103 UJ	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 U	< 0.0684 U
WHC1-P07	13	NORM	12/2/2008	< 0.105 UJ	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.115 U	< 0.07 U	< 0.0105 U	< 0.07 U
WHC1-P08	0	NORM	12/3/2008	< 0.102 UJ	< 0.0683 UJ	< 0.0683 UJ	< 0.0683 UJ	< 0.0683 UJ	< 0.113 UJ	< 0.113 UJ	< 0.0683 UJ	< 0.0102 UJ	< 0.0683 UJ
WHC1-P08	11	NORM	12/3/2008	< 0.104 UJ	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.115 U	< 0.0696 U	< 0.0104 UJ	< 0.0696 U
WHC1-P09	0	NORM	12/4/2008	< 0.103 UJ	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U	< 0.0687 U
WHC1-P09	0	FD	12/4/2008	< 0.103 UJ	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U	< 0.0687 U
WHC1-P09	10	NORM	12/4/2008	< 0.103 UJ	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.113 U	< 0.0688 U	< 0.0103 U	< 0.0688 U
WHC1-P10	0	NORM	11/25/2008	< 0.104 UJ	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.115 U	< 0.0695 U	< 0.0104 U	< 0.0695 U
WHC1-P10	10	NORM	11/25/2008	< 0.115 UJ	< 0.0767 U	< 0.0767 U	< 0.0767 U	< 0.0767 U	< 0.127 U	< 0.127 U	< 0.0767 U	< 0.0115 U	< 0.0767 U
WHC1-P11	0	NORM	12/8/2008	< 0.106 UJ	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	4.91 J	2.76 J	< 0.0705 U	< 0.0106 U	< 0.0705 U
WHC1-P11	0	FD	12/8/2008	< 0.207 UJ	< 0.138 U	< 0.138 U	< 0.138 U	< 0.138 U	1.82 J	0.831 J	< 0.138 U	< 0.0207 U	< 0.138 U
WHC1-P11	10	NORM	12/9/2008	< 0.105 UJ	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 UJ	< 0.0702 U
WHC1-P12	0	NORM	12/5/2008	< 0.105 UJ	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	0.444	0.233 J-	< 0.0701 U	< 0.0105 U	< 0.0701 U
WHC1-P12	11	NORM	12/5/2008	< 0.105 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0694 U	< 0.115 UJ	< 0.115 UJ	< 0.0697 UJ	< 0.0105 UJ	< 0.0697 UJ
WHC1-P13	0	NORM	12/9/2008	< 0.105 UJ	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.115 U	< 0.07 U	< 0.0105 U	< 0.07 U
WHC1-P13	10	NORM	12/9/2008	< 0.137 UJ	< 0.0915 U	< 0.0915 U	< 0.0915 U	< 0.0915 U	< 0.151 U	< 0.151 U	< 0.0915 U	< 0.0137 U	< 0.0915 U
WHC1-P13	10	FD	12/9/2008	< 0.117 UJ	< 0.0778 U	< 0.0778 U	< 0.0778 U	< 0.0778 U	< 0.128 U	< 0.128 U	< 0.0778 U	< 0.0117 U	< 0.0778 U
WHC1-P14	0	NORM	12/17/2008	< 0.12 UJ	< 0.0803 U	< 0.0803 U	< 0.0803 U	< 0.0803 U	< 0.132 U	< 0.132 U	< 0.0803 U	< 0.012 UJ	< 0.0803 U
WHC1-P15	0	NORM	12/8/2008	< 0.111 UJ	< 0.074 U	< 0.074 U	< 0.074 U	< 0.074 U	< 0.122 U	< 0.122 U	< 0.074 U	< 0.0111 U	< 0.074 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.108 UJ	< 0.072 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.119 U	< 0.119 U	< 0.072 U	< 0.0108 U	< 0.072 U
WHC1-P15	10	NORM	12/18/2008	< 0.107 UJ	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.118 U	< 0.0714 U	< 0.0107 UJ	< 0.0714 U
WHC1-P16	0	NORM	12/1/2008	< 0.101 UJ	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.111 U	< 0.111 U	< 0.0675 U	< 0.0101 U	< 0.0675 U
WHC1-P16	11	NORM	12/1/2008	< 0.103 UJ	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 U	< 0.114 U	< 0.069 U	< 0.0103 U	< 0.069 U
WHC1-P17	0	NORM	12/15/2008	< 0.105 UJ	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.115 U	< 0.0699 U	< 0.0105 UJ	< 0.0699 U
WHC1-P17 WHC1-P17	12 12	NORM FD	12/19/2008 12/19/2008	< 0.104 UJ	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.114 U	< 0.0694 U	< 0.0104 UJ	< 0.0694 U
WHC1-P17 WHC1-P18	0	NORM	12/19/2008	< 0.104 UJ < 0.102 UJ	< 0.0696 U < 0.068 U	< 0.0696 U	< 0.0696 U < 0.068 U	< 0.0696 U < 0.068 U	< 0.115 U < 0.112 U	< 0.115 U < 0.112 U	< 0.0696 U < 0.068 U	< 0.0104 UJ < 0.0102 U	< 0.0696 U
WHC1-P18 WHC1-P18	12	NORM	12/1/2008	< 0.102 UJ < 0.103 UJ	< 0.068 U < 0.0686 U	< 0.068 U < 0.0686 U	< 0.068 U < 0.0686 U	< 0.068 U < 0.0686 U	< 0.112 U < 0.113 U	< 0.112 U < 0.113 U	< 0.068 U < 0.0686 U	< 0.0102 U < 0.0103 U	< 0.068 U < 0.0686 U
WHC1-P18 WHC2-D02C	0	NORM	12/1/2008	< 0.103 UJ < 0.101 U	< 0.0686 U < 0.0672 U	< 0.0686 U < 0.0672 U	< 0.0686 U < 0.0672 U	< 0.0686 U < 0.0672 U	< 0.113 U < 0.111 U	< 0.113 U < 0.111 U	< 0.0686 U < 0.0672 U	< 0.0103 U < 0.0101 U	< 0.0686 U < 0.0672 U
WHC2-D02C WHC2-D04C	0	NORM	12/2/2009	< 0.101 U	< 0.0672 U < 0.0686 U	< 0.0672 U < 0.0686 U	< 0.0672 U < 0.0686 U	0.0709 J	< 0.111 U < 0.113 U	< 0.111 U < 0.113 U	< 0.0672 U < 0.0686 U	< 0.0101 U	< 0.0672 U < 0.0686 U
WHC2-D04C	0	NORM	12/2/2009	< 0.103 U	< 0.0686 U	< 0.0676 U	< 0.0686 U	0.0709 J 0.128 J	1.46	5.53	< 0.0686 U	< 0.0103 U	< 0.0686 U
WHC2-D03C	0	NORM	12/2/2009	< 0.101 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.0677 U	< 0.112 U	11.8	< 0.0676 U	< 0.0101 U	< 0.0677 U
WIICZ-DIIC	U	NOKW	12/2/2009	< 0.102 U	₹ 0.0077 €	₹ 0.0077 0	₹ 0.0077 0	< 0.0077 €	< 0.112 U	11.0	₹ 0.0077 0	₹ 0.0102 €	< 0.0077 €

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 36 of 63)

							Semi-V	olatile Organic	Compounds (S	SVOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Benzyl alcohol	bis(2-Chloroethoxy) methane	bis(2-Chloroethyl) ether	bis(2-Chloroisopropyl) ether	bis(2-Ethylhexyl) phthalate	bis(p-Chlorophenyl) sulfone	bis(p-Chlorophenyl) disulfide	Butylbenzyl phthalate	Carbazole	Dibenzofuran
WHC2-D13C	0	NORM	12/3/2009	< 0.154 U	< 0.103 U	< 0.103 U	< 0.103 U	< 0.103 U	< 0.169 U	< 0.169 U	< 0.103 U	< 0.0154 U	< 0.103 U
WHC2-D13NE	0	NORM	12/3/2009	< 0.162 UJ	< 0.108 U	< 0.108 U	< 0.108 U	< 0.108 U	< 0.178 U	< 0.178 U	< 0.108 U	< 0.0162 U	< 0.108 U
WHC2-D13NW	0	NORM	12/3/2009	< 0.119 U	< 0.0793 U	< 0.0793 U	< 0.0793 U	< 0.0793 U	< 0.131 U	< 0.131 U	< 0.0793 U	< 0.0119 U	< 0.0793 U
WHC2-D13SE	0	NORM	12/3/2009	< 0.16 U	< 0.107 U	< 0.107 U	< 0.107 U	< 0.107 U	< 0.176 U	< 0.176 U	< 0.107 U	< 0.016 U	< 0.107 U
WHC2-D13SW	0	NORM	12/3/2009	< 0.15 U	< 0.0998 U	< 0.0998 U	< 0.0998 U	< 0.0998 U	< 0.165 U	< 0.165 U	< 0.0998 U	< 0.015 U	< 0.0998 U
WHC2-D14C	0	NORM	12/2/2009	< 0.106 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.117 U	< 0.117 U	< 0.0706 U	< 0.0106 U	< 0.0706 U
WHC2-D17C	0	NORM	12/1/2009	< 0.11 U	< 0.0731 U	< 0.0731 U	< 0.0731 U	< 0.0731 U	< 0.121 U	< 0.121 U	< 0.0731 U	< 0.011 U	< 0.0731 U
WHC2-D18C	0	NORM	12/1/2009	< 0.101 U	< 0.0674 U	< 0.0674 U	< 0.0674 U	< 0.0674 U	0.152 J	< 0.111 U	< 0.0674 U	< 0.0101 U	< 0.0674 U
WHC2-D18C	0	FD	12/1/2009	< 0.101 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	0.181 J	< 0.111 U	< 0.0675 U	< 0.0101 U	< 0.0675 U
WHC2-D25C	0	NORM	12/1/2009	< 0.101 U	< 0.0676 U	< 0.0676 U	< 0.0676 U	< 0.0676 U	0.549	< 0.112 U	< 0.0676 U	< 0.0101 U	< 0.0676 U
WHC2-P11C	0	NORM	12/1/2009	< 0.102 U	< 0.0683 U	< 0.0683 U	< 0.0683 U	< 0.0683 U	1.45	1.95	< 0.0683 U	< 0.0102 U	< 0.0683 U
WHC6-D05	0	NORM	7/27/2012	< 0.105 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 U	< 0.0701 U
WHC6-D11	0	NORM	7/27/2012	< 0.104 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0104 U	< 0.0691 U
WHC6-P11	0	NORM	7/27/2012	< 0.101 U	< 0.0676 U	< 0.0676 U	< 0.0676 U	< 0.0676 U	< 0.112 U	< 0.112 U	< 0.0676 U	< 0.0101 U	< 0.0676 U

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 37 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Dichloromethyl ether	Diethyl phthalate	Dimethyl phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Diphenyl disulfide	Diphenyl sulfide	Diphenyl sulfone	Diphenylamine	Fluoranthene
OSC1-BM11	0	NORM	9/21/2009	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0351 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 U
OSC1-BM11	10	NORM	9/21/2009	< 0.128 U	< 0.0774 U	< 0.0774 U	< 0.0387 U	< 0.0774 U	< 0.128 U	< 0.128 U	< 0.128 U	< 0.0774 U	< 0.0116 U
OSC1-BN11	0	NORM	9/22/2009	< 0.112 U	< 0.068 U	< 0.068 U	< 0.034 U	< 0.068 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.068 U	< 0.0102 U
OSC1-BN11	5	NORM	9/22/2009	< 0.117 U	< 0.0711 U	< 0.0711 U	< 0.0356 U	< 0.0711 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.0711 U	< 0.0107 U
OSC1-BO11	0	NORM	9/16/2009	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.0694 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0694 U	< 0.0104 U
OSC1-BO11	0	FD	9/16/2009	< 0.123 U	< 0.0745 U	< 0.0745 U	< 0.0372 U	< 0.0745 U	< 0.123 U	< 0.123 U	< 0.123 U	< 0.0745 U	< 0.0112 U
OSC1-BO11	5	NORM	9/16/2009	< 0.123 U	< 0.0743 U	< 0.0743 U	< 0.0371 U	< 0.0743 U	< 0.123 U	< 0.123 U	< 0.123 U	< 0.0743 U	< 0.0111 U
OSC1-BP11	0	NORM	9/16/2009	< 0.121 U	< 0.0731 U	< 0.0731 U	< 0.0365 U	< 0.0731 U	< 0.121 U	< 0.121 U	< 0.121 U	< 0.0731 U	< 0.011 U
OSC1-BP11	5	NORM	9/16/2009	< 0.125 U	< 0.0755 U	< 0.0755 U	< 0.0378 U	< 0.0755 U	< 0.125 U	< 0.125 U	< 0.125 U	< 0.0755 U	< 0.0113 U
OSC1-JP06	0	NORM	9/22/2009	< 0.117 U	< 0.071 U	< 0.071 U	< 0.0355 U	< 0.071 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.071 U	< 0.0106 U
OSC1-JP06	5	NORM	9/22/2009	< 0.128 U	< 0.0774 U	< 0.0774 U	< 0.0387 U	< 0.0774 U	< 0.128 U	< 0.128 U	< 0.128 U	< 0.0774 U	< 0.0116 U
OSC1-JP07	0	NORM	9/21/2009	< 0.119 U	< 0.0722 U	< 0.0722 U	< 0.0361 U	< 0.0722 U	< 0.119 U	< 0.119 U	< 0.119 U	< 0.0722 U	< 0.0108 U
OSC1-JP07	5	NORM	9/21/2009	< 0.14 U	< 0.0847 U	< 0.0847 U	< 0.0423 U	< 0.0847 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.0847 U	< 0.0127 U
OSC1-JP08	0	NORM	9/21/2009	< 0.124 U	< 0.0752 U	< 0.0752 U	< 0.0376 U	< 0.0752 U	< 0.124 U	< 0.124 U	< 0.124 U	< 0.0752 U	< 0.0113 U
OSC1-JP08	10	NORM	9/21/2009	< 0.124 U	< 0.075 U	< 0.075 U	< 0.0375 U	< 0.075 U	< 0.124 U	< 0.124 U	< 0.124 U	< 0.075 U	< 0.0112 U
WHC1-BF01	0	NORM	11/24/2008	< 0.112 U	< 0.0678 U	< 0.0678 U	< 0.0339 U	< 0.0678 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.0678 U	< 0.0102 U
WHC1-BF01	12	NORM	11/24/2008	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0346 U	< 0.0693 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0693 U	< 0.0104 U
WHC1-BF02	0	NORM	11/25/2008	< 0.111 U	< 0.067 U	< 0.067 U	< 0.0335 U	< 0.067 U	< 0.111 U	< 0.111 U	< 0.111 U	< 0.067 U	< 0.0101 U
WHC1-BF02	11	NORM	11/25/2008	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0346 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0104 U
WHC1-BF03	0	NORM	11/25/2008	< 0.112 U	< 0.0677 U	< 0.0677 U	< 0.0338 U	< 0.0677 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.0677 U	< 0.0102 U
WHC1-BF03	10	NORM	11/25/2008	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0347 U	< 0.0693 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0693 U	< 0.0104 U
WHC1-BF04	0	NORM	11/25/2008	< 0.112 U	< 0.0678 U	< 0.0678 U	< 0.0339 U	< 0.0678 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.0678 U	< 0.0102 U
WHC1-BF04	0	FD	11/25/2008	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U
WHC1-BF04	10	NORM	11/25/2008	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.035 U	< 0.0699 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0699 U	< 0.0105 U
WHC1-BF05	0	NORM	11/25/2008	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.0694 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0694 U	< 0.0104 U
WHC1-BF05	12	NORM	12/10/2008	< 0.15 UJ	< 0.0911 UJ	< 0.0911 UJ	< 0.0456 U	< 0.0911 UJ	< 0.15 UJ	< 0.15 UJ	< 0.15 UJ	< 0.0911 UJ	< 0.0137 U
WHC1-BF06	0	NORM	12/10/2008	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0348 U	< 0.0696 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0696 U	< 0.0104 U
WHC1-BF06	10	NORM	12/10/2008	< 0.153 U	< 0.0927 U	< 0.0927 U	< 0.0464 U	< 0.0927 U	< 0.153 U	< 0.153 U	< 0.153 U	< 0.0927 U	< 0.0139 U
WHC1-BG01	0	NORM	11/24/2008	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U
WHC1-BG01	11	NORM	11/24/2008	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.035 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 U
WHC1-BG02	0	NORM	11/24/2008	< 0.111 U	< 0.0675 U	< 0.0675 U	< 0.0338 U	< 0.0675 U	< 0.111 U	< 0.111 U	< 0.111 U	< 0.0675 U	< 0.0101 U
WHC1-BG02	0	FD	11/24/2008	< 0.111 U	< 0.0672 U	< 0.0672 U	< 0.0336 U	< 0.0672 U	< 0.111 U	< 0.111 U	< 0.111 U	< 0.0672 U	< 0.0101 U
WHC1-BG02	10	NORM	11/24/2008	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0348 U	< 0.0697 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0697 U	< 0.0105 U
WHC1-BG03	0	NORM	12/11/2008	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 U
WHC1-BG03	11	NORM	12/11/2008	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 U
WHC1-BG04	0	NORM	12/11/2008	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.0688 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0688 U	< 0.0103 U
WHC1-BG04	10	NORM	12/11/2008	< 0.147 U	< 0.0891 U	< 0.0891 U	< 0.0446 U	< 0.0891 U	< 0.147 U	< 0.147 U	< 0.147 U	< 0.0891 U	< 0.0134 U
WHC1-BG05	0	NORM	11/25/2008	< 0.12 U	< 0.0728 U	< 0.0728 U	< 0.0364 U	< 0.0728 U	< 0.12 U	< 0.12 U	< 0.12 U	< 0.0728 U	< 0.0109 U
WHC1-BG05	10	NORM	11/25/2008	< 0.134 U	< 0.0812 U	< 0.0812 U	< 0.0406 U	< 0.0812 U	< 0.134 U	< 0.134 U	< 0.134 U	< 0.0812 U	< 0.0122 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 38 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Dichloromethyl ether	Diethyl phthalate	Dimethyl phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Diphenyl disulfide	Diphenyl sulfide	Diphenyl sulfone	Diphenylamine	Fluoranthene
WHC1-BG06	0	NORM	12/10/2008	< 0.115 UJ	< 0.0695 UJ	< 0.0695 UJ	< 0.0347 UJ	< 0.0695 UJ	< 0.115 UJ	< 0.115 UJ	< 0.115 UJ	< 0.0695 UJ	< 0.0104 UJ
WHC1-BG06	10	NORM	12/10/2008	< 0.159 U	< 0.0965 U	< 0.0965 U	< 0.0483 U	< 0.0965 U	< 0.159 U	< 0.159 U	< 0.159 U	< 0.0965 U	< 0.0145 U
WHC1-BH01	0	NORM	12/3/2008	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 U
WHC1-BH01	11	NORM	12/3/2008	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U
WHC1-BH02	0	NORM	12/4/2008	< 0.116 U	< 0.0704 U	< 0.0704 U	< 0.0352 U	< 0.0704 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0704 U	< 0.0106 U
WHC1-BH02	10	NORM	12/4/2008	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0343 U	< 0.0685 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0685 U	< 0.0103 U
WHC1-BH03	0	NORM	12/9/2008	< 0.112 U	< 0.0681 U	< 0.0681 U	< 0.0341 U	< 0.0681 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.0681 U	< 0.0102 U
WHC1-BH03	10	NORM	12/9/2008	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0348 U	< 0.0695 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0695 U	< 0.0104 U
WHC1-BH04	0	NORM	12/11/2008	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.0688 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0688 U	< 0.0103 U
WHC1-BH04	10	NORM	12/11/2008	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0346 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0104 U
WHC1-BH05	0	NORM	12/9/2008	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0346 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0104 U
WHC1-BH05	0	FD	12/9/2008	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.0694 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0694 U	< 0.0104 U
WHC1-BH05	10	NORM	12/9/2008	< 0.118 U	< 0.0716 U	< 0.0716 U	< 0.0358 U	< 0.0716 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0716 U	< 0.0107 U
WHC1-BH06	0	NORM	12/11/2008	< 0.125 U	< 0.0757 U	< 0.0757 U	< 0.0378 U	< 0.0757 U	< 0.125 U	< 0.125 U	< 0.125 U	< 0.0757 U	< 0.0113 U
WHC1-BH06	0	FD	12/11/2008	< 0.117 U	< 0.071 U	< 0.071 U	< 0.0355 U	< 0.071 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.071 U	< 0.0107 U
WHC1-BH06	10	NORM	12/11/2008	< 0.129 U	< 0.0781 U	< 0.0781 U	< 0.039 U	< 0.0781 U	< 0.129 U	< 0.129 U	< 0.129 U	< 0.0781 U	< 0.0117 U
WHC1-BI01	0	NORM	12/3/2008	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 U
WHC1-BI01	11	NORM	12/3/2008	< 0.115 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.07 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.07 U	< 0.0105 U
WHC1-BI02	0	NORM	12/4/2008	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0349 U	< 0.0697 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0697 U	< 0.0105 U
WHC1-BI02	3	NORM	12/4/2008	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0343 U	< 0.0686 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0686 U	< 0.0103 U
WHC1-BI02	13	NORM	12/4/2008	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U
WHC1-BI03	0	NORM	12/4/2008	< 0.114 U	< 0.0689 U	< 0.0689 U	< 0.0344 U	< 0.0689 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0689 U	< 0.0103 U
WHC1-BI03	11	NORM	12/4/2008	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0344 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U
WHC1-BI04	0	NORM	12/8/2008	< 0.112 U	< 0.0679 U	< 0.0679 U	< 0.0339 U	< 0.0679 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.0679 U	< 0.0102 U
WHC1-BI04	10	NORM	12/9/2008	< 0.117 U	< 0.071 U	< 0.071 U	< 0.0355 U	< 0.071 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.071 U	< 0.0106 U
WHC1-BI05	0	NORM	12/9/2008	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0342 U	< 0.0685 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0685 U	< 0.0103 U
WHC1-BI05	10	NORM	12/9/2008	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0345 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0104 U
WHC1-BJ01	0	NORM	12/3/2008	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U
WHC1-BJ01	3	NORM	12/3/2008	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0348 U	< 0.0697 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0697 U	< 0.0105 U
WHC1-BJ01	13	NORM	12/3/2008	< 0.116 U	< 0.0706 U	< 0.0706 U	< 0.0353 U	< 0.0706 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0706 U	< 0.0106 U
WHC1-BJ02	0	NORM	12/2/2008	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0348 U	< 0.0697 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0697 U	< 0.0105 U
WHC1-BJ02	0	FD	12/2/2008	< 4.59 U	< 2.78 U	< 2.78 U	< 1.39 U	< 2.78 U	< 4.59 U	< 4.59 U	< 4.59 U	< 2.78 U	< 0.417 U
WHC1-BJ02	12	NORM	12/2/2008	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.035 U	< 0.0699 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0699 U	< 0.0105 U
WHC1-BJ03	0	FD	12/4/2008	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0349 U	< 0.0698 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0698 U	< 0.0105 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.114 U	< 0.069 U	< 0.069 U	< 0.0345 U	< 0.069 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.069 U	< 0.0104 U
WHC1-BJ04	0	NORM	12/4/2008	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U
WHC1-BJ04	11	NORM	12/4/2008	< 0.114 U	< 0.069 U	< 0.069 U	< 0.0345 U	< 0.069 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.069 U	< 0.0103 U
WHC1-BJ05	0	NORM	12/11/2008	< 0.112 U	< 0.0678 U	< 0.0678 U	< 0.0339 U	< 0.0678 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.0678 U	< 0.0102 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 39 of 63)

							Semi-V	olatile Organi	c Compounds (S	SVOCs)			
							1	1 1 2 3	1 (/			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Dichloromethyl ether	Diethyl phthalate	Dimethyl phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Diphenyl disulfide	Diphenyl sulfide	Diphenyl sulfone	Diphenylamine	Fluoranthene
WHC1-BJ05	10	NORM	12/11/2008	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0348 U	< 0.0697 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0697 U	< 0.0105 U
WHC1-BK01	0	NORM	12/3/2008	< 0.115 U	< 0.007 U	< 0.007 U	< 0.035 U	< 0.007 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.007 U	< 0.0105 U
WHC1-BK01	0	FD	12/3/2008	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0348 U	< 0.0696 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0696 U	< 0.0103 U
WHC1-BK01	10	NORM	12/3/2008	< 0.115 U	< 0.0701 U	< 0.0701 U	< 0.035 U	< 0.0000 U	< 0.115 U	< 0.116 U	< 0.115 U	< 0.0701 U	< 0.0104 U
WHC1-BK02	0	NORM	12/8/2008	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U
WHC1-BK02	11	NORM	12/18/2008	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0348 U	< 0.0696 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0696 U	< 0.0104 U
WHC1-BK03	0		12/15/2008	< 0.113 UJ	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.0688 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0688 U	< 0.0104 U
WHC1-BK03	12	NORM	12/18/2008	< 0.118 U	< 0.0713 U	< 0.0713 U	< 0.0357 U	< 0.0000 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0713 U	< 0.0103 U
WHC1-BK04	0	NORM	12/4/2008	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0346 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0107 U
WHC1-BK04	10	NORM	12/4/2008	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0348 U	< 0.0697 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0697 U	< 0.0105 U
WHC1-BK05	0		12/12/2008	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 U
WHC1-BK05	11	NORM	12/12/2008	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0349 U	< 0.0698 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0698 U	< 0.0105 U
WHC1-BL01	0	NORM	12/3/2008	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U
WHC1-BL01	10	NORM	12/3/2008	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 U
WHC1-BL02	0	NORM	12/2/2008	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.0694 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0694 U	< 0.0104 U
WHC1-BL02	10	NORM	12/2/2008	< 0.112 U	< 0.0681 U	< 0.0681 U	< 0.0341 U	< 0.0681 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.0681 U	< 0.0102 U
WHC1-BL03	0	NORM	12/8/2008	< 0.113 U	< 0.0682 U	< 0.0682 U	< 0.0341 U	< 0.0682 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0682 U	< 0.0102 U
WHC1-BL03	10	NORM	12/18/2008	< 0.116 U	< 0.0703 U	< 0.0703 U	< 0.0352 U	< 0.0703 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0703 U	< 0.0106 U
WHC1-BL04	0	NORM	12/17/2008	< 0.116 U	< 0.0705 U	< 0.0705 U	< 0.0353 U	< 0.0705 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0705 U	< 0.0106 U
WHC1-BL04	12	NORM	12/22/2008	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.0688 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0688 U	< 0.0103 U
WHC1-BL05	0	NORM	11/21/2008	< 0.111 U	< 0.0675 U	< 0.0675 U	< 0.0337 U	< 0.0675 U	< 0.111 U	< 0.111 U	< 0.111 U	< 0.0675 U	< 0.0101 U
WHC1-BL05	10	NORM	11/21/2008	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0347 U	< 0.0695 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0695 U	< 0.0104 U
WHC1-BL06	0	NORM	11/21/2008	< 0.117 U	< 0.0708 U	< 0.0708 U	< 0.0354 U	< 0.0708 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.0708 U	< 0.0106 U
WHC1-BL06	11	NORM	11/21/2008	< 0.116 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.07 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.07 U	< 0.0105 U
WHC1-BL07	0	NORM	11/21/2008	< 0.115 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.07 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.07 U	< 0.0105 U
WHC1-BL07	10	NORM	11/21/2008	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.0694 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0694 U	< 0.0104 U
WHC1-BL08	0	NORM	11/18/2008	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0347 U	< 0.0693 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0693 U	< 0.0104 U
WHC1-BL08	10	NORM	11/18/2008	< 0.116 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.07 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.07 U	< 0.0105 U
WHC1-BL11	0	NORM	11/18/2008	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.035 U	< 0.0699 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0699 U	< 0.0105 U
WHC1-BL11	12	NORM	11/18/2008	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 U
WHC1-BM01	0	NORM	12/3/2008	< 0.117 U	< 0.071 U	< 0.071 U	< 0.0355 U	< 0.071 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.071 U	< 0.0107 U
WHC1-BM01	10	NORM	12/3/2008	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U
WHC1-BM02	0	NORM	12/2/2008	< 0.118 U	< 0.0717 U	< 0.0717 U	< 0.0358 U	< 0.0717 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0717 U	< 0.0108 U
WHC1-BM02	12	NORM	12/2/2008	< 0.117 U	< 0.0707 U	< 0.0707 U	< 0.0353 U	< 0.0707 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.0707 U	< 0.0106 U
WHC1-BM03	0	NORM	12/8/2008	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 U
WHC1-BM03	10	NORM	12/18/2008	< 0.119 U	< 0.072 U	< 0.072 U	< 0.036 U	< 0.072 U	< 0.119 U	< 0.119 U	< 0.119 U	< 0.072 U	< 0.0108 U
WHC1-BM04	0	NORM	12/17/2008	< 0.115 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.07 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.07 U	< 0.0105 U
WHC1-BM04	0	FD	12/17/2008	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U
WHC1-BM04	10	NORM	12/22/2008	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0357 U	< 0.0714 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0714 U	< 0.0107 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 40 of 63)

							Semi-V	olatile Organio	c Compounds (S	SVOCs)			
				L					1				
				ether		ō	ite	et e	d)				
				l et	ıte	alat	phthalate	nala	fide	e Fe	ne		
				thy	nale	ıtha	ohtt	htt	sul	sulfide	sulfone	iine	ပ
				me	phthalate	l pł	yl F	/1 p	- di	ns	ns	lam	nen
				oro	,1 F	hy	ant	octy	my]	my]	ny]	ny]	unth
	Depth	Sample	Sample	Dichloromethyl	Diethyl	Dimethyl phthalate	Di-n-butyl	Di-n-octyl phthalate	Diphenyl disulfide	Diphenyl	Diphenyl	Diphenylamine	Fluoranthene
Sample ID	(ft bgs)	Type	Date	Dia	Die	Dii	Di	Di-	Dil	Dil	Dil	Dil	Flu
WHC1-BM05	0	NORM	11/21/2008	< 0.111 U	< 0.0674 U	< 0.0674 U	< 0.0337 U	< 0.0674 U	< 0.111 U	< 0.111 U	< 0.111 U	< 0.0674 U	< 0.0101 U
WHC1-BM05	10	NORM	11/21/2008	< 0.116 U	< 0.0706 U	< 0.0706 U	< 0.0353 U	< 0.0706 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0706 U	< 0.0106 U
WHC1-BM06	0	NORM	11/21/2008	< 0.112 U	< 0.0678 U	< 0.0678 U	< 0.0339 U	< 0.0678 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.0678 U	< 0.0102 U
WHC1-BM06	0	FD	11/21/2008	< 0.117 U	< 0.0709 U	< 0.0709 U	< 0.0354 U	< 0.0709 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.0709 U	< 0.0106 U
WHC1-BM06	10	NORM	11/21/2008	< 0.118 U	< 0.0715 U	< 0.0715 U	< 0.0357 U	< 0.0715 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0715 U	< 0.0107 U
WHC1-BM07	0	NORM	11/20/2008	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 U
WHC1-BM07	11	NORM	11/20/2008	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0349 U	< 0.0698 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0698 U	< 0.0105 U
WHC1-BM08	0	NORM	11/18/2008	< 0.118 U	< 0.0716 U	< 0.0716 U	< 0.0358 U	< 0.0716 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0716 U	< 0.0107 U
WHC1-BM08	0	FD	11/18/2008	< 0.127 U	< 0.077 U	< 0.077 U	< 0.0385 U	< 0.077 U	< 0.127 U	< 0.127 U	< 0.127 U	< 0.077 U	< 0.0116 U
WHC1-BM08	11		11/18/2008	< 0.119 U	< 0.0722 U	< 0.0722 U	< 0.0361 U	< 0.0722 U	< 0.119 U	< 0.119 U	< 0.119 U	< 0.0722 U	< 0.0108 U
WHC1-BM09	0		11/18/2008	< 0.117 U	< 0.0706 U	< 0.0706 U	< 0.0353 U	< 0.0706 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.0706 U	< 0.0106 U
WHC1-BM09	12	NORM	11/18/2008										
WHC1-BM10	0		11/18/2008	< 0.117 U	< 0.0709 U	< 0.0709 U	< 0.0354 U	< 0.0709 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.0709 U	< 0.0106 U
WHC1-BM10	3	NORM	11/18/2008	< 0.118 U	< 0.0715 U	< 0.0715 U	< 0.0357 U	< 0.0715 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0715 U	< 0.0107 U
WHC1-BM10	13		11/18/2008	< 0.133 U	< 0.0805 U	< 0.0805 U	< 0.0402 U	< 0.0805 U	< 0.133 U	< 0.133 U	< 0.133 U	< 0.0805 U	< 0.0121 U
WHC1-BN01	0	NORM	12/1/2008	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U
WHC1-BN01	12	NORM	12/1/2008	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.0694 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0694 U	< 0.0104 U
WHC1-BN02	0	NORM	12/1/2008	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 U
WHC1-BN02	0	FD	12/1/2008	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.035 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 U
WHC1-BN02	11	NORM	12/1/2008	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0344 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U
WHC1-BN03	0	NORM	12/17/2008	< 0.118 U	< 0.0713 U	< 0.0713 U	< 0.0357 U	< 0.0713 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0713 U	< 0.0107 U
WHC1-BN03	10	NORM	12/18/2008	< 0.124 U	< 0.0751 U	< 0.0751 U	< 0.0376 U	< 0.0751 U	< 0.124 U	< 0.124 U	< 0.124 U	< 0.0751 U	< 0.0113 U
WHC1-BN04	0	NORM	12/17/2008	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0349 U	< 0.0698 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0698 U	< 0.0105 U
WHC1-BN04	17	NORM	12/22/2008	< 0.116 U	< 0.0705 U	< 0.0705 U	< 0.0352 U	< 0.0705 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0705 U	< 0.0106 U
WHC1-BN04	17	NORM	12/22/2008	< 0.117 U	< 0.0709 U	< 0.0709 U	< 0.0354 U	< 0.0709 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.0709 U	< 0.0106 U
WHC1-BN05	0	NORM	11/20/2008	< 0.112 U	< 0.0679 U	< 0.0679 U	< 0.034 U	< 0.0679 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.0679 U	< 0.0102 U
WHC1-BN05	0	FD	11/20/2008	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 U
WHC1-BN05	10	NORM	11/20/2008	< 0.117 U	< 0.0707 U	< 0.0707 U	< 0.0353 U	< 0.0707 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.0707 U	< 0.0106 U
WHC1-BN06 WHC1-BN06	10	NORM NORM	11/20/2008	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0348 U	< 0.0696 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0696 U	< 0.0104 U
		NORM	11/20/2008	 < 0.114 II	 0.0602 II	 - 0.0602 II	 - 0.0246 II	 - 0.0602 II	 - 0 114 II	 - 0 114 II	 < 0.114 U	 - 0.0602 II	 < 0.0104 II
WHC1-BN07	0	NORM	11/21/2008	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0346 U	< 0.0693 U	< 0.114 U	< 0.114 U		< 0.0693 U	< 0.0104 U
WHC1-BN07	13	NORM	11/21/2008 11/21/2008	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0357 U	< 0.0714 U	< 0.118 U < 0.115 U	< 0.118 U	< 0.118 U	< 0.0714 U	< 0.0107 U
WHC1-BN07	0	NORM	11/21/2008	< 0.115 U < 0.115 U	< 0.0698 U < 0.0695 U	< 0.0698 U < 0.0695 U	< 0.0349 U < 0.0348 U	< 0.0698 U < 0.0695 U	< 0.115 U	< 0.115 U	< 0.115 U < 0.115 U	< 0.0698 U < 0.0695 U	< 0.0105 U < 0.0104 U
WHC1-BN08 WHC1-BN08	10	NORM	11/20/2008	< 0.115 U < 0.114 U	< 0.0693 U < 0.0692 U	< 0.0693 U < 0.0692 U	< 0.0348 U < 0.0346 U	< 0.0693 U < 0.0692 U	< 0.115 U < 0.114 U	< 0.115 U < 0.114 U	< 0.115 U < 0.114 U	< 0.0693 U < 0.0692 U	< 0.0104 U < 0.0104 U
WHC1-BN08 WHC1-BN09	0	NORM	12/17/2008		< 0.0692 U < 0.0715 U				< 0.114 U < 0.118 U	< 0.114 U < 0.118 U	< 0.114 U < 0.118 U	< 0.0692 U < 0.0715 U	< 0.0104 U 0.0119 J
WHC1-BN09	11	NORM	12/17/2008	< 0.118 U < 0.12 U	< 0.0715 U < 0.0726 U	< 0.0715 U < 0.0726 U	< 0.0358 U	< 0.0715 U < 0.0726 U	< 0.118 U < 0.12 U	< 0.118 U < 0.12 U	< 0.118 U	< 0.0715 U < 0.0726 U	< 0.0119 J < 0.0109 U
WHC1-BN10	0	NORM	12/19/2008	< 0.12 U < 0.125 U	< 0.0726 U < 0.0757 U	< 0.0726 U < 0.0757 U	< 0.0363 U < 0.0378 U	< 0.0726 U < 0.0757 U	< 0.12 U	< 0.12 U	< 0.12 U	< 0.0726 U < 0.0757 U	< 0.0109 U < 0.0114 U
WHC1-BN10 WHC1-BN10	10	LLLL TILL LLLLL		< 0.125 U < 0.129 U	< 0.0757 U < 0.0784 U	< 0.0737 U < 0.0784 U	< 0.0378 U < 0.0392 U	< 0.0737 U < 0.0784 U	< 0.123 U < 0.129 U	< 0.125 U < 0.129 U	< 0.123 U < 0.129 U	< 0.0757 U < 0.0784 U	< 0.0114 U < 0.0118 U
WITCI-DINIU	10	INDIVIN	11/10/4000	∨ 0.149 U	> U.U.04 U	∨ 0.070 11 U	~ ♥.U.374 U	~ 0.0764 U		× 0.1∠9 U	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	> 0.0704 U	> 0.0110 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 41 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			
									1	,			
				Dichloromethyl ether	Diethyl phthalate	Dimethyl phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Diphenyl disulfide	sulfide	sulfone	Diphenylamine	a
				net	hth	hd	/l p	1 p	dis	ns		am	ien
				TOI	1 p	hyl	uty	cty	ıyı	ıyı	ıyı	ıyl	nth
	Depth	Sample	Sample	hlc	thy	netj	q-u	0-u	hei	hei	hei	hei	ora
Sample ID	(ft bgs)	Type	Date	Dic	Die	Din	Di-	Di:	Dip	Diphenyl	Diphenyl	Dip	Fluoranthene
WHC1-BO01	0	NORM	12/2/2008	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0347 U	< 0.0695 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0695 U	< 0.0104 U
WHC1-BO01	0	FD	12/2/2008	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0345 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0104 U
WHC1-BO01	4	NORM	12/2/2008	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0343 U	< 0.0685 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0685 U	< 0.0103 U
WHC1-BO01	14	NORM	12/2/2008	< 0.119 U	< 0.072 U	< 0.072 U	< 0.036 U	< 0.072 U	< 0.119 U	< 0.119 U	< 0.119 U	< 0.072 U	< 0.0108 U
WHC1-BO02	0	NORM	12/1/2008	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0343 U	< 0.0686 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0686 U	< 0.0103 U
WHC1-BO02	12	NORM	12/1/2008	< 0.114 U	< 0.069 U	< 0.069 U	< 0.0345 U	< 0.069 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.069 U	< 0.0103 U
WHC1-BO03	0	NORM	12/15/2008	< 0.114 UJ	< 0.0693 U	< 0.0693 U	< 0.0347 U	< 0.0693 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0693 U	< 0.0104 U
WHC1-BO03	12	NORM	12/19/2008	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U
WHC1-BO04	0	NORM	12/15/2008	< 0.116 UJ	< 0.0705 U	< 0.0705 U	< 0.0353 U	< 0.0705 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0705 U	< 0.0106 U
WHC1-BO04	12	NORM	12/19/2008	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0348 U	< 0.0695 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0695 U	< 0.0104 U
WHC1-BO05	0	NORM	11/20/2008	< 0.11 U	< 0.0669 U	< 0.0669 U	< 0.0334 U	< 0.0669 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.0669 U	< 0.01 U
WHC1-BO05	10	NORM	11/20/2008	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U
WHC1-BO06	0	NORM	11/20/2008	< 0.111 U	< 0.0673 U	< 0.0673 U	< 0.0336 U	< 0.0673 U	< 0.111 U	< 0.111 U	< 0.111 U	< 0.0673 U	< 0.0101 U
WHC1-BO06	10	NORM	11/20/2008	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.035 U	< 0.0699 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0699 U	< 0.0105 U
WHC1-BO07	0	NORM	11/19/2008	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.0688 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0688 U	< 0.0103 U
WHC1-BO07	10		11/19/2008	< 0.118 U	< 0.0717 U	< 0.0717 U	< 0.0359 U	< 0.0717 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0717 U	< 0.0108 U
WHC1-BO08	0		11/20/2008	< 0.116 U	< 0.0706 U	< 0.0706 U	< 0.0353 U	< 0.0706 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0706 U	< 0.0106 U
WHC1-BO08	0	FD	11/20/2008	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0345 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0104 U
WHC1-BO08	11		11/20/2008	< 0.119 U	< 0.0722 U	< 0.0722 U	< 0.0361 U	< 0.0722 U	< 0.119 U	< 0.119 U	< 0.119 U	< 0.0722 U	< 0.0108 U
WHC1-BO09	0	NORM	11/19/2008	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 U
WHC1-BO09	0	FD	11/19/2008	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U
WHC1-BO09	6		11/19/2008	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0343 U	< 0.0685 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0685 U	< 0.0103 U
WHC1-BO09	16		11/19/2008	< 0.125 U	< 0.076 U	< 0.076 U	< 0.038 U	< 0.076 U	< 0.125 U	< 0.125 U	< 0.125 U	< 0.076 U	< 0.0114 U
WHC1-BO10	0		11/19/2008	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0348 U	< 0.0697 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0697 U	< 0.0105 U
WHC1-BO10	10		11/19/2008										
WHC1-BP01	0	NORM	12/1/2008	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0349 U	< 0.0699 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0699 U	< 0.0105 U
WHC1-BP01	10	NORM	12/1/2008	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.0694 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0694 U	< 0.0104 U
WHC1-BP02	0	NORM	12/1/2008	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 U
WHC1-BP02	11	NORM	12/1/2008	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0357 U	< 0.0714 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0714 U	< 0.0107 U
WHC1-BP03	0	NORM	12/15/2008	< 0.112 UJ	< 0.0679 U	< 0.0679 U	< 0.0339 U	< 0.0679 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.0679 U	< 0.0102 U
WHC1-BP03	0	FD	12/15/2008	< 0.112 UJ	< 0.0681 U	< 0.0681 U	< 0.0341 U	< 0.0681 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.0681 U	< 0.0102 U
WHC1-BP03	11	NORM	12/19/2008	< 0.119 U	< 0.0721 U	< 0.0721 U	< 0.0361 U	< 0.0721 U	< 0.119 U	< 0.119 U	< 0.119 U	< 0.0721 U	< 0.0108 U
WHC1-BP04	0		12/15/2008	< 0.113 UJ	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 U
WHC1-BP04	12	NORM	12/19/2008	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.0694 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0694 U	< 0.0104 U
WHC1-BP05	0		12/15/2008	< 0.114 UJ	< 0.0689 U	< 0.0689 U	< 0.0344 U	< 0.0689 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0689 U	< 0.0103 U
WHC1-BP05	10	NORM	12/19/2008	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0357 U	< 0.0714 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0714 U	< 0.0107 U
WHC1-BP06	0		12/12/2008	< 0.112 U	< 0.0681 U	< 0.0681 U	< 0.034 U	< 0.0681 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.0681 U	< 0.0102 U
WHC1-BP06	10	NORM	12/12/2008	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U
WHC1-BP07	0	NOKM	11/20/2008	< 0.118 U	< 0.0715 U	< 0.0715 U	< 0.0357 U	< 0.0715 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0715 U	< 0.0107 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 42 of 63)

							Semi-V	olatile Organic	Compounds (S	SVOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Dichloromethyl ether	Diethyl phthalate	Dimethyl phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Diphenyl disulfide	Diphenyl sulfide	Diphenyl sulfone	Diphenylamine	Fluoranthene
WHC1-BP07	3	NORM	11/20/2008	< 0.116 U	< 0.0705 U	< 0.0705 U	< 0.0352 U	< 0.0705 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0705 U	< 0.0106 U
WHC1-BP07	13	NORM	11/20/2008	< 0.118 U	< 0.0716 U	< 0.0716 U	< 0.0358 U	< 0.0716 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0716 U	< 0.0107 U
WHC1-BP08	0	NORM	11/19/2008	< 0.116 UJ	< 0.07 UJ	< 0.07 UJ	< 0.035 UJ	< 0.07 UJ	< 0.116 UJ	< 0.116 UJ	< 0.116 UJ	< 0.07 UJ	< 0.0105 UJ
WHC1-BP08	4	NORM	11/19/2008	< 0.118 UJ	< 0.0714 UJ	< 0.0714 UJ	< 0.0357 UJ	< 0.0714 UJ	< 0.118 UJ	< 0.118 UJ	< 0.118 UJ	< 0.0714 UJ	< 0.0107 UJ
WHC1-BP08	14	NORM	11/19/2008	< 0.118 U	< 0.0718 U	< 0.0718 U	< 0.0359 U	< 0.0718 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0718 U	< 0.0108 U
WHC1-BP09	0	NORM	11/19/2008	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.0684 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0684 U	< 0.0103 U
WHC1-BP09	10	NORM	11/19/2008	< 0.132 U	< 0.08 U	< 0.08 U	< 0.04 U	< 0.08 U	< 0.132 U	< 0.132 U	< 0.132 U	< 0.08 U	< 0.012 U
WHC1-BP10	0	NORM	11/19/2008	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0343 U	< 0.0685 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0685 U	< 0.0103 U
WHC1-BP10	10	NORM	11/19/2008	< 0.156 U	< 0.0945 U	< 0.0945 U	< 0.0473 U	< 0.0945 U	< 0.156 U	< 0.156 U	< 0.156 U	< 0.0945 U	< 0.0142 U
WHC1-D01	0	NORM	12/5/2008	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.0694 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0694 U	0.03 J
WHC1-D01	10	NORM	12/5/2008	< 0.115 UJ	< 0.0696 UJ	< 0.0696 UJ	< 0.0348 UJ	< 0.0696 UJ	< 0.115 UJ	< 0.115 UJ	< 0.115 UJ	< 0.0696 UJ	< 0.0104 UJ
WHC1-D02	0	NORM	12/5/2008	< 0.118 UJ	< 0.0715 UJ	< 0.0715 UJ	< 0.0357 UJ	< 0.0715 UJ	< 0.118 UJ	< 0.118 UJ	< 0.118 UJ	< 0.0715 UJ	0.0134 J
WHC1-D02	10	NORM	12/5/2008	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 U
WHC1-D03	0	NORM	12/5/2008	< 0.115 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0349 UJ	< 0.0697 UJ	< 0.115 UJ	< 0.115 UJ	< 0.115 UJ	< 0.0697 UJ	< 0.0105 UJ
WHC1-D03	0	FD	12/5/2008	< 0.115 UJ	< 0.0699 UJ	< 0.0699 UJ	< 0.035 UJ	< 0.0699 UJ	< 0.115 UJ	< 0.115 UJ	< 0.115 UJ	< 0.0699 UJ	0.011 J-
WHC1-D03	10	NORM	12/5/2008	< 0.116 UJ	< 0.0706 UJ	< 0.0706 UJ	< 0.0353 UJ	< 0.0706 UJ	< 0.116 UJ	< 0.116 UJ	< 0.116 UJ	< 0.0706 UJ	< 0.0106 UJ
WHC1-D04	0	NORM	12/5/2008	< 0.116 U	< 0.0706 U	< 0.0706 U	< 0.0353 U	< 0.0706 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0706 U	0.0159 J
WHC1-D04	10	NORM	12/5/2008	< 0.114 UJ	< 0.069 UJ	< 0.069 UJ	< 0.0345 UJ	< 0.069 UJ	< 0.114 UJ	< 0.114 UJ	< 0.114 UJ	< 0.069 UJ	< 0.0104 UJ
WHC1-D05	0	NORM	12/5/2008	< 0.115 UJ	< 0.07 UJ	< 0.07 UJ	< 0.035 UJ	< 0.07 UJ	< 0.115 UJ	< 0.115 UJ	< 0.115 UJ	< 0.07 UJ	< 0.0101 UJ
WHC1-D05	10	NORM	12/5/2008	< 0.114 UJ	< 0.0689 UJ	< 0.0689 UJ	< 0.0344 UJ	< 0.0689 UJ	< 0.114 UJ	< 0.114 UJ	< 0.114 UJ	< 0.0689 UJ	< 0.0103 UJ
WHC1-D06	0	NORM	12/5/2008	< 0.121 U	< 0.0732 U	< 0.0732 U	< 0.0366 U	< 0.0732 U	< 0.121 U	< 0.121 U	< 0.121 U	< 0.0732 U	0.0134 J
WHC1-D06	10	NORM	12/5/2008	< 0.116 UJ	< 0.07 UJ	< 0.07 UJ	< 0.035 UJ	< 0.07 UJ	< 0.116 UJ	< 0.116 UJ	< 0.116 UJ	< 0.0732 C	< 0.0105 UJ
WHC1-D07	0	NORM	12/5/2008	< 0.114 U	< 0.069 UJ	< 0.069 UJ	< 0.0345 U	< 0.069 UJ	< 0.114 U	< 0.114 U	< 0.114 U	< 0.069 UJ	< 0.0104 U
WHC1-D07	10	NORM	12/5/2008	< 0.114 U	< 0.0686 U	< 0.0686 U	< 0.0343 U	< 0.0686 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0686 U	< 0.0104 U
WHC1-D07	0	NORM	12/8/2008	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0344 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U
WHC1-D08	10	NORM	12/9/2008	< 0.113 U	< 0.0708 U	< 0.0708 U	< 0.0354 U	< 0.0708 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0708 U	< 0.0105 U
WHC1-D09	0	NORM	12/8/2008	< 0.117 U	< 0.0687 U	< 0.0687 U	< 0.0344 U	< 0.0687 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.0687 U	< 0.0103 U
WHC1-D09	11	NORM	12/9/2008	< 0.113 U	< 0.0701 UJ	< 0.0701 UJ	< 0.0351 UJ	< 0.0701 UJ	< 0.115 U	< 0.113 U	< 0.115 UJ	< 0.0087 U	< 0.0105 UJ
WHC1-D10	0	NORM	12/8/2008	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0331 UJ	< 0.0688 U	< 0.110 UJ	< 0.110 UJ	< 0.110 UJ	< 0.0688 U	< 0.0103 U
WHC1-D10	10	NORM	12/9/2008	< 0.114 U	< 0.0703 U	< 0.0703 U	< 0.0344 U	< 0.0088 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0088 U	< 0.0105 U
WHC1-D10	0	NORM	12/9/2008	< 0.110 U	< 0.069 U	< 0.069 U	< 0.0331 U	< 0.0703 U	< 0.110 U	< 0.110 U	< 0.110 U	< 0.0703 U	0.0526
WHC1-D11	10	NORM	12/8/2008	< 0.114 U	< 0.069 U	< 0.0732 U	< 0.0343 U < 0.0366 U	< 0.069 U < 0.0732 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0732 U	< 0.0326 < 0.011 U
WHC1-D11	0	NORM	12/9/2008	< 0.121 U	< 0.0732 U	< 0.0732 U	< 0.0360 U	< 0.0732 U	< 0.121 U	< 0.121 U	< 0.121 U	< 0.0732 U	< 0.011 U
WHC1-D12	10	NORM	12/10/2008	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.033 U < 0.0461 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0103 U
WHC1-D13	0	NORM	12/8/2008	< 0.132 U	< 0.0923 U < 0.0712 U	< 0.0923 U < 0.0712 U	< 0.0461 U	< 0.0923 U < 0.0712 U	< 0.132 U	< 0.132 U	< 0.132 U	< 0.0923 U < 0.0712 U	< 0.0138 U < 0.0107 U
WHC1-D13	10	NORM	12/8/2008	< 0.118 U < 0.167 U	< 0.0712 U < 0.101 U	< 0.0712 U	< 0.0505 U	< 0.0712 U < 0.101 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0712 U < 0.101 U	< 0.0107 U < 0.0151 U
WHC1-D15 WHC1-D15	0	NORM	12/8/2008	< 0.167 U < 0.113 U	< 0.101 U < 0.0687 U	< 0.101 U < 0.0687 U	< 0.0303 U < 0.0344 U	< 0.101 U < 0.0687 U	< 0.107 U	< 0.167 U	< 0.167 U < 0.113 U	< 0.101 U < 0.0687 U	< 0.0151 U
WHC1-D15	10	NORM	12/11/2008		< 0.0846 U	< 0.0846 U	< 0.0344 U < 0.0423 U	< 0.0846 U					
	0			< 0.14 U					< 0.14 U	< 0.14 U	< 0.14 U	< 0.0846 U	< 0.0127 U
WHC1-D16	U	NUKWI	12/10/2008	< 0.126 U	< 0.0763 U	< 0.0763 U	< 0.0382 U	< 0.0763 U	< 0.126 U	< 0.126 U	< 0.126 U	< 0.0763 U	< 0.0114 U

TABLE B-9 SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA

BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA (Page 43 of 63)

							Semi-V	olatile Organio	c Compounds (S	SVOCs)			
									Compounds (a	7 (0 0 0)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Dichloromethyl ether	Diethyl phthalate	Dimethyl phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Diphenyl disulfide	Diphenyl sulfide	Diphenyl sulfone	Diphenylamine	Fluoranthene
WHC1-D16	10	NORM	12/10/2008	< 0.13 U	< 0.0785 U	< 0.0785 U	< 0.0393 U	< 0.0785 U	< 0.13 U	< 0.13 U	< 0.13 U	< 0.0785 U	< 0.0118 U
WHC1-D17	0	NORM	12/10/2008	< 0.117 U	< 0.0712 U	< 0.0712 U	< 0.0356 U	< 0.0712 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.0712 U	< 0.0107 U
WHC1-D17	10	NORM	12/10/2008	< 0.129 U	< 0.0779 U	< 0.0779 U	< 0.039 U	< 0.0779 U	< 0.129 U	< 0.129 U	< 0.129 U	< 0.0779 U	< 0.0117 U
WHC1-D18	0	NORM	12/11/2008	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0346 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0104 U
WHC1-D18	10	NORM	12/11/2008	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0349 U	< 0.0698 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0698 U	< 0.0105 U
WHC1-D19	0	NORM	12/11/2008	< 0.115 UJ	< 0.0696 U	< 0.0696 U	< 0.0348 U	< 0.0696 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0696 U	< 0.0104 U
WHC1-D19	0	FD	12/11/2008	< 0.114 UJ	< 0.0693 U	< 0.0693 U	< 0.0346 U	< 0.0693 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0693 U	< 0.0104 U
WHC1-D19	10	NORM	12/11/2008	< 0.116 UJ	< 0.0703 U	< 0.0703 U	< 0.0352 U	< 0.0703 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0703 U	< 0.0105 U
WHC1-D20	0	NORM	12/12/2008	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.0688 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0688 U	< 0.0103 U
WHC1-D20	10	NORM	12/12/2008	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.035 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 U
WHC1-D21	0	NORM	12/16/2008	< 0.117 U	< 0.0708 U	< 0.0708 U	< 0.0354 U	< 0.0708 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.0708 U	< 0.0106 U
WHC1-D21	10	NORM	12/16/2008	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.035 U	< 0.0699 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0699 U	< 0.0105 U
WHC1-D22	0	NORM	12/16/2008	< 0.119 U	< 0.072 U	< 0.072 U	0.0525 J	< 0.072 U	< 0.119 U	< 0.119 U	< 0.119 U	< 0.072 U	0.0142 J
WHC1-D22	10	NORM	12/16/2008	< 0.117 U	< 0.0706 U	< 0.0706 U	< 0.0353 U	< 0.0706 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.0706 U	< 0.0106 U
WHC1-D23	0	NORM	12/16/2008	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 U
WHC1-D23	10	NORM	12/16/2008	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0349 U	< 0.0699 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0699 U	< 0.0105 U
WHC1-D24	0	NORM	12/16/2008	< 0.12 U	< 0.0728 U	< 0.0728 U	< 0.0364 U	< 0.0728 U	< 0.12 U	< 0.12 U	< 0.12 U	< 0.0728 U	< 0.0109 U
WHC1-D24	0	FD	12/16/2008	< 0.119 U	< 0.0721 U	< 0.0721 U	< 0.036 U	< 0.0721 U	< 0.119 U	< 0.119 U	< 0.119 U	< 0.0721 U	< 0.0108 U
WHC1-D24	10	NORM	12/16/2008	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0346 U	< 0.0693 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0693 U	< 0.0104 U
WHC1-D25	0	NORM	12/16/2008	< 0.12 U	< 0.0727 U	< 0.0727 U	< 0.0363 U	< 0.0727 U	< 0.12 U	< 0.12 U	< 0.12 U	< 0.0727 U	0.171
WHC1-D25	10	NORM	12/16/2008	< 0.114 U	< 0.069 U	< 0.069 U	< 0.0345 U	< 0.069 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.069 U	< 0.0104 U
WHC1-D26	0	NORM	12/12/2008	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U
WHC1-D26	10	NORM	12/12/2008	< 0.124 U	< 0.0753 U	< 0.0753 U	< 0.0376 U	< 0.0753 U	< 0.124 U	< 0.124 U	< 0.124 U	< 0.0753 U	< 0.0113 U
WHC1-D27	0	NORM	12/12/2008	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.035 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 U
WHC1-D27	0	FD	12/12/2008	< 0.115 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.07 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.07 U	< 0.0105 U
WHC1-D27	10	NORM	12/12/2008	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.035 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 U
WHC1-D28	0	NORM	12/12/2008	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.0694 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0694 U	< 0.0104 U
WHC1-D28	10	NORM	12/12/2008	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0349 U	< 0.0699 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0699 U	< 0.0105 U
WHC1-D29	0	NORM	12/12/2008	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0346 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0104 U
WHC1-D29	10	NORM	12/12/2008	< 0.121 U	< 0.0733 U	< 0.0733 U	< 0.0366 U	< 0.0733 U	< 0.121 U	< 0.121 U	< 0.121 U	< 0.0733 U	< 0.011 U
WHC1-P01	0	NORM	12/15/2008	< 0.113 UJ	< 0.0685 U	< 0.0685 U	< 0.0342 U	< 0.0685 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0685 U	< 0.0103 U
WHC1-P01	12	NORM	12/19/2008	< 0.119 U	< 0.0719 U	< 0.0719 U	< 0.036 U	< 0.0719 U	< 0.119 U	< 0.119 U	< 0.119 U	< 0.0719 U	< 0.0108 U
WHC1-P02	0	NORM	12/1/2008	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.0688 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0688 U	0.0348
WHC1-P02	10	NORM	12/1/2008	< 0.112 U	< 0.068 U	< 0.068 U	< 0.034 U	< 0.068 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.068 U	< 0.0102 U
WHC1-P03	0	NORM	12/15/2008	< 0.113 UJ	< 0.0683 U	< 0.0683 U	< 0.0341 U	< 0.0683 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0683 U	< 0.0102 U
WHC1-P03	3	NORM	12/18/2008	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0346 U	< 0.0692 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0692 U	< 0.0104 U
WHC1-P03	3	FD	12/18/2008	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U
WHC1-P03	13	NORM	12/18/2008	< 0.118 U	< 0.0713 U	< 0.0713 U	< 0.0357 U	< 0.0713 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0713 U	< 0.0107 U
WHC1-P04	0	NORM	12/15/2008	< 0.114 UJ	< 0.069 U	< 0.069 U	< 0.0345 U	< 0.069 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.069 U	< 0.0104 U

TABLE B-9 SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 44 of 63)

							Semi-V	olatile Organio	c Compounds (S	SVOCs)			
				Dichloromethyl ether	phthalate	ohthalate	phthalate	Di-n-octyl phthalate	lisulfide	sulfide	ulfone	mine	ne
Samula ID	Depth	Sample	Sample	ichlorom	Diethyl ph	Dimethyl phthalate	Di-n-butyl	i-n-octyl	Diphenyl disulfide	Diphenyl s	Diphenyl sulfone	Diphenylamine	Fluoranthene
Sample ID WHC1-P04	(ft bgs)	Type NORM	Date 12/18/2008	< 0.123 U	○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	< 0.0372 U	○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	< 0.123 U	< 0.123 U	< 0.123 U	< 0.0744 U	< 0.0112 U
WHC1-P05	0	NORM	12/8/2008	< 0.125 U	< 0.07 U	< 0.0744 U	< 0.0372 U	< 0.0744 U	< 0.123 U	< 0.123 U	< 0.123 U	< 0.07 U	< 0.0112 U
WHC1-P05	0	FD	12/8/2008	< 0.115 U	< 0.0696 U	< 0.07 U	< 0.033 U	< 0.0696 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0696 U	< 0.0103 U
WHC1-P05	10	NORM	12/8/2008	< 0.115 U	< 0.0702 U	< 0.0702 U	< 0.0348 U	< 0.0702 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0702 U	< 0.0104 U
WHC1-P06	0	NORM	12/2/2008	< 0.116 U	< 0.0695 U	< 0.0695 U	< 0.0348 U	< 0.0695 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0695 U	< 0.0103 U
WHC1-P06	12	NORM	12/2/2008	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.0688 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0688 U	< 0.0104 U
WHC1-P07	0	NORM	12/2/2008	< 0.114 U	< 0.0088 U	< 0.0088 U	< 0.0344 U	< 0.0088 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0088 U	< 0.0103 U
WHC1-P07	3	NORM	12/2/2008	< 0.110 U	< 0.0684 U	< 0.0684 U	< 0.0342 U	< 0.0684 U	< 0.110 U	< 0.110 U	< 0.110 U	< 0.0684 U	< 0.0103 U
WHC1-P07	13	NORM	12/2/2008	< 0.115 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.07 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0004 C	< 0.0105 U
WHC1-P08	0	NORM	12/3/2008	< 0.113 UJ	< 0.0683 UJ	< 0.0683 UJ	< 0.0342 UJ	< 0.0683 UJ	< 0.113 UJ	< 0.113 UJ	< 0.113 UJ	< 0.0683 UJ	< 0.0102 UJ
WHC1-P08	11	NORM	12/3/2008	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0348 U	< 0.0696 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0696 U	< 0.0102 U
WHC1-P09	0	NORM	12/4/2008	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0101 U
WHC1-P09	0	FD	12/4/2008	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0343 U	< 0.0687 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0687 U	< 0.0103 U
WHC1-P09	10	NORM	12/4/2008	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0344 U	< 0.0688 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0688 U	< 0.0103 U
WHC1-P10	0		11/25/2008	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0347 U	< 0.0695 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0695 U	< 0.0104 U
WHC1-P10	10	NORM	11/25/2008	< 0.127 U	< 0.0767 U	< 0.0767 U	< 0.0383 U	< 0.0767 U	< 0.127 U	< 0.127 U	< 0.127 U	< 0.0767 U	< 0.0115 U
WHC1-P11	0	NORM	12/8/2008	< 0.116 U	< 0.0705 U	< 0.0705 U	< 0.0353 U	< 0.0705 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0705 U	0.0684
WHC1-P11	0	FD	12/8/2008	< 0.228 U	< 0.138 U	< 0.138 U	< 0.0691 U	< 0.138 U	< 0.228 U	< 0.228 U	< 0.228 U	< 0.138 U	0.0411 J
WHC1-P11	10	NORM	12/9/2008	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0351 U	< 0.0702 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0702 U	< 0.0105 U
WHC1-P12	0	NORM	12/5/2008	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0351 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 U
WHC1-P12	11	NORM	12/5/2008	< 0.115 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0348 UJ	< 0.0697 UJ	< 0.115 UJ	< 0.115 UJ	< 0.115 UJ	< 0.0697 UJ	< 0.0105 UJ
WHC1-P13	0	NORM	12/9/2008	< 0.115 U	< 0.07 U	< 0.07 U	< 0.035 U	< 0.07 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.07 U	< 0.0105 U
WHC1-P13	10	NORM	12/9/2008	< 0.151 U	< 0.0915 U	< 0.0915 U	< 0.0457 U	< 0.0915 U	< 0.151 U	< 0.151 U	< 0.151 U	< 0.0915 U	< 0.0137 U
WHC1-P13	10	FD	12/9/2008	< 0.128 U	< 0.0778 U	< 0.0778 U	< 0.0389 U	< 0.0778 U	< 0.128 U	< 0.128 U	< 0.128 U	< 0.0778 U	< 0.0117 U
WHC1-P14	0	NORM	12/17/2008	< 0.132 U	< 0.0803 U	< 0.0803 U	< 0.0401 U	< 0.0803 U	< 0.132 U	< 0.132 U	< 0.132 U	< 0.0803 U	0.0173 J
WHC1-P15	0	NORM	12/8/2008	< 0.122 U	< 0.074 U	< 0.074 U	< 0.037 U	< 0.074 U	< 0.122 U	< 0.122 U	< 0.122 U	< 0.074 U	< 0.0111 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.119 U	< 0.072 U	< 0.072 U	< 0.036 U	< 0.072 U	< 0.119 U	< 0.119 U	< 0.119 U	< 0.072 U	< 0.0108 U
WHC1-P15	10	NORM	12/18/2008	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0357 U	< 0.0714 U	< 0.118 U	< 0.118 U	< 0.118 U	< 0.0714 U	< 0.0107 U
WHC1-P16	0	NORM	12/1/2008	< 0.111 U	< 0.0675 U	< 0.0675 U	< 0.0337 U	< 0.0675 U	< 0.111 U	< 0.111 U	< 0.111 U	< 0.0675 U	< 0.0101 U
WHC1-P16	11	NORM	12/1/2008	< 0.114 U	< 0.069 U	< 0.069 U	< 0.0345 U	< 0.069 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.069 U	< 0.0103 U
WHC1-P17	0	NORM	12/15/2008	< 0.115 UJ	< 0.0699 U	< 0.0699 U	< 0.0349 U	< 0.0699 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0699 U	< 0.0105 U
WHC1-P17	12	NORM	12/19/2008	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0347 U	< 0.0694 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0694 U	< 0.0104 U
WHC1-P17	12	FD	12/19/2008	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0348 U	< 0.0696 U	< 0.115 U	< 0.115 U	< 0.115 U	< 0.0696 U	< 0.0104 U
WHC1-P18	0	NORM	12/1/2008	< 0.112 U	< 0.068 U	< 0.068 U	< 0.034 U	< 0.068 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.068 U	< 0.0102 U
WHC1-P18	12	NORM	12/1/2008	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0343 U	< 0.0686 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0686 U	< 0.0103 U
WHC2-D02C	0	NORM	12/2/2009	< 0.111 U	< 0.0672 U	< 0.0672 U	< 0.0336 U	< 0.0672 U	< 0.111 U	< 0.111 U	< 0.111 U	< 0.0672 U	< 0.0101 U
WHC2-D04C	0	NORM	12/2/2009	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0343 U	< 0.0686 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0686 U	0.0522
WHC2-D05C	0	NORM	12/2/2009	< 0.112 U	< 0.0676 U	< 0.0676 U	< 0.0338 U	< 0.0676 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.0676 U	0.127
WHC2-D11C	0	NORM	12/2/2009	< 0.112 U	< 0.0677 U	< 0.0677 U	< 0.0338 U	< 0.0677 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.0677 U	0.0752

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 45 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Dichloromethyl ether	Diethyl phthalate	Dimethyl phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Diphenyl disulfide	Diphenyl sulfide	Diphenyl sulfone	Diphenylamine	Fluoranthene
WHC2-D13C	0	NORM	12/3/2009	< 0.169 U	< 0.103 U	< 0.103 U	< 0.0513 U	< 0.103 U	< 0.169 U	< 0.169 U	< 0.169 U	< 0.103 U	< 0.0154 U
WHC2-D13NE	0	NORM	12/3/2009	< 0.178 UJ	< 0.108 U	< 0.108 U	< 0.0539 U	< 0.108 U	< 0.178 U	< 0.178 U	< 0.178 U	< 0.108 U	< 0.0162 U
WHC2-D13NW	0	NORM	12/3/2009	< 0.131 U	< 0.0793 U	< 0.0793 U	< 0.0396 U	< 0.0793 U	< 0.131 U	< 0.131 U	< 0.131 U	< 0.0793 U	< 0.0119 U
WHC2-D13SE	0	NORM	12/3/2009	< 0.176 U	< 0.107 U	< 0.107 U	< 0.0534 U	< 0.107 U	< 0.176 U	< 0.176 U	< 0.176 U	< 0.107 U	< 0.016 U
WHC2-D13SW	0	NORM	12/3/2009	< 0.165 U	< 0.0998 U	< 0.0998 U	< 0.0499 U	< 0.0998 U	< 0.165 U	< 0.165 U	< 0.165 U	< 0.0998 U	< 0.015 U
WHC2-D14C	0	NORM	12/2/2009	< 0.117 U	< 0.0706 U	< 0.0706 U	< 0.0353 U	< 0.0706 U	< 0.117 U	< 0.117 U	< 0.117 U	< 0.0706 U	< 0.0106 U
WHC2-D17C	0	NORM	12/1/2009	< 0.121 U	< 0.0731 U	< 0.0731 U	< 0.0365 U	< 0.0731 U	< 0.121 U	< 0.121 U	< 0.121 U	< 0.0731 U	< 0.011 U
WHC2-D18C	0	NORM	12/1/2009	< 0.111 U	< 0.0674 U	< 0.0674 U	< 0.0337 U	< 0.0674 U	< 0.111 U	< 0.111 U	< 0.111 U	< 0.0674 U	< 0.0101 U
WHC2-D18C	0	FD	12/1/2009	< 0.111 U	< 0.0675 U	< 0.0675 U	< 0.0338 U	< 0.0675 U	< 0.111 U	< 0.111 U	< 0.111 U	< 0.0675 U	< 0.0101 U
WHC2-D25C	0	NORM	12/1/2009	< 0.112 U	< 0.0676 U	< 0.0676 U	< 0.0338 U	< 0.0676 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.0676 U	< 0.0101 U
WHC2-P11C	0	NORM	12/1/2009	< 0.113 U	< 0.0683 U	< 0.0683 U	< 0.0341 U	< 0.0683 U	< 0.113 U	< 0.113 U	< 0.113 U	< 0.0683 U	0.0311 J
WHC6-D05	0	NORM	7/27/2012	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0351 U	< 0.0701 U	< 0.116 U	< 0.116 U	< 0.116 U	< 0.0701 U	< 0.0105 U
WHC6-D11	0	NORM	7/27/2012	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0346 U	< 0.0691 U	< 0.114 U	< 0.114 U	< 0.114 U	< 0.0691 U	< 0.0104 U
WHC6-P11	0	NORM	7/27/2012	< 0.112 U	< 0.0676 U	< 0.0676 U	< 0.0338 U	< 0.0676 U	< 0.112 U	< 0.112 U	< 0.112 U	< 0.0676 U	< 0.0101 U

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 46 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclo- pentadiene	Hexachloroethane	Hydroxymethyl- phthalimide	Isophorone	m.p-Cresols	Naphthalene	Nitrobenzene
OSC1-BM11	0	NORM	9/21/2009	< 0.0105 U	< 0.0701 U	< 0.0701 U	< 0.0701 UJ	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.14 U	< 0.0105 U	< 0.0701 U
OSC1-BM11	10	NORM	9/21/2009	< 0.0116 U	< 0.0774 U	< 0.0774 U	< 0.0774 UJ	< 0.0774 U	< 0.128 U	< 0.0774 U	< 0.155 U	< 0.0116 U	< 0.0774 U
OSC1-BN11	0	NORM	9/22/2009	< 0.0102 U	< 0.068 U	< 0.068 U	< 0.068 U	< 0.068 U	< 0.112 U	< 0.068 U	< 0.136 U	< 0.0102 U	< 0.068 U
OSC1-BN11	5	NORM	9/22/2009	< 0.0107 U	< 0.0711 U	< 0.0711 U	< 0.0711 U	< 0.0711 U	< 0.117 U	< 0.0711 U	< 0.142 U	< 0.0107 U	< 0.0711 U
OSC1-BO11	0	NORM	9/16/2009	< 0.0104 U	< 0.0694 U	< 0.0694 U	< 0.0694 UJ	< 0.0694 U	< 0.115 U	< 0.0694 U	< 0.139 U	< 0.0104 U	< 0.0694 U
OSC1-BO11	0	FD	9/16/2009	< 0.0112 U	< 0.0745 U	< 0.0745 U	< 0.0745 UJ	< 0.0745 U	< 0.123 U	< 0.0745 U	< 0.149 U	< 0.0112 U	< 0.0745 U
OSC1-BO11	5	NORM	9/16/2009	< 0.0111 U	< 0.0743 U	< 0.0743 U	< 0.0743 UJ	< 0.0743 U	< 0.123 U	< 0.0743 U	< 0.149 U	< 0.0111 U	< 0.0743 U
OSC1-BP11	0	NORM	9/16/2009	< 0.011 U	< 0.0731 U	< 0.0731 U	< 0.0731 UJ	< 0.0731 U	< 0.121 U	< 0.0731 U	< 0.146 U	< 0.011 U	< 0.0731 U
OSC1-BP11	5	NORM	9/16/2009	< 0.0113 U	< 0.0755 U	< 0.0755 U	< 0.0755 UJ	< 0.0755 U	< 0.125 U	< 0.0755 U	< 0.151 U	< 0.0113 U	< 0.0755 U
OSC1-JP06	0	NORM	9/22/2009	< 0.0106 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.117 U	< 0.071 U	< 0.142 U	< 0.0106 U	< 0.071 U
OSC1-JP06	5	NORM	9/22/2009	< 0.0116 U	< 0.0774 U	< 0.0774 U	< 0.0774 U	< 0.0774 U	< 0.128 U	< 0.0774 U	< 0.155 U	< 0.0116 U	< 0.0774 U
OSC1-JP07	0	NORM	9/21/2009	< 0.0108 U	< 0.0722 U	< 0.0722 U	< 0.0722 UJ	< 0.0722 U	< 0.119 U	< 0.0722 U	< 0.144 U	< 0.0108 U	< 0.0722 U
OSC1-JP07	5	NORM	9/21/2009	< 0.0127 U	< 0.0847 U	< 0.0847 U	< 0.0847 UJ	< 0.0847 U	< 0.14 U	< 0.0847 U	< 0.169 U	< 0.0127 U	< 0.0847 U
OSC1-JP08	0	NORM	9/21/2009	< 0.0113 U	< 0.0752 U	< 0.0752 U	< 0.0752 UJ	< 0.0752 U	< 0.124 U	< 0.0752 U	< 0.15 U	< 0.0113 U	< 0.0752 U
OSC1-JP08	10	NORM	9/21/2009	< 0.0112 U	< 0.075 U	< 0.075 U	< 0.075 UJ	< 0.075 U	< 0.124 U	< 0.075 U	< 0.15 U	< 0.0112 U	< 0.075 U
WHC1-BF01	0	NORM	11/24/2008	< 0.0102 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.112 U	< 0.0678 U	< 0.136 U	< 0.0102 U	< 0.0678 U
WHC1-BF01	12	NORM	11/24/2008	< 0.0104 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.139 U	< 0.0104 U	< 0.0693 U
WHC1-BF02	0	NORM	11/25/2008	< 0.0101 U	< 0.067 U	< 0.067 U	< 0.067 U	< 0.067 U	< 0.111 U	< 0.067 U	< 0.134 U	< 0.0101 U	< 0.067 U
WHC1-BF02	11	NORM	11/25/2008	< 0.0104 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.138 U	< 0.0104 U	< 0.0691 U
WHC1-BF03	0	NORM	11/25/2008	< 0.0102 U	< 0.0677 U	< 0.0677 U	< 0.0677 U	< 0.0677 U	< 0.112 U	< 0.0677 U	< 0.135 U	< 0.0102 U	< 0.0677 U
WHC1-BF03	10	NORM	11/25/2008	< 0.0104 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.139 U	< 0.0104 U	< 0.0693 U
WHC1-BF04	0	NORM	11/25/2008	< 0.0102 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.112 U	< 0.0678 U	< 0.136 U	< 0.0102 U	< 0.0678 U
WHC1-BF04	0	FD	11/25/2008	< 0.0104 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.138 U	< 0.0104 U	< 0.0692 U
WHC1-BF04	10	NORM	11/25/2008	< 0.0105 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.14 U	< 0.0105 U	< 0.0699 U
WHC1-BF05	0	NORM	11/25/2008	< 0.0104 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.139 U	< 0.0104 U	< 0.0694 U
WHC1-BF05	12	NORM	12/10/2008	< 0.0137 U	< 0.0911 UJ	< 0.0911 UJ	< 0.0911 UJ	< 0.0911 UJ	< 0.15 UJ	< 0.0911 UJ	< 0.182 UJ	< 0.0137 U	< 0.0911 UJ
WHC1-BF06	0	NORM	12/10/2008	< 0.0104 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.139 U	< 0.0104 U	< 0.0696 U
WHC1-BF06	10	NORM	12/10/2008	< 0.0139 U	< 0.0927 U	< 0.0927 U	< 0.0927 U	< 0.0927 U	< 0.153 U	< 0.0927 U	< 0.185 U	< 0.0139 U	< 0.0927 U
WHC1-BG01	0	NORM	11/24/2008	< 0.0103 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.137 U	< 0.0103 U	< 0.0687 U
WHC1-BG01	11	NORM	11/24/2008	< 0.0105 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.14 U	< 0.0105 U	< 0.0701 U
WHC1-BG02	0	NORM	11/24/2008	< 0.0101 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.111 U	< 0.0675 U	< 0.135 U	< 0.0101 U	< 0.0675 U
WHC1-BG02	0	FD	11/24/2008	< 0.0101 U	< 0.0672 U	< 0.0672 U	< 0.0672 U	< 0.0672 U	< 0.111 U	< 0.0672 U	< 0.134 U	< 0.0101 U	< 0.0672 U
WHC1-BG02	10	NORM	11/24/2008	< 0.0105 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.139 U	< 0.0105 U	< 0.0697 U
WHC1-BG03	0	NORM	12/11/2008	< 0.0105 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 UJ	< 0.14 U	< 0.0105 U	< 0.0702 U
WHC1-BG03	11	NORM	12/11/2008	< 0.0105 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 UJ	< 0.14 U	< 0.0105 U	< 0.0702 U
WHC1-BG04	0	NORM	12/11/2008	< 0.0103 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.0688 UJ	< 0.138 U	< 0.0103 U	< 0.0688 U
WHC1-BG04	10	NORM	12/11/2008	< 0.0134 U	< 0.0891 U	< 0.0891 U	< 0.0891 U	< 0.0891 U	< 0.147 U	< 0.0891 UJ	< 0.178 U	< 0.0134 U	< 0.0891 U
WHC1-BG05	0	NORM	11/25/2008	< 0.0109 U	< 0.0728 U	< 0.0728 U	< 0.0728 U	< 0.0728 U	< 0.12 U	< 0.0728 U	< 0.146 U	< 0.0109 U	< 0.0728 U
WHC1-BG05	10	NORM	11/25/2008	< 0.0122 U	< 0.0812 U	< 0.0812 U	< 0.0812 U	< 0.0812 U	< 0.134 U	< 0.0812 U	< 0.162 U	< 0.0122 U	< 0.0812 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 47 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclo- pentadiene	Hexachloroethane	Hydroxymethyl- phthalimide	Isophorone	m,p-Cresols	Naphthalene	Nitrobenzene
WHC1-BG06	0	NORM	12/10/2008	< 0.0104 UJ	< 0.0695 UJ	< 0.0695 UJ	< 0.0695 UJ	< 0.0695 UJ	< 0.115 UJ	< 0.0695 UJ	< 0.139 UJ	< 0.0104 UJ	< 0.0695 UJ
WHC1-BG06	10	NORM	12/10/2008	< 0.0145 U	< 0.0965 U	< 0.0965 U	< 0.0965 U	< 0.0965 U	< 0.159 U	< 0.0965 U	< 0.193 U	< 0.0145 U	< 0.0965 U
WHC1-BH01	0	NORM	12/3/2008	< 0.0103 U	< 0.0684 U	< 0.0684 UJ	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.137 U	< 0.0103 U	< 0.0684 U
WHC1-BH01	11	NORM	12/3/2008	< 0.0103 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 UJ	< 0.0687 U	< 0.137 U	< 0.0103 UJ	< 0.0687 U
WHC1-BH02	0	NORM	12/4/2008	< 0.0106 U	< 0.0704 U	< 0.0704 U	< 0.0704 U	< 0.0704 U	< 0.116 U	< 0.0704 U	< 0.141 U	< 0.0106 U	< 0.0704 U
WHC1-BH02	10	NORM	12/4/2008	< 0.0103 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.137 U	< 0.0103 U	< 0.0685 U
WHC1-BH03	0	NORM	12/9/2008	< 0.0102 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.112 UJ	< 0.0681 U	< 0.136 U	< 0.0102 U	< 0.0681 U
WHC1-BH03	10	NORM	12/9/2008	< 0.0104 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 UJ	< 0.0695 U	< 0.139 U	< 0.0104 U	< 0.0695 U
WHC1-BH04	0	NORM	12/11/2008	< 0.0103 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 UJ	< 0.138 U	< 0.0103 U	< 0.0688 U
WHC1-BH04	10	NORM	12/11/2008	< 0.0104 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 UJ	< 0.138 U	< 0.0104 U	< 0.0691 U
WHC1-BH05	0	NORM	12/9/2008	< 0.0104 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 UJ	< 0.0691 U	< 0.138 U	< 0.0104 U	< 0.0691 U
WHC1-BH05	0	FD	12/9/2008	< 0.0104 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 UJ	< 0.139 U	< 0.0104 U	< 0.0694 U
WHC1-BH05	10	NORM	12/9/2008	< 0.0107 U	< 0.0716 U	< 0.0716 U	< 0.0716 U	< 0.0716 U	< 0.118 UJ	< 0.0716 U	< 0.143 U	< 0.0107 U	< 0.0716 U
WHC1-BH06	0	NORM	12/11/2008	< 0.0113 U	< 0.0757 U	< 0.0757 U	< 0.0757 U	< 0.0757 U	< 0.125 U	< 0.0757 UJ	< 0.151 U	< 0.0113 U	< 0.0757 U
WHC1-BH06	0	FD	12/11/2008	< 0.0107 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.117 U	< 0.071 UJ	< 0.142 U	< 0.0107 U	< 0.071 U
WHC1-BH06	10	NORM	12/11/2008	< 0.0117 U	< 0.0781 U	< 0.0781 U	< 0.0781 U	< 0.0781 U	< 0.129 U	< 0.0781 UJ	< 0.156 U	< 0.0117 U	< 0.0781 U
WHC1-BI01	0	NORM	12/3/2008	< 0.0105 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 UJ	< 0.0702 U	< 0.14 U	< 0.0105 UJ	< 0.0702 U
WHC1-BI01	11	NORM	12/3/2008	< 0.0105 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 UJ	< 0.07 U	< 0.14 U	< 0.0105 UJ	< 0.07 U
WHC1-BI02	0	NORM	12/4/2008	< 0.0105 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.139 U	< 0.0105 U	< 0.0697 U
WHC1-BI02	3	NORM	12/4/2008	< 0.0103 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.137 U	< 0.0103 U	< 0.0686 U
WHC1-BI02	13	NORM	12/4/2008	< 0.0104 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.138 U	< 0.0104 U	< 0.0692 U
WHC1-BI03	0	NORM	12/4/2008	< 0.0103 U	< 0.0689 U	< 0.0689 U	< 0.0689 U	< 0.0689 U	< 0.114 U	< 0.0689 U	< 0.138 U	< 0.0103 U	< 0.0689 U
WHC1-BI03	11	NORM	12/4/2008	< 0.0103 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.137 U	< 0.0103 U	< 0.0687 U
WHC1-BI04	0	NORM	12/8/2008	< 0.0102 U	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.112 U	< 0.0679 U	< 0.136 U	< 0.0102 U	< 0.0679 U
WHC1-BI04	10	NORM	12/9/2008	< 0.0106 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.117 U	< 0.071 UJ	< 0.142 U	< 0.0106 U	< 0.071 U
WHC1-BI05	0	NORM	12/9/2008	< 0.0103 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 UJ	< 0.0685 U	< 0.137 U	< 0.0103 U	< 0.0685 U
WHC1-BI05	10	NORM	12/9/2008	< 0.0104 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.113 UJ	< 0.0691 U	< 0.137 U	< 0.0103 U	< 0.0691 U
WHC1-BJ01	0	NORM	12/3/2008	< 0.0104 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 UJ	< 0.0692 U	< 0.138 U	< 0.0104 UJ	< 0.0692 U
WHC1-BJ01	3	NORM	12/3/2008	< 0.0105 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 UJ	< 0.0697 U	< 0.139 U	< 0.0105 UJ	< 0.0697 U
WHC1-BJ01	13	NORM	12/3/2008	< 0.0106 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.116 UJ	< 0.0706 U	< 0.141 U	< 0.0106 UJ	< 0.0706 U
WHC1-BJ02	0	NORM	12/2/2008	< 0.0105 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.139 U	< 0.0105 U	< 0.0697 U
WHC1-BJ02	0	FD	12/2/2008	< 0.417 U	< 2.78 U	< 2.78 U	< 2.78 U	< 2.78 U	< 4.59 U	< 2.78 U	< 5.56 U	< 0.417 U	< 2.78 U
WHC1-BJ02	12	NORM	12/2/2008	< 0.0104 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.138 U	< 0.0104 U	< 0.0692 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.0104 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.114 U	< 0.0699 U	< 0.138 U	< 0.0104 U	< 0.0699 U
WHC1-BJ03	0	FD	12/4/2008	< 0.0105 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.0698 U	< 0.14 U	< 0.0105 U	< 0.0698 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.0103 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.113 U	< 0.069 U	< 0.14 U	< 0.0103 U	< 0.069 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.0104 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.138 U	< 0.0104 U	< 0.0692 U
WHC1-BJ04 WHC1-BJ04	11	NORM	12/4/2008	< 0.0104 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.138 U	< 0.0104 U	< 0.069 U
WHC1-BJ04 WHC1-BJ05	0	NORM	12/4/2008	< 0.0103 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.114 U	< 0.0678 UJ	< 0.136 U	< 0.0103 U	< 0.0678 U
1111C1-D303	U	NOKWI	14/11/4000	< 0.010∠ U	< 0.0076 U	< 0.0076 U	< 0.0076 U	< 0.0076 U	< 0.11∠ U	< 0.0076 UJ	< 0.130 €	< 0.010∠ U	< 0.0076 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 48 of 63)

							Semi-V	olatile Organi	c Compounds (S	SVOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclo- pentadiene	Hexachloroethane	Hydroxymethyl- phthalimide	Isophorone	m,p-Cresols	Naphthalene	Nitrobenzene
WHC1-BJ05	10	NORM	12/11/2008	< 0.0105 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 UJ	< 0.139 U	< 0.0105 U	< 0.0697 U
WHC1-BK01	0	NORM	12/3/2008	< 0.0105 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 UJ	< 0.07 U	< 0.14 U	< 0.0105 UJ	< 0.07 U
WHC1-BK01	0	FD	12/3/2008	< 0.0104 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 UJ	< 0.0696 U	< 0.139 U	< 0.0104 UJ	< 0.0696 U
WHC1-BK01	10	NORM	12/3/2008	< 0.0105 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 UJ	< 0.0701 U	< 0.14 U	< 0.0105 UJ	< 0.0701 U
WHC1-BK02	0	NORM	12/8/2008	< 0.0103 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.137 U	< 0.0103 U	< 0.0687 U
WHC1-BK02	11	NORM	12/18/2008	< 0.0104 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.139 U	< 0.0104 U	< 0.0696 U
WHC1-BK03	0	NORM	12/15/2008	< 0.0103 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.0688 U	< 0.138 U	< 0.0103 U	< 0.0688 U
WHC1-BK03	12	NORM	12/18/2008	< 0.0107 U	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.118 U	< 0.0713 U	< 0.143 U	< 0.0107 U	< 0.0713 U
WHC1-BK04	0	NORM	12/4/2008	< 0.0104 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.138 U	< 0.0104 U	< 0.0691 U
WHC1-BK04	10	NORM	12/4/2008	< 0.0105 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.139 U	< 0.0105 U	< 0.0697 U
WHC1-BK05	0	NORM	12/12/2008	< 0.0103 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 UJ	< 0.0684 U	< 0.137 U	< 0.0103 U	< 0.0684 U
WHC1-BK05	11	NORM	12/12/2008	< 0.0105 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 UJ	< 0.0698 U	< 0.14 U	< 0.0105 U	< 0.0698 U
WHC1-BL01	0	NORM	12/3/2008	< 0.0104 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 UJ	< 0.0692 U	< 0.138 U	< 0.0104 UJ	< 0.0692 U
WHC1-BL01	10	NORM	12/3/2008	< 0.0105 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 UJ	< 0.0702 U	< 0.14 U	< 0.0105 UJ	< 0.0702 U
WHC1-BL02	0	NORM	12/2/2008	< 0.0104 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.139 U	< 0.0104 U	< 0.0694 U
WHC1-BL02	10	NORM	12/2/2008	< 0.0102 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.112 U	< 0.0681 U	< 0.136 U	< 0.0102 U	< 0.0681 U
WHC1-BL03	0	NORM	12/8/2008	< 0.0102 U	< 0.0682 U	< 0.0682 U	< 0.0682 U	< 0.0682 U	< 0.113 U	< 0.0682 U	< 0.136 U	< 0.0102 U	< 0.0682 U
WHC1-BL03	10	NORM	12/18/2008	< 0.0106 U	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.116 U	< 0.0703 U	< 0.141 U	< 0.0106 U	< 0.0703 U
WHC1-BL04	0		12/17/2008	< 0.0106 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.0705 U	< 0.141 U	< 0.0106 U	< 0.0705 U
WHC1-BL04	12	NORM	12/22/2008	< 0.0103 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.0688 U	< 0.138 U	< 0.0103 U	< 0.0688 U
WHC1-BL05	0	NORM	11/21/2008	< 0.0101 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.111 U	< 0.0675 U	< 0.135 U	< 0.0101 U	< 0.0675 U
WHC1-BL05	10		11/21/2008	< 0.0104 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.139 U	< 0.0104 U	< 0.0695 U
WHC1-BL06	0		11/21/2008	< 0.0106 U	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.117 U	< 0.0708 U	< 0.142 U	< 0.0106 U	< 0.0708 U
WHC1-BL06	11		11/21/2008	< 0.0105 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.116 U	< 0.07 U	< 0.14 U	< 0.0105 U	< 0.07 U
WHC1-BL07	0		11/21/2008	< 0.0105 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.14 U	< 0.0105 U	< 0.07 U
WHC1-BL07	10	NORM	11/21/2008	< 0.0104 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.139 U	< 0.0104 U	< 0.0694 U
WHC1-BL08	0		11/18/2008	< 0.0104 U	< 0.0693 U	< 0.0693 U	< 0.0693 UJ	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.139 U	< 0.0104 U	< 0.0693 U
WHC1-BL08	10	NORM	11/18/2008	< 0.0105 U	< 0.07 U	< 0.07 U	< 0.07 UJ	< 0.07 U	< 0.116 U	< 0.07 U	< 0.14 U	< 0.0105 U	< 0.07 U
WHC1-BL11	0	NORM	11/18/2008	< 0.0105 U	0.07 J	< 0.0699 U	< 0.0699 UJ	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.14 U	< 0.0105 U	< 0.0699 U
WHC1-BL11	12	NORM	11/18/2008	< 0.0105 U	< 0.0702 U	< 0.0702 U	< 0.0702 UJ	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.14 U	< 0.0105 U	< 0.0702 U
WHC1-BM01	0	NORM	12/3/2008	< 0.0107 U	< 0.071 U	< 0.071 U	< 0.071 UJ	< 0.071 U	< 0.117 U	< 0.071 U	< 0.142 U	< 0.0107 UJ	< 0.071 U
WHC1-BM01	10	NORM	12/3/2008	< 0.0104 U	< 0.0692 U	< 0.0692 U	< 0.0692 UJ	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.138 U	< 0.0104 UJ	< 0.0692 U
WHC1-BM02	0	NORM	12/2/2008	< 0.0108 U	< 0.0717 U	< 0.0717 U	< 0.0717 U	< 0.0717 U	< 0.118 U	< 0.0717 U	< 0.143 U	< 0.0108 U	< 0.0717 U
WHC1-BM02	12	NORM	12/2/2008	< 0.0106 U	< 0.0707 U	< 0.0707 U	< 0.0707 U	< 0.0707 U	< 0.117 U	< 0.0707 U	< 0.141 U	< 0.0106 U	< 0.0707 U
WHC1-BM03	0	NORM	12/8/2008	< 0.0103 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.137 U	< 0.0103 U	< 0.0684 U
WHC1-BM03	10	NORM	12/18/2008	< 0.0108 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.119 U	< 0.072 U	< 0.144 U	< 0.0108 U	< 0.072 U
WHC1-BM04	0	NORM	12/17/2008	< 0.0105 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.14 U	< 0.0105 U	< 0.07 U
WHC1-BM04	0	FD	12/17/2008	< 0.0104 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.138 U	< 0.0104 U	< 0.0692 U
WHC1-BM04	10	NORM	12/22/2008	< 0.0107 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.143 U	< 0.0107 U	< 0.0714 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 49 of 63)

		Naphthalene	Nitrobenzene
			Ë
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 0 1/1 II	0.0101 U	< 0.0674 U
	C 0.141 U	0.0106 U	< 0.0706 U
	< 0.136 U <	0.0102 U	< 0.0678 U
	< 0.142 U <	0.0106 U	< 0.0709 U
WHC1-BM06	< 0.143 U <	0.0107 U	< 0.0715 U
	< 0.137 U <	0.0103 U	< 0.0684 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.14 U <	0.0105 U	< 0.0698 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.143 U <	0.0107 U	< 0.0716 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.154 U <	0.0116 U	< 0.077 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.144 U <	0.0108 U	< 0.0722 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.141 U <	0.0106 U	< 0.0706 U
WHC1-BM09 12 NORM 11/18/2008			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.142 U <	0.0106 U	< 0.0709 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.143 U <	0.0107 U	< 0.0715 U
WHC1-BM10 13 NORM 11/18/2008 < 0.0121 U < 0.0805 U <	< 0.161 U	0.0121 U	< 0.0805 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.137 U <	0.0103 U	< 0.0687 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.139 U <	0.0104 U	< 0.0694 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.14 U <	0.0105 U	< 0.0702 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.14 U <	0.0105 U	< 0.0701 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.137 U <	0.0103 U	< 0.0687 U
WHC1-BN03 0 NORM $12/17/2008$ < 0.0107 U < 0.0713 U < $0.$	< 0.143 U <	0.0107 U	< 0.0713 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.15 U <	0.0113 U	< 0.0751 U
WHC1-BN04	< 0.14 U <	0.0105 U	< 0.0698 U
WHC1-BN04 7 NORM 12/22/2008 < 0.0106 U < 0.0705 U	< 0.141 U <	0.0106 U	< 0.0705 U
WHC1-BN04 17 NORM 12/22/2008 < 0.0106 U < 0.0709 U	< 0.142 U <	0.0106 U	< 0.0709 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.136 U <	0.0102 U	< 0.0679 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.137 U <	0.0103 U	< 0.0684 U
WHC1-BN05 10 NORM 11/20/2008 < 0.0106 U < 0.0707 U < 0.117 U < 0.0707 U < 0.0707 U	< 0.141 U <	0.0106 U	< 0.0707 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.139 U <	0.0104 U	< 0.0696 U
WHC1-BN06 10 NORM 11/20/2008			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.139 U <	0.0104 U	< 0.0693 U
WHC1-BN07 3 NORM $11/21/2008$ < 0.0107 U < 0.0714 U		0.0107 U	< 0.0714 U
WHC1-BN07 13 NORM $11/21/2008 < 0.0105 \text{ U} < 0.0698 \text{ U} < 0.0$	< 0.14 U <	0.0105 U	< 0.0698 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.139 U <	0.0104 U	< 0.0695 U
	< 0.138 U <	0.0104 U	< 0.0692 U
		0.0107 U	< 0.0715 U
		0.0109 U	< 0.0726 U
		0.0114 U	< 0.0757 U
	< 0.157 U <	0.0118 U	< 0.0784 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 50 of 63)

Sample ID								Semi-V	olatile Organio	Compounds (S	SVOCs)			
WHC1-B001	Sample ID	•	_	_	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclo- pentadiene	Hexachloroethane	Hydroxymethyl- phthalimide	Isophorone	m,p-Cresols	Naphthalene	Nitrobenzene
WHC1-BO01	WHC1-BO01	0	NORM	12/2/2008	< 0.0104 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.139 U	< 0.0104 U	< 0.0695 U
WHCI-BOO 14	WHC1-BO01	0	FD	12/2/2008	< 0.0104 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.138 U	< 0.0104 U	< 0.0691 U
WHCL-BOO2 O NORM 12/12/2008 < 0.0103 U < 0.0696 U < 0.0686 U < 0.06	WHC1-BO01	4	NORM	12/2/2008	< 0.0103 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	0.4	< 0.0685 U	< 0.137 U	< 0.0103 U	< 0.0685 U
WHCL-BOO2	WHC1-BO01	14	NORM	12/2/2008	< 0.0108 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.119 U	< 0.072 U	< 0.144 U	< 0.0108 U	< 0.072 U
WHCL-BOO3	WHC1-BO02	0	NORM	12/1/2008	< 0.0103 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.137 U	< 0.0103 U	< 0.0686 U
WHCL-BOO3	WHC1-BO02	12	NORM	12/1/2008	< 0.0103 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.138 U	< 0.0103 U	< 0.069 U
WHCL-BO04	WHC1-BO03	0	NORM	12/15/2008	< 0.0104 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.139 U	< 0.0104 U	< 0.0693 U
WHCL-BOO5	WHC1-BO03	12	NORM	12/19/2008	< 0.0104 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.138 U	< 0.0104 U	< 0.0692 U
WHCL-BOOS	WHC1-BO04	0	NORM	12/15/2008	< 0.0106 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.0705 U	< 0.141 U	< 0.0106 U	< 0.0705 U
WHCL-BO05	WHC1-BO04	12	NORM	12/19/2008	< 0.0104 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.139 U	< 0.0104 U	< 0.0695 U
WHCL-BO06	WHC1-BO05	0	NORM	11/20/2008	< 0.01 U	< 0.0669 U	< 0.0669 U	< 0.0669 U	< 0.0669 U	< 0.11 U	< 0.0669 U	< 0.134 U	< 0.01 U	< 0.0669 U
WHCL-BO06	WHC1-BO05	10	NORM	11/20/2008	< 0.0104 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.138 U	< 0.0104 U	< 0.0692 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BO06	0	NORM	11/20/2008	< 0.0101 U	< 0.0673 U	< 0.0673 U	< 0.0673 U	< 0.0673 U	< 0.111 U	< 0.0673 U	< 0.135 U	< 0.0101 U	< 0.0673 U
WHCL-BOO7	WHC1-BO06	10	NORM	11/20/2008	< 0.0105 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.14 U	< 0.0105 U	< 0.0699 U
WHC1-BO08	WHC1-BO07	0	NORM	11/19/2008	< 0.0103 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.138 U	< 0.0103 U	< 0.0688 U
WHC1-B008	WHC1-BO07	10	NORM	11/19/2008	< 0.0108 U	< 0.0717 U	< 0.0717 U	< 0.0717 U	< 0.0717 U	< 0.118 U	< 0.0717 U	< 0.143 U	< 0.0108 U	< 0.0717 U
WHC1-B008	WHC1-BO08	0	NORM	11/20/2008	< 0.0106 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.116 U	< 0.0706 U	< 0.141 U	< 0.0106 U	< 0.0706 U
WHC1-B009	WHC1-BO08	0	FD	11/20/2008	< 0.0104 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.138 U	< 0.0104 U	< 0.0691 U
WHC1-BO09 6 NORM 11/19/2008 < 0.0103 U < 0.0687 U < 0.0687 U < 0.0687 U < 0.013 U < 0.0687 U < 0.013 U < 0.0687 U < 0.0687 U < 0.013 U < 0.0685 U < 0.014 U < 0.076 U	WHC1-BO08	11	NORM	11/20/2008	< 0.0108 U	< 0.0722 U	< 0.0722 U	< 0.0722 U	< 0.0722 U	< 0.119 U	< 0.0722 U	< 0.144 U	< 0.0108 U	< 0.0722 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BO09	0	NORM	11/19/2008	< 0.0103 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.137 U	< 0.0103 U	< 0.0684 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BO09	0	FD	11/19/2008	< 0.0103 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.137 U	< 0.0103 U	< 0.0687 U
WHC1-B010 0 NORM 11/19/2008 < 0.0697 U < 0.0697 U < 0.0697 U < 0.0697 U < 0.015 U < 0.0697 U < 0.0697 U < 0.015 U < 0.0697 U < 0.0697 U < 0.0139 U < 0.0105 U < 0.0697 U < 0.0699 U < 0.0694 U <	WHC1-BO09	6	NORM	11/19/2008	< 0.0103 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.137 U	< 0.0103 U	< 0.0685 U
WHC1-B010 10 NORM 11/19/2008	WHC1-BO09	16	NORM	11/19/2008	< 0.0114 U	< 0.076 U	< 0.076 U	< 0.076 U	< 0.076 U	< 0.125 U	< 0.076 U	< 0.152 U	< 0.0114 U	< 0.076 U
WHC1-B010 10 NORM 11/19/2008	WHC1-BO10	0	NORM	11/19/2008	< 0.0105 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.139 U	< 0.0105 U	< 0.0697 U
WHC1-BP01 0 NORM 12/1/2008 < 0.0105 U < 0.0699 U < 0.0699 U < 0.0699 U < 0.015 U < 0.0105 U < 0.0699 U WHC1-BP01 10 NORM 12/1/2008 < 0.0104 U		10												
WHC1-BP01 10 NORM 12/1/2008 < 0.0104 U < 0.0694 U < 0.0694 U < 0.0694 U < 0.139 U < 0.0104 U < 0.0694 U WHC1-BP02 0 NORM 12/1/2008 < 0.0103 U					< 0.0105 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.14 U	< 0.0105 U	< 0.0699 U
WHC1-BP02 0 NORM 12/1/2008 < 0.0103 U < 0.0684 U < 0.0684 U < 0.013 U < 0.0103 U < 0.0684 U WHC1-BP02 11 NORM 12/1/2008 < 0.0107 U		10												
WHC1-BP02 11 NORM 12/1/2008 < 0.0107 U < 0.0714 U < 0.0714 U < 0.0714 U < 0.0118 U < 0.0714 U < 0.0107 U < 0.0714 U WHC1-BP03 0 NORM 12/15/2008 < 0.0102 U														
WHC1-BP03 0 NORM 12/15/2008 < 0.0102 U < 0.0679 U < 0.0679 U < 0.0679 U < 0.012 U < 0.0102 U < 0.0679 U < 0.0679 U < 0.012 U < 0.0102 U < 0.0679 U < 0.0679 U < 0.012 U < 0.0102 U < 0.0679 U < 0.0679 U < 0.012 U < 0.0102 U < 0.0679 U < 0.0681 U < 0.012 U < 0.0102 U < 0.0681 U < 0.0681 U < 0.012 U < 0.0681 U < 0.0681 U < 0.012 U < 0.0102 U < 0.0681 U < 0.0681 U < 0.012 U < 0.0681 U < 0.0681 U < 0.012 U < 0.0102 U < 0.0681 U < 0.0681 U < 0.0136 U < 0.0102 U < 0.0681 U < 0.0681 U < 0.0136 U < 0.0102 U < 0.0681 U < 0.0681 U < 0.0112 U < 0.0681 U < 0.0136 U < 0.0102 U < 0.0681 U < 0.0721 U < 0.0684 U < 0.		11												
WHC1-BP03 0 FD 12/15/2008 < 0.0102 U < 0.0681 U < 0.0681 U < 0.0681 U < 0.0681 U < 0.012 U < 0.0102 U < 0.0681 U < 0.0681 U < 0.012 U < 0.0102 U < 0.0681 U < 0.0681 U < 0.0136 U < 0.0102 U < 0.0681 U < 0.0681 U < 0.0136 U < 0.0102 U < 0.0681 U < 0.0721 U < 0.0684 U < 0.0694 U <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
WHCI-BP03 11 NORM 12/19/2008 < 0.0108 U < 0.0721 U < 0.0721 U < 0.0721 U < 0.0119 U < 0.0721 U < 0.0721 U < 0.0721 U < 0.0119 U < 0.0721 U < 0.0108 U < 0.0721 U < 0.0721 U < 0.0119 U < 0.0144 U < 0.0108 U < 0.0721 U < 0.0721 U < 0.0119 U < 0.0721 U < 0.0108 U < 0.0721 U < 0.0721 U < 0.0721 U < 0.0137 U < 0.0108 U < 0.0684 U < 0.0694 U < 0.0689 U < 0.0689 U < 0.0689 U < 0.0689 U														
WHC1-BP04 0 NORM 12/15/2008 < 0.0103 U < 0.0684 U < 0.0684 U < 0.0684 U < 0.013 U < 0.0103 U < 0.0684 U WHC1-BP04 12 NORM 12/19/2008 < 0.0104 U														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0												
WHC1-BP06 0 NORM 12/12/2008 < 0.0102 U < 0.0681 U < 0.0681 U < 0.0681 U < 0.0681 U < 0.0112 UJ < 0.0681 U < 0.0102 U < 0.0681 U WHC1-BP06 10 NORM 12/12/2008 < 0.0104 U														
WHC1-BP06 10 NORM 12/12/2008 < 0.0104 U < 0.0692 U < 0.0692 U < 0.0692 U < 0.0692 U < 0.114 UJ < 0.0692 U < 0.138 U < 0.0104 U < 0.0692 U														
4WIRCI=DIV/ I V INVINITII/40/4000 N.V.010/U I N.V.0/IJU I N.V.0/IJ	WHC1-BP07	0			< 0.0107 U	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.118 U	< 0.0715 U	< 0.143 U	< 0.0107 U	< 0.0715 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 51 of 63)

							Semi-V	olatile Organi	c Compounds (S	SVOCs)			
						4)							
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclo- pentadiene	Hexachloroethane	Hydroxymethyl- phthalimide	sophorone	n,p-Cresols	Naphthalene	Nitrobenzene
WHC1-BP07	3	NORM	11/20/2008	< 0.0106 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.0705 U	< 0.141 U	< 0.0106 U	< 0.0705 U
WHC1-BP07	13	NORM	11/20/2008	< 0.0100 U	< 0.0716 U	< 0.0716 U	< 0.0716 U	< 0.0716 U	< 0.118 U	< 0.0716 U	< 0.143 U	< 0.0103 U	< 0.0716 U
WHC1-BP08	0	NORM	11/19/2008	< 0.0105 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.116 UJ	< 0.07 UJ	< 0.14 UJ	< 0.0105 UJ	< 0.07 UJ
WHC1-BP08	4	NORM	11/19/2008	< 0.0103 UJ	< 0.0714 UJ	< 0.0714 UJ	< 0.0714 UJ	< 0.0714 UJ	< 0.118 UJ	< 0.0714 UJ	< 0.143 UJ	< 0.0103 UJ	< 0.0714 UJ
WHC1-BP08	14	NORM	11/19/2008	< 0.0108 U	< 0.0718 U	< 0.0718 U	< 0.0718 U	< 0.0718 U	< 0.118 U	< 0.0718 U	< 0.144 U	< 0.0108 U	< 0.0718 U
WHC1-BP09	0		11/19/2008	< 0.0103 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.137 U	< 0.0103 U	< 0.0684 U
WHC1-BP09	10	NORM	11/19/2008	< 0.010 U	< 0.08 U	< 0.08 U	< 0.08 U	< 0.08 U	< 0.113 U	< 0.08 U	< 0.16 U	< 0.012 U	< 0.08 U
WHC1-BP10	0		11/19/2008	< 0.0103 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.132 U	< 0.0685 U	< 0.137 U	< 0.012 U	< 0.0685 U
WHC1-BP10	10	NORM	11/19/2008	< 0.0142 U	< 0.0945 U	< 0.0945 U	< 0.0945 U	< 0.0945 U	< 0.115 U	< 0.0945 U	< 0.189 U	< 0.0142 U	< 0.0945 U
WHC1-D01	0	NORM	12/5/2008	< 0.0104 U	< 0.0694 U	< 0.0694 UJ	< 0.0694 U	< 0.0694 U	< 0.115 U	< 0.0694 U	< 0.139 U	< 0.0104 U	< 0.0694 U
WHC1-D01	10	NORM	12/5/2008	< 0.0104 UJ	< 0.0696 UJ	< 0.0696 UJ	< 0.0696 UJ	< 0.0696 UJ	< 0.115 UJ	< 0.0696 UJ	< 0.139 UJ	< 0.0104 UJ	< 0.0696 UJ
WHC1-D02	0	NORM	12/5/2008	< 0.0107 UJ	< 0.0715 UJ	< 0.0715 UJ	< 0.0715 UJ	< 0.0715 UJ	< 0.118 UJ	< 0.0715 UJ	< 0.143 UJ	< 0.0107 UJ	< 0.0715 UJ
WHC1-D02	10	NORM	12/5/2008	< 0.0105 U	< 0.0702 U	< 0.0702 UJ	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.14 U	< 0.0105 U	< 0.0702 U
WHC1-D03	0	NORM	12/5/2008	< 0.0105 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.115 UJ	< 0.0697 UJ	< 0.139 UJ	< 0.0105 UJ	< 0.0697 UJ
WHC1-D03	0	FD	12/5/2008	< 0.0105 UJ	< 0.0699 UJ	< 0.0699 UJ	< 0.0699 UJ	< 0.0699 UJ	< 0.115 UJ	< 0.0699 UJ	< 0.14 UJ	< 0.0105 UJ	< 0.0699 UJ
WHC1-D03	10	NORM	12/5/2008	< 0.0106 UJ	< 0.0706 UJ	< 0.0706 UJ	< 0.0706 UJ	< 0.0706 UJ	< 0.116 UJ	< 0.0706 UJ	< 0.141 UJ	< 0.0106 UJ	< 0.0706 UJ
WHC1-D04	0	NORM	12/5/2008	< 0.0106 U	< 0.0706 U	< 0.0706 UJ	< 0.0706 U	< 0.0706 U	< 0.116 U	< 0.0706 U	< 0.141 U	< 0.0106 U	< 0.0706 U
WHC1-D04	10	NORM	12/5/2008	< 0.0104 UJ	< 0.069 UJ	< 0.069 UJ	< 0.069 UJ	< 0.069 UJ	< 0.114 UJ	< 0.069 UJ	< 0.138 UJ	< 0.0104 UJ	< 0.069 UJ
WHC1-D05	0	NORM	12/5/2008	< 0.0105 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.115 UJ	< 0.07 UJ	< 0.14 UJ	< 0.0105 UJ	< 0.07 UJ
WHC1-D05	10	NORM	12/5/2008	< 0.0103 UJ	< 0.0689 UJ	< 0.0689 UJ	< 0.0689 UJ	< 0.0689 UJ	< 0.114 UJ	< 0.0689 UJ	< 0.138 UJ	< 0.0103 UJ	< 0.0689 UJ
WHC1-D06	0	NORM	12/5/2008	< 0.011 U	< 0.0732 U	< 0.0732 UJ	< 0.0732 U	< 0.0732 U	< 0.121 U	< 0.0732 U	< 0.146 U	< 0.011 U	< 0.0732 U
WHC1-D06	10	NORM	12/5/2008	< 0.0105 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.116 UJ	< 0.07 UJ	< 0.14 UJ	< 0.0105 UJ	< 0.07 UJ
WHC1-D07	0	NORM	12/5/2008	< 0.0104 U	< 0.069 UJ	< 0.069 UJ	< 0.069 UJ	< 0.069 UJ	< 0.114 U	< 0.069 UJ	< 0.138 U	< 0.0104 U	< 0.069 UJ
WHC1-D07	10	NORM	12/5/2008	< 0.0103 U	< 0.0686 U	< 0.0686 UJ	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.137 U	< 0.0103 U	< 0.0686 U
WHC1-D08	0	NORM	12/8/2008	< 0.0103 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.137 U	< 0.0103 U	< 0.0687 U
WHC1-D08	10	NORM	12/9/2008	< 0.0106 U	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.117 UJ	< 0.0708 U	< 0.142 U	< 0.0106 U	< 0.0708 U
WHC1-D09	0	NORM	12/8/2008	< 0.0103 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.137 U	< 0.0103 U	< 0.0687 U
WHC1-D09	11	NORM	12/9/2008	< 0.0105 UJ	< 0.0701 UJ	< 0.0701 UJ	< 0.0701 UJ	< 0.0701 UJ	< 0.116 UJ	< 0.0701 UJ	< 0.14 UJ	< 0.0105 UJ	< 0.0701 UJ
WHC1-D10	0	NORM	12/8/2008	< 0.0103 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.138 U	< 0.0103 U	< 0.0688 U
WHC1-D10	10	NORM	12/9/2008	< 0.0105 U	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.116 UJ	< 0.0703 U	< 0.141 U	< 0.0105 U	< 0.0703 U
WHC1-D11	0	NORM	12/8/2008	< 0.0103 U	2.21	< 0.069 U	< 0.069 U	< 0.069 U	0.556	< 0.069 U	< 0.138 U	< 0.0103 U	< 0.069 U
WHC1-D11	10	NORM	12/9/2008	< 0.011 U	< 0.0732 U	< 0.0732 U	< 0.0732 U	< 0.0732 U	< 0.121 UJ	< 0.0732 U	< 0.146 U	< 0.011 U	< 0.0732 U
WHC1-D12	0	NORM	12/10/2008	< 0.0105 U	0.099 J	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.14 U	< 0.0105 U	< 0.0701 U
WHC1-D12	10	NORM	12/10/2008	< 0.0138 U	< 0.0923 U	< 0.0923 U	< 0.0923 U	< 0.0923 U	< 0.152 U	< 0.0923 U	< 0.185 U	< 0.0138 U	< 0.0923 U
WHC1-D13	0	NORM	12/8/2008	< 0.0107 U	0.729	< 0.0712 U	< 0.0712 U	< 0.0712 U	< 0.118 U	< 0.0712 U	< 0.142 U	< 0.0107 U	< 0.0712 U
WHC1-D13	10	NORM	12/8/2008	< 0.0151 U	< 0.101 U	< 0.101 U	< 0.101 U	< 0.101 U	< 0.167 U	< 0.101 U	< 0.202 U	< 0.0151 U	< 0.101 U
WHC1-D15	0	NORM	12/11/2008	< 0.0103 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 UJ	< 0.137 U	< 0.0103 U	< 0.0687 U
WHC1-D15	10	NORM	12/11/2008	< 0.0127 U	< 0.0846 U	< 0.0846 U	< 0.0846 U	< 0.0846 U	< 0.14 U	< 0.0846 UJ	< 0.169 U	< 0.0127 U	< 0.0846 U
WHC1-D16	0	NORM	12/10/2008	< 0.0114 U	< 0.0763 U	< 0.0763 U	< 0.0763 U	< 0.0763 U	< 0.126 UJ	< 0.0763 U	< 0.153 U	< 0.0114 U	< 0.0763 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 52 of 63)

							Semi-V	olatile Organio	c Compounds (S	SVOCs)			
									1				
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclo- pentadiene	Hexachloroethane	Hydroxymethyl- phthalimide	Isophorone	m,p-Cresols	Naphthalene	Nitrobenzene
WHC1-D16	10	NORM	12/10/2008	< 0.0118 U	< 0.0785 U	< 0.0785 U	< 0.0785 U	< 0.0785 U	< 0.13 U	< 0.0785 U	< 0.157 U	< 0.0118 U	< 0.0785 U
WHC1-D17	0	NORM	12/10/2008	< 0.0107 U	0.236 J	< 0.0712 U	< 0.0712 U	< 0.0712 U	< 0.117 U	< 0.0712 U	< 0.142 U	< 0.0107 U	< 0.0712 U
WHC1-D17	10	NORM	12/10/2008	< 0.0117 U	< 0.0779 U	< 0.0779 U	< 0.0779 U	< 0.0779 U	< 0.129 U	< 0.0779 U	< 0.156 U	< 0.0117 U	< 0.0779 U
WHC1-D18	0	NORM	12/11/2008	< 0.0104 U	0.119 J	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 UJ	< 0.138 U	< 0.0104 U	< 0.0691 U
WHC1-D18	10	NORM	12/11/2008	< 0.0105 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.0698 UJ	< 0.14 U	< 0.0105 U	< 0.0698 U
WHC1-D19	0	NORM	12/11/2008	< 0.0104 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.139 U	< 0.0104 U	< 0.0696 U
WHC1-D19	0	FD	12/11/2008	< 0.0104 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.139 U	< 0.0104 U	< 0.0693 U
WHC1-D19	10	NORM	12/11/2008	< 0.0105 U	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.116 U	< 0.0703 U	< 0.141 U	< 0.0105 U	< 0.0703 U
WHC1-D20	0	NORM	12/12/2008	< 0.0103 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 UJ	< 0.0688 U	< 0.138 U	< 0.0103 U	< 0.0688 U
WHC1-D20	10	NORM	12/12/2008	< 0.0105 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 UJ	< 0.0701 U	< 0.14 U	< 0.0105 U	< 0.0701 U
WHC1-D21	0	NORM	12/16/2008	< 0.0106 U	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.117 U	< 0.0708 U	< 0.142 U	< 0.0106 U	< 0.0708 U
WHC1-D21	10		12/16/2008	< 0.0105 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.14 U	< 0.0105 U	< 0.0699 U
WHC1-D22	0	NORM	12/16/2008	< 0.0108 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.119 U	< 0.072 U	< 0.144 U	< 0.0108 U	< 0.072 U
WHC1-D22	10	NORM	12/16/2008	< 0.0106 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.117 U	< 0.0706 U	< 0.141 U	< 0.0106 U	< 0.0706 U
WHC1-D23	0	NORM	12/16/2008	< 0.0105 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.14 U	< 0.0105 U	< 0.0702 U
WHC1-D23	10	NORM	12/16/2008	< 0.0105 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.14 U	< 0.0105 U	< 0.0699 U
WHC1-D24	0	NORM	12/16/2008	< 0.0109 U	< 0.0728 U	< 0.0728 U	< 0.0728 U	< 0.0728 U	< 0.12 U	< 0.0728 U	< 0.146 U	< 0.0109 U	< 0.0728 U
WHC1-D24	0	FD	12/16/2008	< 0.0108 U	< 0.0721 U	< 0.0721 U	< 0.0721 U	< 0.0721 U	< 0.119 U	< 0.0721 U	< 0.144 U	< 0.0108 U	< 0.0721 U
WHC1-D24	10	NORM	12/16/2008	< 0.0104 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.139 U	< 0.0104 U	< 0.0693 U
WHC1-D25	0	NORM	12/16/2008	0.0177 J	0.143 J-	< 0.0727 U	< 0.0727 U	< 0.0727 U	< 0.12 U	< 0.0727 U	< 0.145 U	< 0.0109 U	< 0.0727 U
WHC1-D25	10	NORM	12/16/2008	< 0.0104 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.138 U	< 0.0104 U	< 0.069 U
WHC1-D26	0	NORM	12/12/2008	< 0.0103 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 UJ	< 0.0687 U	< 0.137 U	< 0.0103 U	< 0.0687 U
WHC1-D26	10	NORM	12/12/2008	< 0.0113 U	< 0.0753 U	< 0.0753 U	< 0.0753 U	< 0.0753 U	< 0.124 UJ	< 0.0753 U	< 0.151 U	< 0.0113 U	< 0.0753 U
WHC1-D27	0	NORM	12/12/2008	< 0.0105 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 UJ	< 0.0701 U	< 0.14 U	< 0.0105 U	< 0.0701 U
WHC1-D27	0	FD	12/12/2008	< 0.0105 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 UJ	< 0.07 U	< 0.14 U	< 0.0105 U	< 0.07 U
WHC1-D27	10	NORM	12/12/2008	< 0.0105 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 UJ	< 0.0701 U	< 0.14 U	< 0.0105 U	< 0.0701 U
WHC1-D28	0	NORM	12/12/2008	< 0.0104 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.115 UJ	< 0.0694 U	< 0.139 U	< 0.0104 U	< 0.0694 U
WHC1-D28	10	NORM	12/12/2008	< 0.0105 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 UJ	< 0.0699 U	< 0.14 U	< 0.0105 U	< 0.0699 U
WHC1-D29	0	NORM	12/12/2008	< 0.0104 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.138 U	< 0.0104 U	< 0.0691 U
WHC1-D29	10	NORM	12/12/2008	< 0.011 U	< 0.0733 U	< 0.0733 U	< 0.0733 U	< 0.0733 U	< 0.121 U	< 0.0733 U	< 0.147 U	< 0.011 U	< 0.0733 U
WHC1-P01	0	NORM	12/15/2008	< 0.0103 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.137 U	< 0.0103 U	< 0.0685 U
WHC1-P01	12	NORM	12/19/2008	< 0.0108 U	< 0.0719 U	< 0.0719 U	< 0.0719 U	< 0.0719 U	< 0.119 U	< 0.0719 U	< 0.144 U	< 0.0108 U	< 0.0719 U
WHC1-P02	0	NORM	12/1/2008	< 0.0103 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.138 U	< 0.0103 U	< 0.0688 U
WHC1-P02	10	NORM	12/1/2008	< 0.0102 U	< 0.068 U	< 0.068 U	< 0.068 U	< 0.068 U	< 0.112 U	< 0.068 U	< 0.136 U	< 0.0102 U	< 0.068 U
WHC1-P03	0	NORM	12/15/2008	< 0.0102 U	< 0.0683 U	< 0.0683 U	< 0.0683 U	< 0.0683 U	< 0.113 U	< 0.0683 U	< 0.137 U	< 0.0102 U	< 0.0683 U
WHC1-P03	3	NORM	12/18/2008	< 0.0104 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.138 U	< 0.0104 U	< 0.0692 U
WHC1-P03	3	FD	12/18/2008	< 0.0103 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.137 U	< 0.0103 U	< 0.0687 U
WHC1-P03	13	NORM	12/18/2008	< 0.0107 U	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.118 U	< 0.0713 U	< 0.143 U	< 0.0107 U	< 0.0713 U
WHC1-P04	0	NORM	12/15/2008	< 0.0104 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.138 U	< 0.0104 U	< 0.069 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 53 of 63)

							Semi-V	olatile Organio	c Compounds (S	SVOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclo- pentadiene	Hexachloroethane	Hydroxymethyl- phthalimide	Isophorone	m,p-Cresols	Naphthalene	Nitrobenzene
WHC1-P04	10	NORM	12/18/2008	< 0.0112 U	< 0.0744 U	< 0.0744 U	< 0.0744 U	< 0.0744 U	< 0.123 U	< 0.0744 U	< 0.149 U	< 0.0112 U	< 0.0744 U
WHC1-P05	0	NORM	12/8/2008	< 0.0105 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.14 U	< 0.0105 U	< 0.07 U
WHC1-P05	0	FD	12/8/2008	< 0.0104 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.139 U	< 0.0104 U	< 0.0696 U
WHC1-P05	10	NORM	12/18/2008	< 0.0105 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.14 U	< 0.0105 U	< 0.0702 U
WHC1-P06	0	NORM	12/2/2008	< 0.0104 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.139 U	< 0.0104 U	< 0.0695 U
WHC1-P06	12	NORM	12/2/2008	< 0.0103 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.138 U	< 0.0103 U	< 0.0688 U
WHC1-P07	0	NORM	12/2/2008	< 0.0105 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.116 U	< 0.07 U	< 0.14 U	< 0.0105 U	< 0.07 U
WHC1-P07	3	NORM	12/2/2008	< 0.0103 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.137 U	< 0.0103 U	< 0.0684 U
WHC1-P07	13	NORM	12/2/2008	< 0.0105 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.14 U	< 0.0105 U	< 0.07 U
WHC1-P08	0	NORM	12/3/2008	< 0.0102 UJ	< 0.0683 UJ	< 0.0683 UJ	< 0.0683 UJ	< 0.0683 UJ	< 0.113 UJ	< 0.0683 UJ	< 0.137 UJ	< 0.0102 UJ	< 0.0683 UJ
WHC1-P08	11	NORM	12/3/2008	< 0.0104 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 UJ	< 0.0696 U	< 0.139 U	< 0.0104 UJ	< 0.0696 U
WHC1-P09	0	NORM	12/4/2008	< 0.0103 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.137 U	< 0.0103 U	< 0.0687 U
WHC1-P09	0	FD	12/4/2008	< 0.0103 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.137 U	< 0.0103 U	< 0.0687 U
WHC1-P09	10	NORM	12/4/2008	< 0.0103 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.0688 U	< 0.138 U	< 0.0103 U	< 0.0688 U
WHC1-P10	0	NORM	11/25/2008	< 0.0104 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.139 U	< 0.0104 U	< 0.0695 U
WHC1-P10	10	NORM	11/25/2008	< 0.0115 U	< 0.0767 U	< 0.0767 U	< 0.0767 U	< 0.0767 U	< 0.127 U	< 0.0767 U	< 0.153 U	< 0.0115 U	< 0.0767 U
WHC1-P11	0	NORM	12/8/2008	< 0.0106 U	0.929	< 0.0705 U	< 0.0705 U	< 0.0705 U	0.294 J	< 0.0705 U	< 0.141 U	< 0.0106 U	< 0.0705 U
WHC1-P11	0	FD	12/8/2008	< 0.0207 U	1.16	< 0.138 U	< 0.138 U	< 0.138 U	< 0.228 UJ	< 0.138 U	< 0.276 U	< 0.0207 U	< 0.138 U
WHC1-P11	10	NORM	12/9/2008	< 0.0105 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 UJ	< 0.14 U	< 0.0105 U	< 0.0702 U
WHC1-P12	0	NORM	12/5/2008	< 0.0105 U	< 0.0701 U	< 0.0701 UJ	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.14 U	< 0.0105 U	< 0.0701 U
WHC1-P12	11	NORM	12/5/2008	< 0.0105 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.115 UJ	< 0.0697 UJ	< 0.139 UJ	< 0.0105 UJ	< 0.0697 UJ
WHC1-P13	0	NORM	12/9/2008	< 0.0105 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 UJ	< 0.07 U	< 0.14 U	< 0.0105 U	< 0.07 U
WHC1-P13	10	NORM	12/9/2008	< 0.0137 U	< 0.0915 U	< 0.0915 U	< 0.0915 U	< 0.0915 U	< 0.151 UJ	< 0.0915 U	< 0.183 U	< 0.0137 U	< 0.0915 U
WHC1-P13	10	FD	12/9/2008	< 0.0117 U	< 0.0778 U	< 0.0778 U	< 0.0778 U	< 0.0778 U	< 0.128 UJ	< 0.0778 U	< 0.156 U	< 0.0117 U	< 0.0778 U
WHC1-P14	0	NORM	12/17/2008	< 0.012 U	< 0.0803 U	< 0.0803 U	< 0.0803 U	< 0.0803 U	< 0.132 U	< 0.0803 U	< 0.161 U	< 0.012 U	< 0.0803 U
WHC1-P15	0	NORM	12/8/2008	< 0.0111 U	< 0.074 U	< 0.074 U	< 0.074 U	< 0.074 U	< 0.122 U	< 0.074 U	< 0.148 U	< 0.0111 U	< 0.074 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.0108 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.119 U	< 0.072 U	< 0.144 U	< 0.0108 U	< 0.072 U
WHC1-P15	10	NORM	12/18/2008	< 0.0107 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.143 U	< 0.0107 U	< 0.0714 U
WHC1-P16	0	NORM	12/1/2008	< 0.0101 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.111 U	< 0.0675 U	< 0.135 U	< 0.0101 U	< 0.0675 U
WHC1-P16	11	NORM	12/1/2008	< 0.0103 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.138 U	< 0.0103 U	< 0.069 U
WHC1-P17	0	NORM	12/15/2008	< 0.0105 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.14 U	< 0.0105 U	< 0.0699 U
WHC1-P17	12	NORM	12/19/2008	< 0.0104 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.139 U	< 0.0104 U	< 0.0694 U
WHC1-P17	12	FD	12/19/2008	< 0.0104 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.139 U	< 0.0104 U	< 0.0696 U
WHC1-P18	0	NORM	12/1/2008	< 0.0102 U	< 0.068 U	< 0.068 U	< 0.068 U	< 0.068 U	< 0.112 U	< 0.068 U	< 0.136 U	< 0.0102 U	< 0.068 U
WHC1-P18	12	NORM	12/1/2008	< 0.0103 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.137 U	< 0.0103 U	< 0.0686 U
WHC2-D02C	0	NORM	12/2/2009	< 0.0101 U	< 0.0672 U	< 0.0672 U	< 0.0672 U	< 0.0672 U	< 0.111 U	< 0.0672 U	< 0.134 U	< 0.0101 U	< 0.0672 U
WHC2-D04C	0	NORM	12/2/2009	< 0.0103 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.137 U	< 0.0103 U	< 0.0686 U
WHC2-D05C	0	NORM	12/2/2009	< 0.0101 U	0.799	< 0.0676 U	< 0.0676 U	< 0.0676 U	< 0.112 U	< 0.0676 U	< 0.135 U	< 0.0101 U	< 0.0676 U
WHC2-D11C	0	NORM	12/2/2009	< 0.0102 U	1.26	< 0.0677 U	< 0.0677 U	< 0.0677 U	0.415	< 0.0677 U	< 0.135 U	< 0.0102 U	< 0.0677 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 54 of 63)

							Semi-V	olatile Organic	Compounds (S	SVOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclo- pentadiene	Hexachloroethane	Hydroxymethyl- phthalimide	Isophorone	m,p-Cresols	Naphthalene	Nitrobenzene
WHC2-D13C	0	NORM	12/3/2009	< 0.0154 U	< 0.103 U	< 0.103 U	< 0.103 U	< 0.103 U	< 0.169 U	< 0.103 U	< 0.205 U	< 0.0154 U	< 0.103 U
WHC2-D13NE	0	NORM	12/3/2009	< 0.0162 U	< 0.108 U	< 0.108 U	< 0.108 UJ	< 0.108 U	< 0.178 U	< 0.108 U	< 0.216 U	< 0.0162 U	< 0.108 U
WHC2-D13NW	0	NORM	12/3/2009	< 0.0119 U	< 0.0793 U	< 0.0793 U	< 0.0793 U	< 0.0793 U	< 0.131 U	< 0.0793 U	< 0.159 U	< 0.0119 U	< 0.0793 U
WHC2-D13SE	0	NORM	12/3/2009	< 0.016 U	< 0.107 U	< 0.107 U	< 0.107 U	< 0.107 U	< 0.176 UJ	< 0.107 U	< 0.213 U	< 0.016 U	< 0.107 U
WHC2-D13SW	0	NORM	12/3/2009	< 0.015 U	< 0.0998 U	< 0.0998 U	< 0.0998 U	< 0.0998 U	< 0.165 UJ	< 0.0998 U	< 0.2 U	< 0.015 U	< 0.0998 U
WHC2-D14C	0	NORM	12/2/2009	< 0.0106 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.117 U	< 0.0706 U	< 0.141 U	< 0.0106 U	< 0.0706 U
WHC2-D17C	0	NORM	12/1/2009	< 0.011 U	0.115 J	< 0.0731 U	< 0.0731 U	< 0.0731 U	< 0.121 U	< 0.0731 U	< 0.146 U	< 0.011 U	< 0.0731 U
WHC2-D18C	0	NORM	12/1/2009	< 0.0101 U	< 0.0674 U	< 0.0674 U	< 0.0674 U	< 0.0674 U	< 0.111 U	< 0.0674 U	< 0.135 U	< 0.0101 U	< 0.0674 U
WHC2-D18C	0	FD	12/1/2009	< 0.0101 U	0.0906 J	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.111 U	< 0.0675 U	< 0.135 U	< 0.0101 U	< 0.0675 U
WHC2-D25C	0	NORM	12/1/2009	< 0.0101 U	< 0.0676 U	< 0.0676 U	< 0.0676 U	< 0.0676 U	< 0.112 U	< 0.0676 U	< 0.135 U	< 0.0101 U	< 0.0676 U
WHC2-P11C	0	NORM	12/1/2009	< 0.0102 U	1.31	< 0.0683 U	< 0.0683 U	< 0.0683 U	< 0.113 U	< 0.0683 U	< 0.137 U	< 0.0102 U	< 0.0683 U
WHC6-D05	0	NORM	7/27/2012	< 0.0105 U	< 0.0701 U	< 0.0701 U	< 0.0701 UJ	< 0.0701 U	< 0.116 UJ	< 0.0701 U	< 0.14 U	< 0.0105 U	< 0.0701 U
WHC6-D11	0	NORM	7/27/2012	< 0.0104 U	< 0.0691 U	< 0.0691 U	< 0.0691 UJ	< 0.0691 U	< 0.114 UJ	< 0.0691 U	< 0.138 U	< 0.0104 U	< 0.0691 U
WHC6-P11	0	NORM	7/27/2012	< 0.0101 U	0.129 J	< 0.0676 U	< 0.0676 UJ	< 0.0676 U	< 0.112 UJ	< 0.0676 U	< 0.135 U	< 0.0101 U	< 0.0676 U

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 55 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	N-nitrosodi-n-propyl- amine	-Cresol	Octachlorostyrene	-Chloroaniline	-Chlorobenzenethiol	Pentachlorobenzene	entachlorophenol	Phenol	Phthalic acid	Pyridine
OSC1-BM11	0	NORM	9/21/2009	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 UJ	< 0.0701 U
OSC1-BM11	10	NORM	9/21/2009	< 0.0774 U	< 0.0774 U	< 0.128 U	< 0.0774 U	< 0.128 U	< 0.0774 U	< 0.0774 U	< 0.0774 U	< 0.128 UJ	< 0.0774 U
OSC1-BN11	0	NORM	9/22/2009	< 0.068 U	< 0.068 U	< 0.112 U	< 0.068 U	< 0.112 U	< 0.068 U	< 0.068 U	< 0.068 U	< 0.112 UJ	< 0.068 U
OSC1-BN11	5	NORM	9/22/2009	< 0.0711 U	< 0.0711 U	< 0.112 U	< 0.0711 U	< 0.112 U	< 0.0711 U	< 0.0711 U	< 0.0711 U	< 0.112 UJ	< 0.0711 U
OSC1-BO11	0	NORM	9/16/2009	< 0.0694 U	< 0.0694 U	< 0.115 U	< 0.0694 U	< 0.117 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.115 UJ	< 0.0694 U
OSC1-BO11	0	FD	9/16/2009	< 0.0745 U	< 0.0745 U	< 0.123 U	< 0.0745 U	< 0.123 U	< 0.0745 U	< 0.0745 U	< 0.0745 U	< 0.123 UJ	< 0.0745 U
OSC1-BO11	5	NORM	9/16/2009	< 0.0743 U	< 0.0743 U	< 0.123 U	< 0.0743 U	< 0.123 U	< 0.0743 U	< 0.0743 U	< 0.0743 U	< 0.123 UJ	< 0.0743 U
OSC1-BP11	0	NORM	9/16/2009	< 0.0731 U	< 0.0731 U	< 0.121 U	< 0.0731 U	< 0.123 U	< 0.0731 U	< 0.0731 U	< 0.0731 U	< 0.121 UJ	< 0.0731 U
OSC1-BP11	5	NORM	9/16/2009	< 0.0755 U	< 0.0755 U	< 0.125 U	< 0.0755 U	< 0.125 U	< 0.0755 U	< 0.0755 U	< 0.0755 U	< 0.125 UJ	< 0.0751 U
OSC1-JP06	0	NORM	9/22/2009	< 0.071 U	< 0.071 U	< 0.117 U	< 0.071 U	< 0.117 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.117 UJ	< 0.071 U
OSC1-JP06	5	NORM	9/22/2009	< 0.0774 U	< 0.0774 U	< 0.128 U	< 0.0774 U	< 0.128 U	< 0.0774 U	< 0.0774 U	< 0.0774 U	< 0.128 UJ	< 0.0774 U
OSC1-JP07	0	NORM	9/21/2009	< 0.0722 U	< 0.0722 U	< 0.119 U	< 0.0722 U	< 0.119 U	< 0.0722 U	< 0.0722 U	< 0.0722 U	< 0.119 UJ	< 0.0722 U
OSC1-JP07	5	NORM	9/21/2009	< 0.0847 U	< 0.0847 U	< 0.14 U	< 0.0847 U	< 0.14 U	< 0.0847 U	< 0.0847 U	< 0.0847 U	< 0.14 UJ	< 0.0847 U
OSC1-JP08	0	NORM	9/21/2009	< 0.0752 U	< 0.0752 U	< 0.124 U	< 0.0752 U	< 0.124 U	< 0.0752 U	< 0.0752 U	< 0.0752 U	< 0.124 UJ	< 0.0752 U
OSC1-JP08	10	NORM	9/21/2009	< 0.075 U	< 0.075 U	< 0.124 U	< 0.075 U	< 0.124 U	< 0.075 U	< 0.075 U	< 0.075 U	< 0.124 UJ	< 0.075 U
WHC1-BF01	0	NORM	11/24/2008	< 0.0678 U	< 0.0678 U	< 0.112 U	< 0.0678 U	< 0.112 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.112 U	< 0.0678 U
WHC1-BF01	12	NORM	11/24/2008	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U
WHC1-BF02	0	NORM	11/25/2008	< 0.067 U	< 0.067 U	< 0.111 U	< 0.067 U	< 0.111 U	< 0.067 U	< 0.067 U	< 0.067 U	< 0.111 U	< 0.067 U
WHC1-BF02	11	NORM	11/25/2008	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U
WHC1-BF03	0	NORM	11/25/2008	< 0.0677 U	< 0.0677 U	< 0.112 U	< 0.0677 U	< 0.112 U	< 0.0677 U	< 0.0677 U	< 0.0677 U	< 0.112 U	< 0.0677 U
WHC1-BF03	10	NORM	11/25/2008	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U
WHC1-BF04	0	NORM	11/25/2008	< 0.0678 U	< 0.0678 U	< 0.112 U	< 0.0678 U	< 0.112 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.112 U	< 0.0678 U
WHC1-BF04	0	FD	11/25/2008	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U
WHC1-BF04	10	NORM	11/25/2008	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U
WHC1-BF05	0	NORM	11/25/2008	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 U
WHC1-BF05	12	NORM	12/10/2008	< 0.0911 UJ	< 0.0911 UJ	< 0.15 UJ	< 0.0911 UJ	< 0.15 UJ	< 0.0911 UJ	< 0.0911 UJ	< 0.0911 UJ	< 0.15 UJ	< 0.0911 UJ
WHC1-BF06	0	NORM	12/10/2008	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U
WHC1-BF06	10	NORM	12/10/2008	< 0.0927 U	< 0.0927 U	< 0.153 U	< 0.0927 U	< 0.153 U	< 0.0927 U	< 0.0927 U	< 0.0927 U	< 0.153 U	< 0.0927 U
WHC1-BG01	0	NORM	11/24/2008	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U
WHC1-BG01	11	NORM	11/24/2008	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U
WHC1-BG02	0	NORM	11/24/2008	< 0.0675 U	< 0.0675 U	< 0.111 U	< 0.0675 U	< 0.111 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.111 U	< 0.0675 U
WHC1-BG02	0	FD	11/24/2008	< 0.0672 U	< 0.0672 U	< 0.111 U	< 0.0672 U	< 0.111 U	< 0.0672 U	< 0.0672 U	< 0.0672 U	< 0.111 U	< 0.0672 U
WHC1-BG02	10	NORM	11/24/2008	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U
WHC1-BG03	0	NORM	12/11/2008	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 UJ	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 UJ
WHC1-BG03	11	NORM	12/11/2008	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 UJ	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 UJ
WHC1-BG04	0	NORM	12/11/2008	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.0688 UJ	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.0688 UJ
WHC1-BG04	10	NORM	12/11/2008	< 0.0891 U	< 0.0891 U	< 0.147 U	< 0.0891 UJ	< 0.147 U	< 0.0891 U	< 0.0891 U	< 0.0891 U	< 0.147 U	< 0.0891 UJ
WHC1-BG05	0	NORM	11/25/2008	< 0.0728 U	< 0.0728 U	< 0.12 U	< 0.0728 U	< 0.12 U	< 0.0728 U	< 0.0728 U	< 0.0728 U	< 0.12 U	< 0.0728 U
WHC1-BG05	10	NORM	11/25/2008	< 0.0812 U	< 0.0812 U	< 0.134 U	< 0.0812 U	< 0.134 U	< 0.0812 U	< 0.0812 U	< 0.0812 U	< 0.134 U	< 0.0812 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 56 of 63)

							Semi-V	olatile Organio	c Compounds (S	SVOCs)			1
										, , , , , , , , , , , , , , , , , , ,			
				V-nitrosodi-n-propyl- imine	T.	Octachlorostyrene	Chloroaniline	Chlorobenzenethiol	Pentachlorobenzene	entachlorophenol		Phthalic acid	o.
	D 4	G 1	G 1	e no	Cresol	ch1	lor	lor	ach	ach	ol	alic	line
G I ID	Depth	Sample	Sample	N-nitrc amine	Ċr	cta	Ch	Ċ.	enta	enta	Phenol) ith	Pyridine
Sample ID	(ft bgs)	Type	Date	Į	0		<u></u>	<u>6</u>		Ι			
WHC1-BG06 WHC1-BG06	10	NORM NORM	12/10/2008	< 0.0695 UJ < 0.0965 U	< 0.0695 UJ < 0.0965 U	< 0.115 UJ < 0.159 U	< 0.0695 UJ < 0.0965 U	< 0.115 UJ < 0.159 U	< 0.0695 UJ < 0.0965 U	< 0.0695 UJ < 0.0965 U	< 0.0695 UJ < 0.0965 U	< 0.115 UJ < 0.159 U	< 0.0695 UJ < 0.0965 U
WHC1-BH01	0	NORM	12/10/2008 12/3/2008	< 0.0903 U < 0.0684 U	< 0.0983 U	< 0.139 U < 0.113 U	< 0.0963 U < 0.0684 U	< 0.139 U	< 0.0963 U	< 0.0983 U < 0.0684 U	< 0.0963 U < 0.0684 U	< 0.139 U	< 0.0983 U < 0.0684 U
WHC1-BH01	11	NORM	12/3/2008	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 UJ	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 UJ	< 0.0687 UJ
WHC1-BH02	0	NORM	12/4/2008	< 0.0704 U	< 0.0704 U	< 0.115 U	< 0.0704 U	< 0.115 U	< 0.0704 U	< 0.0704 U	< 0.0087 U	< 0.115 U	< 0.0704 UJ
WHC1-BH02	10	NORM	12/4/2008	< 0.0685 U	< 0.0685 U	< 0.110 U	< 0.0685 U	< 0.110 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.110 U	< 0.0685 UJ
WHC1-BH03	0	NORM	12/9/2008	< 0.0681 U	< 0.0681 U	< 0.113 U	< 0.0681 U	< 0.113 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.113 U	< 0.0681 UJ
WHC1-BH03	10	NORM	12/9/2008	< 0.0695 U	< 0.0695 U	< 0.112 U	< 0.0695 U	< 0.112 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.112 U	< 0.0695 UJ
WHC1-BH03	0	NORM	12/11/2008	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.0688 UJ	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.0688 UJ
WHC1-BH04	10		12/11/2008	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 UJ	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 UJ
WHC1-BH05	0	NORM	12/9/2008	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 UJ
WHC1-BH05	0	FD	12/9/2008	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 UJ	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 UJ
WHC1-BH05	10	NORM	12/9/2008	< 0.0716 U	< 0.0716 U	< 0.118 U	< 0.0716 U	< 0.118 U	< 0.0716 U	< 0.0716 U	< 0.0716 U	< 0.118 U	< 0.0716 UJ
WHC1-BH06	0	NORM	12/11/2008	< 0.0757 U	< 0.0757 U	< 0.125 U	< 0.0757 UJ	< 0.125 U	< 0.0757 U	< 0.0757 U	< 0.0757 U	< 0.125 U	< 0.0757 UJ
WHC1-BH06	0	FD	12/11/2008	< 0.071 U	< 0.071 U	< 0.117 U	< 0.071 UJ	< 0.117 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.117 U	< 0.071 UJ
WHC1-BH06	10	NORM	12/11/2008	< 0.0781 U	< 0.0781 U	< 0.129 U	< 0.0781 UJ	< 0.129 U	< 0.0781 U	< 0.0781 U	< 0.0781 U	< 0.129 U	< 0.0781 UJ
WHC1-BI01	0	NORM	12/3/2008	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 UJ	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 UJ	< 0.0702 UJ
WHC1-BI01	11	NORM	12/3/2008	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 UJ	< 0.115 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 UJ	< 0.07 UJ
WHC1-BI02	0	NORM	12/4/2008	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 UJ
WHC1-BI02	3	NORM	12/4/2008	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.0686 UJ
WHC1-BI02	13	NORM	12/4/2008	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 UJ
WHC1-BI03	0	NORM	12/4/2008	< 0.0689 U	< 0.0689 U	< 0.114 U	< 0.0689 U	< 0.114 U	< 0.0689 U	< 0.0689 U	< 0.0689 U	< 0.114 U	< 0.0689 UJ
WHC1-BI03	11	NORM	12/4/2008	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 UJ
WHC1-BI04	0	NORM	12/8/2008	< 0.0679 U	< 0.0679 U	< 0.112 U	< 0.0679 U	< 0.112 U	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.112 U	< 0.0679 U
WHC1-BI04	10	NORM	12/9/2008	< 0.071 U	< 0.071 U	< 0.117 U	< 0.071 UJ	< 0.117 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.117 U	< 0.071 UJ
WHC1-BI05	0	NORM	12/9/2008	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 UJ
WHC1-BI05	10	NORM	12/9/2008	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 UJ
WHC1-BJ01	0	NORM	12/3/2008	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 UJ	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 UJ	< 0.0692 UJ
WHC1-BJ01	3	NORM	12/3/2008	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 UJ	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 UJ	< 0.0697 UJ
WHC1-BJ01	13	NORM	12/3/2008	< 0.0706 U	< 0.0706 U	< 0.116 U	< 0.0706 UJ	< 0.116 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.116 UJ	< 0.0706 UJ
WHC1-BJ02	0	NORM	12/2/2008	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U
WHC1-BJ02	0	FD	12/2/2008	< 2.78 U	< 2.78 U	< 4.59 U	< 2.78 U	< 4.59 U	< 2.78 U	< 2.78 U	< 2.78 U	< 4.59 U	< 2.78 U
WHC1 BIO2	12	NORM NORM	12/2/2008 12/4/2008	< 0.0692 U	< 0.0692 U < 0.0699 U	< 0.114 U	< 0.0692 U	< 0.114 U	< 0.0692 U < 0.0699 U	< 0.0692 U < 0.0699 U	< 0.0692 U	< 0.114 U < 0.115 U	< 0.0692 U < 0.0699 UJ
WHC1-BJ03 WHC1-BJ03	0	FD	12/4/2008	< 0.0699 U < 0.0698 U	< 0.0699 U < 0.0698 U	< 0.115 U < 0.115 U	< 0.0699 U < 0.0698 U	< 0.115 U < 0.115 U	< 0.0699 U < 0.0698 U	< 0.0699 U < 0.0698 U	< 0.0699 U < 0.0698 U	< 0.115 U	< 0.0699 UJ
WHC1-BJ03 WHC1-BJ03	12	NORM	12/4/2008	< 0.0698 U	< 0.0698 U < 0.069 U	< 0.113 U < 0.114 U	< 0.0698 U < 0.069 U	< 0.113 U < 0.114 U	< 0.0698 U < 0.069 U	< 0.0698 U < 0.069 U	< 0.0698 U < 0.069 U	< 0.115 U < 0.114 U	< 0.0698 UJ
WHC1-BJ03 WHC1-BJ04	0	NORM	12/4/2008	< 0.069 U < 0.0692 U	< 0.069 U < 0.0692 U	< 0.114 U < 0.114 U	< 0.069 U < 0.0692 U	< 0.114 U < 0.114 U	< 0.069 U < 0.0692 U	< 0.069 U < 0.0692 U	< 0.069 U < 0.0692 U	< 0.114 U < 0.114 U	< 0.069 UJ
WHC1-BJ04	11	NORM	12/4/2008	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 UJ
WHC1-BJ05	0	NORM	12/4/2008	< 0.0678 U	< 0.0678 U	< 0.114 U	< 0.0678 UJ	< 0.114 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.114 U	< 0.0678 UJ
111C1-DJ05	U	TOKW	12/11/2000	< 0.0076 U	< 0.0076 U	< 0.11∠ U	< 0.0076 UJ	< 0.11∠ 0	< 0.0076 U	< 0.0076 U	< 0.0076 U	< 0.112 U	< 0.0076 UJ

TABLE B-9 SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 57 of 63)

	I	I					Somi-V	Alatila Organia	Compounds (S	SVOCs)			
							Senii- V	olatile Orgalii	Compounus (S	5 + OCS)			
	Depth	Sample	Sample	N-nitrosodi-n-propyl- amine	Cresol	Octachlorostyrene	Chloroaniline	Chlorobenzenethiol	Pentachlorobenzene	entachlorophenol	Phenol	Phthalic acid	Pyridine
Sample ID	(ft bgs)	Type	Date	am.) o	Oct	O-d	O-d	Per	Per	Phe	Pht	Pyr
WHC1-BJ05	10	NORM	12/11/2008	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 UJ	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 UJ
WHC1-BK01	0	NORM	12/3/2008	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 UJ	< 0.115 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 UJ	< 0.07 UJ
WHC1-BK01	0	FD	12/3/2008	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 UJ	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 UJ	< 0.0696 UJ
WHC1-BK01	10	NORM	12/3/2008	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 UJ	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 UJ	< 0.0701 UJ
WHC1-BK02	0	NORM	12/8/2008	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U
WHC1-BK02	11	NORM	12/18/2008	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U
WHC1-BK03	0	NORM	12/15/2008	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.0688 U	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.113 UJ	< 0.0688 U
WHC1-BK03	12	NORM	12/18/2008	< 0.0713 U	< 0.0713 U	< 0.118 U	< 0.0713 U	< 0.118 U	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.118 U	< 0.0713 U
WHC1-BK04	0	NORM	12/4/2008	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 UJ
WHC1-BK04	10	NORM	12/4/2008	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 UJ
WHC1-BK05	0	NORM	12/12/2008	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U
WHC1-BK05	11	NORM	12/12/2008	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.0698 U	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.0698 U
WHC1-BL01	0	NORM	12/3/2008	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 UJ	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.233 UJ	< 0.0692 UJ
WHC1-BL01	10	NORM	12/3/2008	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 UJ	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 UJ	< 0.0702 UJ
WHC1-BL02	0	NORM	12/2/2008	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 U
WHC1-BL02	10	NORM	12/2/2008	< 0.0681 U	< 0.0681 U	< 0.112 U	< 0.0681 U	< 0.112 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.112 U	< 0.0681 U
WHC1-BL03	0	NORM	12/8/2008	< 0.0682 U	< 0.0682 U	< 0.113 U	< 0.0682 U	< 0.113 U	< 0.0682 U	< 0.0682 U	< 0.0682 U	< 0.113 U	< 0.0682 U
WHC1-BL03	10	NORM	12/18/2008	< 0.0703 U	< 0.0703 U	< 0.116 U	< 0.0703 U	< 0.116 U	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.116 U	< 0.0703 U
WHC1-BL04	0	NORM	12/17/2008	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.0705 U	< 0.116 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.0705 U
WHC1-BL04	12	NORM	12/22/2008	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.0688 U	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.0688 U
WHC1-BL05	0	NORM	11/21/2008	< 0.0675 U	< 0.0675 U	< 0.111 U	< 0.0675 U	< 0.111 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.111 UJ	< 0.0675 U
WHC1-BL05	10	NORM	11/21/2008	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 UJ	< 0.0695 U
WHC1-BL06	0	NORM	11/21/2008	< 0.0708 U	< 0.0708 U	< 0.117 U	< 0.0708 U	< 0.117 U	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.117 UJ	< 0.0708 U
WHC1-BL06	11	NORM	11/21/2008	< 0.07 U	< 0.07 U	< 0.116 U	< 0.07 U	< 0.116 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.116 UJ	< 0.07 U
WHC1-BL07	0	NORM	11/21/2008	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 UJ	< 0.07 U
WHC1-BL07	10	NORM	11/21/2008	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 UJ	< 0.0694 U
WHC1-BL08	0	NORM	11/18/2008	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U
WHC1-BL08	10	NORM	11/18/2008	< 0.07 U	< 0.07 U	< 0.116 U	< 0.07 U	< 0.116 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.116 U	< 0.07 U
WHC1-BL11	0	NORM	11/18/2008	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U
WHC1-BL11	12	NORM	11/18/2008	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 U
WHC1-BM01	0	NORM	12/3/2008	< 0.071 U	< 0.071 U	< 0.117 U	< 0.071 UJ	< 0.117 U	< 0.071 U	< 0.071 U	< 0.071 U	< 0.117 U	< 0.071 UJ
WHC1-BM01	10	NORM	12/3/2008	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 UJ	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 UJ
WHC1-BM02	0	NORM	12/2/2008	< 0.0717 U	< 0.0717 U	< 0.118 U	< 0.0717 U	< 0.118 U	< 0.0717 U	< 0.0717 U	< 0.0717 U	< 0.118 U	< 0.0717 U
WHC1-BM02	12	NORM	12/2/2008	< 0.0707 U	< 0.0707 U	< 0.117 U	< 0.0707 U	< 0.117 U	< 0.0707 U	< 0.0707 U	< 0.0707 U	< 0.117 U	< 0.0707 U
WHC1-BM03	0	NORM	12/8/2008	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U
WHC1-BM03	10	NORM	12/18/2008	< 0.072 U	< 0.072 U	< 0.119 U	< 0.072 U	< 0.119 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.119 U	< 0.072 U
WHC1-BM04	0	NORM	12/17/2008	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U
WHC1-BM04	0	FD	12/17/2008	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U
WHC1-BM04	10	NORM	12/22/2008	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.0714 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 58 of 63)

							Semi-V	Volatile Organic	Compounds (S	SVOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	N-nitrosodi-n-propyl- amine	o-Cresol	Octachlorostyrene	p-Chloroaniline	p-Chlorobenzenethiol	Pentachlorobenzene	Pentachlorophenol	Phenol	Phthalic acid	Pyridine
WHC1-BM05	0	NORM	11/21/2008	< 0.0674 U	< 0.0674 U	< 0.111 U	< 0.0674 U	< 0.111 U	< 0.0674 U	< 0.0674 U	< 0.0674 U	< 0.111 UJ	< 0.0674 U
WHC1-BM05	10	NORM	11/21/2008	< 0.0706 U	< 0.0706 U	< 0.116 U	< 0.0706 U	< 0.116 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.116 UJ	< 0.0706 U
WHC1-BM06	0	NORM	11/21/2008	< 0.0678 U	< 0.0678 U	< 0.112 U	< 0.0678 U	< 0.112 U	< 0.0678 U	< 0.0678 U	< 0.0678 U	< 0.112 UJ	< 0.0678 U
WHC1-BM06	0	FD	11/21/2008	< 0.0709 U	< 0.0709 U	< 0.117 U	< 0.0709 U	< 0.117 U	< 0.0709 U	< 0.0709 U	< 0.0709 U	< 0.117 UJ	< 0.0709 U
WHC1-BM06	10	NORM	11/21/2008	< 0.0715 U	< 0.0715 U	< 0.118 U	< 0.0715 U	< 0.118 U	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.118 UJ	< 0.0715 U
WHC1-BM07	0	NORM	11/20/2008	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 UJ	< 0.0684 U
WHC1-BM07	11	NORM	11/20/2008	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.0698 U	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 UJ	< 0.0698 U
WHC1-BM08	0	NORM	11/18/2008	< 0.0716 U	< 0.0716 U	< 0.118 U	< 0.0716 U	< 0.118 U	< 0.0716 U	< 0.0716 U	< 0.0716 U	< 0.118 U	< 0.0716 U
WHC1-BM08	0	FD	11/18/2008	< 0.077 U	< 0.077 U	< 0.127 U	< 0.077 U	< 0.127 U	< 0.077 U	< 0.077 U	< 0.077 U	< 0.127 U	< 0.077 U
WHC1-BM08	11	NORM	11/18/2008	< 0.0722 U	< 0.0722 U	< 0.119 U	< 0.0722 U	< 0.119 U	< 0.0722 U	< 0.0722 U	< 0.0722 U	< 0.119 U	< 0.0722 U
WHC1-BM09	0	NORM	11/18/2008	< 0.0706 U	< 0.0706 U	< 0.117 U	< 0.0706 U	< 0.117 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.117 U	< 0.0706 U
WHC1-BM09	12	NORM	11/18/2008										
WHC1-BM10	0	NORM	11/18/2008	< 0.0709 U	< 0.0709 U	< 0.117 U	< 0.0709 U	< 0.117 U	< 0.0709 U	< 0.0709 U	< 0.0709 U	< 0.117 U	< 0.0709 U
WHC1-BM10	3	NORM	11/18/2008	< 0.0715 U	< 0.0715 U	< 0.118 U	< 0.0715 U	< 0.118 U	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.118 U	< 0.0715 U
WHC1-BM10	13	NORM	11/18/2008	< 0.0805 U	< 0.0805 U	< 0.133 U	< 0.0805 U	< 0.133 U	< 0.0805 U	< 0.0805 U	< 0.0805 U	< 0.133 U	< 0.0805 U
WHC1-BN01	0	NORM	12/1/2008	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 UJ	< 0.0687 U
WHC1-BN01	12	NORM	12/1/2008	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 UJ	< 0.0694 U
WHC1-BN02	0	NORM	12/1/2008	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 UJ	< 0.0702 U
WHC1-BN02	0	FD	12/1/2008	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 UJ	< 0.0701 U
WHC1-BN02	11	NORM	12/1/2008	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 UJ	< 0.0687 U
WHC1-BN03	0	NORM	12/17/2008	< 0.0713 U	< 0.0713 U	< 0.118 U	< 0.0713 U	< 0.118 U	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.118 U	< 0.0713 U
WHC1-BN03	10	NORM	12/18/2008	< 0.0751 U	< 0.0751 U	< 0.124 U	< 0.0751 U	< 0.124 U	< 0.0751 U	< 0.0751 U	< 0.0751 U	< 0.124 U	< 0.0751 U
WHC1-BN04	0	NORM	12/17/2008	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.0698 U	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.0698 U
WHC1-BN04	7	NORM	12/22/2008	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.0705 U	< 0.116 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.0705 U
WHC1-BN04	17	NORM	12/22/2008	< 0.0709 U	< 0.0709 U	< 0.117 U	< 0.0709 U	< 0.117 U	< 0.0709 U	< 0.0709 U	< 0.0709 U	< 0.117 U	< 0.0709 U
WHC1-BN05	0	NORM	11/20/2008	< 0.0679 U	< 0.0679 U	< 0.112 U	< 0.0679 U	< 0.112 U	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.112 UJ	< 0.0679 U
WHC1-BN05	0	FD	11/20/2008	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 UJ	< 0.0684 U
WHC1-BN05	10	NORM	11/20/2008	< 0.0707 U	< 0.0707 U	< 0.117 U	< 0.0707 U	< 0.117 U	< 0.0707 U	< 0.0707 U	< 0.0707 U	< 0.117 UJ	< 0.0707 U
WHC1-BN06	0	NORM	11/20/2008	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 UJ	< 0.0696 U
WHC1-BN06	10	NORM	11/20/2008										
WHC1-BN07	0	NORM	11/21/2008	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.114 U	0.176 J	< 0.0693 U	< 0.0693 U	< 0.114 UJ	< 0.0693 U
WHC1-BN07	3	NORM	11/21/2008	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.118 UJ	< 0.0714 U
WHC1-BN07	13	NORM	11/21/2008	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.0698 U	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 UJ	< 0.0698 U
WHC1-BN08	0	NORM	11/20/2008	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U	0.215 J	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 UJ	< 0.0695 U
WHC1-BN08	10	NORM	11/20/2008	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 UJ	< 0.0692 U
WHC1-BN09	0	NORM	12/17/2008	< 0.0715 U	< 0.0715 U	< 0.118 U	< 0.0715 U	< 0.118 U	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.118 U	< 0.0715 U
WHC1-BN09	11	NORM	12/19/2008	< 0.0726 U	< 0.0726 U	< 0.12 U	< 0.0726 U	< 0.12 U	< 0.0726 U	< 0.0726 U	< 0.0726 U	< 0.12 U	< 0.0726 U
WHC1-BN10	0	NORM	11/18/2008	< 0.0757 U	< 0.0757 U	< 0.125 U	< 0.0757 U	< 0.125 U	< 0.0757 U	< 0.0757 U	< 0.0757 U	< 0.125 U	< 0.0757 U
WHC1-BN10	10	NORM	11/18/2008	< 0.0784 U	< 0.0784 U	< 0.129 U	< 0.0784 U	< 0.129 U	< 0.0784 U	< 0.0784 U	< 0.0784 U	< 0.129 U	< 0.0784 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 59 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			
			ļ					, and the second					
				N-nitrosodi-n-propyl- amine		Octachlorostyrene	Chloroaniline	o-Chlorobenzenethiol	Pentachlorobenzene	Pentachlorophenol		acid	
				osc	log	hlo	Oro	oro) H	hlé	_	ic a	ne
	Depth	Sample	Sample	nitr ine	Cresol	acl	,hlc	, hlc	ıtac	ıtac	ous	Phthalic	idi
Sample ID	(ft bgs)	Type	Date	N-nitre amine	O _C	Oct	о- _д	У -д	Реп	Реп	Phenol	Pht	Pyridine
WHC1-BO01	0	NORM	12/2/2008	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U
WHC1-BO01	0	FD	12/2/2008	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U
WHC1-BO01	4	NORM	12/2/2008	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U
WHC1-BO01	14	NORM	12/2/2008	< 0.072 U	< 0.072 U	< 0.119 U	< 0.072 U	< 0.119 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.119 U	< 0.072 U
WHC1-BO02	0	NORM	12/1/2008	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.113 UJ	< 0.0686 U
WHC1-BO02	12	NORM	12/1/2008	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 UJ	< 0.069 U
WHC1-BO03	0	NORM	12/15/2008	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 UJ	< 0.0693 U
WHC1-BO03	12	NORM	12/19/2008	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U
WHC1-BO04	0	NORM	12/15/2008	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.0705 U	< 0.116 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.116 UJ	< 0.0705 U
WHC1-BO04	12	NORM	12/19/2008	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U
WHC1-BO05	0	NORM	11/20/2008	< 0.0669 U	< 0.0669 U	< 0.11 U	< 0.0669 U	< 0.11 U	< 0.0669 U	< 0.0669 U	< 0.0669 U	< 0.11 UJ	< 0.0669 U
WHC1-BO05	10	NORM	11/20/2008	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 UJ	< 0.0692 U
WHC1-BO06	0	NORM	11/20/2008	< 0.0673 U	< 0.0673 U	< 0.111 U	< 0.0673 U	< 0.111 U	< 0.0673 U	< 0.0673 U	< 0.0673 U	< 0.111 UJ	< 0.0673 U
WHC1-BO06	10	NORM	11/20/2008	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 UJ	< 0.0699 U
WHC1-BO07	0	NORM	11/19/2008	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U
WHC1-BO07	10	NORM	11/19/2008	< 0.0717 U	< 0.0717 U	< 0.118 U	< 0.0717 U	< 0.118 U	< 0.0717 U	< 0.0717 U	< 0.0717 U	< 0.118 UJ	< 0.0717 U
WHC1-BO08	0	NORM	11/20/2008	< 0.0706 U	< 0.0706 U	< 0.116 U	< 0.0706 U	< 0.116 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.116 UJ	< 0.0706 U
WHC1-BO08	0	FD	11/20/2008	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 UJ	< 0.0691 U
WHC1-BO08	11	NORM	11/20/2008	< 0.0722 U	< 0.0722 U	< 0.119 U	< 0.0722 U	< 0.119 U	< 0.0722 U	< 0.0722 U	< 0.0722 U	< 0.119 UJ	< 0.0722 U
WHC1-BO09	0	NORM	11/19/2008	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U
WHC1-BO09	0	FD	11/19/2008	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U
WHC1-BO09	6	NORM	11/19/2008	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U
WHC1-BO09	16	NORM	11/19/2008	< 0.076 U	< 0.076 U	< 0.125 U	< 0.076 U	< 0.125 U	< 0.076 U	< 0.076 U	< 0.076 U	< 0.125 U	< 0.076 U
WHC1-BO10	0	NORM	11/19/2008	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.115 U	< 0.0697 U	< 0.0697 U	< 0.0697 U	< 0.115 U	< 0.0697 U
WHC1-BO10	10	NORM	11/19/2008										
WHC1-BP01	0	NORM	12/1/2008	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 UJ	< 0.0699 U
WHC1-BP01	10	NORM	12/1/2008	< 0.0694 U	< 0.0694 U	< 0.115 U	< 0.0694 U	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.115 UJ	< 0.0694 U
WHC1-BP02	0	NORM	12/1/2008	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 UJ	< 0.0684 U
WHC1-BP02	11	NORM	12/1/2008	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.118 UJ	< 0.0714 U
WHC1-BP03	0	NORM	12/15/2008	< 0.0679 U	< 0.0679 U	< 0.112 U	< 0.0679 U	< 0.112 U	< 0.0679 U	< 0.0679 U	< 0.0679 U	< 0.112 UJ	< 0.0679 U
WHC1-BP03	0	FD	12/15/2008	< 0.0681 U	< 0.0681 U	< 0.112 U	< 0.0681 U	< 0.112 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.112 UJ	< 0.0681 U
WHC1-BP03	11	NORM	12/19/2008	< 0.0721 U	< 0.0721 U	< 0.119 U	< 0.0721 U	< 0.119 U	< 0.0721 U	< 0.0721 U	< 0.0721 U	< 0.119 U	< 0.0721 U
WHC1-BP04	0	NORM	12/15/2008	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 UJ	< 0.0684 U
WHC1-BP04	12	NORM	12/19/2008	< 0.0694 U	< 0.0694 U	< 0.115 U	< 0.0694 U	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.115 U	< 0.0694 U
WHC1-BP05	0	NORM	12/15/2008	< 0.0689 U	< 0.0689 U	< 0.114 U	< 0.0689 U	< 0.114 U	< 0.0689 U	< 0.0689 U	< 0.0689 U	< 0.114 UJ	< 0.0689 U
WHC1-BP05	10	NORM	12/19/2008	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.0714 U
WHC1-BP06	0	NORM	12/12/2008	< 0.0681 U	< 0.0681 U	< 0.112 U	< 0.0681 U	< 0.112 U	< 0.0681 U	< 0.0681 U	< 0.0681 U	< 0.112 U	< 0.0681 U
WHC1-BP06	10	NORM	12/12/2008	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U
WHC1-BP07	0	NORM	11/20/2008	< 0.0715 U	< 0.0715 U	< 0.118 U	< 0.0715 U	< 0.118 U	< 0.0715 U	< 0.0715 U	< 0.0715 U	< 0.118 UJ	< 0.0715 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 60 of 63)

							Semi-V	olatile Organio	Compounds (S	SVOCs)			
										/			
				N-nitrosodi-n-propyl- ımine		Octachlorostyrene	Chloroaniline	Chlorobenzenethiol	Pentachlorobenzene	Pentachlorophenol		Phthalic acid	
				080	sol	hlc	orc	orc	ld:	ld.	-	lic	ne
	Depth	Sample	Sample	N-nitrc amine	.Cresol	tac	Ja,	Ja ja	ıtac	ıtac	Phenol	tha	Pyridine
Sample ID	(ft bgs)	Type	Date	am Z	9-0	00)-d)-d	Peı	Рег	Ph	Pht	P_{y_1}
WHC1-BP07	3	NORM	11/20/2008	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.0705 U	< 0.116 U	< 0.0705 U	< 0.0705 U	< 0.0705 U	< 0.116 UJ	< 0.0705 U
WHC1-BP07	13	NORM	11/20/2008	< 0.0716 U	< 0.0716 U	< 0.118 U	< 0.0716 U	< 0.118 U	< 0.0716 U	< 0.0716 U	< 0.0716 U	< 0.118 UJ	< 0.0716 U
WHC1-BP08	0	NORM	11/19/2008	< 0.07 UJ	< 0.07 UJ	< 0.116 UJ	< 0.07 UJ	< 0.116 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.116 UJ	< 0.07 UJ
WHC1-BP08	4	NORM	11/19/2008	< 0.0714 UJ	< 0.0714 UJ	< 0.118 UJ	< 0.0714 UJ	< 0.118 UJ	< 0.0714 UJ	< 0.0714 UJ	< 0.0714 UJ	< 0.118 UJ	< 0.0714 UJ
WHC1-BP08	14	NORM	11/19/2008	< 0.0718 U	< 0.0718 U	< 0.118 U	< 0.0718 U	< 0.118 U	< 0.0718 U	< 0.0718 U	< 0.0718 U	< 0.118 U	< 0.0718 U
WHC1-BP09	0	NORM	11/19/2008	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U
WHC1-BP09	10	NORM	11/19/2008	< 0.08 U	< 0.08 U	< 0.132 U	< 0.08 U	< 0.132 U	< 0.08 U	< 0.08 U	< 0.08 U	< 0.132 U	< 0.08 U
WHC1-BP10	0	NORM	11/19/2008	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U
WHC1-BP10	10	NORM	11/19/2008	< 0.0945 U	< 0.0945 U	< 0.156 U	< 0.0945 U	< 0.156 U	< 0.0945 U	< 0.0945 U	< 0.0945 U	< 0.156 U	< 0.0945 U
WHC1-D01	0	NORM	12/5/2008	< 0.0694 U	< 0.0694 U	< 0.115 U	< 0.0694 U	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.115 U	< 0.0694 U
WHC1-D01	10	NORM	12/5/2008	< 0.0696 UJ	< 0.0696 UJ	< 0.115 UJ	< 0.0696 UJ	< 0.115 UJ	< 0.0696 UJ	< 0.0696 UJ	< 0.0696 UJ	< 0.115 UJ	< 0.0696 UJ
WHC1-D02	0	NORM	12/5/2008	< 0.0715 UJ	< 0.0715 UJ	< 0.118 UJ	< 0.0715 UJ	< 0.118 UJ	< 0.0715 UJ	< 0.0715 UJ	< 0.0715 UJ	< 0.118 UJ	< 0.0715 UJ
WHC1-D02	10	NORM	12/5/2008	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 U
WHC1-D03	0	NORM	12/5/2008	< 0.0697 UJ	< 0.0697 UJ	< 0.115 UJ	< 0.0697 UJ	< 0.115 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0697 UJ	0.619	< 0.0697 UJ
WHC1-D03	0	FD	12/5/2008	< 0.0699 UJ	< 0.0699 UJ	< 0.115 UJ	< 0.0699 UJ	< 0.115 UJ	< 0.0699 UJ	< 0.0699 UJ	< 0.0699 UJ	< 0.115 UJ	< 0.0699 UJ
WHC1-D03	10	NORM	12/5/2008	< 0.0706 UJ	< 0.0706 UJ	< 0.116 UJ	< 0.0706 UJ	< 0.116 UJ	< 0.0706 UJ	< 0.0706 UJ	< 0.0706 UJ	< 0.116 UJ	< 0.0706 UJ
WHC1-D04	0	NORM	12/5/2008	< 0.0706 U	< 0.0706 U	< 0.116 U	< 0.0706 U	0.536	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.116 U	< 0.0706 U
WHC1-D04	10	NORM	12/5/2008	< 0.069 UJ	< 0.069 UJ	< 0.114 UJ	< 0.069 UJ	< 0.114 UJ	< 0.069 UJ	< 0.069 UJ	< 0.069 UJ	< 0.114 UJ	< 0.069 UJ
WHC1-D05	0	NORM	12/5/2008	< 0.07 UJ	< 0.07 UJ	< 0.115 UJ	< 0.07 UJ	< 0.115 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.115 UJ	< 0.07 UJ
WHC1-D05	10	NORM	12/5/2008	< 0.0689 UJ	< 0.0689 UJ	< 0.114 UJ	< 0.0689 UJ	< 0.114 UJ	< 0.0689 UJ	< 0.0689 UJ	< 0.0689 UJ	< 0.114 UJ	< 0.0689 UJ
WHC1-D06	0	NORM	12/5/2008	< 0.0732 U	< 0.0732 U	< 0.121 U	< 0.0732 U	< 0.121 U	< 0.0732 U	< 0.0732 U	< 0.0732 U	< 0.121 U	< 0.0732 U
WHC1-D06	10	NORM	12/5/2008	< 0.07 UJ	< 0.07 UJ	< 0.116 UJ	< 0.07 UJ	< 0.116 UJ	< 0.07 UJ	< 0.07 UJ	< 0.07 UJ	< 0.116 UJ	< 0.07 UJ
WHC1-D07	0	NORM	12/5/2008	< 0.069 UJ	< 0.069 UJ	< 0.114 U	< 0.069 UJ	< 0.114 U	< 0.069 UJ	< 0.069 UJ	< 0.069 UJ	< 0.114 U	< 0.069 UJ
WHC1-D07	10	NORM	12/5/2008	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.0686 U
WHC1-D08	0	NORM	12/8/2008	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U
WHC1-D08	10	NORM	12/9/2008	< 0.0708 U	< 0.0708 U	< 0.117 U	< 0.0708 U	< 0.117 U	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.117 U	< 0.0708 UJ
WHC1-D09	0	NORM	12/8/2008	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U
WHC1-D09	11	NORM	12/9/2008	< 0.0701 UJ	< 0.0701 UJ	< 0.116 UJ	< 0.0701 UJ	< 0.116 UJ	< 0.0701 UJ	< 0.0701 UJ	< 0.0701 UJ	< 0.116 UJ	< 0.0701 UJ
WHC1-D10	0	NORM	12/8/2008	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U
WHC1-D10	10	NORM	12/9/2008	< 0.0703 U	< 0.0703 U	< 0.116 U	< 0.0703 U	< 0.116 U	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.116 U	< 0.0703 UJ
WHC1-D11	0	NORM	12/8/2008	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 U	1.29	0.981	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 U
WHC1-D11	10	NORM	12/9/2008	< 0.0732 U	< 0.0732 U	< 0.121 U	< 0.0732 U	< 0.121 U	< 0.0732 U	< 0.0732 U	< 0.0732 U	< 0.121 U	< 0.0732 UJ
WHC1-D12	0	NORM	12/10/2008	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.348 U	< 0.0701 U
WHC1-D12	10	NORM	12/10/2008	< 0.0923 U	< 0.0923 U	< 0.152 U	< 0.0923 U	< 0.152 U	< 0.0923 U	< 0.0923 U	< 0.0923 U	< 0.152 U	< 0.0923 U
WHC1-D13	0	NORM	12/8/2008	< 0.0712 U	< 0.0712 U	0.238 J	< 0.0712 U	< 0.118 U	< 0.0712 U	< 0.0712 U	< 0.0712 U	< 0.118 U	< 0.0712 U
WHC1-D13	10	NORM	12/8/2008	< 0.101 U	< 0.101 U	< 0.167 U	< 0.101 U	< 0.167 U	< 0.101 U	< 0.101 U	< 0.101 U	< 0.167 U	< 0.101 U
WHC1-D15	0	NORM	12/11/2008	< 0.0687 U	< 0.0687 U	0.161 J	< 0.0687 UJ	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	0.334 J	< 0.0687 UJ
WHC1-D15	10	NORM	12/11/2008	< 0.0846 U	< 0.0846 U	< 0.14 U	< 0.0846 UJ	< 0.14 U	< 0.0846 U	< 0.0846 U	< 0.0846 U	< 0.14 U	< 0.0846 UJ
WHC1-D16	0	NORM	12/10/2008	< 0.0763 U	< 0.0763 U	< 0.126 U	< 0.0763 U	< 0.126 U	< 0.0763 U	< 0.0763 U	< 0.0763 U	< 0.126 U	< 0.0763 U

TABLE B-9 SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA (Page 61 of 63)

							Somi-V	olatile Organie	c Compounds (S	SVOCs)			
					Ī	I	Seiii- v		Compounds (i	5 + OCS)	I		
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	N-nitrosodi-n-propyl- amine	o-Cresol	Octachlorostyrene	p-Chloroaniline	p-Chlorobenzenethiol	Pentachlorobenzene	Pentachlorophenol	Phenol	Phthalic acid	Pyridine
WHC1-D16	10	NORM	12/10/2008	< 0.0785 U	< 0.0785 U	< 0.13 U	< 0.0785 U	< 0.13 U	< 0.0785 U	< 0.0785 U	< 0.0785 U	< 0.13 U	< 0.0785 U
WHC1-D17	0	NORM	12/10/2008	< 0.0712 U	< 0.0712 U	< 0.117 U	< 0.0712 U	< 0.117 U	< 0.0712 U	< 0.0712 U	< 0.0712 U	< 0.117 U	< 0.0712 U
WHC1-D17	10	NORM	12/10/2008	< 0.0779 U	< 0.0779 U	< 0.129 U	< 0.0779 U	< 0.129 U	< 0.0779 U	< 0.0779 U	< 0.0779 U	< 0.129 U	< 0.0779 U
WHC1-D18	0	NORM	12/11/2008	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 UJ	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 UJ
WHC1-D18	10	NORM	12/11/2008	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.0698 UJ	< 0.115 U	< 0.0698 U	< 0.0698 U	< 0.0698 U	< 0.115 U	< 0.0698 UJ
WHC1-D19	0	NORM	12/11/2008	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.115 UJ	< 0.0696 U	< 0.0696 U	< 0.0696 U	0.345 J	< 0.0696 U
WHC1-D19	0	FD	12/11/2008	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.114 UJ	< 0.0693 U	< 0.0693 U	< 0.0693 U	0.355	< 0.0693 U
WHC1-D19	10	NORM	12/11/2008	< 0.0703 U	< 0.0703 U	< 0.116 U	< 0.0703 U	< 0.116 UJ	< 0.0703 U	< 0.0703 U	< 0.0703 U	< 0.116 U	< 0.0703 U
WHC1-D20	0	NORM	12/12/2008	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U
WHC1-D20	10	NORM	12/12/2008	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U
WHC1-D21	0	NORM	12/16/2008	< 0.0708 U	< 0.0708 U	< 0.117 U	< 0.0708 U	0.278 J	< 0.0708 U	< 0.0708 U	< 0.0708 U	< 0.117 U	< 0.0708 UJ
WHC1-D21	10	NORM	12/16/2008	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 UJ
WHC1-D22	0	NORM	12/16/2008	< 0.072 U	< 0.072 U	< 0.119 U	< 0.072 U	< 0.119 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.119 U	< 0.072 UJ
WHC1-D22	10	NORM	12/16/2008	< 0.0706 U	< 0.0706 U	< 0.117 U	< 0.0706 U	< 0.117 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.117 U	< 0.0706 UJ
WHC1-D23	0		12/16/2008	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 UJ
WHC1-D23	10		12/16/2008	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 UJ
WHC1-D24	0	NORM	12/16/2008	< 0.0728 U	< 0.0728 U	< 0.12 U	< 0.0728 U	< 0.12 U	< 0.0728 U	< 0.0728 U	< 0.0728 U	< 0.12 U	< 0.0728 UJ
WHC1-D24	0	FD	12/16/2008	< 0.0721 U	< 0.0721 U	< 0.119 U	< 0.0721 U	< 0.119 U	< 0.0721 U	< 0.0721 U	< 0.0721 U	< 0.119 U	< 0.0721 UJ
WHC1-D24	10	NORM	12/16/2008	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.114 U	< 0.0693 U	< 0.0693 U	< 0.0693 U	< 0.114 U	< 0.0693 UJ
WHC1-D25	0	NORM		< 0.0727 U	< 0.0727 U	< 0.12 U	< 0.0727 U	0.49 J-	< 0.0727 U	< 0.0727 U	< 0.0727 U	< 0.12 U	< 0.0727 U
WHC1-D25	10	NORM	12/16/2008	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 UJ
WHC1-D26	0	NORM	12/12/2008	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U
WHC1-D26	10	NORM	12/12/2008	< 0.0753 U	< 0.0753 U	< 0.124 U	< 0.0753 U	< 0.124 U	< 0.0753 U	< 0.0753 U	< 0.0753 U	< 0.124 U	< 0.0753 U
WHC1-D27	0	NORM	12/12/2008	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U
WHC1-D27	0	FD	12/12/2008	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U
WHC1-D27	10		12/12/2008	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U
WHC1-D28	0		12/12/2008	< 0.0694 U	< 0.0694 U	< 0.115 U	< 0.0694 U	< 0.115 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.115 U	< 0.0694 U
WHC1-D28	10	NORM	12/12/2008	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U
WHC1-D29	0		12/12/2008	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U
WHC1-D29	10	NORM	12/12/2008	< 0.0733 U	< 0.0733 U	< 0.121 U	< 0.0733 U	< 0.121 U	< 0.0733 U	< 0.0733 U	< 0.0733 U	< 0.121 U	< 0.0733 U
WHC1-P01	0	NORM		< 0.0685 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.113 U	< 0.0685 U	< 0.0685 U	< 0.0685 U	< 0.113 UJ	< 0.0685 U
WHC1-P01	12	NORM	12/19/2008	< 0.0719 U	< 0.0719 U	< 0.119 U	< 0.0719 U	< 0.119 U	< 0.0719 U	< 0.0719 U	< 0.0719 U	< 0.119 U	< 0.0719 U
WHC1-P02	0	NORM	12/1/2008	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 UJ	< 0.0688 U
WHC1-P02	10	NORM	12/1/2008	< 0.068 U	< 0.068 U	< 0.112 U	< 0.068 U	< 0.112 U	< 0.068 U	< 0.068 U	< 0.068 U	< 0.112 UJ	< 0.068 U
WHC1-P03	0	NORM		< 0.0683 U	< 0.0683 U	< 0.113 U	< 0.0683 U	< 0.113 U	< 0.0683 U	< 0.0683 U	< 0.0683 U	< 0.113 UJ	< 0.0683 U
WHC1-P03	3		12/18/2008	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.114 U	< 0.0692 U	< 0.0692 U	< 0.0692 U	< 0.114 U	< 0.0692 U
WHC1-P03	3	FD	12/18/2008	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U
WHC1-P03	13	NORM	12/18/2008	< 0.0713 U	< 0.0713 U	< 0.118 U	< 0.0713 U	< 0.118 U	< 0.0713 U	< 0.0713 U	< 0.0713 U	< 0.118 U	< 0.0713 U

WHC1-P04

NORM 12/15/2008

< 0.069 U

< 0.069 U

< 0.114 U

< 0.069 U

< 0.114 U

< 0.069 U

< 0.069 U

< 0.069 U

< 0.114 UJ

< 0.069 U

TABLE B-9 SOIL ALDEHYDES AND SEML-VOLATUE ORG

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 62 of 63)

							Semi-V	olatile Organio	c Compounds (S	SVOCs)			
								1		,			
				N-nitrosodi-n-propyl- amine		Octachlorostyrene	Chloroaniline	o-Chlorobenzenethiol	Pentachlorobenzene	Pentachlorophenol		_	
				Ę.		.ost	ınii	en	rob	rop		acid	
				oso	ol	ılor	0108	rok	hlo	hlo	_	<u>.</u>	эе
	Depth	Sample	Sample	nitro ine	Cresol	ack	hlc	hlc	ıtac	ıtac	no	hal	idii
Sample ID	(ft bgs)	Type	Date	N-nitra amine	<u> ۲</u>	Oct	O.) O	Реп	Реп	Phenol	Phthalic	Pyridine
WHC1-P04	10	NORM	12/18/2008	< 0.0744 U	< 0.0744 U	< 0.123 U	< 0.0744 U	< 0.123 U	< 0.0744 U	< 0.0744 U	< 0.0744 U	< 0.123 U	< 0.0744 U
WHC1-P05	0	NORM	12/8/2008	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U
WHC1-P05	0	FD	12/8/2008	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U
WHC1-P05	10	NORM	12/18/2008	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 U
WHC1-P06	0	NORM	12/2/2008	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U
WHC1-P06	12	NORM	12/2/2008	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.114 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.114 U	< 0.0688 U
WHC1-P07	0	NORM	12/2/2008	< 0.07 U	< 0.07 U	< 0.116 U	< 0.07 U	< 0.116 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.116 U	< 0.07 U
WHC1-P07	3	NORM	12/2/2008	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.113 U	< 0.0684 U	< 0.0684 U	< 0.0684 U	< 0.113 U	< 0.0684 U
WHC1-P07	13	NORM	12/2/2008	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U
WHC1-P08	0	NORM	12/3/2008	< 0.0683 UJ	< 0.0683 UJ	< 0.113 UJ	< 0.0683 UJ	< 0.113 UJ	< 0.0683 UJ	< 0.0683 UJ	< 0.0683 UJ	< 0.113 UJ	< 0.0683 UJ
WHC1-P08	11	NORM	12/3/2008	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 UJ	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 UJ	< 0.0696 UJ
WHC1-P09	0	NORM	12/4/2008	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 UJ
WHC1-P09	0	FD	12/4/2008	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.113 U	< 0.0687 U	< 0.0687 U	< 0.0687 U	< 0.113 U	< 0.0687 UJ
WHC1-P09	10	NORM	12/4/2008	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.0688 U	< 0.113 U	< 0.0688 U	< 0.0688 U	< 0.0688 U	< 0.113 U	< 0.0688 UJ
WHC1-P10	0	NORM	11/25/2008	< 0.0695 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.115 U	< 0.0695 U	< 0.0695 U	< 0.0695 U	< 0.115 UJ	< 0.0695 U
WHC1-P10	10	NORM	11/25/2008	< 0.0767 U	< 0.0767 U	< 0.127 U	< 0.0767 U	< 0.127 U	< 0.0767 U	< 0.0767 U	< 0.0767 U	< 0.127 UJ	< 0.0767 U
WHC1-P11	0	NORM	12/8/2008	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.0705 U	1.49 J	0.437	< 0.0705 U	< 0.0705 U	< 0.116 U	< 0.0705 U
WHC1-P11	0	FD	12/8/2008	< 0.138 U	< 0.138 U	< 0.228 U	< 0.138 U	0.234 J	0.521 J	< 0.138 U	< 0.138 U	< 0.228 U	< 0.138 UJ
WHC1-P11	10	NORM	12/9/2008	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 UJ	< 0.116 U	< 0.0702 U	< 0.0702 U	< 0.0702 U	< 0.116 U	< 0.0702 UJ
WHC1-P12	0	NORM	12/5/2008	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	0.184 J	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U
WHC1-P12	11	NORM	12/5/2008	< 0.0697 UJ	< 0.0697 UJ	< 0.115 UJ	< 0.0697 UJ	< 0.115 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.0697 UJ	< 0.115 UJ	< 0.0697 UJ
WHC1-P13	0	NORM	12/9/2008	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.115 U	< 0.07 U	< 0.07 U	< 0.07 U	< 0.115 U	< 0.07 UJ
WHC1-P13	10	NORM	12/9/2008	< 0.0915 U	< 0.0915 U	< 0.151 U	< 0.0915 U	< 0.151 U	< 0.0915 U	< 0.0915 U	< 0.0915 U	< 0.151 U	< 0.0915 UJ
WHC1-P13	10	FD	12/9/2008	< 0.0778 U	< 0.0778 U	< 0.128 U	< 0.0778 U	< 0.128 U	< 0.0778 U	< 0.0778 U	< 0.0778 U	< 0.128 U	< 0.0778 UJ
WHC1-P14	0	NORM	12/17/2008	< 0.0803 U	< 0.0803 U	< 0.132 U	< 0.0803 U	< 0.132 U	< 0.0803 U	< 0.0803 U	< 0.0803 U	< 0.132 U	< 0.0803 U
WHC1-P15	0	NORM	12/8/2008	< 0.074 U	< 0.074 U	< 0.122 U	< 0.074 U	< 0.122 U	< 0.074 U	< 0.074 U	< 0.074 U	0.376	< 0.074 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.072 U	< 0.072 U	< 0.119 U	< 0.072 U	< 0.119 U	< 0.072 U	< 0.072 U	< 0.072 U	< 0.119 U	< 0.072 U
WHC1-P15	10	NORM	12/18/2008	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.118 U	< 0.0714 U	< 0.0714 U	< 0.0714 U	< 0.118 U	< 0.0714 U
WHC1-P16	0	NORM	12/1/2008	< 0.0675 U	< 0.0675 U	< 0.111 U	< 0.0675 U	< 0.111 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.111 UJ	< 0.0675 U
WHC1-P16	11	NORM	12/1/2008	< 0.069 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.114 U	< 0.069 U	< 0.069 U	< 0.069 U	< 0.114 UJ	< 0.069 U
WHC1-P17	0	NORM	12/15/2008	< 0.0699 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.115 U	< 0.0699 U	< 0.0699 U	< 0.0699 U	< 0.115 UJ	< 0.0699 U
WHC1-P17	12	NORM	12/19/2008	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.114 U	< 0.0694 U	< 0.0694 U	< 0.0694 U	< 0.114 U	< 0.0694 U
WHC1-P17	12	FD	12/19/2008	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.115 U	< 0.0696 U	< 0.0696 U	< 0.0696 U	< 0.115 U	< 0.0696 U
WHC1-P18	0	NORM	12/1/2008	< 0.068 U	< 0.068 U	< 0.112 U	< 0.068 U	< 0.112 U	< 0.068 U	< 0.068 U	< 0.068 U	< 0.112 UJ	< 0.068 U
WHC1-P18	12	NORM	12/1/2008	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.113 UJ	< 0.0686 U
WHC2-D02C	0	NORM	12/2/2009	< 0.0672 U	< 0.0672 U	< 0.111 U	< 0.0672 U	< 0.111 U	< 0.0672 U	< 0.0672 U	< 0.0672 U	< 0.111 UJ	< 0.0672 U
WHC2-D04C	0	NORM	12/2/2009	< 0.0686 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.113 U	< 0.0686 U	< 0.0686 U	< 0.0686 U	< 0.113 UJ	< 0.0686 U
WHC2-D05C	0	NORM	12/2/2009	< 0.0676 U	< 0.0676 U	< 0.112 U	< 0.0676 U	0.778	0.554	< 0.0676 U	< 0.0676 U	< 0.112 UJ	< 0.0676 U
WHC2-D11C	0	NORM	12/2/2009	< 0.0677 U	< 0.0677 U	< 0.112 U	< 0.0677 U	1.5	0.538	< 0.0677 U	< 0.0677 U	< 0.112 UJ	< 0.0677 U

SOIL ALDEHYDES AND SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) DATA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 63 of 63)

					Semi-Volatile Organic Compounds (SVOCs)										
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	N-nitrosodi-n-propyl- amine	o-Cresol	Octachlorostyrene	p-Chloroaniline	p-Chlorobenzenethiol	Pentachlorobenzene	Pentachlorophenol	Phenol	Phthalic acid	Pyridine		
WHC2-D13C	0	NORM	12/3/2009	< 0.103 U	< 0.103 U	< 0.169 U	< 0.103 U	< 0.169 U	< 0.103 U	< 0.103 U	< 0.103 U	< 0.169 U	< 0.103 U		
WHC2-D13NE	0	NORM	12/3/2009	< 0.108 U	< 0.108 U	< 0.178 U	< 0.108 U	< 0.178 U	< 0.108 U	< 0.108 U	< 0.108 U	< 0.178 UJ	< 0.108 UJ		
WHC2-D13NW	0	NORM	12/3/2009	< 0.0793 U	< 0.0793 U	< 0.131 U	< 0.0793 U	< 0.131 U	< 0.0793 U	< 0.0793 U	< 0.0793 U	< 0.131 U	< 0.0793 U		
WHC2-D13SE	0	NORM	12/3/2009	< 0.107 U	< 0.107 U	< 0.176 U	< 0.107 U	< 0.176 U	< 0.107 U	< 0.107 U	< 0.107 U	< 0.176 UJ	< 0.107 U		
WHC2-D13SW	0	NORM	12/3/2009	< 0.0998 U	< 0.0998 U	< 0.165 U	< 0.0998 U	< 0.165 U	< 0.0998 U	< 0.0998 U	< 0.0998 U	< 0.165 UJ	< 0.0998 U		
WHC2-D14C	0	NORM	12/2/2009	< 0.0706 U	< 0.0706 U	< 0.117 U	< 0.0706 U	< 0.117 U	< 0.0706 U	< 0.0706 U	< 0.0706 U	< 0.117 UJ	< 0.0706 U		
WHC2-D17C	0	NORM	12/1/2009	< 0.0731 U	< 0.0731 U	< 0.121 U	< 0.0731 U	< 0.121 U	< 0.0731 U	< 0.0731 U	< 0.0731 U	< 0.121 UJ	< 0.0731 U		
WHC2-D18C	0	NORM	12/1/2009	< 0.0674 U	< 0.0674 U	< 0.111 U	< 0.0674 U	< 0.111 U	< 0.0674 U	< 0.0674 U	< 0.0674 U	< 0.111 UJ	< 0.0674 U		
WHC2-D18C	0	FD	12/1/2009	< 0.0675 U	< 0.0675 U	< 0.111 U	< 0.0675 U	< 0.111 U	< 0.0675 U	< 0.0675 U	< 0.0675 U	< 0.111 UJ	< 0.0675 U		
WHC2-D25C	0	NORM	12/1/2009	< 0.0676 U	< 0.0676 U	< 0.112 U	< 0.0676 U	< 0.112 U	< 0.0676 U	< 0.0676 U	< 0.0676 U	< 0.112 UJ	< 0.0676 U		
WHC2-P11C	0	NORM	12/1/2009	< 0.0683 U	< 0.0683 U	< 0.113 U	< 0.0683 U	0.253 J	1.64	< 0.0683 U	< 0.0683 U	< 0.113 UJ	< 0.0683 U		
WHC6-D05	0	NORM	7/27/2012	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.116 U	< 0.0701 U	< 0.0701 U	< 0.0701 U	< 0.116 U	< 0.0701 U		
WHC6-D11	0	NORM	7/27/2012	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.114 U	< 0.0691 U	< 0.0691 U	< 0.0691 U	< 0.114 U	< 0.0691 U		
WHC6-P11	0	NORM	7/27/2012	< 0.0676 U	< 0.0676 U	< 0.112 U	< 0.0676 U	< 0.112 U	0.102 J	< 0.0676 U	< 0.0676 U	< 0.112 U	< 0.0676 U		

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location excavated and data replaced with post-excavation data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 81)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00000 ≥ U 1,2,3-Trichloropropane	>> >> >> >> >> >> >> >> >> >> >> >> >>
OSC1-BM11 0 NORM 9/21/2009 < 0.0004 U	< 0.00057 U	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.00057 U	
OSC1-BN11 5 NORM 9/22/2009 < 0.0004 U < 0.00025 U < 0.00047 U < 0.00038 U < 0.00039 U < 0.00025 U < 0.00023 U < 0.00048 U <	< 0.00049 U	
OSC1-BN11 5 NORM 9/22/2009 < 0.0004 U < 0.00025 U < 0.00047 U < 0.00038 U < 0.00039 U < 0.00025 U < 0.00023 U < 0.00048 U <		< 0.00031 U
	< 0.00051 U	< 0.00032 U
	< 0.00052 U	< 0.00033 U
OSC1-BO11 0 FD 9/16/2009 < 0.00043 U < 0.00027 U < 0.00051 U < 0.00041 U < 0.00042 U < 0.00027 U < 0.00052 U < 0.00052 U	< 0.00055 U	< 0.00035 U
	< 0.00061 U	< 0.00038 U
	< 0.0006 U	< 0.00038 U
	< 0.00065 U	< 0.00041 U
	< 0.00059 U	< 0.00038 U
	< 0.00066 U	< 0.00042 U
	< 0.00052 U	< 0.00033 U
	< 0.0006 U	< 0.00038 U
	< 0.00057 U	< 0.00036 U
	< 0.0006 U	< 0.00038 U
	< 0.00025 UJ	< 0.00033 UJ
	< 0.00026 UJ	< 0.00035 UJ
	< 0.00025 U	< 0.00033 U
	< 0.00026 U	< 0.00034 U
	< 0.00025 U	< 0.00034 U
	< 0.00026 U	< 0.00034 U
	< 0.00025 U	< 0.00034 U
	< 0.00027 U	< 0.00035 U
	< 0.00027 U	< 0.00036 U
	< 0.00026 U	< 0.00034 U
	< 0.00036 UJ	< 0.00047 UJ
	< 0.00026 U	< 0.00034 U
WHC1-BF06 10 NORM 12/10/2008 < 0.00024 U < 0.00014 U < 0.00011 U < 0.000091 U < 0.000095 U < 0.00016 U < 0.00012 U < 0.00053 U <	< 0.00034 U	< 0.00045 U
	< 0.00025 U	< 0.00033 U
	< 0.00026 UJ	< 0.00034 UJ
	< 0.00025 UJ	< 0.00034 UJ
	< 0.00026 U	< 0.00034 U
WHC1-BG02	R	R
	< 0.00025 U	< 0.00033 U
	< 0.00026 U	< 0.00034 U
WHC1-BG04	< 0.00025 U	< 0.00033 U
	< 0.00033 UJ	< 0.00044 UJ
	< 0.00026 U	< 0.00034 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 81)

					Volatile Organic Compounds (VOCs)								
				Je		je							
				1,1,1,2-Tetrachloroethane	4)	,2,2-Tetrachloroethane	4)				ne	ne	ne
				oetl	ane	oet	ane	d)	d)	ne	,2,3-Trichlorobenzene	,2,3-Trichloropropane	,2,4-Trichlorobenzene
				lor	eth	lor	eth	lan	ien	ədo	ber	pro	ber
				rch.	010	ch	010	eth	eth	,1-Dichloropropene	orol	oroj	orol
				etra	hlc	etra	plic	oro	oro	oro	hlc	hlc	hlc
				-Te	ji;	Ţ-	Ę	Shl	chl	chle	ric	ji;	jrić
	Depth	Sample	Sample	1,2	1-1	2,2	2-T	Dic	Dic	Dic	3-T	3-T	4-T
Sample ID	(ft bgs)	Type	Date	,1,	i, I, I-Trichloroethane	1,	,1,2-Trichloroethane	, I-Dichloroethane	I, I-Dichloroethene	-1,	΄,	Ć,	2,
WHC1-BG05	10		11/25/2008	< 0.0002 U	< 0.00012 U	< 0.000089 U	< 0.000077 U	< 0.00008 U	< 0.00014 U	< 0.0001 U	< 0.00044 U	< 0.00029 U	< 0.00038 U
WHC1-BG06	0	NORM	12/10/2008	< 0.00019 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00011 U	< 0.00001 U	< 0.0004 U	< 0.00025 U	< 0.00034 U
WHC1-BG06	10	NORM	12/10/2008	< 0.00022 U	< 0.00013 U	< 0.000098 U	< 0.000085 U	0.00065 J	< 0.00015 U	< 0.00011 U	< 0.00049 U	< 0.00032 U	< 0.00042 U
WHC1-BH01	0	NORM	12/3/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BH01	11	NORM	12/3/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BH02	0	NORM	12/4/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BH02	10	NORM	12/4/2008	< 0.00018 U	< 0.00011 U	< 0.000079 U	< 0.000068 U	< 0.000071 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00025 U	< 0.00034 U
WHC1-BH03	0	NORM	12/9/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BH03	10	NORM	12/9/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BH04	0	NORM	12/11/2008	< 0.00018 U	< 0.00011 U	< 0.000079 UJ	< 0.000068 U	< 0.000071 U	< 0.00012 U	< 0.000089 U	< 0.00039 UJ	< 0.00025 UJ	< 0.00034 UJ
WHC1-BH04	10	NORM	12/11/2008	< 0.00019 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BH05	0	NORM	12/9/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BH05	0	FD	12/9/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BH05	10	NORM	12/9/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BH06	0	NORM	12/11/2008	< 0.0002 U	< 0.00012 U	< 0.000086 UJ	< 0.000074 U	< 0.000077 U	< 0.00013 U	< 0.000096 U	< 0.00043 UJ	< 0.00028 UJ	< 0.00036 UJ
WHC1-BH06	0	FD	12/11/2008	< 0.00019 U	< 0.00011 U	< 0.000085 U	< 0.000073 U	< 0.000076 U	< 0.00013 U	< 0.000095 U	< 0.00042 U	< 0.00027 U	< 0.00036 U
WHC1-BH06	10	NORM	12/11/2008	< 0.0002 U	< 0.00012 U	< 0.000089 U	< 0.000077 U	< 0.00008 U	< 0.00014 U	< 0.0001 U	< 0.00044 U	< 0.00029 U	< 0.00038 U
WHC1-BI01	0	NORM	12/3/2008	< 0.0002 U	< 0.00012 U	< 0.000086 U	< 0.000074 U	< 0.000077 U	< 0.00013 U	< 0.000096 U	< 0.00043 U	< 0.00027 U	< 0.00036 U
WHC1-BI01	11	NORM	12/3/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BI02	0	NORM	12/4/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000074 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BI02	3	NORM	12/4/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BI02	13	NORM	12/4/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BI03	0	NORM	12/4/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BI03	11	NORM	12/4/2008	< 0.00018 U	< 0.00011 U	< 0.000079 U	< 0.000068 U	< 0.000071 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00025 U	< 0.00034 U
WHC1-BI04	0	NORM	12/8/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BI04	10	NORM	12/9/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BI05	0	NORM	12/9/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BI05	10	NORM	12/9/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BJ01	0	NORM	12/3/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BJ01	3	NORM	12/3/2008	< 0.00019 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00034 U
WHC1-BJ01	13	NORM	12/3/2008	< 0.00019 U	< 0.00011 U	< 0.000083 U	< 0.000071 U	< 0.000075 U	< 0.00013 U	< 0.000093 U	< 0.00041 U	< 0.00027 U	< 0.00035 U
WHC1-BJ02	0	NORM	12/2/2008	< 0.00019 U	< 0.00011 U	< 0.000082 UJ	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 UJ	< 0.00026 UJ	< 0.00035 UJ
WHC1-BJ02	0	FD	12/2/2008	< 0.00019 U	< 0.00011 U	< 0.000081 UJ	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.000091 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BJ02	12	NORM	12/2/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BJ03	0	FD	12/4/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BJ04	0	NORM	12/4/2008	< 0.00018 U	< 0.00011 U	< 0.000079 U	< 0.000068 U	< 0.000071 U	< 0.00012 U	< 0.000088 U	< 0.00039 U	< 0.00025 U	< 0.00034 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 81)

					Volatile Organic Compounds (VOCs)								
				1,1,1,2-Tetrachloroethane	,1,1-Trichloroethane	2-Tetrachloroethane	,1,2-Trichloroethane	ne	ne	,1-Dichloropropene	.3-Trichlorobenzene	,2,3-Trichloropropane	,4-Trichlorobenzene
				hlo	oet	hlo	oet	, 1-Dichloroethane	I, I-Dichloroethene	rop	.ope	ıdo.	ope.
				trac	ılor	trac	ılor	roe	roe	rop	ılor	ılor	ılor
				Je	ricł	Je	ricł	hlo	hlo	hlo	ricł	ricł	ricł
	Depth	Sample	Sample	1,2-	T-1	2,2-	2-T	Dic	Dic	Dic	3-T	3-T	T-4
Sample ID	(ft bgs)	Туре	Date	1,	,1,	,1,	,1,2	, 1 ,	1,	.1.	,2,3	,2,	2,
WHC1-BJ04	11	NORM	12/4/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BJ05	0	NORM	12/11/2008	< 0.00018 UJ	< 0.00011 UJ	< 0.00008 UJ	< 0.000068 UJ	< 0.000071 UJ	< 0.00012 UJ	< 0.000089 UJ	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BJ05	10	NORM	12/11/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BK01	0	NORM	12/3/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BK01	0	FD	12/3/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000074 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BK01	10	NORM	12/3/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BK02	0	NORM	12/8/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BK02	11		12/18/2008	< 0.00019 U	< 0.00011 U	< 0.000083 U	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BK03	0		12/15/2008	< 0.00018 UJ	< 0.00011 UJ	< 0.000081 UJ	< 0.000069 UJ	< 0.000072 UJ	< 0.00012 UJ	< 0.00009 UJ	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BK03	12		12/18/2008	< 0.00019 U	< 0.00011 U	< 0.000082 UJ	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 UJ	< 0.00026 UJ	< 0.00035 UJ
WHC1-BK04	0	NORM	12/4/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BK04	10	NORM	12/4/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00034 U
WHC1-BK05	0	NORM	12/12/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BK05	11		12/12/2008	< 0.00019 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BL01	0	NORM	12/3/2008	< 0.00019 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BL01 WHC1-BL02	10	NORM	12/3/2008	< 0.00019 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00034 U
WHC1-BL02	10	NORM NORM	12/2/2008 12/2/2008	< 0.00018 U < 0.00019 U	< 0.00011 U < 0.00011 U	< 0.000081 U < 0.000084 U	< 0.000069 U < 0.000073 U	< 0.000072 U < 0.000076 U	< 0.00012 U < 0.00013 U	< 0.00009 U < 0.000094 U	< 0.0004 U < 0.00042 U	< 0.00026 U < 0.00027 U	< 0.00034 U < 0.00036 U
WHC1-BL02	0	NORM	12/2/2008	< 0.00019 U	< 0.00011 U	< 0.000084 U	< 0.000073 U	< 0.000078 U	< 0.00013 U	< 0.000094 U	< 0.00042 U	< 0.00027 U	< 0.00034 U
WHC1-BL03	10	NORM	12/8/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BL03	0	NORM	12/17/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BL04	12	NORM	12/22/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 C	< 0.00026 U	< 0.00033 U
WHC1-BL05	0	NORM	11/21/2008	< 0.00013 U	< 0.00011 U	< 0.000079 U	< 0.000068 U	< 0.000071 U	< 0.00012 U	< 0.000091 U	< 0.0004 U	< 0.00025 U	< 0.00034 U
WHC1-BL05	10		11/21/2008	< 0.00019 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000071 U	< 0.00013 U	< 0.000091 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BL06	0	NORM	11/21/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BL06	11	NORM	11/21/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BL07	0	NORM	11/21/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BL07	10	NORM	11/21/2008	< 0.00023 U	< 0.00014 U	< 0.0001 U	< 0.000088 U	< 0.000092 U	< 0.00016 U	< 0.00011 U	< 0.00051 U	< 0.00033 U	< 0.00043 U
WHC1-BL08	0	NORM	11/18/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BL08	10	NORM	11/18/2008	< 0.00019 U	< 0.00011 U	< 0.000083 UJ	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 UJ	< 0.00026 UJ	< 0.00035 UJ
WHC1-BL11	0	NORM	11/18/2008	< 0.00018 U	< 0.00011 U	< 0.000081 UJ	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BL11	12		11/18/2008	< 0.00019 U	< 0.00011 U	< 0.000083 UJ	< 0.000072 U	< 0.000075 U	< 0.00013 U	< 0.000093 U	< 0.00041 UJ	< 0.00027 UJ	< 0.00035 UJ
WHC1-BM01	0	NORM	12/3/2008	< 0.00019 U	< 0.00011 U	< 0.000083 U	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 U	< 0.00027 U	< 0.00035 U
WHC1-BM01	10	NORM	12/3/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BM02	0	NORM	12/2/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BM02	12	NORM	12/2/2008	< 0.00019 U	< 0.00011 U	< 0.000083 U	< 0.000072 U	< 0.000075 U	< 0.00013 U	< 0.000093 U	< 0.00041 U	< 0.00027 U	< 0.00035 U
WHC1-BM03	0	NORM	12/8/2008	< 0.00018 U	< 0.00011 U	< 0.00008 UJ	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BM03	10	NORM	12/18/2008	< 0.00019 U	< 0.00011 U	< 0.000084 U	< 0.000072 U	< 0.000075 U	< 0.00013 U	< 0.000093 U	< 0.00042 U	< 0.00027 U	< 0.00035 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 81)

				Volatile Organic Compounds (VOCs)									
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene
WHC1-BM04	0	NORM	12/17/2008	< 0.00018 UJ	< 0.00011 U	< 0.000081 UJ	< 0.000069 UJ	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BM04	0	FD	12/17/2008	< 0.00019 UJ	< 0.00011 U	< 0.000081 UJ	< 0.00007 UJ	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BM04	10	NORM	12/22/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BM05	0	NORM	11/21/2008	< 0.00018 U	< 0.00011 U	< 0.000079 U	< 0.000068 U	< 0.000071 U	< 0.00012 U	< 0.000088 U	< 0.00039 U	< 0.00025 U	< 0.00033 U
WHC1-BM05	10	NORM	11/21/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BM06	0	NORM	11/21/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000068 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BM06	0	FD	11/21/2008	< 0.00019 U	< 0.00011 U	< 0.000085 U	< 0.000073 U	< 0.000076 U	< 0.00013 U	< 0.000095 U	< 0.00042 U	< 0.00027 U	< 0.00036 U
WHC1-BM06	10	NORM	11/21/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BM07	0	NORM	11/20/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000068 U	< 0.000071 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BM07	11	NORM	11/20/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BM08	0	NORM	11/18/2008	< 0.00018 UJ	< 0.00011 U	< 0.000081 UJ	< 0.000069 UJ	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BM08	0	FD	11/18/2008	< 0.00021 U	< 0.00011 U	< 0.00009 U	< 0.000078 U	< 0.000081 U	< 0.00014 U	< 0.0001 U	< 0.00045 U	< 0.00029 U	< 0.00038 U
WHC1-BM08	11	NORM	11/18/2008	< 0.00019 U	< 0.00011 U	< 0.000084 UJ	< 0.000072 U	< 0.000076 U	< 0.00013 U	< 0.000094 U	< 0.00042 UJ	< 0.00027 UJ	< 0.00036 UJ
WHC1-BM09	0	NORM	11/18/2008	< 0.00018 UJ	< 0.00011 U	< 0.000081 UJ	< 0.000069 UJ	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BM09	12	NORM	11/18/2008	< 0.00019 UJ	< 0.00011 U	< 0.000082 UJ	< 0.00007 UJ	< 0.000072 U	< 0.00012 U	< 0.000091 U	< 0.00041 UJ	< 0.00026 UJ	< 0.00035 UJ
WHC1-BM10	0	NORM	11/18/2008	< 0.00019 U	< 0.00011 U	< 0.000083 UJ	< 0.000071 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 UJ	< 0.00026 UJ	< 0.00035 UJ
WHC1-BM10	3	NORM	11/18/2008	< 0.00019 U	< 0.00011 U	< 0.000084 UJ	< 0.000071 U	< 0.000071 U	< 0.00013 U	< 0.000093 U	< 0.00042 UJ	< 0.00027 UJ	< 0.00035 UJ
WHC1-BM10	13	NORM	11/18/2008	< 0.00023 U	< 0.00011 U	< 0.0001 UJ	< 0.000086 U	< 0.00009 U	< 0.00015 U	< 0.00011 U	< 0.0005 UJ	< 0.00032 UJ	< 0.00043 UJ
WHC1-BN01	0	NORM	12/1/2008	< 0.00019 U	< 0.00011 U	< 0.00001 CJ	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000011 U	< 0.00041 U	< 0.00032 UJ	< 0.00035 U
WHC1-BN01	12	NORM	12/1/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 C	< 0.00026 U	< 0.00033 U
WHC1-BN02	0	NORM	12/1/2008	< 0.00019 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.000091 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BN02	0	FD	12/1/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BN02	11	NORM	12/1/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00033 U
WHC1-BN03	0	NORM	12/1/2008	< 0.00018 U	< 0.00011 U		< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 UJ	< 0.00034 U
						< 0.000083 UJ							
WHC1-BN03	10	NORM	12/18/2008	< 0.00018 UJ	< 0.00011 UJ	< 0.000081 UJ	< 0.00007 UJ	< 0.000073 UJ	< 0.00012 UJ	< 0.00009 UJ	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BN04	0	NORM	12/17/2008	< 0.00019 UJ	< 0.00011 U	< 0.000081 UJ	< 0.00007 UJ	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BN04	7	NORM	12/22/2008	< 0.00019 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BN04	17	NORM	12/22/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BN05	0	NORM	11/20/2008	< 0.00018 U	< 0.00011 U	< 0.000079 U	< 0.000068 U	< 0.000071 U	< 0.00012 U	< 0.000088 U	< 0.00039 U	< 0.00025 U	< 0.00033 U
WHC1-BN05	0	FD	11/20/2008	< 0.00018 U	< 0.00011 U	< 0.000079 U	< 0.000068 U	< 0.000071 U	< 0.00012 U	< 0.000088 U	< 0.00039 U	< 0.00025 U	< 0.00034 U
WHC1-BN05	10	NORM	11/20/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BN06	0	NORM	11/20/2008	< 0.00018 U	< 0.00011 U	< 0.000079 U	< 0.000068 U	< 0.000071 U	< 0.00012 U	< 0.000088 U	< 0.00039 U	< 0.00025 U	< 0.00034 U
WHC1-BN06	10	NORM	11/20/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BN07	0	NORM	11/21/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	0.00096 J	< 0.00026 U	0.0034 J
WHC1-BN07	3	NORM	11/21/2008	< 0.00019 UJ	< 0.00011 UJ	< 0.000081 UJ	< 0.00007 UJ	< 0.000073 UJ	< 0.00013 UJ	< 0.000091 UJ	< 0.0004 UJ	< 0.00026 UJ	0.00094 J-
WHC1-BN07	13	NORM	11/21/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00034 U
WHC1-BN08	0	NORM	11/20/2008	< 0.00018 U	< 0.00011 U	< 0.000079 U	< 0.000068 U	< 0.000071 U	< 0.00012 U	< 0.000088 U	< 0.00039 U	< 0.00025 U	< 0.00033 U
WHC1-BN08	10	NORM	11/20/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 81)

Sample Date Companie Companie	obenzene	pane	ine
Depth Sample Sample Control	,2,3-Trichlorobenzene	,2,3-Trichloropropane	,2,4-Trichlorobenzene
WHC1-BN09	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BN09 11 NORM 12/19/2008 < 0.00017 C < 0.00003 C < 0.000071 C < 0.000074 U < 0.000075 U < 0.000075 U	< 0.00041 U	< 0.00028 U	< 0.00033 U
WHC1-BN10	< 0.00043 UJ	< 0.00027 UJ	< 0.00037 U
WHC1-BN10 10 NORM 11/18/2008 < 0.00021 U < 0.00013 U < 0.000094 UJ < 0.000081 U < 0.000084 U < 0.00014 U < 0.00014 U < 0.00014 U	< 0.00043 UJ	< 0.0003 UJ	< 0.0004 UJ
WHC1-BO01	< 0.00047 U3	< 0.0003 U	< 0.0004 U
WHC1-BO01	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BO01 4 NORM 12/2/2008 < 0.00018 U < 0.00011 U < 0.00008 U < 0.00007 U < 0.00007 U < 0.00012 U < 0.00009 U < 0.00007 U < 0.00007 U < 0.00007 U < 0.000012 U < 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BO01 14 NORM 12/2/2008 < 0.00010 U < 0.00011 U < 0.000084 U < 0.00073 U < 0.00076 U < 0.00013 U < 0.00094 U	< 0.0004 U	< 0.00020 U	< 0.00034 U
WHC1-BO02	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BO02 12 NORM 12/1/2008 < 0.00018 U < 0.00011 U < 0.000081 U < 0.000069 U < 0.00073 U < 0.00012 U < 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00031 U
WHC1-BO03	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BO03 12 NORM 12/19/2008 < 0.00018 U < 0.00011 U < 0.000081 U < 0.000069 U < 0.000072 U < 0.00012 U < 0.00009 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BO04	< 0.00041 UJ	< 0.00027 UJ	< 0.00035 UJ
WHC1-BO04 12 NORM 12/19/2008 < 0.00019 U < 0.00011 U < 0.000082 U < 0.00007 U < 0.000073 U < 0.00013 U < 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BO05	< 0.00044 U	< 0.00028 U	< 0.00038 U
WHC1-BO05 10 NORM 11/20/2008 < 0.0002 U < 0.00012 U < 0.00009 U < 0.000077 U < 0.000081 U < 0.00014 U < 0.0001 U	< 0.00045 U	< 0.00029 U	< 0.00038 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.00043 U	< 0.00028 U	< 0.00036 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.00044 U	< 0.00028 U	< 0.00037 U
WHC1-BO07	< 0.00039 UJ	< 0.00025 UJ	< 0.00034 UJ
WHC1-BO07 10 NORM 11/19/2008 < 0.00018 UJ < 0.00011 U < 0.000081 UJ < 0.000069 UJ < 0.000073 U < 0.00012 U < 0.00009 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BO08 0 FD 11/20/2008 $< 0.00018 \text{ U} < 0.00011 \text{ U} < 0.000081 \text{ U} < 0.000069 \text{ U} < 0.000072 \text{ U} < 0.00012 \text{ U} < 0.00009 \text{ U}$	< 0.0004 U	< 0.00026 U	< 0.00034 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.00041 U	< 0.00026 U	< 0.00034 U
WHC1-BO09 0 NORM 11/19/2008 $< 0.00019 \text{ UJ} < 0.00011 \text{ U} < 0.000082 \text{ UJ} < 0.00007 \text{ UJ} < 0.000073 \text{ U} < 0.00013 \text{ U} < 0.000091 \text{ U}$	< 0.00041 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BO09 0 FD $11/19/2008 < 0.00018 \text{ U} < 0.00011 \text{ U} < 0.00008 \text{ U} < 0.000068 \text{ U} < 0.000071 \text{ U} < 0.00012 \text{ U} < 0.000089 \text{ U}$	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BO09 6 NORM 11/19/2008 < 0.00019 UJ < 0.00011 U < 0.000084 UJ < 0.000072 UJ < 0.000075 U < 0.00013 U < 0.000094 U	< 0.00042 UJ	< 0.00027 UJ	< 0.00036 UJ
WHC1-BO09 16 NORM 11/19/2008 < 0.00018 UJ < 0.00011 U < 0.000081 UJ < 0.000069 UJ < 0.000073 U < 0.00012 U < 0.00009 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BO10 0 NORM 11/19/2008 < 0.00018 UJ < 0.00011 U < 0.00008 UJ < 0.000069 UJ < 0.000072 U < 0.00012 U < 0.000089 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BO10 10 NORM $11/19/2008 < 0.00018 U < 0.00011 U < 0.000081 UJ < 0.00007 U < 0.000073 U < 0.00012 U < 0.00009 U$	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BP01 0 NORM $12/1/2008$ < 0.00018 U < 0.000011 U < 0.000081 U < 0.000069 U < 0.000073 U < 0.00012 U < 0.00009 U < 0.00009 U < 0.000073 U < 0.00012 U < 0.00009 U < 0.000009 U < 0.000009 U < 0.000009 U < 0.000	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BP01	< 0.00041 UJ	< 0.00026 UJ	< 0.00035 UJ
WHC1-BP02	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-BP02	< 0.00041 U	< 0.00027 U	< 0.00035 U
WHC1-BP03	< 0.00039 UJ	< 0.00025 UJ	< 0.00034 UJ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BP03 11 NORM 12/19/2008 < 0.00019 U < 0.00011 U < 0.000084 U < 0.000073 U < 0.000076 U < 0.00013 U < 0.000094 U	< 0.00042 U	< 0.00027 U	< 0.00036 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-BP04 12 NORM 12/19/2008 $< 0.00018 \text{ U} < 0.00011 \text{ U} < 0.000081 \text{ UJ} < 0.000069 \text{ U} < 0.000073 \text{ U} < 0.00012 \text{ U} < 0.00009 \text{ U}$	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 81)

					Volatile Organic Compounds (VOCs)								
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene
WHC1-BP05	0	NORM	12/15/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BP05	10	NORM	12/19/2008	< 0.00019 U	< 0.00011 U	< 0.000084 U	< 0.000072 U	< 0.000075 U	< 0.00013 U	< 0.000093 U	< 0.00042 U	< 0.00027 U	< 0.00035 U
WHC1-BP06	0	NORM	12/12/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BP06	10	NORM	12/12/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-BP07	0	NORM	11/20/2008	< 0.0002 U	< 0.00012 U	< 0.000087 U	< 0.000075 U	< 0.000078 U	< 0.00013 U	< 0.000097 U	< 0.00043 U	< 0.00028 U	< 0.00037 U
WHC1-BP07	3	NORM	11/20/2008	< 0.00019 U	< 0.00011 U	< 0.000084 U	< 0.000072 U	< 0.000076 U	< 0.00013 U	< 0.000094 U	< 0.00042 U	< 0.00027 U	< 0.00036 U
WHC1-BP07	13	NORM	11/20/2008	< 0.0002 U	< 0.00012 U	< 0.000086 U	< 0.000074 U	< 0.000077 U	< 0.00013 U	< 0.000096 U	< 0.00043 U	< 0.00027 U	< 0.00036 U
WHC1-BP08	0	NORM	11/19/2008	< 0.00019 U	< 0.00011 U	< 0.000082 UJ	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 UJ	< 0.00026 UJ	< 0.00035 UJ
WHC1-BP08	4	NORM	11/19/2008	< 0.0002 UJ	< 0.00012 U	< 0.000085 UJ	< 0.000073 UJ	< 0.000077 U	< 0.00013 U	< 0.000095 U	< 0.00043 UJ	< 0.00027 UJ	< 0.00036 UJ
WHC1-BP08	14	NORM	11/19/2008	< 0.00019 U	< 0.00011 U	< 0.000083 UJ	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 UJ	< 0.00026 UJ	< 0.00035 UJ
WHC1-BP09	0		11/19/2008	< 0.00018 UJ	< 0.00011 UJ	< 0.000079 UJ	< 0.000068 UJ	< 0.000071 UJ	< 0.00012 UJ	< 0.000089 UJ	< 0.0004 UJ	< 0.00025 UJ	< 0.00034 UJ
WHC1-BP09	10	NORM	11/19/2008	< 0.00019 UJ	< 0.00011 U	< 0.000084 UJ	< 0.000072 UJ	< 0.000075 U	< 0.00013 U	< 0.000093 U	< 0.00042 UJ	< 0.00027 UJ	< 0.00035 UJ
WHC1-BP10	0		11/19/2008	< 0.00018 U	< 0.00011 U	< 0.000079 UJ	< 0.000068 U	< 0.000071 U	< 0.00012 U	< 0.000089 U	< 0.0004 UJ	< 0.00025 UJ	< 0.00034 UJ
WHC1-BP10	10		11/19/2008	< 0.00018 U	< 0.00011 U	< 0.00008 UJ	< 0.000068 U	< 0.000071 U	< 0.00012 U	< 0.000089 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-D01	0	NORM	12/5/2008	< 0.00019 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D01	10	NORM	12/5/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D02	0	NORM	12/5/2008	< 0.00019 U	< 0.00011 U	< 0.000083 U	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-D02	10	NORM	12/5/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-D03	0	NORM	12/5/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-D03	0	FD	12/5/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-D03	10	NORM	12/5/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D04	0	NORM	12/5/2008	< 0.00019 U	< 0.00011 U	< 0.000083 UJ	< 0.000071 U	< 0.000075 U	< 0.00013 U	< 0.000093 U	< 0.00041 UJ	< 0.00027 UJ	< 0.00035 UJ
WHC1-D04	10	NORM	12/5/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D05	0	NORM	12/5/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-D05	10	NORM	12/5/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D06	0	NORM	12/5/2008	< 0.00019 U	< 0.00011 U	< 0.000082 UJ	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 UJ	< 0.00026 UJ	< 0.00035 UJ
WHC1-D06	10	NORM	12/5/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D07	0	NORM	12/5/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D07	10	NORM	12/5/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D08	0	NORM	12/8/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00031 U
WHC1-D08	10	NORM	12/9/2008	< 0.0002 U	< 0.00011 U	< 0.000086 U	< 0.000074 U	< 0.000072 U	< 0.00012 U	< 0.000096 U	< 0.00043 U	< 0.00028 U	< 0.00031 U
WHC1-D09	0	NORM	12/8/2008	< 0.00018 U	< 0.00012 U	< 0.000081 U	< 0.000074 U	< 0.000077 U	< 0.00013 U	< 0.00009 U	< 0.00043 C	< 0.00026 U	< 0.00034 U
WHC1-D09	11	NORM	12/9/2008	< 0.00019 U	< 0.00011 U	< 0.000085 U	< 0.000073 U	< 0.000072 U	< 0.00012 U	< 0.000094 U	< 0.00042 U	< 0.00027 U	< 0.00031 U
WHC1-D10	0	NORM	12/8/2008	< 0.00019 U	< 0.00011 U	< 0.00008 U	< 0.000073 U	< 0.000070 U	< 0.00013 U	< 0.000094 C	< 0.00042 C	< 0.00027 U	< 0.00034 U
WHC1-D10	10	NORM	12/9/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D11	0	NORM	12/8/2008	< 0.00019 U	< 0.00011 U	< 0.000081 UJ	< 0.00007 U	< 0.000075 U	< 0.00012 U	< 0.000094 U	< 0.0004 UJ	< 0.00027 UJ	0.00095 J
WHC1-D11	10	NORM	12/9/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.000072 C	< 0.000073 U	< 0.00013 U	< 0.000094 U	< 0.00042 U	< 0.00027 C3	< 0.00035 U
WHC1-D12	0	NORM	12/10/2008	< 0.00017 C	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00028 U	< 0.00033 U
W11C1-D12	U	TACKM	12/10/2000	< 0.000∠ U	< 0.00012 U	< 0.000000 U	< 0.000070 U	< 0.000079 U	< 0.00014 U	< 0.000038 U	< 0.000 44 U	< 0.000∠6 U	< 0.00037 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 7 of 81)

					Volatile Organic Compounds (VOCs)								
				e e		ē							
				I, I, I, 2-Tetrachloroethane	4)	.,1,2,2-Tetrachloroethane	4)				ne	ne	ne
)et	ane	bet	ane	d)	d)	ne	IZel	раі	Izel
				lor	eth	lor	sth .	lan	ien	obe	ber	pro	ber
				ıch	010	chi	OTO	eth	eth	prc	orol	oro	orol
				etrz	hlc	etr:	l ji	oro	oro	orc	l ji	hlc	l ji
				T-T	Pi:	Ĕ	Pri	chl	chl	chl	Pri	l'ii.	Pric
	Depth	Sample	Sample	1,2	7	2,2	,1,2-Trichloroethane	Ä	ΞĞ	, 1-Dichloropropene	.2,3-Trichlorobenzene	3-1	,2,4-Trichlorobenzene
Sample ID	(ft bgs)	Type	Date	1,1,	i, I, I-Trichloroethane	1,1,	1,1,	i, 1-Dichloroethane	I, I-Dichloroethene	-1,	1,2,	1,2,3-Trichloropropane	1,2,
WHC1-D12	10	NORM	12/10/2008	< 0.00025 U	< 0.00015 U	< 0.00011 U	< 0.000095 U	< 0.0001 U	< 0.00017 U	< 0.00012 U	< 0.00055 U	< 0.00036 U	< 0.00047 U
WHC1-D13	0	NORM	12/8/2008	< 0.00019 U	< 0.00011 U	< 0.000083 UJ	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 UJ	< 0.00026 UJ	< 0.00035 UJ
WHC1-D13	10	NORM	12/8/2008	< 0.00024 U	< 0.00014 U	< 0.00011 U	< 0.00009 U	< 0.000094 U	< 0.00016 U	< 0.00012 U	< 0.00052 U	< 0.00034 U	< 0.00044 U
WHC1-D15	0	NORM	12/11/2008	< 0.00019 UJ	< 0.00011 U	R	< 0.00007 UJ	< 0.000074 U	< 0.00013 U	< 0.000091 U	R	R	R
WHC1-D15	10	NORM	12/11/2008	< 0.00023 U	< 0.00014 U	< 0.0001 U	< 0.000087 U	< 0.000091 U	< 0.00016 U	< 0.00011 U	< 0.0005 U	< 0.00032 U	< 0.00043 U
WHC1-D16	0	NORM	12/10/2008	< 0.0002 U	< 0.00012 U	< 0.000086 U	< 0.000074 U	< 0.000077 U	< 0.00013 U	< 0.000095 U	< 0.00043 U	< 0.00027 U	< 0.00036 U
WHC1-D16	10	NORM	12/10/2008	< 0.00021 U	< 0.00012 U	< 0.000091 U	< 0.000078 U	< 0.000082 U	< 0.00014 U	< 0.0001 U	< 0.00045 U	< 0.00029 U	< 0.00039 U
WHC1-D17	0	NORM	12/10/2008	< 0.00019 U	< 0.00011 U	< 0.000085 U	< 0.000073 U	< 0.000077 U	< 0.00013 U	< 0.000095 U	< 0.00042 U	< 0.00027 U	< 0.00036 U
WHC1-D17	10	NORM	12/10/2008	< 0.0002 U	< 0.00012 U	< 0.000089 U	< 0.000077 U	< 0.00008 U	< 0.00014 U	< 0.0001 U	< 0.00044 U	< 0.00029 U	< 0.00038 U
WHC1-D18	0	NORM	12/11/2008	< 0.00018 U	< 0.00011 U	< 0.00008 UJ	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-D18	10	NORM	12/11/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D19	0	NORM	12/11/2008	< 0.00019 U	< 0.00011 U	< 0.000082 UJ	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 UJ	< 0.00026 UJ	< 0.00035 UJ
WHC1-D19	0	FD	12/11/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D19	10	NORM	12/11/2008	< 0.00019 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.000091 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D20	0	NORM	12/12/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D20	10		12/12/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D21	0	NORM	12/16/2008	< 0.00019 U	< 0.00011 U	< 0.000083 UJ	< 0.000072 U	< 0.000075 U	< 0.00013 U	< 0.000093 U	< 0.00041 UJ	< 0.00027 UJ	< 0.00035 UJ
WHC1-D21	10	NORM	12/16/2008	< 0.00019 U	< 0.00011 U	< 0.000082 UJ	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 UJ	< 0.00026 UJ	< 0.00035 UJ
WHC1-D22	0	NORM	12/16/2008	< 0.00022 U	< 0.00013 U	< 0.000095 UJ	< 0.000082 U	< 0.000085 U	< 0.00015 U	< 0.00011 U	< 0.00047 UJ	< 0.0003 UJ	< 0.0004 UJ
WHC1-D22	10		12/16/2008	< 0.00019 U	< 0.00011 U	< 0.000084 U	< 0.000072 U	< 0.000075 U	< 0.00013 U	< 0.000094 U	< 0.00042 U	< 0.00027 U	< 0.00036 U
WHC1-D23	0	NORM	12/16/2008	< 0.00019 UJ	< 0.00011 U	< 0.000082 UJ	< 0.000071 UJ	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 UJ	< 0.00026 UJ	< 0.00035 UJ
WHC1-D23	10		12/16/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D24	0	NORM	12/16/2008	< 0.00019 UJ	< 0.00011 U	< 0.000084 UJ	< 0.000072 UJ	< 0.000076 U	< 0.00013 U	< 0.000094 U	< 0.00042 UJ	< 0.00027 UJ	< 0.00036 UJ
WHC1-D24	0	FD	12/16/2008	< 0.00019 U	< 0.00011 U	< 0.000085 UJ	< 0.000073 U	< 0.000076 U	< 0.00013 U	< 0.000094 U	< 0.00042 UJ	< 0.00027 UJ	< 0.00036 UJ
WHC1-D24	10	NORM	12/16/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-D25	0	NORM	12/16/2008	< 0.00019 UJ	< 0.00011 U	< 0.000083 UJ	< 0.000071 UJ	< 0.000075 U	< 0.00013 U	< 0.000093 U	< 0.00041 UJ	< 0.00027 UJ	< 0.00035 UJ
WHC1-D25	10	NORM	12/16/2008	< 0.00019 U	< 0.00011 U	< 0.000082 UJ	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 UJ	< 0.00026 UJ	< 0.00035 UJ
WHC1-D26	0	NORM	12/12/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D26	10	NORM	12/12/2008	< 0.0002 U	< 0.00012 U	< 0.000087 U	< 0.000075 U	< 0.000078 U	< 0.00013 U	< 0.000097 U	< 0.00043 U	< 0.00028 U	< 0.00037 U
WHC1-D27	0	NORM	12/12/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-D27	0	FD	12/12/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-D27	10	NORM	12/12/2008	< 0.00021 U	< 0.00012 U	< 0.00009 U	< 0.000078 U	< 0.000081 U	< 0.00014 U	< 0.0001 U	< 0.00045 U	< 0.00029 U	< 0.00038 U
WHC1-D28	0	NORM	12/12/2008	< 0.00019 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.000091 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-D28	10		12/12/2008	< 0.00019 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00034 U
WHC1-D29	0		12/12/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-D29	10		12/12/2008	< 0.00019 U	< 0.00011 U	< 0.000083 U	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 U	< 0.00027 U	< 0.00035 U
WHC1-P01	0		12/15/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P01	12	NORM	12/19/2008	< 0.00019 UJ	< 0.00011 U	< 0.000081 UJ	< 0.00007 UJ	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 8 of 81)

				l .	Volatile Organic Compounds (VOCs)								
				e e		e							
				han	4)	han	•				ne	ne	ne
				oetl	ane	oetl	ane	n	40	ne	.2,3-Trichlorobenzene	раг	,2,4-Trichlorobenzene
				lorc	sth	lorc	ethe	ane	en	obe	эеп	pro	Jen
				.ch]	0106	.ch]	oro(eth	eth	prc	orol	oro]	orol
				ıtra	hlc	ıtra	hlc	oro	OTO	oro	hlc	hlc	hlc
				-T-	řic	-Te	ric	hlc	Ä	hlc	ric	řic	řic
	Depth	Sample	Sample	1,2	I-1	2,2	Z-7	Dic	Dic	Dic	3-T	3-T	T-4
Sample ID	(ft bgs)	Type	Date	I, I, I, 2-Tetrachloroethane	I, I, I-Trichloroethane	i, 1,2,2-Tetrachloroethane	,1,2-Trichloroethane	i, 1-Dichloroethane	1,1-Dichloroethene	, I-Dichloropropene	2,	i,2,3-Trichloropropane	,2, [*]
WHC1-P02	0	NORM	12/1/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P02	10	NORM	12/1/2008	< 0.00018 U	< 0.00011 U	< 0.000079 U	< 0.000068 U	< 0.000071 U	< 0.00012 U	< 0.000089 U	< 0.00039 U	< 0.00025 U	< 0.00034 U
WHC1-P03	0	NORM	12/15/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P03	3	NORM	12/18/2008	< 0.00018 UJ	< 0.00011 U	< 0.00008 UJ	< 0.000069 UJ	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-P03	3	FD	12/18/2008	< 0.00018 U	< 0.00011 U	< 0.00008 UJ	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-P03	13	NORM	12/18/2008	< 0.00019 UJ	< 0.00011 UJ	< 0.000081 UJ	< 0.00007 UJ	< 0.000073 UJ	< 0.00012 UJ	< 0.000091 UJ	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-P04	0	NORM	12/15/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P04	10	NORM	12/18/2008	< 0.00019 UJ	< 0.00011 UJ	< 0.000083 UJ	< 0.000071 UJ	< 0.000074 UJ	< 0.00013 UJ	< 0.000092 UJ	< 0.00041 UJ	< 0.00027 UJ	< 0.00035 UJ
WHC1-P05	0	NORM	12/8/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-P05	0	FD	12/8/2008	< 0.00019 U	< 0.00011 U	< 0.000081 UJ	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ
WHC1-P05	10	NORM	12/18/2008	< 0.00019 U	< 0.00011 U	< 0.000083 U	< 0.000072 U	< 0.000075 U	< 0.00013 U	< 0.000093 U	< 0.00041 U	< 0.00027 U	< 0.00035 U
WHC1-P06	0	NORM	12/2/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P06	12	NORM	12/2/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P07	0	NORM	12/2/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P07	3	NORM	12/2/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P07	13	NORM	12/2/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P08	0	NORM	12/3/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P08	11	NORM	12/3/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P09	0	NORM	12/4/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P09	0	FD	12/4/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-P09	10	NORM	12/4/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P10	0	NORM	11/25/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000068 U	< 0.000071 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P10	10	NORM	11/25/2008	< 0.00022 U	< 0.00013 U	< 0.000095 U	< 0.000082 U	< 0.000085 U	< 0.00015 U	< 0.00011 U	< 0.00047 U	< 0.0003 U	< 0.0004 U
WHC1-P11	0	NORM	12/8/2008	< 0.00019 UJ	< 0.00011 U	R	< 0.00007 UJ	< 0.000073 U	< 0.00013 U	< 0.000091 U	0.0022 J	R	0.0038 J
WHC1-P11	0	FD	12/8/2008	< 0.00018 U	< 0.00011 U	< 0.000081 UJ	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	0.00091 J	< 0.00026 UJ	0.0015 J
WHC1-P11	10	NORM	12/9/2008	< 0.0002 U	< 0.00012 U	< 0.000086 U	< 0.000074 U	< 0.000077 U	< 0.00013 U	< 0.000096 U	< 0.00043 U	< 0.00027 U	< 0.00036 U
WHC1-P12	0	NORM	12/5/2008	< 0.00019 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00034 U
WHC1-P12	11	NORM	12/5/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P13	0	NORM	12/9/2008	< 0.00019 U	< 0.00011 U	< 0.000081 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00034 U
WHC1-P13	10	NORM	12/9/2008	< 0.00026 U	< 0.00015 U	< 0.00011 U	< 0.000098 U	< 0.0001 U	< 0.00018 U	< 0.00013 U	< 0.00057 U	< 0.00037 U	< 0.00048 U
WHC1-P13	10	FD	12/9/2008	< 0.00023 U	< 0.00014 U	< 0.0001 U	< 0.000087 U	< 0.000091 U	< 0.00016 U	< 0.00011 U	< 0.00051 U	< 0.00033 U	< 0.00043 U
WHC1-P14	0	NORM	12/17/2008	< 0.00021 U	< 0.00013 U	< 0.000094 UJ	< 0.000081 U	< 0.000084 U	< 0.00014 U	< 0.0001 U	< 0.00047 UJ	< 0.0003 UJ	< 0.0004 UJ
WHC1-P15	0	NORM	12/8/2008	< 0.00019 U	< 0.00011 U	< 0.000084 UJ	< 0.000073 U	< 0.000076 U	< 0.00013 U	< 0.000094 U	< 0.00042 UJ	< 0.00027 UJ	< 0.00036 UJ
WHC1-P15	1.5	NORM	12/8/2008	< 0.00019 U	< 0.00011 U	< 0.000084 U	< 0.000072 U	< 0.000075 U	< 0.00013 U	< 0.000094 U	< 0.00042 U	< 0.00027 U	< 0.00036 U
WHC1-P15	10		12/18/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.000071 U	< 0.000074 U	< 0.00013 U	< 0.000092 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-P16	0	NORM	12/1/2008	< 0.00092 U	< 0.00054 U	< 0.0004 U	< 0.00035 U	< 0.00036 U	< 0.00062 U	< 0.00045 U	< 0.002 U	< 0.0013 U	< 0.0017 U
WHC1-P16	11	NORM	12/1/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000068 U	< 0.000072 U	< 0.00012 U	< 0.000089 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P17	0	NORM	12/15/2008	< 0.00019 UJ	< 0.00011 U	< 0.000081 UJ	< 0.00007 UJ	< 0.000073 U	< 0.00012 U	< 0.000091 U	< 0.0004 UJ	< 0.00026 UJ	< 0.00034 UJ

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 9 of 81)

							Vo	latile Organic C	Compounds (VO	Cs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	, 1, 1, 2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	i, 1,2-Trichloroethane	, I-Dichloroethane	i, I-Dichloroethene	i, I-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	,2,4-Trichlorobenzene
WHC1-P17	12	NORM	12/19/2008	< 0.00019 U	< 0.00011 U	< 0.000082 U	< 0.00007 U	< 0.000073 U	< 0.00013 U	< 0.000091 U	< 0.00041 U	< 0.00026 U	< 0.00035 U
WHC1-P17	12	FD	12/19/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000073 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P18	0	NORM	12/1/2008	< 0.00018 U	< 0.00011 U	< 0.000081 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U
WHC1-P18	12	NORM	12/1/2008	< 0.00018 U	< 0.00011 U	< 0.00008 U	< 0.000069 U	< 0.000072 U	< 0.00012 U	< 0.00009 U	< 0.0004 U	< 0.00026 U	< 0.00034 U

All units in mg/kg.

= Data not included in risk assessment. Sample location covered with fill material (see text).

⁻⁻ = no sample data.

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 10 of 81)

				Volatile Organic Compounds (VOCs)								
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	,2,4-Trimethylbenzene	,2-Dichlorobenzene	,2-Dichloroethane	i,2-Dichloroethene	,2-Dichloropropane	,3,5-Trichlorobenzene	,3,5-Trimethylbenzene	1,3-Dichlorobenzene	,3-Dichloropropane
OSC1-BM11	(It bgs)	NORM	9/21/2009	< 0.00041 U	< 0.00037 U	< 0.00034 U	< 0.00065 U	< 0.00039 U	< 0.00053 U	< 0.00026 U	< 0.00046 U	< 0.00043 U
OSC1-BM11	10	NORM	9/21/2009	< 0.00041 U	< 0.00037 U	< 0.00034 U	< 0.00003 U	< 0.00034 U	< 0.0005 U	< 0.00020 U	< 0.00040 U	< 0.00043 U
OSC1-BN11	0	NORM	9/22/2009	< 0.00047 C	< 0.00036 U	< 0.00033 U	< 0.00063 U	< 0.00037 U	< 0.00051 U	< 0.00025 U	< 0.00044 U	< 0.00043 U
OSC1-BN11	5	NORM	9/22/2009	< 0.0004 U	< 0.00038 U	< 0.00033 U	< 0.00065 U	< 0.00037 U	< 0.00051 U	< 0.00025 U	< 0.00044 U	< 0.00042 U
OSC1-BO11	0	NORM	9/16/2009	< 0.00042 U	< 0.00038 U	< 0.00034 U	< 0.00067 U	< 0.0003 C	< 0.00054 U	< 0.00020 U	< 0.00047 U	< 0.00043 U
OSC1-BO11	0	FD	9/16/2009	< 0.00042 U	< 0.00038 C	< 0.00034 U	< 0.0007 U	< 0.0004 U	< 0.00054 U	< 0.00027 U	< 0.0005 U	< 0.00047 U
OSC1-BO11	5	NORM	9/16/2009	< 0.0005 U	< 0.00041 U	< 0.00037 U	< 0.00072 U	< 0.00042 U	< 0.00058 U	< 0.00032 U	< 0.0005 U	< 0.00052 U
OSC1-BP11	0	NORM	9/16/2009	< 0.00049 U	< 0.00045 U	< 0.0004 U	< 0.00078 U	< 0.00047 C	< 0.00064 U	< 0.00032 U	< 0.00055 U	< 0.00052 U
OSC1-BP11	5	NORM	9/16/2009	< 0.00053 U	< 0.00045 U	< 0.0004 U	< 0.00076 U	< 0.0005 U	< 0.00068 U	< 0.00031 U	< 0.00059 U	< 0.00051 U
OSC1-JP06	0	NORM	9/22/2009	< 0.00049 U	< 0.00044 U	< 0.00045 C	< 0.00077 U	< 0.00045 U	< 0.00062 U	< 0.00034 U	< 0.00054 U	< 0.00055 U
OSC1-JP06	5	NORM	9/22/2009	< 0.00054 U	< 0.00049 U	< 0.0004 U	< 0.00086 U	< 0.00051 U	< 0.0007 U	< 0.00031 U	< 0.0006 U	< 0.00057 U
OSC1-JP07	0	NORM	9/21/2009	< 0.00034 U	< 0.00038 U	< 0.00034 U	< 0.00067 U	< 0.0004 U	< 0.00054 U	< 0.00034 U	< 0.00047 U	< 0.00044 U
OSC1-JP07	5	NORM	9/21/2009	< 0.00049 U	< 0.00045 U	< 0.0004 U	< 0.00078 U	< 0.00046 U	< 0.00063 U	< 0.00021 U	< 0.00055 U	< 0.00011 U
OSC1-JP08	0	NORM	9/21/2009	< 0.00047 U	< 0.00042 U	< 0.00038 U	< 0.00074 U	< 0.00044 U	< 0.0006 U	< 0.00031 U	< 0.00052 U	< 0.00031 U
OSC1-JP08	10	NORM	9/21/2009	< 0.00049 U	< 0.00044 U	< 0.0004 U	< 0.00077 U	< 0.00046 U	< 0.00063 U	< 0.00031 U	< 0.00054 U	< 0.00051 U
WHC1-BF01	0	NORM	11/24/2008	< 0.00013 UJ	< 0.00012 UJ	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00037 UJ	< 0.000098 UJ	< 0.00013 UJ	< 0.000051 UJ
WHC1-BF01	12		11/24/2008	< 0.00014 UJ	< 0.00012 UJ	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 UJ
WHC1-BF02	0	NORM	11/25/2008	0.0024 J	< 0.00015 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00037 U	0.0006 J	< 0.00013 U	< 0.000052 U
WHC1-BF02	11	NORM	11/25/2008	< 0.00014 U	< 0.00016 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BF03	0	NORM	11/25/2008	< 0.00014 U	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-BF03	10	NORM	11/25/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BF04	0	NORM	11/25/2008	< 0.00014 U	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-BF04	0	FD	11/25/2008	< 0.00014 U	< 0.00013 U	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 U	< 0.0001 U	< 0.00014 U	< 0.000055 U
WHC1-BF04	10	NORM	11/25/2008	< 0.00014 U	< 0.00013 U	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 U	< 0.0001 U	< 0.00014 U	< 0.000055 U
WHC1-BF05	0	NORM	11/25/2008	< 0.0052 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BF05	12	NORM	12/10/2008	< 0.0071 UJ	< 0.00017 UJ	< 0.000094 U	< 0.00015 U	< 0.00016 U	< 0.00053 UJ	< 0.00014 UJ	< 0.00019 UJ	< 0.000073 U
WHC1-BF06	0	NORM	12/10/2008	< 0.0052 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BF06	10	NORM	12/10/2008	< 0.0068 U	< 0.00016 U	< 0.00009 U	< 0.00015 U	< 0.00015 U	< 0.0005 U	< 0.00013 U	< 0.00018 U	< 0.000069 U
WHC1-BG01	0	NORM	11/24/2008	0.0014 J	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00037 U	0.00031 J	< 0.00013 U	< 0.000052 U
WHC1-BG01	11	NORM	11/24/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 U
WHC1-BG02	0	NORM	11/24/2008	< 0.00029 UJ	< 0.00012 UJ	< 0.000067 UJ	< 0.00011 UJ	< 0.00011 UJ	< 0.00038 UJ	< 0.00011 UJ	< 0.00013 UJ	< 0.000052 UJ
WHC1-BG02	0	FD	11/24/2008	0.0013 J	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	0.00026 J	< 0.00013 U	< 0.000052 U
WHC1-BG02	10	NORM	11/24/2008	0.0017 J	0.0026 J	R	R	R	R	0.0001 J	0.0027 J	R
WHC1-BG03	0	NORM	12/11/2008	< 0.00016 U	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00037 U	< 0.000098 U	< 0.00013 U	< 0.000052 U
WHC1-BG03	11	NORM	12/11/2008	< 0.00015 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00013 U	< 0.000052 U
WHC1-BG04	0	NORM	12/11/2008	< 0.00013 U	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00037 U	< 0.000098 U	< 0.00013 U	< 0.000052 U
WHC1-BG04	10	NORM	12/11/2008	0.0002 J	< 0.00016 UJ	< 0.000087 U	< 0.00014 U	< 0.00015 U	< 0.00049 UJ	< 0.00013 UJ	< 0.00017 UJ	< 0.000067 U
WHC1-BG05	0	NORM	11/25/2008	< 0.00037 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 11 of 81)

				Volatile Organic Compounds (VOCs)								
				benzene	ızene	ane	ene	pane	oenzene	benzene	ızene	pane
				.2,4-Trimethylbenzene	,2-Dichlorobenzene	,2-Dichloroethane	,2-Dichloroethene	.2-Dichloropropane	,3,5-Trichlorobenzene	5-Trimethylbenzene	1,3-Dichlorobenzene	,3-Dichloropropane
	Depth	Sample	Sample	2,4-7	2-Di	2-Di	2-Di	2-Di	3,5-5	,3,5-	3-Di	3-Di
Sample ID	(ft bgs)	Type	Date	1,	1	1		1,		1		
WHC1-BG05	10		11/25/2008	< 0.00015 U	< 0.00014 U	< 0.000076 U	< 0.00012 U	< 0.00013 U	< 0.00042 U	< 0.00011 U	< 0.00015 U	< 0.000058 U
WHC1-BG06	0		12/10/2008	< 0.0052 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BG06	10		12/10/2008	< 0.0063 U	0.0012 J	< 0.000083 U	< 0.00014 U	< 0.00014 U	< 0.00047 U	< 0.00012 U	< 0.00017 U	< 0.000064 U
WHC1-BH01	0	NORM	12/3/2008	< 0.00014 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00013 U	< 0.000053 U
WHC1-BH01	11	NORM	12/3/2008	0.00036 J	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BH02	0	NORM	12/4/2008	< 0.00026 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BH02	10	NORM	12/4/2008	< 0.0002 U	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-BH03	0	NORM	12/9/2008	< 0.00014 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-BH03	10	NORM	12/9/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BH04	0			0.00045 J	< 0.00012 UJ	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.000099 UJ	< 0.00013 UJ	< 0.000052 U
WHC1-BH04	10		12/11/2008	< 0.00015 UJ	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BH05	0	NORM	12/9/2008	< 0.00014 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BH05	0	FD	12/9/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BH05	10	NORM	12/9/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BH06	0	NORM	12/11/2008	0.00027 J	< 0.00013 UJ	< 0.000073 U	< 0.00012 U	< 0.00012 U	< 0.00041 UJ	< 0.00011 UJ	< 0.00014 UJ	< 0.000056 U
WHC1-BH06	0	FD	12/11/2008	0.0002 J	< 0.00013 U	< 0.000072 U	< 0.00012 U	< 0.00012 U	< 0.0004 U	< 0.00011 U	< 0.00014 U	< 0.000055 U
WHC1-BH06	10	NORM	12/11/2008	< 0.00017 U	0.0004 J	< 0.000076 U	< 0.00012 U	< 0.00013 U	< 0.00042 U	< 0.00011 U	< 0.00015 U	< 0.000058 U
WHC1-BI01	0	NORM	12/3/2008	< 0.00015 U	< 0.00013 U	< 0.000072 U	< 0.00012 U	< 0.00012 U	< 0.00041 U	< 0.00011 U	< 0.00014 U	< 0.000056 U
WHC1-BI01	11	NORM	12/3/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BI02	0	NORM	12/4/2008	< 0.00031 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BI02	3	NORM	12/4/2008	< 0.00029 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00013 U	< 0.000052 U
WHC1-BI02	13	NORM	12/4/2008	< 0.00029 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00013 U	< 0.000052 U
WHC1-BI03	0	NORM	12/4/2008	< 0.00026 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BI03	11	NORM	12/4/2008	< 0.0003 U	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-BI04	0	NORM	12/8/2008	< 0.0002 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-BI04	10	NORM	12/9/2008	< 0.00014 U	< 0.00013 U	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BI05	0	NORM	12/9/2008	< 0.00014 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00013 U	< 0.000053 U
WHC1-BI05	10	NORM	12/9/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BJ01	0	NORM	12/3/2008	0.00042 J	< 0.00018 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BJ01	3	NORM	12/3/2008	< 0.00014 U	< 0.0002 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BJ01	13	NORM	12/3/2008	< 0.00014 U	< 0.00015 U	< 0.00007 U	< 0.00012 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BJ02	0	NORM	12/2/2008	0.00074 J	< 0.00013 UJ	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 UJ	0.00013 J	< 0.00014 UJ	< 0.000053 U
WHC1-BJ02	0	FD	12/2/2008	0.00072 J	< 0.00013 UJ	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 UJ	0.00015 J	< 0.00014 UJ	< 0.000053 U
WHC1-BJ02	12	NORM	12/2/2008	0.00041 J	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.00039 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-BJ03	0	FD	12/4/2008	< 0.00014 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00013 U	< 0.000052 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.00023 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BJ04	0	NORM	12/4/2008	< 0.00025 U	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 12 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,2,4-Trimethylbenzene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethene	1,2-Dichloropropane	1,3,5-Trichlorobenzene	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane
WHC1-BJ04	11	NORM	12/4/2008	< 0.00023 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BJ05	0	NORM	12/11/2008	< 0.00014 UJ	< 0.00012 UJ	< 0.000067 UJ	< 0.00011 UJ	< 0.00011 UJ	< 0.00038 UJ	< 0.000099 UJ	< 0.00013 UJ	< 0.000052 UJ
WHC1-BJ05	10	NORM	12/11/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BK01	0	NORM	12/3/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BK01	0	FD	12/3/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BK01	10	NORM	12/3/2008	< 0.00014 U	< 0.00013 U	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BK02	0	NORM	12/8/2008	< 0.00019 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00013 U	< 0.000052 U
WHC1-BK02	11	NORM	12/18/2008	< 0.00014 U	< 0.00013 U	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BK03	0	NORM	12/15/2008	< 0.00014 UJ	< 0.00012 UJ	< 0.000068 UJ	< 0.00011 UJ	< 0.00011 UJ	< 0.00038 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 UJ
WHC1-BK03	12	NORM	12/18/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000054 U
WHC1-BK04	0	NORM	12/4/2008	< 0.00019 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BK04	10	NORM	12/4/2008	< 0.00018 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BK05	0	NORM	12/12/2008	< 0.00014 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-BK05	11	NORM	12/12/2008	< 0.00014 U	< 0.00018 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BL01	0	NORM	12/3/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BL01	10	NORM	12/3/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BL02	0	NORM	12/2/2008	< 0.00022 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BL02	10	NORM	12/2/2008	< 0.00021 U	< 0.00013 U	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 U	< 0.00011 U	< 0.00014 U	< 0.000055 U
WHC1-BL03	0	NORM	12/8/2008	< 0.00014 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BL03	10	NORM	12/18/2008	< 0.00032 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BL04	0	NORM	12/17/2008	< 0.00023 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BL04	12	NORM	12/22/2008	< 0.0003 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BL05	0	NORM	11/21/2008	< 0.00014 U	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-BL05	10	NORM	11/21/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BL06	0	NORM	11/21/2008	< 0.00014 U	< 0.0051 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-BL06	11	NORM	11/21/2008	< 0.00014 U	< 0.00013 U	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BL07	0	NORM	11/21/2008	< 0.00014 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00013 U	< 0.000052 U
WHC1-BL07	10	NORM	11/21/2008	< 0.00018 U	< 0.00016 U	< 0.000087 U	< 0.00014 U	< 0.00014 U	< 0.00049 U	< 0.00013 U	< 0.00017 U	< 0.000067 U
WHC1-BL08	0		11/18/2008	< 0.0053 U	< 0.0053 U	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BL08	10	NORM	11/18/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000054 U
WHC1-BL11	0		11/18/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 U
WHC1-BL11	12	NORM	11/18/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000054 U
WHC1-BM01	0	NORM	12/3/2008	< 0.00014 U	< 0.00013 U	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BM01	10	NORM	12/3/2008	0.00039 J	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BM02	0	NORM	12/2/2008	< 0.0002 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BM02	12	NORM	12/2/2008	< 0.00024 U	< 0.00013 U	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BM03	0	NORM	12/8/2008	< 0.00028 UJ	< 0.00012 UJ	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00013 UJ	< 0.000052 U
WHC1-BM03	10	NORM	12/18/2008	< 0.00014 U	< 0.00013 U	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 U	< 0.0001 U	< 0.00014 U	< 0.000055 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 13 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,2,4-Trimethylbenzene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethene	1,2-Dichloropropane	1,3,5-Trichlorobenzene	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane
WHC1-BM04	0	NORM	12/17/2008	< 0.00023 UJ	< 0.00013 UJ	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 UJ
WHC1-BM04	0	FD	12/17/2008	< 0.00025 UJ	< 0.00013 UJ	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 UJ
WHC1-BM04	10	NORM	12/22/2008	< 0.0003 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BM05	0	NORM	11/21/2008	0.00069 J	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00037 U	< 0.000098 U	< 0.00013 U	< 0.000051 U
WHC1-BM05	10	NORM	11/21/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BM06	0	NORM	11/21/2008	< 0.00014 U	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-BM06	0	FD	11/21/2008	< 0.00014 U	< 0.00013 U	< 0.000072 U	< 0.00012 U	< 0.00012 U	< 0.0004 U	< 0.00011 U	< 0.00014 U	< 0.000056 U
WHC1-BM06	10	NORM	11/21/2008	< 0.00014 U	< 0.0052 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BM07	0	NORM	11/20/2008	< 0.00014 U	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-BM07	11		11/20/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BM08	0	NORM	11/18/2008	< 0.00014 UJ	< 0.00012 UJ	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 UJ
WHC1-BM08	0	FD	11/18/2008	< 0.00015 U	< 0.0058 U	< 0.00076 U	< 0.00012 U	< 0.00013 U	< 0.00043 U	< 0.00011 U	< 0.00015 U	< 0.000059 U
WHC1-BM08	11	NORM	11/18/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000055 U
WHC1-BM09	0		11/18/2008	< 0.00014 UJ	< 0.00012 UJ	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 UJ
WHC1-BM09	12		11/18/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 UJ
WHC1-BM10	0		11/18/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000054 U
WHC1-BM10	3	NORM	11/18/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000055 U
WHC1-BM10	13		11/18/2008	< 0.00017 UJ	< 0.00016 UJ	< 0.000085 U	< 0.00014 U	< 0.00014 U	< 0.00048 UJ	< 0.00013 UJ	< 0.00017 UJ	< 0.000066 U
WHC1-BN01	0	NORM	12/1/2008	0.00051 J	< 0.00013 U	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BN01	12	NORM	12/1/2008	0.00067 J	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	0.00025 J	< 0.00014 U	< 0.000053 U
WHC1-BN02	0	NORM	12/1/2008	0.00034 J	< 0.00013 U	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BN02	0	FD	12/1/2008	0.00032 J	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BN02	11	NORM	12/1/2008	0.00047 J	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00013 U	< 0.000053 U
WHC1-BN03	0	NORM	12/17/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000054 U
WHC1-BN03	10	NORM	12/18/2008	< 0.00022 UJ	< 0.00013 UJ	< 0.000068 UJ	< 0.00011 UJ	< 0.00011 UJ	< 0.00038 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 UJ
WHC1-BN04	0	NORM	12/17/2008	< 0.00019 UJ	< 0.00013 UJ	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 UJ
WHC1-BN04	7	NORM	12/22/2008	< 0.00039 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BN04	17	NORM	12/22/2008	< 0.00029 U	< 0.00013 U	< 0.00007 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BN05	0		11/20/2008	< 0.00013 U	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00037 U	< 0.000098 U	< 0.00011 U	< 0.000051 U
WHC1-BN05	0	FD	11/20/2008	< 0.00013 U	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00037 U	< 0.000099 U	< 0.00013 U	< 0.000051 U
WHC1-BN05	10		11/20/2008	< 0.00014 U	< 0.00012 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BN06	0		11/20/2008	< 0.00041 U	< 0.00017 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.00009 U	< 0.00011 U	< 0.000051 U
WHC1-BN06	10		11/20/2008	< 0.00013 U	< 0.00012 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00013 U	< 0.000052 U
WHC1-BN07	0		11/21/2008	< 0.00011 U	< 0.00011 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00011 U	< 0.000053 U
WHC1-BN07	3		11/21/2008	< 0.00011 UJ	< 0.00013 UJ	< 0.000069 UJ	< 0.00011 UJ	< 0.00011 UJ	< 0.00039 UJ	< 0.0001 UJ	< 0.00011 UJ	< 0.000053 UJ
WHC1-BN07	13		11/21/2008	< 0.00011 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00011 U	< 0.000053 U
WHC1-BN08	0		11/20/2008	< 0.00053 U	< 0.00013 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00037 U	< 0.000098 U	< 0.00011 U	< 0.000053 U
WHC1-BN08	10		11/20/2008	< 0.00014 U	< 0.00015 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
	m i AM	17711111			V.W.W.Y.V. C	0.000000	M.Y.Y.Y. 1		V. V	M.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V		7.444444

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 14 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
				ne					Je	ne		
				2,4-Trimethylbenzene	sne	e	o,	me	,3,5-Trichlorobenzene	,3,5-Trimethylbenzene	sne	me
				lbe	,2-Dichlorobenzene	,2-Dichloroethane	I,2-Dichloroethene	2-Dichloropropane	per	lbe	1,3-Dichlorobenzene	.3-Dichloropropane
				thy	ope	oetl	oetl	opr	orc	thy	ope	opr
				me	lor	lor	lor	lor	chl	me	lor	lor
				Ë	ich	ich	ich	ich	i.H	Ti	ich	ich
	Depth	Sample	Sample	4,	Q-Ş	7-D	Q-3	Q.	3,5-	3,5-	Ö	Ğ.
Sample ID	(ft bgs)	Type	Date	1,	1	1.	1	1,	1	1		1,
WHC1-BN09	0	NORM	12/17/2008	< 0.00014 U	< 0.00013 U	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BN09	11	NORM	12/19/2008	< 0.00015 U	< 0.00013 U	< 0.000073 U	< 0.00012 U	< 0.00012 U	< 0.00041 U	< 0.00011 U	< 0.00014 U	< 0.000056 U
WHC1-BN10	0	NORM	11/18/2008	< 0.00015 UJ	< 0.00013 UJ	< 0.000073 U	< 0.00012 U	< 0.00012 U	< 0.00041 UJ	< 0.00011 UJ	< 0.00014 UJ	< 0.000056 UJ
WHC1-BN10	10		11/18/2008	< 0.00016 UJ	< 0.00015 UJ	< 0.00008 U	< 0.00013 U	< 0.00013 U	< 0.00045 UJ	< 0.00012 UJ	< 0.00016 UJ	< 0.000062 U
WHC1-BO01	0	NORM	12/2/2008	0.00041 J	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BO01	0	FD	12/2/2008	0.00037 J	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BO01	4	NORM	12/2/2008	0.0003 J	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BO01	14	NORM	12/2/2008	0.00049 J	< 0.00013 U	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 U	< 0.00011 U	< 0.00014 U	< 0.000055 U
WHC1-BO02 WHC1-BO02	12	NORM NORM	12/1/2008 12/1/2008	0.00031 J 0.00043 J	< 0.00013 U < 0.00013 U	< 0.000068 U < 0.000068 U	< 0.00011 U < 0.00011 U	< 0.00011 U < 0.00011 U	< 0.00038 U < 0.00038 U	< 0.0001 U < 0.0001 U	< 0.00014 U < 0.00014 U	< 0.000053 U < 0.000053 U
WHC1-BO02	0	NORM	12/1/2008	< 0.0052 UJ	< 0.00013 U < 0.00012 UJ	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 UJ
WHC1-BO03	12	NORM	12/19/2008	< 0.0032 UJ	< 0.00012 UJ	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 U
WHC1-BO03	0	NORM	12/15/2008	< 0.0053 UJ	< 0.00013 UJ	< 0.000008 U	< 0.00011 U	< 0.00011 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000054 U
WHC1-BO04	12		12/19/2008	< 0.0033 U	< 0.00013 U	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BO05	0		11/20/2008	< 0.00034 C	< 0.00013 U	< 0.000075 U	< 0.00011 U	< 0.00012 U	< 0.00037 U	< 0.0001 U	< 0.00014 C	< 0.000054 U
WHC1-BO05	10		11/20/2008	< 0.00015 U	< 0.00014 U	< 0.000076 U	< 0.00012 U	< 0.00013 U	< 0.00043 U	< 0.00011 U	< 0.00015 U	< 0.000059 U
WHC1-BO06	0		11/20/2008	< 0.00015 U	< 0.00011 U	< 0.000073 U	< 0.00012 U	< 0.00012 U	< 0.00041 U	< 0.00011 U	< 0.00014 U	< 0.000055 U
WHC1-BO06	10		11/20/2008	< 0.00015 U	< 0.00014 U	< 0.000075 U	< 0.00012 U	< 0.00012 U	< 0.00042 U	< 0.00011 U	< 0.00015 U	< 0.000058 U
WHC1-BO07	0	NORM	11/19/2008	< 0.00014 UJ	< 0.00012 UJ	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.000099 UJ	< 0.00013 UJ	< 0.000052 UJ
WHC1-BO07	10	NORM	11/19/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 UJ
WHC1-BO08	0	NORM	11/20/2008	< 0.00083 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BO08	0	FD	11/20/2008	< 0.00037 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BO08	11	NORM	11/20/2008	< 0.00037 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BO09	0	NORM	11/19/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 UJ
WHC1-BO09	0	FD	11/19/2008	< 0.00014 UJ	< 0.00012 UJ	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.000099 UJ	< 0.00013 UJ	< 0.000052 U
WHC1-BO09	6		11/19/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000055 UJ
WHC1-BO09	16	NORM	11/19/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 UJ
WHC1-BO10	0		11/19/2008	< 0.00014 UJ	< 0.00012 UJ	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00013 UJ	< 0.000052 UJ
WHC1-BO10	10	NORM	11/19/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 U
WHC1-BP01	0	NORM	12/1/2008	0.00059 J	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BP01	10	NORM	12/1/2008	0.00072 J	< 0.00013 UJ	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 UJ	0.00012 J	< 0.00014 UJ	< 0.000053 U
WHC1-BP02	0	NORM	12/1/2008	0.00047 J	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BP02	11	NORM	12/1/2008	0.00048 J	< 0.00013 U	< 0.00007 U	< 0.00012 U	< 0.00012 U	< 0.0004 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-BP03	0	NORM	12/15/2008	< 0.00014 UJ	< 0.00012 UJ	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.000099 UJ	< 0.00013 UJ	< 0.000052 U
WHC1-BP03	0	FD	12/15/2008	< 0.0051 U	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-BP03 WHC1-BP04	11	NORM NORM	12/19/2008 12/15/2008	< 0.00043 U < 0.0051 UJ	< 0.00013 U < 0.00012 UJ	< 0.000071 U < 0.000068 U	< 0.00012 U < 0.00011 U	< 0.00012 U < 0.00011 U	< 0.0004 U < 0.00038 UJ	< 0.00011 U < 0.0001 UJ	< 0.00014 U < 0.00013 UJ	< 0.000055 U < 0.000052 U
	12			< 0.0051 UJ < 0.00014 UJ	< 0.00012 UJ	< 0.000068 U	< 0.00011 U		< 0.00038 UJ			
WHC1-BP04	12	NOKW	12/19/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000008 U	< 0.00011 U	< 0.00011 U	< 0.00036 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 15 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,2,4-Trimethylbenzene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethene	1,2-Dichloropropane	1,3,5-Trichlorobenzene	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane
WHC1-BP05	0	NORM	12/15/2008	< 0.0051 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-BP05	10	NORM	12/19/2008	< 0.00033 U	< 0.00013 U	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 U	< 0.0001 U	< 0.00014 U	< 0.000055 U
WHC1-BP06	0	NORM	12/12/2008	< 0.00014 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BP06	10	NORM	12/12/2008	< 0.00014 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-BP07	0	NORM	11/20/2008	< 0.00056 U	< 0.00013 U	< 0.000073 U	< 0.00012 U	< 0.00012 U	< 0.00041 U	< 0.00011 U	< 0.00015 U	< 0.000057 U
WHC1-BP07	3	NORM	11/20/2008	< 0.00038 U	< 0.00013 U	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 U	< 0.0001 U	< 0.00014 U	< 0.000055 U
WHC1-BP07	13	NORM	11/20/2008	< 0.00015 U	< 0.00013 U	< 0.000073 U	< 0.00012 U	< 0.00012 U	< 0.00041 U	< 0.00011 U	< 0.00014 U	< 0.000056 U
WHC1-BP08	0	NORM	11/19/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000054 U
WHC1-BP08	4	NORM	11/19/2008	< 0.00015 UJ	< 0.00013 UJ	< 0.000072 U	< 0.00012 U	< 0.00012 U	< 0.00041 UJ	< 0.00011 UJ	< 0.00014 UJ	< 0.000056 UJ
WHC1-BP08	14	NORM	11/19/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000054 U
WHC1-BP09	0	NORM	11/19/2008	< 0.00014 UJ	< 0.00012 UJ	< 0.000067 UJ	< 0.00011 UJ	< 0.00011 UJ	< 0.00038 UJ	< 0.000099 UJ	< 0.00013 UJ	< 0.000052 UJ
WHC1-BP09	10	NORM	11/19/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000055 UJ
WHC1-BP10	0	NORM	11/19/2008	< 0.00014 UJ	< 0.00012 UJ	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.000099 UJ	< 0.00013 UJ	< 0.000052 U
WHC1-BP10	10	NORM	11/19/2008	< 0.00014 UJ	< 0.00012 UJ	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.000099 UJ	< 0.00013 UJ	< 0.000052 U
WHC1-D01	0	NORM	12/5/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D01	10	NORM	12/5/2008	< 0.00014 U	< 0.00017 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D02	0	NORM	12/5/2008	< 0.00014 U	< 0.00013 U	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-D02	10	NORM	12/5/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-D03	0	NORM	12/5/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D03	0	FD	12/5/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D03	10	NORM	12/5/2008	< 0.00014 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D04	0	NORM	12/5/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.00007 U	< 0.00012 U	< 0.00012 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000054 U
WHC1-D04	10	NORM	12/5/2008	< 0.00014 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-D05	0	NORM	12/5/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D05	10	NORM	12/5/2008	< 0.00014 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00013 U	< 0.000052 U
WHC1-D06	0	NORM	12/5/2008	< 0.00014 UJ	< 0.0002 UJ	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 U
WHC1-D06	10	NORM	12/5/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D07	0	NORM	12/5/2008	< 0.00014 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-D07	10	NORM	12/5/2008	< 0.00014 U	< 0.00016 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-D08	0	NORM	12/8/2008	< 0.00016 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00013 U	< 0.000052 U
WHC1-D08	10	NORM	12/9/2008	< 0.00015 U	< 0.00013 U	< 0.000073 U	< 0.00012 U	< 0.00012 U	< 0.00041 U	< 0.00011 U	< 0.00014 U	< 0.000056 U
WHC1-D09	0	NORM	12/8/2008	< 0.00017 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D09	11	NORM	12/9/2008	< 0.00014 U	< 0.00013 U	< 0.000072 U	< 0.00012 U	< 0.00012 U	< 0.0004 U	< 0.00011 U	< 0.00014 U	< 0.000055 U
WHC1-D10	0	NORM	12/8/2008	< 0.00015 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D10	10	NORM	12/9/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D11	0	NORM	12/8/2008	0.00044 J	0.00066 J	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000055 U
WHC1-D11	10	NORM	12/9/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D12	0	NORM	12/10/2008	< 0.00015 U	< 0.00014 U	< 0.000075 U	< 0.00012 U	< 0.00012 U	< 0.00042 U	< 0.00011 U	< 0.00015 U	< 0.000058 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 16 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,2,4-Trimethylbenzene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethene	1,2-Dichloropropane	1,3,5-Trichlorobenzene	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane
WHC1-D12	10	NORM	12/10/2008	< 0.0071 U	< 0.00017 U	< 0.000094 U	< 0.00015 U	< 0.00016 U	< 0.00053 U	< 0.00014 U	< 0.00019 U	< 0.000073 U
WHC1-D13	0	NORM	12/8/2008	< 0.0053 UJ	< 0.00013 UJ	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000054 U
WHC1-D13	10	NORM	12/8/2008	< 0.0067 U	< 0.00016 U	< 0.000089 U	< 0.00015 U	< 0.00015 U	< 0.0005 U	< 0.00013 U	< 0.00018 U	< 0.000069 U
WHC1-D15	0	NORM	12/11/2008	0.00099 J	R	< 0.000069 U	< 0.00011 U	< 0.00012 U	R	R	R	< 0.000054 UJ
WHC1-D15	10	NORM	12/11/2008	< 0.00017 U	< 0.00016 U	< 0.000085 U	< 0.00014 U	< 0.00014 U	< 0.00048 U	< 0.00013 U	< 0.00017 U	< 0.000066 U
WHC1-D16	0	NORM	12/10/2008	< 0.0055 U	< 0.00013 U	< 0.000072 U	< 0.00012 U	< 0.00012 U	< 0.00041 U	< 0.00011 U	< 0.00014 U	< 0.000056 U
WHC1-D16	10	NORM	12/10/2008	< 0.0058 U	< 0.00014 U	< 0.000077 U	< 0.00013 U	< 0.00013 U	< 0.00043 U	< 0.00011 U	< 0.00015 U	< 0.00006 U
WHC1-D17	0	NORM	12/10/2008	< 0.0055 U	< 0.00013 U	< 0.000072 U	< 0.00012 U	< 0.00012 U	< 0.0004 U	< 0.00011 U	< 0.00014 U	< 0.000056 U
WHC1-D17	10	NORM	12/10/2008	< 0.0057 U	0.00054 J	< 0.000076 U	< 0.00012 U	< 0.00013 U	< 0.00042 U	< 0.00011 U	< 0.00015 U	< 0.000058 U
WHC1-D18	0	NORM	12/11/2008	< 0.00014 UJ	< 0.00012 UJ	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00013 UJ	< 0.000053 U
WHC1-D18	10	NORM	12/11/2008	< 0.00015 UJ	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D19	0	NORM	12/11/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000054 U
WHC1-D19	0	FD	12/11/2008	< 0.00016 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-D19	10	NORM	12/11/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D20	0	NORM	12/12/2008	< 0.00014 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D20	10	NORM	12/12/2008	< 0.00014 U	< 0.00016 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D21	0	NORM	12/16/2008	< 0.0053 UJ	< 0.00013 UJ	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000054 U
WHC1-D21	10	NORM	12/16/2008	< 0.0052 UJ	< 0.00013 UJ	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 U
WHC1-D22	0	NORM	12/16/2008	< 0.0061 UJ	< 0.00015 UJ	< 0.00008 U	< 0.00013 U	< 0.00013 U	< 0.00045 UJ	< 0.00012 UJ	< 0.00016 UJ	< 0.000062 U
WHC1-D22	10	NORM	12/16/2008	< 0.0054 U	< 0.00013 U	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 U	< 0.0001 U	< 0.00014 U	< 0.000055 U
WHC1-D23	0	NORM	12/16/2008	< 0.0053 UJ	< 0.00013 UJ	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000054 UJ
WHC1-D23	10	NORM	12/16/2008	< 0.0051 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-D24	0	NORM	12/16/2008	< 0.0054 UJ	< 0.00013 UJ	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000055 UJ
WHC1-D24	0	FD	12/16/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000072 U	< 0.00012 U	< 0.00012 U	< 0.0004 UJ	< 0.00011 UJ	< 0.00014 UJ	< 0.000055 U
WHC1-D24	10		12/16/2008	< 0.0053 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-D25	0			< 0.0053 UJ	< 0.00013 UJ	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000054 UJ
WHC1-D25	10		12/16/2008	< 0.0053 UJ	< 0.00013 UJ	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000054 U
WHC1-D26	0		12/12/2008	< 0.00014 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D26	10			< 0.00015 U	< 0.00014 U	< 0.000074 U	< 0.00012 U	< 0.00012 U	< 0.00041 U	< 0.00011 U	< 0.00015 U	< 0.000057 U
WHC1-D27	0			< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-D27	0	FD	12/12/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-D27	10			< 0.00015 U	< 0.00019 U	< 0.000076 U	< 0.00013 U	< 0.00013 U	< 0.00043 U	< 0.00011 U	< 0.00015 U	< 0.000059 U
WHC1-D28	0		12/12/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D28	10		12/12/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-D29	0	NORM	12/12/2008	< 0.00014 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-D29	10		12/12/2008	< 0.00014 U	< 0.00013 U	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-P01	0	NORM	12/15/2008	< 0.0052 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-P01	12	NORM	12/19/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 UJ

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 17 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,2,4-Trimethylbenzene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethene	1,2-Dichloropropane	1,3,5-Trichlorobenzene	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane
WHC1-P02	0	NORM	12/1/2008	0.0006 J	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	0.00019 J	< 0.00013 U	< 0.000052 U
WHC1-P02	10	NORM	12/1/2008	0.0004 J	0.00013 J	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-P03	0	NORM	12/15/2008	< 0.00014 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-P03	3	NORM	12/18/2008	< 0.00014 UJ	< 0.00012 UJ	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00013 UJ	< 0.000052 UJ
WHC1-P03	3	FD	12/18/2008	< 0.00014 UJ	< 0.00012 UJ	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 U
WHC1-P03	13	NORM	12/18/2008	< 0.00026 UJ	< 0.00013 UJ	< 0.000069 UJ	< 0.00011 UJ	< 0.00011 UJ	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 UJ
WHC1-P04	0	NORM	12/15/2008	< 0.00014 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-P04	10	NORM	12/18/2008	< 0.00023 UJ	< 0.00013 UJ	< 0.00007 UJ	< 0.00011 UJ	< 0.00012 UJ	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000054 UJ
WHC1-P05	0	NORM	12/8/2008	< 0.00021 U	< 0.00013 U	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-P05	0	FD	12/8/2008	< 0.0002 UJ	< 0.00013 UJ	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 U
WHC1-P05	10	NORM	12/18/2008	< 0.00014 U	< 0.00013 U	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 U	< 0.0001 U	< 0.00014 U	< 0.000055 U
WHC1-P06	0	NORM	12/2/2008	0.0003 J	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-P06	12	NORM	12/2/2008	< 0.00022 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00013 U	< 0.000052 U
WHC1-P07	0	NORM	12/2/2008	0.00029 J	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-P07	3	NORM	12/2/2008	0.00029 J	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00013 U	< 0.000052 U
WHC1-P07	13	NORM	12/2/2008	< 0.00026 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-P08	0	NORM	12/3/2008	< 0.00014 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-P08	11	NORM	12/3/2008	< 0.00014 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-P09	0	NORM	12/4/2008	< 0.00031 U	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-P09	0	FD	12/4/2008	0.00033 J	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-P09	10	NORM	12/4/2008	0.00037 J	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-P10	0	NORM	11/25/2008	< 0.00014 U	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.000099 U	< 0.00013 U	< 0.000052 U
WHC1-P10	10	NORM	11/25/2008	< 0.00016 U	< 0.00015 U	< 0.00008 U	< 0.00013 U	< 0.00013 U	< 0.00045 U	< 0.00012 U	< 0.00016 U	< 0.000062 U
WHC1-P11	0	NORM	12/8/2008	0.00066 J+	0.0014 J	< 0.000069 U	< 0.00011 U	< 0.00012 U	R	R	0.0018 J	< 0.000054 UJ
WHC1-P11	0	FD	12/8/2008	0.00044 J	0.001 J	< 0.000068 U	< 0.00011 U	< 0.00011 U	0.0014 J	< 0.0001 UJ	0.00018 J	< 0.000053 U
WHC1-P11	10	NORM	12/9/2008	< 0.00052 U	< 0.00013 U	< 0.000073 U	< 0.00012 U	< 0.00012 U	< 0.00041 U	< 0.00011 U	< 0.00014 U	< 0.000056 U
WHC1-P12	0	NORM	12/5/2008	0.00046 J	< 0.00015 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-P12	11	NORM	12/5/2008	< 0.00014 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-P13	0	NORM	12/9/2008	< 0.00043 U	< 0.00015 U	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-P13	10	NORM	12/9/2008	< 0.00019 U	< 0.00026 U	< 0.000097 U	< 0.00016 U	< 0.00016 U	< 0.00054 U	< 0.00014 U	< 0.00019 U	< 0.000075 U
WHC1-P13	10	FD	12/9/2008	< 0.00017 U	< 0.00019 U	< 0.000086 U	< 0.00014 U	< 0.00014 U	< 0.00048 U	< 0.00013 U	< 0.00017 U	< 0.000067 U
WHC1-P14	0	NORM	12/17/2008	< 0.00016 UJ	< 0.00015 UJ	< 0.000079 U	< 0.00013 U	< 0.00013 U	< 0.00044 UJ	< 0.00012 UJ	< 0.00016 UJ	< 0.000061 U
WHC1-P15	0	NORM	12/8/2008	< 0.00032 UJ	< 0.00013 UJ	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 UJ	< 0.00011 UJ	< 0.00014 UJ	< 0.000055 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.00023 U	< 0.00013 U	< 0.000071 U	< 0.00012 U	< 0.00012 U	< 0.0004 U	< 0.0001 U	< 0.00014 U	< 0.000055 U
WHC1-P15	10	NORM	12/18/2008	< 0.00014 U	< 0.00013 U	< 0.00007 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000054 U
WHC1-P16	0	NORM	12/1/2008	0.0031 J	< 0.00062 U	< 0.00034 U	< 0.00056 U	< 0.00057 U	< 0.0019 U	0.00051 J	< 0.00068 U	< 0.00026 U
WHC1-P16	11	NORM	12/1/2008	0.00053 J	< 0.00012 U	< 0.000067 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	0.00023 J	< 0.00013 U	< 0.000052 U
WHC1-P17	0	NORM	12/15/2008	< 0.00014 UJ	< 0.00013 UJ	< 0.000069 U	< 0.00011 U	< 0.00011 U	< 0.00039 UJ	< 0.0001 UJ	< 0.00014 UJ	< 0.000053 UJ

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 18 of 81)

							Volatile C	rganic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	.2,4-Trimethylbenzene	.2-Dichlorobenzene	,2-Dichloroethane	.2-Dichloroethene	.2-Dichloropropane	.3,5-Trichlorobenzene	.3,5-Trimethylbenzene	.3-Dichlorobenzene	,3-Dichloropropane
_	ì			- 0.00020 II	- 0 00012 II	- 0.000000 II	- 0 00011 II	- 0.00012 II	- 0.00020 II	- 0 0001 II	- 0 00014 II	
WHC1-P17	12		12/19/2008	< 0.00028 U	< 0.00013 U	< 0.000069 U	< 0.00011 U	< 0.00012 U	< 0.00039 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-P17	12	FD	12/19/2008	< 0.00024 U	< 0.00013 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-P18	0	NORM	12/1/2008	0.00079 J	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00014 U	< 0.000053 U
WHC1-P18	12	NORM	12/1/2008	0.00055 J	< 0.00012 U	< 0.000068 U	< 0.00011 U	< 0.00011 U	< 0.00038 U	< 0.0001 U	< 0.00013 U	< 0.000053 U

All units in mg/kg.

= Data not included in risk assessment. Sample location covered with fill material (see text).

⁻⁻ = no sample data.

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 19 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft has)	•	Sample Date	1,4-Dichlorobenzene	2,2,3-Trimethylbutane	2,2-Dichloropropane	2,2-Dimethylpentane	,3-Dimethylpentane	2,4-Dimethylpentane	2-Chlorotoluene	2-Hexanone	2-Methylhexane
A	(ft bgs)	Type						0 00045 TT				
OSC1-BM11 OSC1-BM11	0 10	NORM NORM	9/21/2009 9/21/2009	< 0.00032 U < 0.00036 U	< 0.00055 U < 0.00062 U	< 0.00032 U < 0.00036 U	< 0.00055 U < 0.00062 U	< 0.00045 U < 0.00051 U	< 0.00051 U < 0.00057 U	< 0.00035 U < 0.0004 U	< 0.00029 U < 0.00033 U	< 0.00052 U < 0.00059 U
	0		9/21/2009	< 0.00036 U < 0.00031 U	< 0.00062 U < 0.00053 U					< 0.0004 U < 0.00034 U	111111111111111111111111111111111111111	
OSC1-BN11		NORM	9/22/2009			< 0.00031 U	< 0.00053 U	< 0.00044 U	< 0.00049 U		< 0.00028 U	< 0.00051 U
OSC1-BN11	5	NORM		< 0.00032 U	< 0.00055 U	< 0.00032 U	< 0.00055 U	< 0.00046 U	< 0.00051 U	< 0.00036 U	< 0.0003 U	< 0.00053 U
OSC1-BO11	0	NORM FD	9/16/2009	< 0.00033 U	< 0.00056 U	< 0.00033 U	< 0.00056 U	< 0.00046 U	< 0.00052 U	< 0.00036 U	< 0.0003 U	< 0.00054 U
OSC1-BO11 OSC1-BO11	5	NORM	9/16/2009 9/16/2009	< 0.00035 U < 0.00039 U	< 0.0006 U < 0.00066 U	< 0.00035 U < 0.00038 U	< 0.0006 U < 0.00066 U	< 0.0005 U < 0.00055 U	< 0.00056 U < 0.00061 U	< 0.00039 U < 0.00042 U	< 0.00032 U < 0.00035 U	< 0.00058 U < 0.00063 U
OSC1-BO11	0	NORM	9/16/2009	< 0.00039 U	< 0.00066 U	< 0.00038 U	< 0.00066 U	< 0.00053 U	< 0.00061 U	< 0.00042 U	< 0.00035 U	< 0.00063 U
THE PROPERTY OF THE PROPERTY O	5											
OSC1-BP11 OSC1-JP06	0	NORM NORM	9/16/2009 9/22/2009	< 0.00041 U < 0.00038 U	< 0.00071 U < 0.00065 U	< 0.00041 U < 0.00038 U	< 0.00071 U < 0.00065 U	< 0.00058 U < 0.00053 U	< 0.00065 U < 0.00059 U	< 0.00045 U < 0.00041 U	< 0.00038 U < 0.00034 U	< 0.00067 U < 0.00062 U
		NORM	9/22/2009	< 0.00038 U < 0.00042 U							< 0.00034 U < 0.00039 U	
OSC1-JP06	5	111117111111			< 0.00072 U	< 0.00042 U	< 0.00072 U	< 0.0006 U	< 0.00067 U	< 0.00046 U		< 0.00069 U
OSC1-JP07	0	NORM NORM	9/21/2009	< 0.00033 U	< 0.00056 U	< 0.00033 U	< 0.00056 U	< 0.00046 U	< 0.00052 U	< 0.00036 U	< 0.0003 U	< 0.00054 U
OSC1-JP07	5		9/21/2009	< 0.00038 U	< 0.00066 U	< 0.00038 U	< 0.00066 U	< 0.00054 U	< 0.0006 U	< 0.00042 U	< 0.00035 U	< 0.00063 U
OSC1-JP08	0	NORM	9/21/2009	< 0.00036 U	< 0.00062 U	< 0.00036 U	< 0.00062 U	< 0.00051 U	< 0.00057 U	< 0.0004 U	< 0.00033 U	< 0.00059 U
OSC1-JP08	10	NORM	9/21/2009	< 0.00038 U	< 0.00065 U	< 0.00038 U	< 0.00065 U	< 0.00054 U	< 0.0006 U	< 0.00042 U	< 0.00035 U	< 0.00062 U
WHC1-BF01	0	NORM	11/24/2008	< 0.00014 UJ	< 0.00021 U	< 0.00023 U	< 0.00028 U	< 0.00023 U	< 0.00019 U	< 0.00025 UJ	< 0.00024 UJ	< 0.0002 U
WHC1-BF01	12		11/24/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 UJ	< 0.00021 U
WHC1-BF02	0	NORM		< 0.00014 U	< 0.00021 U	< 0.00023 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BF02	11	NORM	11/25/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BF03	0	NORM	11/25/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BF03	10	NORM	11/25/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BF04	0	NORM	11/25/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BF04	0	FD	11/25/2008	< 0.00015 U	< 0.00023 U	< 0.00025 U	< 0.0003 U	< 0.00024 U	< 0.00021 U	< 0.00026 U	< 0.00025 U	< 0.00022 U
WHC1-BF04	10			< 0.00015 U	< 0.00023 U	< 0.00025 U	< 0.0003 U	< 0.00024 U	< 0.00021 U	< 0.00027 U	< 0.00026 U	< 0.00022 U
WHC1-BF05	0	NORM	11/25/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BF05	12	NORM	12/10/2008	< 0.00019 UJ	< 0.0003 U	< 0.00033 U	< 0.00039 U	< 0.00032 U	< 0.00028 U	< 0.00035 UJ	< 0.00034 U	< 0.00029 U
WHC1-BF06	0	NORM	12/10/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BF06	10	NORM	12/10/2008	< 0.00018 U	< 0.00029 U	< 0.00031 U	< 0.00037 U	< 0.0003 U	< 0.00026 U	< 0.00034 U	< 0.00032 U	< 0.00028 U
WHC1-BG01	0	NORM	11/24/2008	< 0.00014 U	< 0.00021 U	< 0.00023 U	< 0.00028 U	< 0.00023 U	< 0.00019 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BG01	11	NORM	11/24/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-BG02	0	NORM	11/24/2008	< 0.00014 UJ	< 0.00021 UJ	< 0.00024 UJ	< 0.00028 UJ	< 0.00023 UJ	< 0.0002 UJ	< 0.00025 UJ	< 0.00024 UJ	< 0.00021 UJ
WHC1-BG02	0	FD	11/24/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BG02	10	NORM	11/24/2008	R	R	R	R	R	R	0.0013 J	R	R
WHC1-BG03	0			< 0.00014 U	< 0.00021 U	< 0.00023 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BG03	11	NORM	12/11/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BG04	0	NORM	12/11/2008	< 0.00014 U	< 0.00021 U	< 0.00023 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BG04	10	NORM	12/11/2008	< 0.00018 UJ	< 0.00028 U	< 0.00031 U	< 0.00036 U	< 0.0003 U	< 0.00025 U	< 0.00033 UJ	< 0.00031 U	< 0.00027 U
WHC1-BG05	0	NOKM	11/25/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 20 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,4-Dichlorobenzene	2,2,3-Trimethylbutane	2,2-Dichloropropane	2,2-Dimethylpentane	2,3-Dimethylpentane	2,4-Dimethylpentane	2-Chlorotoluene	2-Hexanone	2-Methylhexane
WHC1-BG05	10	· · · · · · · · · · · · · · · · · · ·	11/25/2008	< 0.00016 U	< 0.00024 U	< 0.00027 U	< 0.00031 U	< 0.00026 U	< 0.00022 U	< 0.00028 U	< 0.00027 U	< 0.00023 U
WHC1-BG06	0	NORM	12/10/2008	< 0.00014 U	< 0.00024 U	< 0.00024 U	< 0.00031 U	< 0.00020 U	< 0.00022 U	< 0.00026 U	< 0.00027 U	< 0.00023 U
WHC1-BG06	10	NORM	12/10/2008	0.004 J	< 0.00022 U	< 0.00021 U	< 0.00025 U	< 0.00028 U	< 0.00024 U	< 0.00020 U	< 0.0003 U	< 0.00021 U
WHC1-BH01	0	NORM	12/3/2008	< 0.00013	< 0.00020 U	< 0.00024 U	< 0.00033 U	< 0.00023 U	< 0.00024 C	< 0.00031 U	< 0.0003 U	< 0.00020 U
WHC1-BH01	11	NORM	12/3/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BH02	0	NORM	12/4/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BH02	10	NORM	12/4/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BH03	0	NORM	12/9/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BH03	10	NORM	12/9/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BH04	0	NORM	12/11/2008	< 0.00014 UJ	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 UJ	< 0.00024 U	< 0.00021 U
WHC1-BH04	10	NORM	12/11/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BH05	0	NORM	12/9/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BH05	0	FD	12/9/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BH05	10	NORM	12/9/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BH06	0	NORM	12/11/2008	< 0.00015 UJ	< 0.00023 U	< 0.00026 U	< 0.0003 U	< 0.00025 U	< 0.00021 U	< 0.00027 UJ	< 0.00026 U	< 0.00022 U
WHC1-BH06	0	FD	12/11/2008	< 0.00015 U	< 0.00023 U	< 0.00025 U	< 0.0003 U	< 0.00024 U	< 0.00021 U	< 0.00027 U	< 0.00026 U	< 0.00022 U
WHC1-BH06	10	NORM	12/11/2008	0.0012 J	< 0.00024 U	< 0.00027 U	< 0.00032 U	< 0.00026 U	< 0.00022 U	< 0.00028 U	< 0.00027 U	< 0.00023 U
WHC1-BI01	0	NORM	12/3/2008	< 0.00015 U	< 0.00023 U	< 0.00025 U	< 0.0003 U	< 0.00025 U	< 0.00021 U	< 0.00027 U	< 0.00026 U	< 0.00022 U
WHC1-BI01	11	NORM	12/3/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BI02	0	NORM	12/4/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BI02	3	NORM	12/4/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BI02	13	NORM	12/4/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BI03	0	NORM	12/4/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00024 U	< 0.00021 U
WHC1-BI03	11	NORM	12/4/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BI04	0	NORM	12/8/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BI04	10	NORM	12/9/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BI05	0	NORM	12/9/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BI05	10	NORM	12/9/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BJ01	0	NORM	12/3/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BJ01	3	NORM	12/3/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BJ01	13	NORM	12/3/2008	< 0.00014 U	< 0.00022 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.00021 U	< 0.00026 U	< 0.00025 U	< 0.00022 U
WHC1-BJ02	0	NORM	12/2/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-BJ02	0	FD	12/2/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-BJ02	12	NORM	12/2/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BJ03	0	FD	12/4/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BJ04	0	NORM	12/4/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 21 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,4-Dichlorobenzene	2,2,3-Trimethylbutane	2,2-Dichloropropane	2,2-Dimethylpentane	2,3-Dimethylpentane	2,4-Dimethylpentane	2-Chlorotoluene	2-Hexanone	2-Methylhexane
WHC1-BJ04	11	NORM	12/4/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BJ05	0	NORM	12/11/2008	< 0.00014 UJ	< 0.00021 UJ	< 0.00024 UJ	< 0.00028 UJ	< 0.00023 UJ	< 0.0002 UJ	< 0.00025 UJ	< 0.00024 UJ	< 0.00021 UJ
WHC1-BJ05	10	NORM	12/11/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BK01	0	NORM	12/3/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BK01	0	FD	12/3/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BK01	10	NORM	12/3/2008	< 0.00014 U	< 0.00022 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BK02	0	NORM	12/8/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BK02	11	NORM	12/18/2008	< 0.00014 U	< 0.00022 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00022 U
WHC1-BK03	0	NORM	12/15/2008	< 0.00014 UJ	< 0.00022 UJ	< 0.00024 UJ	< 0.00028 UJ	< 0.00023 UJ	< 0.0002 UJ	< 0.00026 UJ	< 0.00024 UJ	< 0.00021 UJ
WHC1-BK03	12		12/18/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-BK04	0	NORM	12/4/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BK04	10	NORM	12/4/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BK05	0	NORM	12/12/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BK05	11		12/12/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BL01	0	NORM		< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BL01	10	NORM	12/3/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BL02	0	NORM	12/2/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00024 U	< 0.00021 U
WHC1-BL02	10	NORM	12/2/2008	< 0.00015 U	< 0.00023 U	< 0.00025 U	< 0.0003 U	< 0.00024 U	< 0.00021 U	< 0.00027 U	< 0.00026 U	< 0.00022 U
WHC1-BL03	0	NORM	12/8/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BL03	10	NORM	12/18/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BL04	0	NORM	12/17/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 UJ	< 0.00024 U	< 0.0002 UJ	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BL04	12	NORM	12/22/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BL05	0		11/21/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BL05	10	NORM	11/21/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BL06	0			< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00023 U	< 0.00021 U
WHC1-BL06	11		11/21/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BL07	0		11/21/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00025 U	< 0.00023 U	< 0.00021 U
WHC1-BL07	10			< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00026 U	< 0.00023 U	< 0.0002 U	< 0.00023 U	< 0.00024 U	< 0.00021 U
WHC1-BL08	0		11/18/2008	< 0.00014 U	< 0.00028 U	< 0.00031 U	< 0.00030 U	< 0.0003 U	< 0.00025 U	< 0.00035 U	< 0.00031 U	< 0.00027 U
WHC1-BL08	10		11/18/2008	< 0.00014 UJ	< 0.00022 UJ	< 0.00024 U	< 0.00029 UJ	< 0.00024 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-BL11	0		11/18/2008	< 0.00014 UJ	< 0.00022 UJ	< 0.00023 U	< 0.00029 U	< 0.00024 C	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-BL11	12		11/18/2008	< 0.00014 UJ	< 0.00022 UJ	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-BM01	0	NORM	12/3/2008	< 0.00013 UJ	< 0.00022 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.00021 U	< 0.00026 U	< 0.00025 U	< 0.00022 U
WHC1-BM01	10	NORM	12/3/2008	< 0.00014 U	< 0.00022 U	< 0.00023 U	< 0.00029 U	< 0.00024 U	< 0.00021 U	< 0.00025 U	< 0.00023 U	< 0.00022 U
WHC1-BM02	0	NORM	12/2/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BM02	12	NORM	12/2/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BM03	0	NORM	12/8/2008	< 0.00013 U	< 0.00022 U	< 0.00023 U	< 0.00029 U	< 0.00024 U	< 0.00021 U	< 0.00025 UJ	< 0.00023 U	< 0.00022 U
WHC1-BM03	10	NORM	12/18/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00027 U	< 0.00024 U	< 0.00021 U
WITCI-DIVIUS	10	NOKW	12/10/2000	< 0.00015 U	< 0.00023 U	< 0.00023 U	< 0.0003 U	< 0.000∠4 U	< 0.00021 U	< 0.00027 U	< 0.00023 U	< 0.000∠∠ U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 22 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,4-Dichlorobenzene	2,2,3-Trimethylbutane	2,2-Dichloropropane	2,2-Dimethylpentane	,3-Dimethylpentane	2,4-Dimethylpentane	2-Chlorotoluene	2-Hexanone	2-Methylhexane
WHC1-BM04	(1t bgs)	NORM	12/17/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00028 UJ	< 0.00023 U	< 0.0002 UJ	< 0.00026 UJ	< 0.00025 UJ	< 0.00021 U
WHC1-BM04	0	FD	12/17/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00028 UJ	< 0.00023 U	< 0.0002 UJ	< 0.00026 UJ	< 0.00025 UJ	< 0.00021 U
WHC1-BM04	10		12/22/2008	< 0.00014 U3	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BM05	0		11/21/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00023 U	< 0.00021 U
WHC1-BM05	10			< 0.00014 U	< 0.00021 U	< 0.00023 U	< 0.00028 U	< 0.00023 U	< 0.00019 U	< 0.00025 U	< 0.00024 U	< 0.0002 U
WHC1-BM06	0		11/21/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00023 U	< 0.00021 U
WHC1-BM06	0	FD	11/21/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00023 U	< 0.00024 U	< 0.00021 U
WHC1-BM06	10		11/21/2008	< 0.00013 U	< 0.00023 U	< 0.00025 U	< 0.0003 U	< 0.00024 U	< 0.00021 C	< 0.00027 U	< 0.00025 U	< 0.00022 U
WHC1-BM07	0		11/20/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00025 U	< 0.00021 U
WHC1-BM07	11		11/20/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BM08	0		11/18/2008	< 0.00011 UJ	< 0.00022 UJ	< 0.00021 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00025 UJ	< 0.00024 UJ	< 0.00021 U
WHC1-BM08	0	FD	11/18/2008	< 0.00014 CJ	< 0.00022 U3	< 0.00024 U	< 0.00032 U	< 0.00025 U	< 0.0002 U	< 0.00029 U	< 0.00024 U3	< 0.00021 U
WHC1-BM08	11		11/18/2008	< 0.00015 UJ	< 0.00021 UJ	< 0.00027 U	< 0.00032 UJ	< 0.00024 U	< 0.00021 U	< 0.00027 UJ	< 0.00027 C	< 0.00023 U
WHC1-BM09	0		11/18/2008	< 0.00013 UJ	< 0.00022 UJ	< 0.00024 U	< 0.0003 U	< 0.00021 U	< 0.00021 C	< 0.00027 UJ	< 0.00024 UJ	< 0.00021 U
WHC1-BM09	12		11/18/2008	< 0.00014 UJ	< 0.00022 UJ	< 0.00021 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00021 UJ	< 0.00021 U
WHC1-BM10	0		11/18/2008	< 0.00014 UJ	< 0.00022 UJ	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-BM10	3	11111111111111	11/18/2008	< 0.00015 UJ	< 0.00023 UJ	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.00021 U	< 0.00026 UJ	< 0.00025 U	< 0.00022 U
WHC1-BM10	13		11/18/2008	< 0.00018 UJ	< 0.00027 UJ	< 0.0003 U	< 0.00035 U	< 0.00029 U	< 0.00025 U	< 0.00032 UJ	< 0.00031 U	< 0.00026 U
WHC1-BN01	0	NORM	12/1/2008	< 0.00014 U	< 0.00022 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BN01	12	NORM	12/1/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BN02	0	NORM	12/1/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BN02	0	FD	12/1/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BN02	11	NORM	12/1/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BN03	0	NORM	12/17/2008	< 0.00014 UJ	< 0.00022 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-BN03	10	NORM	12/18/2008	< 0.00014 UJ	< 0.00022 UJ	< 0.00024 UJ	< 0.00029 UJ	< 0.00023 UJ	< 0.0002 UJ	< 0.00026 UJ	< 0.00025 UJ	< 0.00021 UJ
WHC1-BN04	0	NORM	12/17/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 UJ	< 0.00021 U
WHC1-BN04	7	NORM	12/22/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BN04	17	NORM	12/22/2008	< 0.00014 U	< 0.00022 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BN05	0	NORM	11/20/2008	< 0.00014 U	< 0.00021 U	< 0.00023 U	< 0.00028 U	< 0.00023 U	< 0.00019 U	< 0.00025 U	< 0.00024 U	< 0.0002 U
WHC1-BN05	0	FD	11/20/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BN05	10	NORM	11/20/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BN06	0	NORM	11/20/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BN06	10	NORM	11/20/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BN07	0	NORM	11/21/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BN07	3	NORM	11/21/2008	< 0.00014 UJ	< 0.00022 UJ	< 0.00024 UJ	< 0.00029 UJ	< 0.00023 UJ	< 0.0002 UJ	< 0.00026 UJ	< 0.00025 UJ	< 0.00021 UJ
WHC1-BN07	13	NORM	11/21/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BN08	0	NORM	11/20/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BN08	10	NORM	11/20/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 23 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			1
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,4-Dichlorobenzene	2,2,3-Trimethylbutane	2,2-Dichloropropane	2,2-Dimethylpentane	,3-Dimethylpentane	2,4-Dimethylpentane	2-Chlorotoluene	2-Hexanone	2-Methylhexane
WHC1-BN09	0	NORM	12/17/2008	< 0.00014 U	< 0.00022 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BN09	11		12/19/2008	< 0.00014 U	< 0.00022 U	< 0.00025 U	< 0.00025 C	< 0.00024 U	< 0.0002 U	< 0.00027 U	< 0.00025 U	< 0.00021 U
WHC1-BN10	0		11/18/2008	< 0.00015 UJ	< 0.00023 UJ	< 0.00025 U	< 0.0003 U	< 0.00025 U	< 0.00021 U	< 0.00027 UJ	< 0.00026 UJ	< 0.00022 U
WHC1-BN10	10		11/18/2008	< 0.00015 UJ	< 0.00025 UJ	< 0.00028 U	< 0.0003 U	< 0.00023 U	< 0.00021 U	< 0.00027 UJ	< 0.00029 U	< 0.00022 U
WHC1-BO01	0	NORM	12/2/2008	< 0.00014 U	< 0.00023 U	< 0.00024 U	< 0.00039 U	< 0.00027 U	< 0.00025 U	< 0.0003 U	< 0.00025 U	< 0.00024 U
WHC1-BO01	0	FD	12/2/2008	< 0.00011 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BO01	4	NORM	12/2/2008	< 0.00011 U	< 0.00022 U	< 0.00021 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BO01	14	NORM	12/2/2008	< 0.00011 U	< 0.00022 U	< 0.00021 U	< 0.0003 U	< 0.00024 U	< 0.0002 U	< 0.00027 U	< 0.00021 U	< 0.00021 U
WHC1-BO02	0	NORM	12/1/2008	< 0.00013 U	< 0.00023 U	< 0.00024 U	< 0.0003 U	< 0.00021 U	< 0.00021 C	< 0.00027 C	< 0.00025 U	< 0.00021 U
WHC1-BO02	12	NORM	12/1/2008	< 0.00011 U	< 0.00022 U	< 0.00021 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BO03	0		12/15/2008	< 0.00011 UJ	< 0.00022 U	< 0.00021 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00025 UJ	< 0.00024 UJ	< 0.00021 U
WHC1-BO03	12		12/19/2008	< 0.00014 UJ	< 0.00022 U	< 0.00021 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 UJ	< 0.00021 U	< 0.00021 U
WHC1-BO04	0		12/15/2008	< 0.00014 UJ	< 0.00022 U	< 0.00021 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-BO04	12		12/19/2008	< 0.00011 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BO05	0		11/20/2008	< 0.00011 U	< 0.00024 U	< 0.00021 U	< 0.00023 U	< 0.00021 U	< 0.00022 U	< 0.00028 U	< 0.00027 U	< 0.00021 U
WHC1-BO05	10		11/20/2008	< 0.00016 U	< 0.00024 U	< 0.00027 U	< 0.00032 U	< 0.00026 U	< 0.00022 U	< 0.00028 U	< 0.00027 U	< 0.00023 U
WHC1-BO06	0		11/20/2008	< 0.00015 U	< 0.00023 U	< 0.00026 U	< 0.0003 U	< 0.00025 U	< 0.00021 U	< 0.00027 U	< 0.00026 U	< 0.00022 U
WHC1-BO06	10		11/20/2008	< 0.00015 U	< 0.00024 U	< 0.00026 U	< 0.00031 U	< 0.00025 U	< 0.00022 U	< 0.00028 U	< 0.00027 U	< 0.00023 U
WHC1-BO07	0		11/19/2008	< 0.00014 UJ	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 UJ	< 0.00024 UJ	< 0.00021 U
WHC1-BO07	10		11/19/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 UJ	< 0.00021 U
WHC1-BO08	0	NORM	11/20/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BO08	0	FD	11/20/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00024 U	< 0.00021 U
WHC1-BO08	11	NORM	11/20/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BO09	0	NORM	11/19/2008	< 0.00014 UJ	< 0.00022 UJ	< 0.00024 U	< 0.00029 UJ	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 UJ	< 0.00021 U
WHC1-BO09	0	FD	11/19/2008	< 0.00014 UJ	< 0.00021 UJ	< 0.00024 U	< 0.00028 UJ	< 0.00023 U	< 0.0002 U	< 0.00025 UJ	< 0.00024 U	< 0.00021 U
WHC1-BO09	6	NORM	11/19/2008	< 0.00015 UJ	< 0.00023 UJ	< 0.00025 U	< 0.0003 UJ	< 0.00024 U	< 0.00021 U	< 0.00027 UJ	< 0.00026 UJ	< 0.00022 U
WHC1-BO09	16	NORM	11/19/2008	< 0.00014 UJ	< 0.00022 UJ	< 0.00024 U	< 0.00029 UJ	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 UJ	< 0.00021 U
WHC1-BO10	0	NORM	11/19/2008	< 0.00014 UJ	< 0.00022 UJ	< 0.00024 U	< 0.00028 UJ	< 0.00023 U	< 0.0002 U	< 0.00025 UJ	< 0.00024 UJ	< 0.00021 U
WHC1-BO10	10	NORM	11/19/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-BP01	0	NORM	12/1/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BP01	10	NORM	12/1/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-BP02	0	NORM	12/1/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BP02	11	NORM	12/1/2008	< 0.00015 U	< 0.00022 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.00021 U	< 0.00026 U	< 0.00025 U	< 0.00022 U
WHC1-BP03	0	NORM	12/15/2008	< 0.00014 UJ	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 UJ	< 0.00024 U	< 0.00021 U
WHC1-BP03	0	FD	12/15/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BP03	11	NORM	12/19/2008	< 0.00015 U	< 0.00023 U	< 0.00025 U	< 0.0003 U	< 0.00024 U	< 0.00021 U	< 0.00027 U	< 0.00026 U	< 0.00022 U
WHC1-BP04	0	NORM	12/15/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 UJ	< 0.00024 U	< 0.00021 U
WHC1-BP04	12	NORM	12/19/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 24 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
					0							
				ne	2,2,3-Trimethylbutane	ne	me	ine	me			
				,4-Dichlorobenzene	lbui	2-Dichloropropane	.2-Dimethylpentane	3-Dimethylpentane	.4-Dimethylpentane	v		υ
				pe	hyl	oprc	lpe.	lpe	lpe-	Chlorotoluene		2-Methylhexane
				oro	net	orc	thy	thy	thy	olu	ne	hex
				chl	Trin	chl	me	me	me	prot	2-Hexanone	ıyl
	Depth	Sample	Sample	Ď	3-1	Ä	Ä	Ä	Ä	hlc	ex	[et]
Sample ID	(ft bgs)	Type	Date	4,1	2,2,	2,2.	2,2	2,3	4,	5	H-2	Z-N
WHC1-BP05	0	NORM	12/15/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-BP05	10	NORM	12/19/2008	< 0.00015 U	< 0.00023 U	< 0.00025 U	< 0.0003 U	< 0.00024 U	< 0.00021 U	< 0.00027 U	< 0.00025 U	< 0.00022 U
WHC1-BP06	0	NORM	12/12/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-BP06	10	NORM	12/12/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00024 U	< 0.00021 U
WHC1-BP07	0	NORM	11/20/2008	< 0.00015 U	< 0.00023 U	< 0.00026 U	< 0.00031 U	< 0.00025 U	< 0.00021 U	< 0.00027 U	< 0.00026 U	< 0.00023 U
WHC1-BP07	3	NORM	11/20/2008	< 0.00015 U	< 0.00023 U	< 0.00025 U	< 0.0003 U	< 0.00024 U	< 0.00021 U	< 0.00027 U	< 0.00026 U	< 0.00022 U
WHC1-BP07	13	NORM	11/20/2008	< 0.00015 U	< 0.00023 U	< 0.00026 U	< 0.0003 U	< 0.00025 U	< 0.00021 U	< 0.00027 U	< 0.00026 U	< 0.00022 U
WHC1-BP08	0	NORM	11/19/2008	< 0.00014 UJ	< 0.00022 UJ	< 0.00024 U	< 0.00029 UJ	< 0.00024 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-BP08	4	NORM	11/19/2008	< 0.00015 UJ	< 0.00023 U	< 0.00025 U	< 0.0003 U	< 0.00025 U	< 0.00021 U	< 0.00027 UJ	< 0.00026 UJ	< 0.00022 U
WHC1-BP08	14	NORM	11/19/2008	< 0.00014 UJ	< 0.00022 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-BP09	0	NORM	11/19/2008	< 0.00014 UJ	< 0.00021 UJ	< 0.00024 UJ	< 0.00028 UJ	< 0.00023 UJ	< 0.0002 UJ	< 0.00025 UJ	< 0.00024 UJ	< 0.00021 UJ
WHC1-BP09	10		11/19/2008	< 0.00015 UJ	< 0.00023 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.00021 U	< 0.00026 UJ	< 0.00025 UJ	< 0.00022 U
WHC1-BP10	0		11/19/2008	< 0.00014 UJ	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 UJ	< 0.00024 U	< 0.00021 U
WHC1-BP10	10		11/19/2008	< 0.00014 UJ	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 UJ	< 0.00024 U	< 0.00021 U
WHC1-D01	0	NORM	12/5/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D01	10	NORM	12/5/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-D02	0	NORM	12/5/2008	< 0.00014 U	< 0.00022 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D02	10	NORM	12/5/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D03	0	NORM	12/5/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D03	0	FD	12/5/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D03	10	NORM	12/5/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D04	0	NORM	12/5/2008	< 0.00015 UJ	< 0.00022 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.00021 U	< 0.00026 UJ	< 0.00025 U	< 0.00022 U
WHC1-D04	10	NORM	12/5/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-D05	0	NORM	12/5/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D05	10	NORM	12/5/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-D06	10	NORM	12/5/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-D06		NORM NORM	12/5/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D07	0		12/5/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1 D08	10	NORM	12/5/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-D08 WHC1-D08	10	NORM NORM	12/8/2008 12/9/2008	< 0.00014 U < 0.00015 U	< 0.00022 U < 0.00023 U	< 0.00024 U < 0.00026 U	< 0.00028 U < 0.0003 U	< 0.00023 U	< 0.0002 U	< 0.00025 U < 0.00027 U	< 0.00024 U < 0.00026 U	< 0.00021 U < 0.00022 U
WHC1-D08 WHC1-D09	0	NORM	12/9/2008	< 0.00015 U < 0.00014 U	< 0.00023 U < 0.00022 U	< 0.00026 U < 0.00024 U	< 0.0003 U < 0.00028 U	< 0.00025 U < 0.00023 U	< 0.00021 U < 0.0002 U	< 0.00027 U < 0.00026 U	< 0.00026 U < 0.00025 U	< 0.00022 U < 0.00021 U
WHC1-D09	11	NORM	12/8/2008	< 0.00014 U < 0.00015 U	< 0.00022 U < 0.00023 U	< 0.00024 U	< 0.00028 U	< 0.00023 U < 0.00024 U	< 0.0002 U < 0.00021 U	< 0.00026 U < 0.00027 U	< 0.00025 U	< 0.00021 U < 0.00022 U
WHC1-D09	0	NORM	12/9/2008	< 0.00013 U	< 0.00023 U	< 0.00023 U	< 0.0003 U < 0.00028 U	< 0.00024 U	< 0.00021 U	< 0.00027 U	< 0.00024 U	< 0.00022 U < 0.00021 U
WHC1-D10	10	NORM	12/8/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-D10	0	NORM	12/8/2008	0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00020 U < 0.00027 UJ	< 0.00025 U	< 0.00021 U
WHC1-D11	10	NORM	12/9/2008	< 0.00084 J	< 0.00023 U	< 0.00023 U	< 0.0003 U	< 0.00024 U	< 0.00021 U	< 0.00027 UJ	< 0.00025 U	< 0.00022 U
WHC1-D12	0		12/10/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00025 U	< 0.0002 U	< 0.00028 U	< 0.00023 U	< 0.00021 U
WIICI-D12	U	TACKINI	12/10/2000	< 0.00013 U	< 0.00024 U	< 0.00020 U	< 0.00031 U	< 0.00023 U	< 0.00022 U	< 0.00026 U	< 0.00027 U	< 0.00023 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 25 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
				ə	ne	o.	ə	v	o			
				I,4-Dichlorobenzene	2,2,3-Trimethylbutane	2,2-Dichloropropane	2,2-Dimethylpentane	3-Dimethylpentane	2,4-Dimethylpentane	2-Chlorotoluene		2-Methylhexane
				hlorc	rime	hlor	nethy	nethy	nethy	otolı	2-Hexanone	ylhe
	D4h	C1-	C1-)ic	Ę)ic)ii)ii)in	lor	×a	th.
Cample ID	Depth	Sample	Sample	1 - 4	,2,3	,2-I	2-1		1-4	ą	H.	-M-
Sample ID WHC1-D12	(ft bgs)	Type	Date	< 0.00019 U	< 0.0003 U	< 0.00033 U	< 0.00039 U	< 0.00032 U	< 0.00027 U	< 0.00035 U	< 0.00034 U	< 0.00029 U
WHC1-D12 WHC1-D13	0	NORM NORM	12/10/2008	< 0.00019 U < 0.00014 UJ	< 0.0003 U < 0.00022 U	< 0.00033 U < 0.00025 U	< 0.00039 U < 0.00029 U	< 0.00032 U < 0.00024 U	< 0.00027 U	< 0.00035 U < 0.00026 UJ	< 0.00034 U < 0.00025 U	< 0.00029 U < 0.00021 U
WHC1-D13	10	NORM	12/8/2008	< 0.00014 U3	< 0.00022 U	< 0.00023 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00020 UJ	< 0.00023 U	< 0.00021 U
WHC1-D15	0	NORM	12/11/2008	0.00016 U	< 0.00028 U	< 0.00031 U	< 0.00037 U	< 0.0003 U	< 0.00020 U	R	< 0.00032 U < 0.00025 UJ	< 0.00027 U
WHC1-D15	10		12/11/2008	< 0.00018 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00032 U	< 0.00023 UJ	< 0.00021 U
WHC1-D16	0			< 0.00015 U	< 0.00027 U	< 0.0005 U	< 0.0003 U	< 0.00025 U	< 0.00025 U	< 0.00032 U	< 0.00031 U	< 0.00020 U
WHC1-D16	10		12/10/2008	< 0.00015 U	< 0.00025 U	< 0.00023 U	< 0.0003 U	< 0.00025 U	< 0.00021 U	< 0.00027 U	< 0.00028 U	< 0.00022 U
WHC1-D17	0			< 0.00015 U	< 0.00023 U	< 0.00025 U	< 0.0003 U	< 0.00024 U	< 0.00021 U	< 0.00027 U	< 0.00026 U	< 0.00022 U
WHC1-D17	10	NORM	12/10/2008	0.0016 J	< 0.00024 U	< 0.00027 U	< 0.00032 U	< 0.00026 U	< 0.00022 U	< 0.00028 U	< 0.00027 U	< 0.00023 U
WHC1-D18	0		12/11/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 UJ	< 0.00024 U	< 0.00021 U
WHC1-D18	10	NORM	12/11/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D19	0	NORM	12/11/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-D19	0	FD	12/11/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-D19	10	NORM	12/11/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D20	0	NORM	12/12/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-D20	10	NORM	12/12/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D21	0	NORM	12/16/2008	< 0.00015 UJ	< 0.00022 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.00021 U	< 0.00026 UJ	< 0.00025 U	< 0.00022 U
WHC1-D21	10	NORM	12/16/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-D22	0	NORM	12/16/2008	< 0.00017 UJ	< 0.00026 U	< 0.00028 U	< 0.00034 U	< 0.00027 U	< 0.00024 U	< 0.0003 UJ	< 0.00029 U	< 0.00025 U
WHC1-D22	10	NORM	12/16/2008	< 0.00015 U	< 0.00023 U	< 0.00025 U	< 0.0003 U	< 0.00024 U	< 0.00021 U	< 0.00027 U	< 0.00026 U	< 0.00022 U
WHC1-D23	0		12/16/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 UJ	< 0.00021 U
WHC1-D23	10		12/16/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 UJ	< 0.00023 U	< 0.0002 UJ	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-D24	0		12/16/2008	< 0.00015 UJ	< 0.00023 U	< 0.00025 U	< 0.0003 U	< 0.00024 U	< 0.00021 U	< 0.00027 UJ	< 0.00026 UJ	< 0.00022 U
WHC1-D24	0	FD	12/16/2008	< 0.00015 UJ	< 0.00023 U	< 0.00025 U	< 0.0003 U	< 0.00024 U	< 0.00021 U	< 0.00027 UJ	< 0.00026 U	< 0.00022 U
WHC1-D24	10	NORM	12/16/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 UJ	< 0.00024 U	< 0.0002 UJ	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D25	0	NORM	12/16/2008	< 0.00014 UJ	< 0.00022 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.00021 U	< 0.00026 UJ	< 0.00025 UJ	< 0.00022 U
WHC1-D25	10	NORM	12/16/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-D26	0		12/12/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D26	10	NORM	12/12/2008	< 0.00015 U	< 0.00023 U	< 0.00026 U	< 0.00031 U	< 0.00025 U	< 0.00022 U	< 0.00028 U	< 0.00026 U	< 0.00023 U
WHC1-D27	0		12/12/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D27	0	FD	12/12/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D27	10		12/12/2008	< 0.00016 U	< 0.00024 U	< 0.00027 U	< 0.00032 U	< 0.00026 U	< 0.00022 U	< 0.00029 U	< 0.00027 U	< 0.00024 U
WHC1-D28	0		12/12/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D28	10		12/12/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D29	0		12/12/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-D29	10		12/12/2008	< 0.00014 U	< 0.00022 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.00021 U	< 0.00026 U	< 0.00025 U	< 0.00022 U
WHC1-P01	0		12/15/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-P01	12	NUKM	12/19/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 UJ	< 0.00021 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 26 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,4-Dichlorobenzene	2,2,3-Trimethylbutane	2,2-Dichloropropane	2,2-Dimethylpentane	2,3-Dimethylpentane	2,4-Dimethylpentane	2-Chlorotoluene	2-Hexanone	2-Methylhexane
WHC1-P02	0	NORM	12/1/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-P02	10	NORM	12/1/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-P03	0	NORM	12/15/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-P03	3	NORM	12/18/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 UJ	< 0.00024 UJ	< 0.00021 U
WHC1-P03	3	FD	12/18/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 UJ	< 0.00024 U	< 0.00021 U
WHC1-P03	13	NORM	12/18/2008	< 0.00014 UJ	< 0.00022 UJ	< 0.00024 UJ	< 0.00029 UJ	< 0.00023 UJ	< 0.0002 UJ	< 0.00026 UJ	< 0.00025 UJ	< 0.00021 UJ
WHC1-P04	0	NORM	12/15/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-P04	10	NORM	12/18/2008	< 0.00014 UJ	< 0.00022 UJ	< 0.00025 UJ	< 0.00029 UJ	< 0.00024 UJ	< 0.0002 UJ	< 0.00026 UJ	< 0.00025 UJ	< 0.00022 UJ
WHC1-P05	0	NORM	12/8/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-P05	0	FD	12/8/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 U	< 0.00021 U
WHC1-P05	10	NORM	12/18/2008	< 0.00015 U	< 0.00022 U	< 0.00025 U	< 0.00029 U	< 0.00024 U	< 0.00021 U	< 0.00026 U	< 0.00025 U	< 0.00022 U
WHC1-P06	0	NORM	12/2/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-P06	12	NORM	12/2/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-P07	0	NORM	12/2/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-P07	3	NORM	12/2/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-P07	13	NORM	12/2/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-P08	0	NORM	12/3/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-P08	11	NORM	12/3/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-P09	0	NORM	12/4/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00024 U	< 0.00021 U
WHC1-P09	0	FD	12/4/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-P09	10	NORM	12/4/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-P10	0	NORM	11/25/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-P10	10	NORM	11/25/2008	< 0.00017 U	< 0.00026 U	< 0.00028 U	< 0.00033 U	< 0.00027 U	< 0.00024 U	< 0.0003 U	< 0.00029 U	< 0.00025 U
WHC1-P11	0	NORM	12/8/2008	0.0018 J	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	R	< 0.00025 UJ	< 0.00021 U
WHC1-P11	0	FD	12/8/2008	0.0014 J	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00024 U	< 0.00021 U
WHC1-P11	10	NORM	12/9/2008	< 0.00015 U	< 0.00023 U	< 0.00026 U	< 0.0003 U	< 0.00025 U	< 0.00021 U	< 0.00027 U	< 0.00026 U	< 0.00022 U
WHC1-P12	0	NORM	12/5/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-P12	11	NORM	12/5/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-P13	0	NORM	12/9/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-P13	10	NORM	12/9/2008	< 0.0002 U	< 0.00031 U	< 0.00034 U	< 0.0004 U	< 0.00033 U	< 0.00028 U	< 0.00036 U	< 0.00035 U	< 0.0003 U
WHC1-P13	10	FD	12/9/2008	< 0.00018 U	< 0.00027 U	< 0.0003 U	< 0.00036 U	< 0.00029 U	< 0.00025 U	< 0.00032 U	< 0.00031 U	< 0.00027 U
WHC1-P14	0	NORM	12/17/2008	< 0.00016 UJ	< 0.00025 U	< 0.00028 U	< 0.00033 U	< 0.00027 U	< 0.00023 U	< 0.0003 UJ	< 0.00028 U	< 0.00024 U
WHC1-P15	0	NORM	12/8/2008	< 0.00015 UJ	< 0.00023 U	< 0.00025 U	< 0.0003 U	< 0.00024 U	< 0.00021 U	< 0.00027 UJ	< 0.00026 U	< 0.00022 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.00015 U	< 0.00023 U	< 0.00025 U	< 0.0003 U	< 0.00024 U	< 0.00021 U	< 0.00027 U	< 0.00026 U	< 0.00022 U
WHC1-P15	10	NORM	12/18/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00024 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U
WHC1-P16	0	NORM	12/1/2008	< 0.0007 U	< 0.0011 U	< 0.0012 U	< 0.0014 U	< 0.0012 U	< 0.0002 U	< 0.0013 U	0.12	< 0.001 U
WHC1-P16	11	NORM	12/1/2008	< 0.00014 U	< 0.00021 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U
WHC1-P17	0	NORM	12/15/2008	< 0.00014 UJ	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 UJ	< 0.00025 UJ	< 0.00021 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 27 of 81)

					Volatile Organic Compounds (VOCs) thylbentane hexane hexane											
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	1,4-Dichlorobenzene	2,2,3-Trimethylbutane	2,2-Dichloropropane	2,2-Dimethylpentane	2,3-Dimethylpentane	2,4-Dimethylpentane	2-Chlorotoluene	2-Hexanone	2-Methylhexane				
WHC1-P17	12	NORM	12/19/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U				
WHC1-P17	12	FD	12/19/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00029 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00025 U	< 0.00021 U				
WHC1-P18	0	NORM	12/1/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00026 U	< 0.00024 U	< 0.00021 U				
WHC1-P18	12	NORM	12/1/2008	< 0.00014 U	< 0.00022 U	< 0.00024 U	< 0.00028 U	< 0.00023 U	< 0.0002 U	< 0.00025 U	< 0.00024 U	< 0.00021 U				

All units in mg/kg.

= Data not included in risk assessment. Sample location covered with fill material (see text).

⁻⁻ = no sample data.

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 28 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Type	Sample Date	2-Nitropropane	3,3-Dimethylpentane	3-Ethylpentane	3-Methylhexane	4-Chlorotoluene	4-Methyl-2-pentanone (MIBK)	Acetone	Acetonitrile	Benzene
OSC1-BM11	0	NORM	9/21/2009	< 0.00033 U	< 0.0005 U	< 0.00046 U	< 0.00049 U	< 0.00026 U	< 0.00032 U	< 0.0068 U	< 0.0036 UJ	< 0.00034 U
OSC1-BM11	10	NORM	9/21/2009	< 0.00038 U	< 0.00056 U	< 0.00052 U	< 0.00055 U	< 0.00029 U	< 0.00036 U	< 0.0076 U	< 0.0041 UJ	< 0.00038 U
OSC1-BN11	0	NORM	9/22/2009	< 0.00032 U	< 0.00048 U	< 0.00045 U	< 0.00047 U	< 0.00025 U	< 0.00031 U	< 0.0066 U	< 0.0035 UJ	< 0.00033 U
OSC1-BN11	5	NORM	9/22/2009	< 0.00034 U	< 0.0005 U	< 0.00047 U	< 0.00049 U	< 0.00026 U	< 0.00032 U	< 0.015 UJ	< 0.0037 UJ	< 0.00034 U
OSC1-BO11	0	NORM	9/16/2009	< 0.00034 U	< 0.00051 U	< 0.00048 U	< 0.0005 U	< 0.00027 U	< 0.00033 U	< 0.0069 U	< 0.0037 UJ	< 0.00035 U
OSC1-BO11	0	FD	9/16/2009	< 0.00037 U	< 0.00055 U	< 0.00051 U	< 0.00053 U	< 0.00029 U	< 0.00035 U	< 0.0074 U	< 0.004 UJ	< 0.00038 U
OSC1-BO11	5	NORM	9/16/2009	< 0.0004 U	< 0.0006 U	< 0.00056 U	< 0.00059 U	< 0.00031 U	< 0.00039 U	< 0.0082 U	< 0.0044 UJ	< 0.00041 U
OSC1-BP11	0	NORM	9/16/2009	< 0.0004 U	< 0.0006 U	< 0.00056 U	< 0.00058 U	< 0.00031 U	< 0.00038 U	< 0.0081 U	< 0.0043 UJ	< 0.00041 U
OSC1-BP11	5	NORM	9/16/2009	< 0.00043 U	< 0.00064 U	< 0.0006 U	< 0.00063 U	< 0.00034 U	< 0.00041 U	< 0.0087 U	< 0.0047 UJ	< 0.00044 U
OSC1-JP06	0	NORM	9/22/2009	< 0.00039 U	< 0.00059 U	< 0.00055 U	< 0.00057 U	< 0.00031 U	< 0.00038 U	< 0.008 U	< 0.0043 UJ	< 0.0004 U
OSC1-JP06	5	NORM	9/22/2009	< 0.00044 U	< 0.00066 U	< 0.00061 U	< 0.00064 U	< 0.00034 U	< 0.00042 U	< 0.0089 U	< 0.0048 UJ	< 0.00045 U
OSC1-JP07	0	NORM	9/21/2009	< 0.00034 U	< 0.00051 U	< 0.00048 U	< 0.0005 U	< 0.00027 U	< 0.00033 U	< 0.0071 UJ	< 0.0037 UJ	< 0.00035 U
OSC1-JP07	5	NORM	9/21/2009	< 0.0004 U	< 0.0006 U	< 0.00056 U	< 0.00058 U	< 0.00031 U	< 0.00038 U	< 0.0081 U	< 0.0043 UJ	< 0.00041 U
OSC1-JP08	0	NORM	9/21/2009	< 0.00038 U	< 0.00056 U	< 0.00053 U	< 0.00055 U	< 0.00029 U	< 0.00036 U	< 0.0077 U	< 0.0041 UJ	< 0.00039 U
OSC1-JP08	10	NORM	9/21/2009	< 0.0004 U	< 0.00059 U	< 0.00055 U	< 0.00058 U	< 0.00031 U	< 0.00038 U	< 0.008 U	< 0.0043 UJ	< 0.0004 U
WHC1-BF01	0	NORM	11/24/2008	< 0.00061 UJ	< 0.0002 U	< 0.00021 U	< 0.00014 U	< 0.00017 UJ	< 0.00029 UJ	< 0.0094 U	< 0.0055 UJ	< 0.000088 U
WHC1-BF01	12	NORM	11/24/2008	< 0.00063 UJ	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 UJ	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-BF02	0	NORM	11/25/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	0.02	< 0.0055 UJ	< 0.000088 U
WHC1-BF02	11	NORM	11/25/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BF03	0	NORM	11/25/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	0.011 J	< 0.0055 UJ	< 0.000088 U
WHC1-BF03	10	NORM	11/25/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BF04	0	NORM	11/25/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.0017 U	< 0.0055 UJ	< 0.000088 U
WHC1-BF04	0	FD	11/25/2008	< 0.00065 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00018 U	< 0.00031 U	< 0.0018 U	< 0.0058 UJ	< 0.000093 U
WHC1-BF04	10	NORM	11/25/2008	< 0.00065 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00018 U	< 0.00031 U	< 0.0018 U	< 0.0058 UJ	< 0.000094 U
WHC1-BF05	0	NORM	11/25/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.021 U	< 0.0056 UJ	< 0.00009 U
WHC1-BF05	12	NORM	12/10/2008	< 0.00086 U	< 0.00029 U	< 0.0003 U	< 0.0002 U	< 0.00024 UJ	< 0.00041 U	< 0.029 U	< 0.0077 UJ	< 0.00012 U
WHC1-BF06	0	NORM	12/10/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.021 U	< 0.0056 UJ	< 0.00009 U
WHC1-BF06	10	NORM	12/10/2008	< 0.00082 U	< 0.00028 U	< 0.00029 U	< 0.00019 U	< 0.00023 U	< 0.00039 U	< 0.027 U	< 0.0073 UJ	< 0.00012 U
WHC1-BG01	0	NORM	11/24/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	0.036	< 0.0055 UJ	< 0.000088 U
WHC1-BG01	11	NORM	11/24/2008	< 0.00062 U	< 0.00021 UJ	< 0.00022 U	< 0.00014 U	< 0.00018 UJ	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BG02	0	NORM	11/24/2008	< 0.00061 UJ	< 0.00021 UJ	< 0.00021 UJ	< 0.00014 UJ	< 0.00017 UJ	< 0.00029 UJ	< 0.0041 UJ	< 0.0055 UJ	< 0.000088 UJ
WHC1-BG02	0	FD	11/24/2008	< 0.00062 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	0.034 J	< 0.0055 UJ	< 0.000089 U
WHC1-BG02	10	NORM	11/24/2008	R	R	R	R	0.0024 J	R	< 0.021 U	R	R
WHC1-BG03	0	NORM	12/11/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.0017 U	< 0.0055 UJ	< 0.000088 U
WHC1-BG03	11	NORM	12/11/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00011 U	< 0.00017 U	< 0.00023 U	< 0.0017 U	< 0.0056 UJ	< 0.00000 U
WHC1-BG04	0	NORM	12/11/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.013 UJ	< 0.0055 UJ	< 0.000088 U
WHC1-BG04	10	NORM	12/11/2008	< 0.0008 U	< 0.00021 U	< 0.00021 U	< 0.00011 U	< 0.00023 UJ	< 0.00038 U	< 0.0048 UJ	< 0.0071 UJ	< 0.00011 U
WHC1-BG05	0		11/25/2008	< 0.00062 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	0.0089 J	< 0.0055 UJ	< 0.000089 U
		1.01011	- 1, 25, 2000	10.00002 0	10.000210	10.000210	10.000110	10.00017 0	10.000270	0.0007 5	10.0000 00	10.000007 6

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 29 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	2-Nitropropane	3,3-Dimethylpentane	3-Ethylpentane	3-Methylhexane	4-Chlorotoluene	4-Methyl-2-pentanone (MIBK)	Acetone	Acetonitrile	Benzene
WHC1-BG05	10	NORM	11/25/2008	< 0.00069 U	< 0.00023 U	< 0.00024 U	< 0.00016 U	< 0.0002 U	< 0.00033 U	< 0.0019 U	< 0.0062 UJ	< 0.0001 U
WHC1-BG06	0	NORM	12/10/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.000091 U
WHC1-BG06	10	NORM	12/10/2008	< 0.00076 U	< 0.00026 U	< 0.00026 U	< 0.00018 U	< 0.00022 U	< 0.00036 U	< 0.025 U	< 0.0068 UJ	< 0.00011 U
WHC1-BH01	0	NORM	12/3/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BH01	11	NORM	12/3/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BH02	0	NORM	12/4/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 U	< 0.00009 U
WHC1-BH02	10	NORM	12/4/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.0064 U	< 0.0055 U	< 0.000089 U
WHC1-BH03	0	NORM	12/9/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.00029 U	< 0.0017 U	< 0.0055 UJ	< 0.000089 U
WHC1-BH03	10	NORM	12/9/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BH04	0		12/11/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 UJ	< 0.00029 U	< 0.013 UJ	< 0.0055 UJ	< 0.000089 U
WHC1-BH04	10	NORM	12/11/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.015 UJ	< 0.0056 UJ	< 0.000091 U
WHC1-BH05	0	NORM	12/9/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BH05	0	FD	12/9/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BH05	10	NORM	12/9/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.007 U	< 0.0057 UJ	< 0.000091 U
WHC1-BH06	0	NORM	12/11/2008	< 0.00067 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 UJ	< 0.00032 U	< 0.0089 UJ	< 0.006 UJ	< 0.000096 U
WHC1-BH06	0	FD	12/11/2008	< 0.00065 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 U	< 0.00031 U	< 0.0043 U	< 0.0059 UJ	< 0.000095 U
WHC1-BH06	10	NORM	12/11/2008	< 0.00069 U	< 0.00023 U	< 0.00024 U	< 0.00016 U	< 0.0002 U	< 0.00033 U	< 0.0042 U	< 0.0062 UJ	< 0.0001 U
WHC1-BI01	0	NORM	12/3/2008	< 0.00066 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 U	< 0.00032 U	< 0.0019 U	< 0.0059 UJ	< 0.000096 U
WHC1-BI01	11	NORM	12/3/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-BI02	0	NORM	12/4/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0045 U	< 0.0057 U	< 0.000091 U
WHC1-BI02	3	NORM	12/4/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0022 U	< 0.0056 U	< 0.000091 U
WHC1-BI02	13	NORM	12/4/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0017 U	< 0.0056 U	< 0.00009 U
WHC1-BI03	0	NORM	12/4/2008	0.012	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 U	< 0.00009 U
WHC1-BI03	11	NORM	12/4/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00011 U	< 0.00017 U	< 0.00029 U	< 0.0055 U	< 0.0055 U	< 0.000089 U
WHC1-BI04	0	NORM	12/8/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00011 U	< 0.00017 U	< 0.0003 U	< 0.0017 U	< 0.0055 UJ	< 0.000089 U
WHC1-BI04	10	NORM	12/9/2008	< 0.00064 U	< 0.00021 U	< 0.00022 U	< 0.00011 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-BI05	0	NORM	12/9/2008	< 0.00064 U	< 0.00021 U	< 0.00022 U	< 0.00013 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.000092 U
WHC1-BI05	10	NORM	12/9/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.00009 U
WHC1-BJ01	0	NORM	12/3/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.000091 U
WHC1-BJ01	3	NORM	12/3/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.00009 U
WHC1-BJ01	13	NORM	12/3/2008	< 0.00064 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-BJ02	0	NORM	12/2/2008	< 0.00063 U	< 0.00022 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.00031 U	< 0.0018 U	< 0.0057 UJ	< 0.000093 U
WHC1-BJ02	0	FD	12/2/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 U	< 0.0029 U	< 0.0056 UJ	< 0.000091 U
WHC1-BJ02	12	NORM	12/2/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00013 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.000091 U
WHC1-BJ02	0	NORM	12/4/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00013 U	< 0.0003 U	< 0.0032 U	< 0.0055 U	< 0.00009 U
WHC1-BJ03	0	FD	12/4/2008	< 0.00062 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.0017 U	< 0.0055 U	< 0.000089 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0017 U	< 0.0057 U	< 0.00009 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.00061 U	< 0.00021 U	< 0.00022 U	< 0.00013 U	< 0.00013 U	< 0.0003 U	< 0.0032 U	< 0.0057 U	< 0.000091 U
**11C1-DJ04	U	MOKW	12/4/2008	< 0.00001 U	< 0.000∠1 U	< 0.000∠1 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.0017 U	< 0.0055 U	< 0.000000 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 30 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	2-Nitropropane	3,3-Dimethylpentane	3-Ethylpentane	3-Methylhexane	4-Chlorotoluene	4-Methyl-2-pentanone (MIBK)	Acetone	Acetonitrile	Benzene
WHC1-BJ04	11	NORM	12/4/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 U	< 0.00009 U
WHC1-BJ05	0	NORM	12/11/2008	< 0.00061 UJ	< 0.00021 UJ	< 0.00021 UJ	< 0.00014 UJ	< 0.00017 UJ	< 0.00029 UJ	< 0.0017 UJ	< 0.0055 UJ	< 0.000089 UJ
WHC1-BJ05	10	NORM	12/11/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.015 UJ	< 0.0057 UJ	< 0.000091 U
WHC1-BK01	0	NORM	12/3/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-BK01	0	FD	12/3/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-BK01	10	NORM	12/3/2008	< 0.00064 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-BK02	0	NORM	12/8/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0017 U	< 0.0056 UJ	< 0.000089 U
WHC1-BK02	11	NORM	12/18/2008	< 0.00064 U	< 0.00022 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.00031 U	< 0.013 U	< 0.0057 UJ	< 0.000092 U
WHC1-BK03	0	NORM	12/15/2008	< 0.00062 UJ	< 0.00021 UJ	< 0.00022 UJ	< 0.00014 UJ	< 0.00018 UJ	< 0.0003 UJ	< 0.021 UJ	< 0.0056 UJ	< 0.00009 UJ
WHC1-BK03	12	NORM	12/18/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 U	< 0.0093 U	< 0.0057 UJ	< 0.000092 U
WHC1-BK04	0	NORM	12/4/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 U	< 0.00009 U
WHC1-BK04	10	NORM	12/4/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 U	< 0.000091 U
WHC1-BK05	0	NORM	12/12/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0082 U	< 0.0055 UJ	< 0.000089 U
WHC1-BK05	11	NORM	12/12/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BL01	0	NORM	12/3/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BL01	10	NORM	12/3/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.000091 U
WHC1-BL02	0	NORM	12/2/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0062 U	< 0.0056 UJ	< 0.00009 U
WHC1-BL02	10	NORM	12/2/2008	< 0.00065 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 U	< 0.00031 U	< 0.0078 U	< 0.0059 UJ	< 0.000094 U
WHC1-BL03	0	NORM	12/8/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BL03	10	NORM	12/18/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0081 U	< 0.0057 UJ	< 0.000091 U
WHC1-BL04	0	NORM	12/17/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-BL04	12	NORM	12/22/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0010 U	< 0.0056 UJ	< 0.000091 U
WHC1-BL05	0	NORM	11/21/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.0017 U	< 0.0055 U	< 0.000091 U
WHC1-BL05	10	NORM	11/21/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00011 U	< 0.00017 U	< 0.00023 U	< 0.0017 U	< 0.0056 UJ	< 0.000091 U
WHC1-BL06	0	NORM	11/21/2008	< 0.00063 U	< 0.00021 U	< 0.00021 U	< 0.00013 U	< 0.00017 U	< 0.00029 U	< 0.0017 U	< 0.0055 UJ	< 0.000091 U
WHC1-BL06	11	NORM	11/21/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00017 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-BL07	0	NORM	11/21/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00013 U	< 0.00018 U	< 0.0003 U	< 0.0017 U	< 0.0056 UJ	< 0.000092 U
WHC1-BL07	10	NORM	11/21/2008	< 0.00079 U	< 0.00027 U	< 0.00022 U	< 0.00011 U	< 0.00023 U	< 0.00038 U	< 0.0022 U	< 0.0071 UJ	< 0.00011 U
WHC1-BL08	0	NORM	11/18/2008	< 0.00077 U	< 0.00021 U	< 0.00028 U	< 0.00015 U	< 0.00023 U	< 0.00038 U	< 0.0022 U	< 0.0071 UJ	< 0.000011 U
WHC1-BL08	10		11/18/2008	< 0.00064 U	< 0.00021 U	< 0.00022 U	< 0.00015 UJ	< 0.00018 UJ	< 0.0003 U	0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-BL11	0		11/18/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00013 UJ	< 0.00018 UJ	< 0.0003 U	< 0.0027 J+ < 0.0018 U	< 0.0056 UJ	< 0.000092 U
WHC1-BL11	12		11/18/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 UJ	< 0.00018 UJ	< 0.0003 U	< 0.0018 U	< 0.0058 UJ	< 0.00009 U
WHC1-BM01	0	NORM	12/3/2008	< 0.00064 U	< 0.00022 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.00031 U	< 0.0018 U	< 0.0057 UJ	< 0.000093 U
WHC1-BM01	10	NORM	12/3/2008	< 0.00062 U	< 0.00022 U	< 0.00022 U	< 0.00013 U	< 0.00018 U	< 0.00031 U	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-BM02	0	NORM	12/2/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BM02	12	NORM	12/2/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	0.016 J	< 0.0058 UJ	< 0.00009 U
WHC1-BM03	0	NORM	12/2/2008	< 0.00064 U	< 0.00022 U < 0.00021 U	< 0.00022 U	< 0.00013 U	< 0.00018 UJ	< 0.00031 U	< 0.016 J < 0.0017 U	< 0.0056 UJ	< 0.000093 U < 0.000089 U
WHC1-BM03	10	NORM	12/18/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0017 U	< 0.0058 UJ	< 0.00009 U
MUCI-DIMOS	10	NORW	12/10/2008	< 0.00003 U	< 0.00022 U	< 0.00023 U	< 0.00013 U	< 0.00018 U	< 0.00031 U	< 0.0018 U	< 0.0038 UJ	< 0.000093 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 31 of 81)

Dept Sample Did Popt Sample Sample Sample Did Sa								Volatile C	Organic Compoun	ds (VOCs)			1
WHC1-BM04	Sample ID	•	-	-	2-Nitropropane	3,3-Dimethylpentane	3-Ethylpentane	3-Methylhexane	4-Chlorotoluene	4-Methyl-2-pentanone (MIBK)	Acetone	Acetonitrile	Benzene
WHC1-BM05	WHC1-BM04	0	NORM	12/17/2008	< 0.00062 UJ	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 UJ	< 0.0003 UJ	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHCL-BM05	WHC1-BM04	0	FD	12/17/2008	< 0.00063 UJ	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 UJ	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BM06	WHC1-BM04	10	NORM	12/22/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0053 U	< 0.0056 UJ	< 0.00009 U
WHCI-BM06	WHC1-BM05	0	NORM	11/21/2008	< 0.00061 U	< 0.0002 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	0.014 J+	< 0.0055 UJ	< 0.000088 U
WHCL-BM06	WHC1-BM05	10	NORM	11/21/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHCI-BM06	WHC1-BM06	0	NORM	11/21/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.0017 U	< 0.0055 UJ	< 0.000089 U
WHCL-BM07	WHC1-BM06	0	FD	11/21/2008	< 0.00066 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 U	< 0.00031 U	< 0.0019 U	< 0.0059 UJ	< 0.000095 U
WHCL-BM08	WHC1-BM06	10	NORM	11/21/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHCL-BM08	WHC1-BM07	0	NORM	11/20/2008	< 0.00061 U	< 0.00021 U		< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.0017 U	< 0.0055 UJ	< 0.000089 U
WHCL-BM08		11				< 0.00021 U	< 0.00022 U		< 0.00018 U	< 0.0003 U	< 0.0018 U		
WHCL-BM08		0				< 0.00021 U		< 0.00014 UJ	< 0.00018 UJ	< 0.0003 UJ	0.0058 J	< 0.0056 UJ	< 0.00009 U
WHCL-BN09	WHC1-BM08	0			< 0.0007 U	< 0.00023 U	< 0.00024 U	< 0.00016 U	< 0.0002 U	< 0.00033 U	0.0077 J	< 0.0063 UJ	< 0.0001 U
WHCL-BM09	WHC1-BM08	11	NORM	11/18/2008	< 0.00065 U	< 0.00022 U	< 0.00023 U	< 0.00015 UJ	< 0.00018 UJ	< 0.00031 U	0.0048 J+	< 0.0058 UJ	< 0.000094 U
WHCL-BM09		0											
WHC1-BN10													
WHC1-BM10	WHC1-BM10	0	NORM	11/18/2008	< 0.00064 U	< 0.00021 U	< 0.00022 U	< 0.00015 UJ	< 0.00018 UJ	< 0.0003 U		< 0.0057 UJ	< 0.000092 U
WHC1-BN01													
WHC1-BN01	WHC1-BM10	13	NORM	11/18/2008	< 0.00078 U	< 0.00026 U	< 0.00027 U	< 0.00018 UJ	< 0.00022 UJ	< 0.00037 U	< 0.0022 U	< 0.007 UJ	< 0.00011 U
WHC1-BN02		0			< 0.00064 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.013 U	< 0.0057 UJ	< 0.000092 U
WHC1-BN02	WHC1-BN01	12	NORM	12/1/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	0.016 J	< 0.0056 UJ	< 0.000091 U
WHC1-BN02		0	NORM	12/1/2008		< 0.00021 U	< 0.00022 U	< 0.00015 U		< 0.0003 U	< 0.0018 U		< 0.000092 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BN02	0	FD	12/1/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.015 U	< 0.0057 UJ	< 0.000091 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BN02	11	NORM	12/1/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	0.024	< 0.0056 UJ	< 0.00009 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BN03	0	NORM	12/17/2008	< 0.00064 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.00031 U	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BN03	10	NORM	12/18/2008	< 0.00062 UJ	< 0.00021 UJ	< 0.00022 UJ	< 0.00015 UJ	< 0.00018 UJ	< 0.0003 UJ	< 0.013 UJ	< 0.0056 UJ	< 0.00009 UJ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BN04	0	NORM	12/17/2008	< 0.00063 UJ	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 UJ	< 0.0018 U	< 0.0056 UJ	< 0.000091 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BN04	7	NORM	12/22/2008	< 0.00063 U		< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0021 U	< 0.0056 UJ	< 0.000091 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BN04	17	NORM	12/22/2008	< 0.00064 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	NORM	11/20/2008			< 0.00021 U			< 0.00029 U			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	NORM	11/20/2008									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0											
WHC1-BN07 13 NORM 11/21/2008 < 0.00063 U < 0.00021 U < 0.00015 U < 0.00018 U < 0.0003 U < 0.0018 U < 0.0018 U < 0.0018 U < 0.00057 UJ < 0.000091 U WHC1-BN08 0 NORM 11/20/2008 < 0.00061 U		3											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		13	NORM										
		0	NORM			< 0.00021 U	< 0.00021 U	< 0.00014 U		< 0.00029 U	< 0.0017 U		
$\frac{1}{1} \frac{1}{1} \frac{1}$	WHC1-BN08	10	NORM		< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.00029 U	< 0.0017 U	< 0.0055 UJ	< 0.000089 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 32 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	2-Nitropropane	3,3-Dimethylpentane	3-Ethylpentane	3-Methylhexane	4-Chlorotoluene	4-Methyl-2-pentanone (MIBK)	Acetone	Acetonitrile	Benzene
WHC1-BN09	0	NORM	12/17/2008	< 0.00064 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-BN09	11	NORM	12/19/2008	< 0.00067 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 U	< 0.00032 U	< 0.013 U	< 0.006 UJ	< 0.000096 U
WHC1-BN10	0	NORM	11/18/2008	< 0.00066 UJ	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 UJ	< 0.00032 UJ	< 0.0019 U	< 0.0059 UJ	< 0.000096 U
WHC1-BN10	10	NORM	11/18/2008	< 0.00073 U	< 0.00024 U	< 0.00025 U	< 0.00017 UJ	< 0.00021 UJ	< 0.00035 U	< 0.0021 U	< 0.0065 UJ	< 0.0001 U
WHC1-BO01	0	NORM	12/2/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.000091 U
WHC1-BO01	0	FD	12/2/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0024 U	< 0.0056 UJ	< 0.000091 U
WHC1-BO01	4	NORM	12/2/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BO01	14	NORM	12/2/2008	< 0.00065 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 U	< 0.00031 U	< 0.0018 U	< 0.0059 UJ	< 0.000094 U
WHC1-BO02	0	NORM	12/1/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BO02	12	NORM	12/1/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	0.017 J	< 0.0056 UJ	< 0.00009 U
WHC1-BO03	0	NORM	12/15/2008	< 0.00062 UJ	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 UJ	< 0.0003 UJ	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BO03	12	NORM	12/19/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 UJ	< 0.0003 U	< 0.0053 U	< 0.0056 UJ	< 0.00009 U
WHC1-BO04	0	NORM	12/15/2008	< 0.00064 U	< 0.00022 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.00031 U	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-BO04	12	NORM	12/19/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0058 U	< 0.0057 UJ	< 0.000091 U
WHC1-BO05	0	NORM	11/20/2008	< 0.00069 U	< 0.00023 U	< 0.00024 U	< 0.00016 U	< 0.00019 U	< 0.00033 U	< 0.0019 U	< 0.0062 UJ	< 0.000099 U
WHC1-BO05	10	NORM	11/20/2008	< 0.00069 U	< 0.00023 U	< 0.00024 U	< 0.00016 U	< 0.0002 U	< 0.00033 U	< 0.002 U	< 0.0062 UJ	< 0.0001 U
WHC1-BO06	0	NORM	11/20/2008	< 0.00066 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 U	< 0.00032 U	< 0.0019 U	< 0.006 UJ	< 0.000096 U
WHC1-BO06	10	NORM	11/20/2008	< 0.00068 U	< 0.00023 U	< 0.00024 U	< 0.00016 U	< 0.00019 U	< 0.00033 U	< 0.0019 U	< 0.0061 UJ	< 0.000099 U
WHC1-BO07	0		11/19/2008	< 0.00061 UJ	< 0.00021 UJ	< 0.00021 U	< 0.00014 U	< 0.00017 UJ	< 0.00029 UJ	< 0.0017 U	< 0.0055 UJ	< 0.000088 U
WHC1-BO07	10		11/19/2008	< 0.00062 UJ	< 0.00021 UJ	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 UJ	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BO08	0	NORM	11/20/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-BO08	0	FD	11/20/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BO08	11	NORM	11/20/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.000091 U
WHC1-BO09	0	NORM	11/19/2008	< 0.00063 UJ	< 0.00021 U	< 0.00022 U	< 0.00015 UJ	< 0.00018 UJ	< 0.0003 UJ	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-BO09	0	FD	11/19/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00014 UJ	< 0.00017 UJ	< 0.00029 U	< 0.0017 U	< 0.0055 UJ	< 0.000089 U
WHC1-BO09	6	NORM	11/19/2008	< 0.00065 UJ	< 0.00022 U	< 0.00023 U	< 0.00015 UJ	< 0.00018 UJ	< 0.00031 UJ	< 0.0018 U	< 0.0058 UJ	< 0.000094 U
WHC1-BO09	16		11/19/2008	< 0.00062 UJ	< 0.00021 U	< 0.00022 U	< 0.00015 UJ	< 0.00018 UJ	< 0.0003 UJ	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BO10	0	NORM	11/19/2008	< 0.00062 UJ	< 0.00021 U	< 0.00022 U	< 0.00014 UJ	< 0.00018 UJ	< 0.0003 UJ	< 0.021 UJ	< 0.0056 UJ	< 0.000089 U
WHC1-BO10	10		11/19/2008	< 0.00062 U	< 0.00021 UJ	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BP01	0	NORM	12/1/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.012 U	< 0.0056 UJ	< 0.00009 U
WHC1-BP01	10	NORM	12/1/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 U	0.039	< 0.0057 UJ	< 0.000091 U
WHC1-BP02	0	NORM	12/1/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	0.016 J	< 0.0057 UJ	< 0.000091 U
WHC1-BP02	11	NORM	12/1/2008	< 0.00064 U	< 0.00022 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.00031 U	< 0.014 U	< 0.0058 UJ	< 0.000093 U
WHC1-BP03	0	NORM	12/15/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 UJ	< 0.00029 U	< 0.0017 U	< 0.0055 UJ	< 0.000089 U
WHC1-BP03	0	FD	12/15/2008	< 0.00062 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.02 U	< 0.0055 UJ	< 0.000089 U
WHC1-BP03	11	NORM	12/19/2008	< 0.00065 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 U	< 0.00031 U	< 0.0018 U	< 0.0059 UJ	< 0.000094 U
WHC1-BP04	0	NORM	12/15/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 UJ	< 0.0003 U	< 0.0017 U	< 0.0056 UJ	< 0.000089 U
WHC1-BP04	12	NORM	12/19/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 U	< 0.0048 U	< 0.0056 UJ	< 0.00009 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 33 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	2-Nitropropane	3,3-Dimethylpentane	3-Ethylpentane	3-Methylhexane	4-Chlorotoluene	4-Methyl-2-pentanone (MIBK)	Acetone	Acetonitrile	Benzene
WHC1-BP05	0	NORM	12/15/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.021 U	< 0.0055 UJ	< 0.000089 U
WHC1-BP05	10	NORM	12/19/2008	< 0.00065 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00018 U	< 0.00031 U	< 0.0018 U	< 0.0058 UJ	< 0.000093 U
WHC1-BP06	0	NORM	12/12/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BP06	10	NORM	12/12/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-BP07	0	NORM	11/20/2008	< 0.00067 U	< 0.00023 U	< 0.00023 U	< 0.00016 U	< 0.00019 U	< 0.00032 U	< 0.0019 U	< 0.006 UJ	< 0.000097 U
WHC1-BP07	3	NORM	11/20/2008	< 0.00065 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00018 U	< 0.00031 U	< 0.0018 U	< 0.0058 UJ	< 0.000094 U
WHC1-BP07	13	NORM	11/20/2008	< 0.00066 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 U	< 0.00032 U	< 0.0019 U	< 0.0059 UJ	< 0.000096 U
WHC1-BP08	0	NORM	11/19/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 UJ	< 0.00018 UJ	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-BP08	4	NORM	11/19/2008	< 0.00066 UJ	< 0.00022 UJ	< 0.00023 U	< 0.00015 U	< 0.00019 UJ	< 0.00032 UJ	< 0.0019 U	< 0.0059 UJ	< 0.000095 U
WHC1-BP08	14	NORM	11/19/2008	< 0.00064 U	< 0.00021 UJ	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-BP09	0	NORM	11/19/2008	< 0.00061 UJ	< 0.00021 UJ	< 0.00021 UJ	< 0.00014 UJ	< 0.00017 UJ	< 0.00029 UJ	< 0.0017 UJ	< 0.0055 UJ	< 0.000089 U
WHC1-BP09	10	NORM	11/19/2008	< 0.00065 UJ	< 0.00022 UJ	< 0.00023 U	< 0.00015 U	< 0.00018 UJ	< 0.00031 UJ	< 0.0018 U	< 0.0058 UJ	< 0.000093 U
WHC1-BP10	0	NORM	11/19/2008	< 0.00061 U	< 0.00021 UJ	< 0.00021 U	< 0.00014 U	< 0.00017 UJ	< 0.00029 U	< 0.02 U	< 0.0055 UJ	< 0.000089 U
WHC1-BP10	10	NORM	11/19/2008	< 0.00061 U	< 0.00021 UJ	< 0.00021 U	< 0.00014 U	< 0.00017 UJ	< 0.00029 U	< 0.0017 U	< 0.0055 UJ	< 0.000089 U
WHC1-D01	0	NORM	12/5/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.000091 U
WHC1-D01	10	NORM	12/5/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-D02	0	NORM	12/5/2008	< 0.00064 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-D02	10	NORM	12/5/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-D03	0	NORM	12/5/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-D03	0	FD	12/5/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-D03	10	NORM	12/5/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-D04	0	NORM	12/5/2008	< 0.00064 U	< 0.00022 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.00031 U	< 0.0018 U	< 0.0058 UJ	< 0.000093 U
WHC1-D04	10	NORM	12/5/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0017 U	< 0.0055 UJ	< 0.000089 U
WHC1-D05	0	NORM	12/5/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-D05	10	NORM	12/5/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0017 U	< 0.0056 UJ	< 0.000089 U
WHC1-D06	0	NORM	12/5/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-D06	10	NORM	12/5/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-D07	0	NORM	12/5/2008	< 0.00062 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.0017 U	< 0.0055 UJ	< 0.000089 U
WHC1-D07	10	NORM	12/5/2008	< 0.00062 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.0017 U	< 0.0055 UJ	< 0.000089 U
WHC1-D08	0	NORM	12/8/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0017 U	< 0.0056 UJ	< 0.000089 U
WHC1-D08	10	NORM	12/9/2008	< 0.00066 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 U	< 0.00032 U	< 0.0019 U	< 0.006 UJ	< 0.000096 U
WHC1-D09	0	NORM	12/8/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0039 U	< 0.0056 UJ	< 0.00009 U
WHC1-D09	11	NORM	12/9/2008	< 0.00065 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 U	< 0.00031 U	< 0.0018 U	< 0.0059 UJ	< 0.000094 U
WHC1-D10	0	NORM	12/8/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0039 U	< 0.0056 UJ	< 0.00009 U
WHC1-D10	10	NORM	12/9/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-D11	0	NORM	12/8/2008	< 0.00065 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00018 UJ	< 0.00031 U	< 0.0018 U	< 0.0058 UJ	< 0.000094 U
WHC1-D11	10	NORM	12/9/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-D12	0	NORM	12/10/2008	< 0.00068 U	< 0.00023 U	< 0.00024 U	< 0.00016 U	< 0.00019 U	< 0.00033 U	< 0.0019 U	< 0.0061 UJ	< 0.000098 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 34 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			1
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	2-Nitropropane	3,3-Dimethylpentane	3-Ethylpentane	3-Methylhexane	4-Chlorotoluene	4-Methyl-2-pentanone (MIBK)	Acetone	Acetonitrile	Benzene
WHC1-D12	10	NORM	12/10/2008	< 0.00086 U	< 0.00029 U	< 0.0003 U	< 0.0002 U	< 0.00024 U	< 0.00041 U	< 0.0024 U	< 0.0077 UJ	< 0.00012 U
WHC1-D13	0	NORM	12/8/2008	< 0.00064 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-D13	10	NORM	12/8/2008	< 0.00081 U	< 0.00027 U	< 0.00028 U	< 0.00019 U	< 0.00023 U	< 0.00039 U	< 0.027 U	< 0.0073 UJ	< 0.00012 U
WHC1-D15	0	NORM	12/11/2008	< 0.00063 UJ	< 0.00021 U	< 0.00022 U	< 0.00015 U	R	< 0.0003 UJ	< 0.016 UJ	< 0.0057 UJ	< 0.000091 U
WHC1-D15	10	NORM	12/11/2008	< 0.00078 U	< 0.00026 U	< 0.00027 U	< 0.00018 U	< 0.00022 U	< 0.00037 U	0.032	< 0.007 UJ	< 0.00011 U
WHC1-D16	0	NORM	12/10/2008	< 0.00066 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 U	< 0.00032 U	< 0.022 U	< 0.0059 UJ	< 0.000095 U
WHC1-D16	10	NORM	12/10/2008	< 0.0007 U	< 0.00024 U	< 0.00025 U	< 0.00016 U	< 0.0002 U	< 0.00034 U	< 0.023 U	< 0.0063 UJ	< 0.0001 U
WHC1-D17	0	NORM	12/10/2008	< 0.00066 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 U	< 0.00031 U	< 0.022 U	< 0.0059 UJ	< 0.000095 U
WHC1-D17	10	NORM	12/10/2008	< 0.00069 U	< 0.00023 U	< 0.00024 U	< 0.00016 U	< 0.0002 U	< 0.00033 U	< 0.023 U	< 0.0062 UJ	< 0.0001 U
WHC1-D18	0		12/11/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 UJ	< 0.0003 U	< 0.016 U	< 0.0056 UJ	< 0.00009 U
WHC1-D18	10	NORM	12/11/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	0.023 J+	< 0.0056 UJ	< 0.00009 U
WHC1-D19	0	NORM	12/11/2008	< 0.00064 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-D19	0	FD	12/11/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	0.022	< 0.0055 UJ	< 0.000089 U
WHC1-D19	10		12/11/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.018 U	< 0.0056 UJ	< 0.000091 U
WHC1-D20	0		12/12/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-D20	10		12/12/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-D21	0		12/16/2008	< 0.00064 U	< 0.00022 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.00031 U	< 0.0018 U	< 0.0058 UJ	< 0.000093 U
WHC1-D21	10			< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 U	< 0.021 U	< 0.0057 UJ	< 0.000091 U
WHC1-D22	0	NORM	12/16/2008	< 0.00073 U	< 0.00025 U	< 0.00026 U	< 0.00017 U	< 0.00021 UJ	< 0.00035 U	< 0.0021 U	< 0.0066 UJ	< 0.00011 U
WHC1-D22	10	NORM	12/16/2008	< 0.00065 U	< 0.00022 U	< 0.00023 U	< 0.00017 U	< 0.00018 U	< 0.00031 U	< 0.0018 U	< 0.0058 UJ	< 0.000094 U
WHC1-D23	0	NORM	12/16/2008	< 0.00063 UJ	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 UJ	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-D23	10	NORM	12/16/2008	< 0.00062 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.0017 U	< 0.0055 UJ	< 0.000092 U
WHC1-D24	0	NORM	12/16/2008	< 0.00065 UJ	< 0.00021 U	< 0.00021 U	< 0.00015 U	< 0.00017 UJ	< 0.00031 UJ	< 0.0018 U	< 0.0058 UJ	< 0.000094 U
WHC1-D24	0	FD	12/16/2008	< 0.00065 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 UJ	< 0.00031 U	< 0.0018 U	< 0.0059 UJ	< 0.000094 U
WHC1-D24	10	NORM	12/16/2008	< 0.00063 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 U3	< 0.00031 U	< 0.0018 U	< 0.0057 UJ	< 0.000094 U
WHC1-D25	0	NORM	12/16/2008	< 0.00064 UJ	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 UJ	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-D25	10			< 0.00064 U3	< 0.00022 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.00031 U3	< 0.0018 U	< 0.0057 UJ	< 0.000093 U
WHC1-D26	0	NORM	12/12/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00013 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.000092 U
WHC1-D26	10	NORM	12/12/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.006 UJ	< 0.00009 U
WHC1-D27	0	NORM	12/12/2008	< 0.00067 U	< 0.00023 U	< 0.00023 U	< 0.00015 U	< 0.00019 U	< 0.00032 U	< 0.0019 U	< 0.005 UJ	< 0.000097 U
WHC1-D27	0	FD	12/12/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-D27	10	NORM	12/12/2008	< 0.0007 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0063 UJ	< 0.000091 U
WHC1-D28	0	NORM	12/12/2008	< 0.0007 U	< 0.00024 U	< 0.00024 U	< 0.00015 U	< 0.0002 U	< 0.00033 U	< 0.0018 U	< 0.0056 UJ	< 0.0001 U
WHC1-D28	10	NORM	12/12/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.000091 U
WHC1-D29	0	NORM	12/12/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-D29	10	NORM	12/12/2008	< 0.00064 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-P01	0	NORM	12/12/2008	< 0.00062 U	< 0.00022 U	< 0.00022 U	< 0.00013 U	< 0.00018 U	< 0.00031 U	< 0.0018 U	< 0.0056 UJ	< 0.000092 U
WHC1-P01	12		12/19/2008	< 0.00063 UJ	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 UJ	< 0.0003 UJ	< 0.0065 U	< 0.0056 UJ	< 0.00009 U
WIICI-FUI	1∠	NOKW	12/19/2008	< 0.00003 UJ	< 0.000∠1 U	< 0.000∠∠ U	< 0.00013 U	< 0.00016 UJ	< 0.0003 UJ	< 0.0005 U	< 0.0050 UJ	< 0.000031 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 35 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	2-Nitropropane	3,3-Dimethylpentane	3-Ethylpentane	3-Methylhexane	4-Chlorotoluene	4-Methyl-2-pentanone (MIBK)	Acetone	Acetonitrile	Benzene
WHC1-P02	0	NORM	12/1/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.011 U	< 0.0055 UJ	< 0.000089 U
WHC1-P02	10	NORM	12/1/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.003 U	< 0.0055 UJ	< 0.000089 U
WHC1-P03	0	NORM	12/15/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-P03	3	NORM	12/18/2008	< 0.00062 UJ	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 UJ	< 0.0003 UJ	< 0.0052 U	< 0.0056 UJ	< 0.000089 U
WHC1-P03	3	FD	12/18/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 UJ	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-P03	13	NORM	12/18/2008	< 0.00063 UJ	< 0.00021 UJ	< 0.00022 UJ	< 0.00015 UJ	< 0.00018 UJ	< 0.0003 UJ	0.021 J	< 0.0056 UJ	< 0.000091 UJ
WHC1-P04	0	NORM	12/15/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-P04	10	NORM	12/18/2008	< 0.00064 UJ	< 0.00022 UJ	< 0.00022 UJ	< 0.00015 UJ	< 0.00018 UJ	< 0.00031 UJ	< 0.013 UJ	< 0.0057 UJ	< 0.000092 UJ
WHC1-P05	0	NORM	12/8/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-P05	0	FD	12/8/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-P05	10	NORM	12/18/2008	< 0.00064 U	< 0.00022 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.00031 U	< 0.0068 U	< 0.0058 UJ	< 0.000093 U
WHC1-P06	0	NORM	12/2/2008	< 0.00062 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.0017 U	< 0.0055 UJ	< 0.000089 U
WHC1-P06	12	NORM	12/2/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.015 U	< 0.0056 UJ	< 0.000089 U
WHC1-P07	0	NORM	12/2/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0095 U	< 0.0056 UJ	< 0.00009 U
WHC1-P07	3	NORM	12/2/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.012 U	< 0.0056 UJ	< 0.000089 U
WHC1-P07	13	NORM	12/2/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.011 U	< 0.0056 UJ	< 0.00009 U
WHC1-P08	0	NORM	12/3/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-P08	11	NORM	12/3/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-P09	0	NORM	12/4/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 U	< 0.00009 U
WHC1-P09	0	FD	12/4/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 U	< 0.000091 U
WHC1-P09	10	NORM	12/4/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 U	< 0.00009 U
WHC1-P10	0	NORM	11/25/2008	< 0.00061 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.0017 U	< 0.0055 UJ	< 0.000089 U
WHC1-P10	10	NORM	11/25/2008	< 0.00073 U	< 0.00025 U	< 0.00026 U	< 0.00017 U	< 0.00021 U	< 0.00035 U	< 0.0021 U	< 0.0066 UJ	< 0.00011 U
WHC1-P11	0	NORM	12/8/2008	< 0.00063 UJ	< 0.00021 U	< 0.00022 U	< 0.00015 U	R	< 0.0003 UJ	< 0.0084 UJ	< 0.0057 UJ	< 0.000091 U
WHC1-P11	0	FD	12/8/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 UJ	< 0.0003 U	0.02 J	< 0.0056 UJ	< 0.00009 U
WHC1-P11	10	NORM	12/9/2008	< 0.00066 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 U	< 0.00032 U	< 0.0079 U	< 0.0059 UJ	< 0.000096 U
WHC1-P12	0	NORM	12/5/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.000091 U
WHC1-P12	11	NORM	12/5/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0056 UJ	< 0.00009 U
WHC1-P13	0	NORM	12/9/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-P13	10	NORM	12/9/2008	< 0.00088 U	< 0.0003 U	< 0.00031 U	< 0.0002 U	< 0.00025 U	< 0.00042 U	< 0.0025 U	< 0.0079 UJ	< 0.00013 U
WHC1-P13	10	FD	12/9/2008	< 0.00079 U	< 0.00027 U	< 0.00027 U	< 0.00018 U	< 0.00022 U	< 0.00038 U	< 0.0022 U	< 0.0071 UJ	< 0.00011 U
WHC1-P14	0	NORM	12/17/2008	< 0.00072 U	< 0.00024 U	< 0.00025 U	< 0.00017 U	< 0.00021 UJ	< 0.00035 U	< 0.002 U	< 0.0065 UJ	< 0.0001 U
WHC1-P15	0	NORM	12/8/2008	< 0.00065 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00019 UJ	< 0.00031 U	< 0.0018 U	< 0.0059 UJ	< 0.000094 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.00065 U	< 0.00022 U	< 0.00023 U	< 0.00015 U	< 0.00018 U	< 0.00031 U	< 0.0018 U	< 0.0058 UJ	< 0.000094 U
WHC1-P15	10	NORM	12/18/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000092 U
WHC1-P16	0	NORM	12/1/2008	< 0.0031 U	< 0.001 U	< 0.0011 U	< 0.00072 U	< 0.00088 U	< 0.0015 U	0.17	< 0.028 UJ	< 0.00045 U
WHC1-P16	11	NORM	12/1/2008	< 0.00062 U	< 0.00021 U	< 0.00021 U	< 0.00014 U	< 0.00017 U	< 0.00029 U	< 0.01 U	< 0.0055 UJ	< 0.000089 U
WHC1-P17	0	NORM	12/15/2008	< 0.00063 UJ	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 UJ	< 0.0003 UJ	< 0.0018 U	< 0.0056 UJ	< 0.000091 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 36 of 81)

							Volatile C	rganic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	2-Nitropropane	3,3-Dimethylpentane	3-Ethylpentane	3-Methylhexane	4-Chlorotoluene	4-Methyl-2-pentanone (MIBK)	Acetone	Acetonitrile	Benzene
WHC1-P17	12	NORM	12/19/2008	< 0.00063 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0018 U	< 0.0057 UJ	< 0.000091 U
WHC1-P17	12	FD	12/19/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00015 U	< 0.00018 U	< 0.0003 U	< 0.0039 U	< 0.0056 UJ	< 0.00009 U
WHC1-P18	0	NORM	12/1/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	0.05	< 0.0056 UJ	< 0.00009 U
WHC1-P18	12	NORM	12/1/2008	< 0.00062 U	< 0.00021 U	< 0.00022 U	< 0.00014 U	< 0.00018 U	< 0.0003 U	0.018 J	< 0.0056 UJ	< 0.00009 U

All units in mg/kg.

= Data not included in risk assessment. Sample location covered with fill material (see text).

⁻⁻ = no sample data.

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 37 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Bromobenzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chlorobromomethane	Chloroethane
OSC1-BM11	0	NORM	9/21/2009	< 0.00039 U	< 0.00033 U	< 0.00043 U	< 0.00041 U	< 0.00029 U	< 0.00032 U	< 0.00031 U	< 0.00045 U	< 0.00032 U
OSC1-BM11	10	NORM	9/21/2009	< 0.00044 U	< 0.00038 U	< 0.00048 U	< 0.00047 U	< 0.0007 U	< 0.00036 U	< 0.00035 U	< 0.00051 U	< 0.00036 U
OSC1-BN11	0	NORM	9/22/2009	< 0.00038 U	< 0.00032 U	< 0.00042 U	< 0.0004 U	< 0.00028 U	< 0.00031 U	< 0.0003 U	< 0.00044 U	< 0.00031 U
OSC1-BN11	5	NORM	9/22/2009	< 0.00039 U	< 0.00034 U	< 0.00043 U	< 0.00042 U	< 0.00029 U	< 0.00032 U	< 0.00032 U	< 0.00046 U	< 0.00032 U
OSC1-BO11	0	NORM	9/16/2009	< 0.0004 U	< 0.00034 U	< 0.00044 U	< 0.00042 U	< 0.00029 U	< 0.00032 U	< 0.00032 U	< 0.00046 U	< 0.00033 U
OSC1-BO11	0	FD	9/16/2009	< 0.00043 U	< 0.00037 U	< 0.00047 U	< 0.00046 U	< 0.00032 U	< 0.00035 U	< 0.00035 U	< 0.0005 U	< 0.00035 U
OSC1-BO11	5	NORM	9/16/2009	< 0.00047 U	< 0.0004 U	< 0.00052 U	< 0.0005 U	< 0.00035 U	< 0.00038 U	< 0.00038 U	< 0.00055 U	< 0.00039 U
OSC1-BP11	0	NORM	9/16/2009	< 0.00047 U	< 0.0004 U	< 0.00051 U	< 0.0005 U	< 0.00034 U	< 0.00038 U	< 0.00038 U	< 0.00054 U	< 0.00038 U
OSC1-BP11	5	NORM	9/16/2009	< 0.0005 U	< 0.00043 U	< 0.00055 U	< 0.00053 U	< 0.00037 U	< 0.00041 U	< 0.0004 U	< 0.00058 U	< 0.00041 U
OSC1-JP06	0	NORM	9/22/2009	< 0.00046 U	< 0.00039 U	< 0.00051 U	< 0.00049 U	< 0.00034 U	< 0.00037 U	< 0.00037 U	< 0.00053 U	< 0.00038 U
OSC1-JP06	5	NORM	9/22/2009	< 0.00051 U	< 0.00044 U	< 0.00057 U	< 0.00055 U	< 0.00038 U	< 0.00042 U	< 0.00041 U	< 0.0006 U	< 0.00042 U
OSC1-JP07	0	NORM	9/21/2009	< 0.0004 U	< 0.00034 U	< 0.00044 U	< 0.00042 U	< 0.00029 U	< 0.00032 U	< 0.00032 U	< 0.00046 U	< 0.00033 U
OSC1-JP07	5	NORM	9/21/2009	< 0.00047 U	< 0.0004 U	< 0.00051 U	< 0.0005 U	< 0.00034 U	< 0.00038 U	< 0.00038 U	< 0.00054 U	< 0.00038 U
OSC1-JP08	0	NORM	9/21/2009	< 0.00044 U	< 0.00038 U	< 0.00049 U	< 0.00047 U	< 0.00032 U	< 0.00036 U	< 0.00036 U	< 0.00051 U	< 0.00036 U
OSC1-JP08	10	NORM	9/21/2009	< 0.00046 U	< 0.00039 U	< 0.00051 U	< 0.00049 U	< 0.00034 U	< 0.00037 U	< 0.00037 U	< 0.00054 U	< 0.00038 U
WHC1-BF01	0	NORM	11/24/2008	< 0.00012 UJ	< 0.00021 U	< 0.00006 UJ	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 UJ	< 0.00023 U	< 0.00047 U
WHC1-BF01	12	NORM	11/24/2008	< 0.00013 UJ	< 0.00022 U	< 0.000062 UJ	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 UJ	< 0.00024 U	< 0.00048 U
WHC1-BF02	0	NORM	11/25/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BF02	11	NORM	11/25/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BF03	0	NORM	11/25/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BF03	10	NORM	11/25/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BF04	0	NORM	11/25/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BF04	0	FD	11/25/2008	< 0.00013 U	< 0.00023 U	< 0.000063 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.00049 U
WHC1-BF04	10	NORM	11/25/2008	< 0.00013 U	< 0.00023 U	< 0.000064 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.0005 U
WHC1-BF05	0	NORM	11/25/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BF05	12	NORM	12/10/2008	< 0.00017 UJ	< 0.0003 U	< 0.000084 U	< 0.00019 U	< 0.00017 U	< 0.00029 U	< 0.00015 U	< 0.00032 U	< 0.00066 U
WHC1-BF06	0	NORM	12/10/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BF06	10	NORM	12/10/2008	< 0.00016 U	< 0.00029 U	< 0.00008 U	< 0.00018 U	< 0.00016 U	< 0.00028 U	< 0.00015 U	< 0.00031 U	< 0.00063 U
WHC1-BG01	0	NORM	11/24/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BG01	11	NORM	11/24/2008	< 0.00013 UJ	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BG02	0	NORM	11/24/2008	< 0.00012 UJ	< 0.00022 UJ	< 0.00006 UJ	< 0.00013 UJ	< 0.00012 UJ	< 0.00021 UJ	< 0.00011 UJ	< 0.00023 UJ	< 0.00047 UJ
WHC1-BG02	0	FD	11/24/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BG02	10	NORM	11/24/2008	R	R	R	R	R	R	R	R	R
WHC1-BG03	0	NORM	12/11/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BG03	11	NORM	12/11/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BG04	0	NORM	12/11/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BG04	10	NORM	12/11/2008	< 0.00016 UJ	< 0.00028 U	< 0.000078 U	< 0.00017 U	< 0.00016 U	< 0.00027 U	< 0.00014 U	< 0.0003 U	< 0.00061 U
WHC1-BG05	0	NORM	11/25/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 38 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Bromobenzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chlorobromomethane	Chloroethane
WHC1-BG05	10	NORM	11/25/2008	< 0.00014 U	< 0.00024 U	< 0.000068 U	< 0.00015 U	< 0.00014 U	< 0.00023 U	< 0.00012 U	< 0.00026 U	< 0.00053 U
WHC1-BG06	0	NORM	12/10/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BG06	10	NORM	12/10/2008	< 0.00015 U	< 0.00027 U	< 0.000074 U	< 0.00016 U	< 0.00015 U	< 0.00026 U	< 0.00014 U	< 0.00028 U	< 0.00058 U
WHC1-BH01	0	NORM	12/3/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BH01	11	NORM	12/3/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BH02	0	NORM	12/4/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BH02	10	NORM	12/4/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BH03	0	NORM	12/9/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BH03	10	NORM	12/9/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BH04	0	NORM	12/11/2008	< 0.00012 UJ	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BH04	10	NORM	12/11/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BH05	0	NORM	12/9/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BH05	0	FD	12/9/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BH05	10	NORM	12/9/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BH06	0	NORM	12/11/2008	< 0.00013 UJ	< 0.00024 U	< 0.000065 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00012 U	< 0.00025 U	< 0.00051 U
WHC1-BH06	0	FD	12/11/2008	< 0.00013 U	< 0.00023 U	< 0.000064 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.0005 U
WHC1-BH06	10	NORM	12/11/2008	< 0.00014 U	< 0.00024 U	< 0.000068 U	< 0.00015 U	< 0.00014 U	< 0.00024 U	< 0.00012 U	< 0.00026 U	< 0.00053 U
WHC1-BI01	0	NORM	12/3/2008	< 0.00013 U	< 0.00023 U	< 0.000065 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00012 U	< 0.00025 U	< 0.00051 U
WHC1-BI01	11	NORM	12/3/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BI02	0	NORM	12/4/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BI02	3	NORM	12/4/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BI02	13	NORM	12/4/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BI03	0	NORM	12/4/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BI03	11	NORM	12/4/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BI04	0	NORM	12/8/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BI04	10	NORM	12/9/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BI05	0	NORM	12/9/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BI05	10	NORM	12/9/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BJ01	0	NORM	12/3/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BJ01	3	NORM	12/3/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BJ01	13	NORM	12/3/2008	< 0.00013 U	< 0.00023 U	< 0.000063 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BJ02	0	NORM	12/2/2008	< 0.00013 UJ	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BJ02	0	FD	12/2/2008	< 0.00013 UJ	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BJ02	12	NORM	12/2/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00011 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.00013 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BJ03	0	FD	12/4/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BJ04	0	NORM	12/4/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00011 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00021 U	< 0.00047 U
,, IIC1 D3 07	U	1101011	12/7/2000	\ 0.00012 U	\ 0.00022 U	\ 0.00000 C	\ 0.00013 U	\ 0.00012 U	₹0.00021 €	\ 0.00011 U	\ 0.00023 U	₹ 0.000 ∓ / €

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 39 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Bromobenzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chlorobromomethane	Chloroethane
WHC1-BJ04	11	NORM	12/4/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BJ05	0	NORM	12/11/2008	< 0.00012 UJ	< 0.00022 UJ	< 0.00006 UJ	< 0.00013 UJ	< 0.00012 UJ	< 0.00021 UJ	< 0.00011 UJ	< 0.00023 UJ	< 0.00047 UJ
WHC1-BJ05	10	NORM	12/11/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BK01	0	NORM	12/3/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BK01	0	FD	12/3/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BK01	10	NORM	12/3/2008	< 0.00013 U	< 0.00023 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BK02	0	NORM	12/8/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BK02	11	NORM	12/18/2008	< 0.00013 U	< 0.00023 U	< 0.000063 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BK03	0	NORM	12/15/2008	< 0.00012 UJ	< 0.00022 UJ	< 0.000061 UJ	< 0.00013 UJ	< 0.00012 UJ	< 0.00021 UJ	< 0.00011 UJ	< 0.00023 UJ	< 0.00048 UJ
WHC1-BK03	12	NORM	12/18/2008	< 0.00013 UJ	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BK04	0	NORM	12/4/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BK04	10	NORM	12/4/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BK05	0	NORM	12/12/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BK05	11	NORM	12/12/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BL01	0	NORM	12/3/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BL01	10	NORM	12/3/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BL02	0	NORM	12/2/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00011 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BL02	10	NORM	12/2/2008	< 0.00013 U	< 0.00023 U	< 0.000064 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.0005 U
WHC1-BL03	0	NORM	12/8/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00011 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00021 U	< 0.00048 U
WHC1-BL03	10	NORM	12/18/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BL04	0	NORM	12/17/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BL04	12	NORM	12/22/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00011 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00021 U	< 0.00048 U
WHC1-BL05	0		11/21/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00011 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BL05	10	NORM	11/21/2008	< 0.00012 U	< 0.00022 U	< 0.000062 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BL06	0	NORM	11/21/2008	< 0.00013 U	< 0.00022 U	< 0.00006 U	< 0.00011 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BL06	11	NORM	11/21/2008	< 0.00012 U	< 0.00022 U	< 0.000062 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BL07	0	NORM	11/21/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00047 U
WHC1-BL07	10	NORM	11/21/2008	< 0.00012 U	< 0.00022 U	< 0.000001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BL08	0	NORM	11/18/2008	< 0.00010 U	< 0.00028 U	< 0.000078 U	< 0.00017 U	< 0.00010 U	< 0.00027 U	< 0.00014 U	< 0.0003 U	< 0.00049 U
WHC1-BL08	10		11/18/2008	< 0.00013 UJ	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BL11	0		11/18/2008	< 0.00013 UJ	< 0.00023 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BL11	12		11/18/2008	< 0.00013 UJ	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U < 0.00024 U	< 0.00048 U
WHC1-BL11 WHC1-BM01	0	NORM	12/3/2008	< 0.00013 UJ	< 0.00023 U	< 0.000063 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.00049 U
WHC1-BM01	10	NORM	12/3/2008	< 0.00013 U	< 0.00023 U	< 0.000063 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BM02	0	NORM	12/2/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BM02	12	NORM	12/2/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BM03	0	NORM	12/2/2008	< 0.00013 U < 0.00012 UJ	< 0.00023 U	< 0.000063 U	< 0.00014 U < 0.00013 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U < 0.00023 U	< 0.00049 U
	10	NORM			< 0.00022 U	< 0.000061 U	< 0.00013 U				< 0.00023 U	
WHC1-BM03	10	NORW	12/18/2008	< 0.00013 U	< 0.00023 U	< 0.000005 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.0005 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 40 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Bromobenzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chlorobromomethane	Chloroethane
WHC1-BM04	0	NORM	12/17/2008	< 0.00013 UJ	< 0.00022 U	< 0.000061 UJ	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 UJ	< 0.00023 U	< 0.00048 U
WHC1-BM04	0	FD	12/17/2008	< 0.00013 UJ	< 0.00022 U	< 0.000061 UJ	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 UJ	< 0.00023 U	< 0.00048 U
WHC1-BM04	10	NORM	12/22/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BM05	0	NORM	11/21/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BM05	10	NORM	11/21/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BM06	0	NORM	11/21/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BM06	0	FD	11/21/2008	< 0.00013 U	< 0.00023 U	< 0.000064 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00025 U	< 0.0005 U
WHC1-BM06	10	NORM	11/21/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BM07	0	NORM	11/20/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BM07	11	NORM	11/20/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BM08	0	NORM	11/18/2008	< 0.00012 UJ	< 0.00022 U	< 0.000061 UJ	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 UJ	< 0.00023 U	< 0.00048 U
WHC1-BM08	0	FD	11/18/2008	< 0.00014 U	< 0.00025 U	< 0.000068 U	< 0.00015 U	< 0.00014 U	< 0.00024 U	< 0.00012 U	< 0.00026 U	< 0.00053 U
WHC1-BM08	11	NORM	11/18/2008	< 0.00013 UJ	< 0.00023 U	< 0.000064 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.0005 U
WHC1-BM09	0	NORM	11/18/2008	< 0.00012 UJ	< 0.00022 U	< 0.000061 UJ	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 UJ	< 0.00023 U	< 0.00048 U
WHC1-BM09	12	NORM	11/18/2008	< 0.00013 UJ	< 0.00022 U	< 0.000062 UJ	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 UJ	< 0.00024 U	< 0.00048 U
WHC1-BM10	0	NORM	11/18/2008	< 0.00013 UJ	< 0.00023 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BM10	3	NORM	11/18/2008	< 0.00013 UJ	< 0.00023 U	< 0.000063 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.00049 U
WHC1-BM10	13			< 0.00016 UJ	< 0.00027 U	< 0.000076 U	< 0.00017 U	< 0.00016 U	< 0.00026 U	< 0.00014 U	< 0.00029 U	< 0.00059 U
WHC1-BN01	0	NORM	12/1/2008	< 0.00013 U	< 0.00023 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BN01	12	NORM	12/1/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BN02	0	NORM	12/1/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BN02	0	FD	12/1/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BN02	11	NORM	12/1/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BN03	0	NORM	12/17/2008	< 0.00013 UJ	< 0.00023 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BN03	10	NORM	12/18/2008	< 0.00013 UJ	< 0.00022 UJ	< 0.000061 UJ	< 0.00013 UJ	< 0.00013 UJ	< 0.00021 UJ	< 0.00011 UJ	< 0.00023 UJ	< 0.00048 UJ
WHC1-BN04	0		12/17/2008	< 0.00013 UJ	< 0.00022 U	< 0.000062 UJ	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 UJ	< 0.00023 U	< 0.00048 U
WHC1-BN04	7	NORM	12/22/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BN04	17	NORM	12/22/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BN05	0	NORM	11/20/2008	< 0.00012 U	< 0.00021 U	< 0.000059 U	< 0.00011 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00046 U
WHC1-BN05	0	FD	11/20/2008	< 0.00012 U	< 0.00021 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BN05	10		11/20/2008	< 0.00012 U	< 0.00022 U	< 0.000062 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BN06	0		11/20/2008	< 0.00013 U	< 0.00022 U	< 0.00006 U	< 0.00014 C	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00047 U
WHC1-BN06	10		11/20/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BN07	0		11/21/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 C	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BN07	3		11/21/2008	< 0.00013 UJ	< 0.00022 UJ	< 0.000061 UJ	< 0.00013 C	< 0.00013 UJ	< 0.00021 UJ	< 0.00011 UJ	< 0.00023 UJ	< 0.00048 UJ
WHC1-BN07	13		11/21/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BN08	0		11/20/2008	< 0.00013 U	< 0.00022 U	< 0.00006 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00047 U
WHC1-BN08	10		11/20/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
TITLETEDINO	10	TACIVIA	11/20/2000	~ 0.00012 U	~ 0.00044 U	\ 0.00000 U	~ 0.00013 0	→ 0.00012 U	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~ 0.00011 U	~ U.UUU23 U	~ 0.000 1 7 0

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 41 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Bromobenzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chlorobromomethane	Chloroethane
WHC1-BN09	(11 bgs)	NORM	12/17/2008	< 0.00013 U	< 0.00023 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BN09	11		12/17/2008	< 0.00013 U	< 0.00023 U	< 0.000065 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BN10	0		11/18/2008	< 0.00013 UJ	< 0.00024 U	< 0.000065 UJ	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00012 UJ	< 0.00025 U	< 0.00051 U
WHC1-BN10	10	NORM	11/18/2008	< 0.00015 UJ	< 0.00025 U	< 0.000003 U3	< 0.00014 U	< 0.00015 U	< 0.00025 U	< 0.00012 UJ	< 0.00023 U	< 0.00051 U
WHC1-BO01	0	NORM	12/2/2008	< 0.00013 U	< 0.00020 U	< 0.000071 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00013 U	< 0.00027 U	< 0.00036 U
WHC1-BO01	0	FD	12/2/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-B001	4	NORM	12/2/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U < 0.00047 U
WHC1-BO01	14	NORM	12/2/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BO01	0	NORM	12/1/2008	< 0.00013 U	< 0.00023 U	< 0.000064 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.0003 U
WHC1-BO02	12	NORM	12/1/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BO02	0	NORM	12/1/2008	< 0.00013 U < 0.00012 UJ	< 0.00022 U	< 0.000061 UJ	< 0.00013 UJ	< 0.00013 U	< 0.00021 U	< 0.00011 UJ	< 0.00023 U	< 0.00048 U
WHC1-B003	12		12/13/2008	< 0.00012 UJ	< 0.00022 U	< 0.000061 UJ	< 0.00013 UJ	< 0.00012 U	< 0.00021 U	< 0.00011 UJ	< 0.00023 U	< 0.00048 U
WHC1-BO03	0											
	_			< 0.00013 UJ	< 0.00023 U	< 0.000063 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BO04	12		12/19/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00014 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BO05	0		11/20/2008	< 0.00014 U	< 0.00024 U	< 0.000067 U	< 0.00015 U	< 0.00014 U	< 0.00023 U	< 0.00012 U	< 0.00026 U	< 0.00053 U
WHC1-BO05	10		11/20/2008	< 0.00014 U	< 0.00024 U	< 0.000068 U	< 0.00015 U	< 0.00014 U	< 0.00024 U	< 0.00012 U	< 0.00026 U	< 0.00053 U
WHC1-BO06 WHC1-BO06	10		11/20/2008 11/20/2008	< 0.00013 U	< 0.00024 U < 0.00024 U	< 0.000065 U	< 0.00014 U < 0.00015 U	< 0.00014 U	< 0.00023 U < 0.00023 U	< 0.00012 U	< 0.00025 U < 0.00026 U	< 0.00051 U
				< 0.00014 U		< 0.000067 U		< 0.00014 U		< 0.00012 U		< 0.00052 U
WHC1-BO07	0		11/19/2008	< 0.00012 UJ	< 0.00022 U	< 0.00006 UJ	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 UJ	< 0.00023 U	< 0.00047 U
WHC1-BO07	10		11/19/2008	< 0.00013 UJ	< 0.00022 U	< 0.000061 UJ	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 UJ	< 0.00023 U	< 0.00048 U
WHC1-BO08	0		1111111111111111111111	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BO08	0	FD	11/20/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BO08	11	NORM	11/20/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BO09	0	NORM	11/19/2008	< 0.00013 UJ	< 0.00022 U	< 0.000062 UJ	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 UJ	< 0.00024 U	< 0.00048 U
WHC1-BO09	0	FD	11/19/2008	< 0.00012 UJ	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BO09	6	NORM	11/19/2008	< 0.00013 UJ	< 0.00023 U	< 0.000064 UJ	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 UJ	< 0.00024 U	< 0.0005 U
WHC1-BO09	16			< 0.00013 UJ	< 0.00022 U	< 0.000061 UJ	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 UJ	< 0.00023 U	< 0.00048 U
WHC1-BO10	0		11/19/2008	< 0.00012 UJ	< 0.00022 U	< 0.000061 UJ	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 UJ	< 0.00023 U	< 0.00047 U
WHC1-BO10	10	NORM	11/19/2008	< 0.00013 UJ	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BP01	0	NORM	12/1/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BP01	10	NORM	12/1/2008	< 0.00013 UJ	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BP02	0	NORM	12/1/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-BP02	11	NORM	12/1/2008	< 0.00013 U	< 0.00023 U	< 0.000063 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.00049 U
WHC1-BP03	0	NORM	12/15/2008	< 0.00012 UJ	< 0.00022 U	< 0.00006 U	< 0.00013 UJ	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BP03	0	FD	12/15/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 UJ	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BP03	11	NORM	12/19/2008	< 0.00013 U	< 0.00023 U	< 0.000064 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.0005 U
WHC1-BP04	0	NORM	12/15/2008	< 0.00012 UJ	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BP04	12	NORM	12/19/2008	< 0.00013 UJ	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 42 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Bromobenzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chlorobromomethane	Chloroethane
WHC1-BP05	0	NORM	12/15/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 UJ	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BP05	10	NORM	12/19/2008	< 0.00013 U	< 0.00023 U	< 0.000063 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.0005 U
WHC1-BP06	0	NORM	12/12/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BP06	10	NORM	12/12/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-BP07	0	NORM	11/20/2008	< 0.00013 U	< 0.00024 U	< 0.000066 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00012 U	< 0.00025 U	< 0.00051 U
WHC1-BP07	3	NORM	11/20/2008	< 0.00013 U	< 0.00023 U	< 0.000064 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.0005 U
WHC1-BP07	13	NORM	11/20/2008	< 0.00013 U	< 0.00023 U	< 0.000065 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00012 U	< 0.00025 U	< 0.00051 U
WHC1-BP08	0	NORM	11/19/2008	< 0.00013 UJ	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BP08	4	NORM	11/19/2008	< 0.00013 UJ	< 0.00023 U	< 0.000065 UJ	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 UJ	< 0.00025 U	< 0.00051 U
WHC1-BP08	14	NORM	11/19/2008	< 0.00013 UJ	< 0.00023 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-BP09	0	NORM	11/19/2008	< 0.00012 UJ	< 0.00022 UJ	< 0.00006 UJ	< 0.00013 UJ	< 0.00012 UJ	< 0.00021 UJ	< 0.00011 UJ	< 0.00023 UJ	< 0.00047 UJ
WHC1-BP09	10	NORM	11/19/2008	< 0.00013 UJ	< 0.00023 U	< 0.000063 UJ	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 UJ	< 0.00024 U	< 0.00049 U
WHC1-BP10	0	NORM	11/19/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-BP10	10	NORM	11/19/2008	< 0.00012 UJ	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-D01	0	NORM	12/5/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-D01	10	NORM	12/5/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-D02	0	NORM	12/5/2008	< 0.00013 U	< 0.00023 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-D02	10	NORM	12/5/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-D03	0	NORM	12/5/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-D03	0	FD	12/5/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-D03	10	NORM	12/5/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-D04	0	NORM	12/5/2008	< 0.00013 UJ	< 0.00023 U	< 0.000063 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.00049 U
WHC1-D04	10	NORM	12/5/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-D05	0	NORM	12/5/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-D05	10	NORM	12/5/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-D06	0	NORM	12/5/2008	< 0.00013 UJ	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-D06	10	NORM	12/5/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-D07	0	NORM	12/5/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-D07	10	NORM	12/5/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-D08	0	NORM	12/8/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-D08	10	NORM	12/9/2008	< 0.00013 U	< 0.00023 U	< 0.000065 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00012 U	< 0.00025 U	< 0.00051 U
WHC1-D09	0	NORM	12/8/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-D09	11	NORM	12/9/2008	< 0.00013 U	< 0.00023 U	< 0.000064 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.0005 U
WHC1-D10	0	NORM	12/8/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-D10	10	NORM	12/9/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-D11	0	NORM	12/8/2008	< 0.00013 UJ	< 0.00023 U	< 0.000064 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.0005 U
WHC1-D11	10	NORM	12/9/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-D12	0	NORM	12/10/2008	< 0.00014 U	< 0.00024 U	< 0.000067 U	< 0.00015 U	< 0.00014 U	< 0.00023 U	< 0.00012 U	< 0.00025 U	< 0.00052 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 43 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	(ft bgs)	Sample Type	Sample Date	Bromobenzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chlorobromomethane	Chloroethane
WHC1-D12	10	NORM	12/10/2008	< 0.00017 U	< 0.0003 U	< 0.000084 U	< 0.00019 U	< 0.00017 U	< 0.00029 U	< 0.00015 U	< 0.00032 U	< 0.00066 U
WHC1-D13	0	NORM	12/8/2008	< 0.00013 UJ	< 0.00023 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-D13	10	NORM	12/8/2008	< 0.00016 U	< 0.00029 U	< 0.000079 U	< 0.00018 U	< 0.00016 U	< 0.00028 U	< 0.00015 U	< 0.0003 U	< 0.00062 U
WHC1-D15	0	NORM	12/11/2008	R	< 0.00022 U	< 0.000062 UJ	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 UJ	< 0.00024 U	< 0.00048 U
WHC1-D15	10		12/11/2008	< 0.00016 U	< 0.00028 U	< 0.000076 U	< 0.00017 U	< 0.00016 U	< 0.00027 U	< 0.00014 U	< 0.00029 U	< 0.0006 U
WHC1-D16	0	NORM	12/10/2008	< 0.00013 U	< 0.00023 U	< 0.000065 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00025 U	< 0.00051 U
WHC1-D16	10	NORM	12/10/2008	< 0.00014 U	< 0.00025 U	< 0.000069 U	< 0.00015 U	< 0.00014 U	< 0.00024 U	< 0.00013 U	< 0.00026 U	< 0.00054 U
WHC1-D17	0	NORM	12/10/2008	< 0.00013 U	< 0.00023 U	< 0.000064 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00025 U	< 0.0005 U
WHC1-D17	10	NORM	12/10/2008	< 0.00014 U	< 0.00024 U	< 0.000068 U	< 0.00015 U	< 0.00014 U	< 0.00024 U	< 0.00012 U	< 0.00026 U	< 0.00053 U
WHC1-D18	0	NORM	12/11/2008	< 0.00012 UJ	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-D18	10	NORM	12/11/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-D19	0	NORM	12/11/2008	< 0.00013 UJ	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-D19	0	FD	12/11/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-D19	10	NORM	12/11/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-D20	0	NORM	12/12/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-D20	10	NORM	12/12/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-D21	0	NORM	12/16/2008	< 0.00013 UJ	< 0.00023 U	< 0.000063 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.00049 U
WHC1-D21	10	NORM	12/16/2008	< 0.00013 UJ	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-D22	0	NORM	12/16/2008	< 0.00015 UJ	< 0.00026 U	< 0.000072 U	< 0.00016 U	< 0.00015 U	< 0.00025 U	< 0.00013 U	< 0.00027 U	< 0.00056 U
WHC1-D22	10	NORM	12/16/2008	< 0.00013 U	< 0.00023 U	< 0.000064 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.0005 U
WHC1-D23	0	NORM	12/16/2008	< 0.00013 UJ	< 0.00022 U	< 0.000062 UJ	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 UJ	< 0.00024 U	< 0.00049 U
WHC1-D23	10	NORM	12/16/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-D24	0	NORM	12/16/2008	< 0.00013 UJ	< 0.00023 U	< 0.000064 UJ	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 UJ	< 0.00024 U	< 0.0005 U
WHC1-D24	0	FD	12/16/2008	< 0.00013 UJ	< 0.00023 U	< 0.000064 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.0005 U
WHC1-D24	10	NORM	12/16/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-D25	0	NORM	12/16/2008	< 0.00013 UJ	< 0.00023 U	< 0.000063 UJ	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 UJ	< 0.00024 U	< 0.00049 U
WHC1-D25	10	NORM	12/16/2008	< 0.00013 UJ	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-D26	0	NORM	12/12/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-D26	10	NORM	12/12/2008	< 0.00014 U	< 0.00024 U	< 0.000066 U	< 0.00015 U	< 0.00014 U	< 0.00023 U	< 0.00012 U	< 0.00025 U	< 0.00052 U
WHC1-D27	0	NORM	12/12/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-D27	0	FD	12/12/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-D27	10	NORM	12/12/2008	< 0.00014 U	< 0.00025 U	< 0.000068 U	< 0.00015 U	< 0.00014 U	< 0.00024 U	< 0.00013 U	< 0.00026 U	< 0.00053 U
WHC1-D28	0	NORM	12/12/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-D28	10	NORM	12/12/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-D29	0	NORM	12/12/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-D29	10	NORM	12/12/2008	< 0.00013 U	< 0.00023 U	< 0.000063 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-P01	0	NORM	12/15/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 UJ	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P01	12	NORM	12/19/2008	< 0.00013 UJ	< 0.00022 U	< 0.000061 UJ	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 UJ	< 0.00023 U	< 0.00048 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 44 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Bromobenzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chlorobromomethane	Chloroethane
WHC1-P02	0	NORM	12/1/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-P02	10	NORM	12/1/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-P03	0	NORM	12/15/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 UJ	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P03	3	NORM	12/18/2008	< 0.00012 UJ	< 0.00022 U	< 0.000061 UJ	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 UJ	< 0.00023 U	< 0.00047 U
WHC1-P03	3	FD	12/18/2008	< 0.00012 UJ	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P03	13	NORM	12/18/2008	< 0.00013 UJ	< 0.00022 UJ	< 0.000061 UJ	< 0.00014 UJ	< 0.00013 UJ	< 0.00021 UJ	< 0.00011 UJ	< 0.00023 UJ	< 0.00048 UJ
WHC1-P04	0	NORM	12/15/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P04	10	NORM	12/18/2008	< 0.00013 UJ	< 0.00023 UJ	< 0.000063 UJ	< 0.00014 UJ	< 0.00013 UJ	< 0.00022 UJ	< 0.00011 UJ	< 0.00024 UJ	< 0.00049 UJ
WHC1-P05	0	NORM	12/8/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-P05	0	FD	12/8/2008	< 0.00013 UJ	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P05	10	NORM	12/18/2008	< 0.00013 U	< 0.00023 U	< 0.000063 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.00049 U
WHC1-P06	0	NORM	12/2/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-P06	12	NORM	12/2/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-P07	0	NORM	12/2/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P07	3	NORM	12/2/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-P07	13	NORM	12/2/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P08	0	NORM	12/3/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P08	11	NORM	12/3/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P09	0	NORM	12/4/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P09	0	FD	12/4/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-P09	10	NORM	12/4/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P10	0	NORM	11/25/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-P10	10	NORM	11/25/2008	< 0.00015 U	< 0.00026 U	< 0.000072 U	< 0.00016 U	< 0.00015 U	< 0.00025 U	< 0.00013 U	< 0.00027 U	< 0.00056 U
WHC1-P11	0	NORM	12/8/2008	R	< 0.00022 U	< 0.000062 UJ	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 UJ	< 0.00024 U	< 0.00048 U
WHC1-P11	0	FD	12/8/2008	< 0.00012 UJ	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P11	10	NORM	12/9/2008	< 0.00013 U	< 0.00023 U	< 0.000065 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00012 U	< 0.00025 U	< 0.00051 U
WHC1-P12	0	NORM	12/5/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P12	11	NORM	12/5/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P13	0	NORM	12/9/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P13	10	NORM	12/9/2008	< 0.00018 U	< 0.00031 U	< 0.000086 U	< 0.00019 U	< 0.00018 U	< 0.0003 U	< 0.00016 U	< 0.00033 U	< 0.00067 U
WHC1-P13	10	FD	12/9/2008	< 0.00016 U	< 0.00028 U	< 0.000077 U	< 0.00017 U	< 0.00016 U	< 0.00027 U	< 0.00014 U	< 0.00029 U	< 0.0006 U
WHC1-P14	0	NORM	12/17/2008	< 0.00015 UJ	< 0.00026 U	< 0.000071 U	< 0.00016 U	< 0.00015 U	< 0.00025 U	< 0.00013 U	< 0.00027 U	< 0.00055 U
WHC1-P15	0	NORM	12/8/2008	< 0.00013 UJ	< 0.00023 U	< 0.000064 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.0005 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.00013 U	< 0.00023 U	< 0.000064 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00012 U	< 0.00024 U	< 0.0005 U
WHC1-P15	10	NORM	12/18/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00022 U	< 0.00011 U	< 0.00024 U	< 0.00049 U
WHC1-P16	0	NORM	12/1/2008	< 0.00062 U	< 0.0011 U	< 0.0003 U	< 0.00067 U	< 0.00062 U	< 0.0011 U	< 0.00056 U	< 0.00023 U	< 0.0024 U
WHC1-P16	11	NORM	12/1/2008	< 0.00012 U	< 0.00022 U	< 0.00006 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U
WHC1-P17	0	NORM	12/15/2008	< 0.00013 UJ	< 0.00022 U	< 0.000061 UJ	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 UJ	< 0.00023 U	< 0.00048 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 45 of 81)

							Volatile C	rganic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Bromobenzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chlorobromomethane	Chloroethane
WHC1-P17	12	NORM	12/19/2008	< 0.00013 U	< 0.00022 U	< 0.000062 U	< 0.00014 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00024 U	< 0.00048 U
WHC1-P17	12	FD	12/19/2008	< 0.00013 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00013 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P18	0	NORM	12/1/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00048 U
WHC1-P18	12	NORM	12/1/2008	< 0.00012 U	< 0.00022 U	< 0.000061 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00011 U	< 0.00023 U	< 0.00047 U

All units in mg/kg.

= Data not included in risk assessment. Sample location covered with fill material (see text).

^{-- =} no sample data.

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 46 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Cymene (Isopropy- ltoluene)	Dibromochloromethane	Dibromochloropropane	Dibromomethane	Dichloromethane (Methylene chloride)
OSC1-BM11	0	NORM	9/21/2009	< 0.0006 UJ	< 0.00028 U	< 0.00035 U	< 0.00024 U	< 0.00027 U	< 0.0003 U	< 0.00062 U	< 0.00036 U	< 0.0059 UJ
OSC1-BM11	10	NORM	9/21/2009	< 0.00049 U	< 0.00032 U	< 0.00039 U	< 0.00027 U	< 0.0003 U	< 0.00034 U	< 0.0007 U	< 0.0004 U	< 0.0046 UJ
OSC1-BN11	0	NORM	9/22/2009	< 0.00047 U	< 0.00027 U	< 0.00033 U	< 0.00024 U	< 0.00026 U	< 0.00029 U	< 0.0006 U	< 0.00035 U	< 0.0035 UJ
OSC1-BN11	5	NORM	9/22/2009	< 0.00044 U	< 0.00029 U	< 0.00035 U	< 0.00025 U	< 0.00027 U	< 0.00031 U	< 0.00063 U	< 0.00036 U	< 0.003 UJ
OSC1-BO11	0	NORM	9/16/2009	< 0.00038 U	< 0.00029 U	< 0.00035 U	< 0.00025 U	< 0.00028 U	< 0.00031 U	< 0.00063 U	< 0.00037 U	< 0.0025 U
OSC1-BO11	0	FD	9/16/2009	< 0.00051 U	< 0.00031 U	< 0.00038 U	< 0.00027 U	< 0.0003 U	< 0.00033 U	< 0.00068 U	< 0.00039 U	< 0.0027 U
OSC1-BO11	5	NORM	9/16/2009	< 0.00045 U	< 0.00034 U	< 0.00042 U	< 0.00029 U	< 0.00032 U	< 0.00036 U	< 0.00075 U	< 0.00043 U	< 0.0029 U
OSC1-BP11	0	NORM	9/16/2009	< 0.00049 U	< 0.00034 U	< 0.00041 U	< 0.00029 U	< 0.00032 U	< 0.00036 U	< 0.00074 U	< 0.00043 U	< 0.0029 U
OSC1-BP11	5	NORM	9/16/2009	< 0.00048 U	< 0.00036 U	< 0.00044 U	< 0.00031 U	< 0.00035 U	< 0.00039 U	< 0.0008 U	< 0.00046 U	< 0.0031 U
OSC1-JP06	0	NORM	9/22/2009	< 0.00045 U	< 0.00033 U	< 0.00041 U	< 0.00029 U	< 0.00032 U	< 0.00036 U	< 0.00073 U	< 0.00042 U	< 0.0061 UJ
OSC1-JP06	5	NORM	9/22/2009	< 0.00055 U	< 0.00037 U	< 0.00045 U	< 0.00032 U	< 0.00035 U	< 0.0004 U	< 0.00082 U	< 0.00047 U	< 0.004 UJ
OSC1-JP07	0	NORM	9/21/2009	< 0.0004 U	< 0.00029 U	< 0.00035 U	< 0.00025 U	< 0.00028 U	< 0.00031 U	< 0.00063 U	< 0.00037 U	< 0.0025 U
OSC1-JP07	5	NORM	9/21/2009	< 0.00044 U	< 0.00034 U	< 0.00041 U	< 0.00029 U	< 0.00032 U	< 0.00036 U	< 0.00074 U	< 0.00043 U	< 0.0029 U
OSC1-JP08	0	NORM	9/21/2009	< 0.00042 U	< 0.00032 U	< 0.00039 U	< 0.00028 U	< 0.0003 U	< 0.00034 U	< 0.0007 U	< 0.00041 U	< 0.005 UJ
OSC1-JP08	10	NORM	9/21/2009	< 0.00048 U	< 0.00034 U	< 0.00041 U	< 0.00029 U	< 0.00032 U	< 0.00036 U	< 0.00073 U	< 0.00042 U	< 0.0055 UJ
WHC1-BF01	0	NORM	11/24/2008	< 0.0001 U	< 0.00027 U	< 0.000054 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 UJ	< 0.00021 UJ	< 0.00017 U	< 0.00069 U
WHC1-BF01	12	NORM	11/24/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 U	< 0.00072 U
WHC1-BF02	0	NORM	11/25/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00017 U	< 0.0027 U
WHC1-BF02	11	NORM	11/25/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0021 U
WHC1-BF03	0	NORM	11/25/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00017 U	< 0.0024 U
WHC1-BF03	10	NORM	11/25/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0021 U
WHC1-BF04	0	NORM	11/25/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00017 U	< 0.0021 U
WHC1-BF04	0	FD	11/25/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.0021 U
WHC1-BF04	10	NORM	11/25/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.0023 U
WHC1-BF05	0	NORM	11/25/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-BF05	12	NORM	12/10/2008	< 0.00014 U	< 0.00038 U	< 0.000077 U	< 0.00014 U	< 0.00018 UJ	< 0.00017 U	< 0.0003 UJ	< 0.00024 U	< 0.0071 U
WHC1-BF06	0	NORM	12/10/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-BF06	10	NORM	12/10/2008	< 0.00014 U	< 0.00036 U	< 0.000073 U	< 0.00014 U	< 0.00017 U	< 0.00016 U	< 0.00029 U	< 0.00023 U	< 0.00093 U
WHC1-BG01	0	NORM	11/24/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00017 U	< 0.00069 U
WHC1-BG01	11	NORM	11/24/2008	< 0.0001 U	< 0.00028 U	< 0.000056 UJ	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	< 0.00071 U
WHC1-BG02	0	NORM	11/24/2008	< 0.0001 UJ	< 0.00027 UJ	< 0.000055 UJ	< 0.0001 UJ	< 0.00013 UJ	< 0.00012 UJ	< 0.00021 UJ	< 0.00017 UJ	< 0.0011 UJ
WHC1-BG02	0	FD	11/24/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0007 U
WHC1-BG02	10	NORM	11/24/2008	R	R	R	R	R	R	R	R	< 0.003 UJ
WHC1-BG03	0	NORM	12/11/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00017 U	< 0.0033 U
WHC1-BG03	11	NORM	12/11/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00017 U	< 0.0035 U
WHC1-BG04	0	NORM	12/11/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00017 U	< 0.012 UJ
WHC1-BG04	10	NORM	12/11/2008	< 0.00013 U	< 0.00035 U	< 0.000071 U	< 0.00013 U	< 0.00016 UJ	< 0.00012 U	< 0.00028 UJ	< 0.00022 U	< 0.0062 UJ
WHC1-BG05	0		11/25/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0023 U
	Ü	- 101111	- 1, 20, 2000	10.0001 0	10.000270	10.000000	10.0001 0	10.00015	10.00012	10.00022 0	: 0.00017 0	10.0025

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 47 of 81)

Depth Sumple Depth Sumple Sum								Volatile (Organic Compoun	ds (VOCs)			
WEICL-BIGO O NORM 12/10/2008 C.00001 U C.000028 U C.000018 U C.000018 U C.000018 U C.000017 U C.000072 U C.000072 U WEICL-BIGO O NORM 12/10/2008 C.000010 U C.000078 U C.000018 U C.000018 U C.000018 U C.000071 U C.000072 U C.000071 U WEICL-BIGO O NORM 12/10/2008 C.00001 U C.000078 U C.000018 U C.000018 U C.000071 U C.000071 U C.000071 U WEICL-BIGO O NORM 12/10/2008 C.00001 U C.000078 U C.000078 U C.000071 U WEICL-BIGO O NORM 12/10/2008 C.00001 U C.000078 U C	Sample ID	_		-	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Cymene (Isopropy- Itoluene)	Dibromochloromethane	Dibromochloropropane	Dibromomethane	Dichloromethane (Methylene chloride)
WHCL-BIGO6	WHC1-BG05	10	NORM	11/25/2008	< 0.00011 U	< 0.00031 U	< 0.000062 U	< 0.00011 U	< 0.00014 U	< 0.00014 U	< 0.00024 U	< 0.00019 U	< 0.0026 U
WHICLBHOL O NORM 123/2008 < 0.0001 U < 0.00028 U < 0.000018 U < 0.00013 U < 0.00013 U < 0.000017 U < 0.00007	WHC1-BG06	0	NORM	12/10/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHICLBH01	WHC1-BG06	10	NORM	12/10/2008	< 0.00013 U	< 0.00034 U	< 0.000068 U	< 0.00013 U	< 0.00016 U	< 0.00015 U	< 0.00027 U	< 0.00021 U	< 0.00087 U
WHCI-BH02	WHC1-BH01	0	NORM	12/3/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHICLIBHOS 10 NORM 12/42008 0.0001 U 0.00027 U 0.000005 U 0.00001 U 0.00001 U 0.00007 U 0.00007 U 0.000005 U 0.00001 U 0.00001 U 0.00007 U 0.00007 U 0.0000005 U 0.00001 U 0	WHC1-BH01	11	NORM	12/3/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHICLIBHOS O NORM 129/2008 C.00001 U C.000025 U C.0000056 U C.00001 U C.000015 U C.000012 U C.000012 U C.000017	WHC1-BH02	0	NORM	12/4/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHCL-BH03	WHC1-BH02	10	NORM	12/4/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00017 U	< 0.0007 U
WHCL-BH04	WHC1-BH03	0	NORM	12/9/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0007 U
WHC1-BH05	WHC1-BH03	10	NORM	12/9/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-BH05	WHC1-BH04	0	NORM	12/11/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00021 UJ	< 0.00017 U	< 0.013 UJ
WHCI-BH05	WHC1-BH04	10		12/11/2008	< 0.0001 U	0.00035 J+	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.014 UJ
WHIC1-BH05	WHC1-BH05	0	NORM	12/9/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-BH06	WHC1-BH05	0	FD		< 0.0001 U	< 0.00028 U	< 0.000056 U		< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-BH06	WHC1-BH05	10	NORM	12/9/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-BH06		0	NORM			< 0.0003 U	< 0.00006 U			< 0.00013 U	< 0.00023 UJ	< 0.00018 U	< 0.0074 UJ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BH06	0	FD	12/11/2008	< 0.00011 U	< 0.00029 U	< 0.000059 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.0041 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BH06	10	NORM	12/11/2008	< 0.00011 U	< 0.00031 U	< 0.000062 U	< 0.00011 U	< 0.00014 U	< 0.00014 U	< 0.00024 U	< 0.00019 U	< 0.0039 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	NORM	12/3/2008	< 0.00011 U	< 0.00029 U	< 0.000059 U	< 0.00011 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.00076 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BI01	11	NORM	12/3/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-BI02 3 NORM 12/4/2008 < 0.0001 U < 0.00028 U < 0.000055 U < 0.0001 U < 0.00013 U < 0.00012 U < 0.00022 U < 0.00017 U < 0.00071 U WHC1-BI02 13 NORM 12/4/2008 < 0.0001 U < 0.000028 U < 0.000056 U < 0.0001 U < 0.00013 U < 0.00012 U < 0.00022 U < 0.00017 U < 0.00071 U < 0.		0	NORM	12/4/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	
WHC1-BI02 13 NORM 12/4/2008 < 0.0001 U < 0.00016 U < 0.00013 U < 0.00012 U < 0.00017 U < 0.00071 U <td></td> <td>3</td> <td></td>		3											
WHC1-BI03 0 NORM 12/4/2008 < 0.0001 U < 0.00016 U < 0.00013 U < 0.00012 U < 0.00017 U < 0.00071 U WHC1-BI03 11 NORM 12/4/2008 < 0.0001 U		13	NORM		< 0.0001 U	< 0.00028 U		< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	
WHC1-BI03 11 NORM 12/4/2008 < 0.0001 U < 0.000055 U < 0.0001 U < 0.00013 U < 0.00012 U < 0.00017 U < 0.0007 U WHC1-BI04 0 NORM 12/8/2008 < 0.0001 U		0	NORM	12/4/2008									
WHC1-BI04 0 NORM 12/8/2008 < 0.0001 U < 0.00055 U < 0.0001 U < 0.00013 U < 0.00012 U < 0.00017 U < 0.00017 U < 0.0001 U WHC1-BI04 10 NORM 12/9/2008 < 0.00011 U		11	NORM										
WHC1-BI04 10 NORM 12/9/2008 < 0.00011 U < 0.00057 U < 0.00011 U < 0.00013 U < 0.00012 U < 0.00012 U < 0.00018 U < 0.00073 U WHC1-BI05 0 NORM 12/9/2008 < 0.0001 U		0	NORM	12/8/2008		< 0.00027 U	< 0.000055 U				< 0.00022 U	< 0.00017 U	< 0.001 U
WHC1-BI05 0 NORM 12/9/2008 < 0.0001 U < 0.00036 U < 0.0001 U < 0.00013 U < 0.00012 U < 0.00017 U < 0.00071 U < 0.00072 U < 0.00072 U < 0.00071 U < 0.00072 U < 0.00071 U < 0.00072 U	WHC1-BI04	10	NORM	12/9/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00018 U	< 0.00073 U
WHC1-BI05 10 NORM 12/9/2008 < 0.0001 U < 0.00056 U < 0.0001 U < 0.00013 U < 0.00012 U < 0.00017 U < 0.00072 U WHC1-BJ01 0 NORM 12/3/2008 < 0.0001 U			NORM										
WHC1-BJ01 0 NORM 12/3/2008 < 0.0001 U < 0.00056 U < 0.0001 U < 0.00013 U < 0.00012 U < 0.00017 U < 0.00071 U WHC1-BJ01 3 NORM 12/3/2008 < 0.0001 U													
WHC1-BJ01 3 NORM 12/3/2008 < 0.0001 U < 0.00056 U < 0.0001 U < 0.00013 U < 0.00012 U < 0.00017 U < 0.00072 U WHC1-BJ01 13 NORM 12/3/2008 < 0.00011 U													
WHC1-BJ01 13 NORM 12/3/2008 < 0.00011 U < 0.00058 U < 0.00011 U < 0.00013 U < 0.00013 U < 0.00022 U < 0.00018 U < 0.00073 U WHC1-BJ02 0 NORM 12/2/2008 < 0.0001 U													
WHC1-BJ02 0 NORM 12/2/2008 < 0.0001 U < 0.00056 U < 0.0001 U < 0.00013 UJ < 0.00012 U < 0.00017 U < 0.0016 U WHC1-BJ02 0 FD 12/2/2008 < 0.0001 U													
WHC1-BJ02 0 FD 12/2/2008 < 0.0001 U < 0.00056 U < 0.0001 U < 0.00013 U < 0.00012 U < 0.00022 UJ < 0.00017 U < 0.0039 U WHC1-BJ02 12 NORM 12/2/2008 < 0.0001 U													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
WHC1-BJ03 0 FD 12/4/2008 < 0.0001 U < 0.00027 U < 0.00025 U < 0.0001 U < 0.00012 U < 0.00012 U < 0.00017 U < 0.0003 U WHC1-BJ03 12 NORM 12/4/2008 < 0.0001 U													
WHC1-BJ03 12 NORM 12/4/2008 < 0.0001 U < 0.00028 U < 0.000056 U < 0.0001 U < 0.00013 U < 0.00012 U < 0.00022 U < 0.00017 U < 0.00072 U													
INFOCEDIOE I O INCONVELIZÆZOOCI SUJUULU I SUJUUZLU I SUJUUJUJU I SUJUUJUJU I SUJUUJUJU I SUJUUJZU I SUJUUJZU I	WHC1-BJ04	0	NORM	12/4/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00017 U	< 0.0007 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 48 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Cymene (Isopropy- ltoluene)	Dibromochloromethane	Dibromochloropropane	Dibromomethane	Dichloromethane (Methylene chloride)
WHC1-BJ04	11	NORM	12/4/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-BJ05	0	NORM	12/11/2008	< 0.0001 UJ	< 0.00027 UJ	< 0.000055 UJ	< 0.0001 UJ	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 UJ	< 0.0007 UJ
WHC1-BJ05	10	NORM	12/11/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0099 UJ
WHC1-BK01	0	NORM	12/3/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-BK01	0	FD	12/3/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-BK01	10	NORM	12/3/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00018 U	< 0.00073 U
WHC1-BK02	0	NORM	12/8/2008	< 0.0001 U	< 0.00028 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0013 U
WHC1-BK02	11	NORM	12/18/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.00022 U	< 0.00018 U	0.011
WHC1-BK03	0	NORM	12/15/2008	< 0.0001 UJ	< 0.00028 UJ	< 0.000056 UJ	< 0.0001 UJ	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 UJ	< 0.0072 UJ
WHC1-BK03	12	NORM	12/18/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	0.0053
WHC1-BK04	0	NORM	12/4/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-BK04	10	NORM	12/4/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-BK05	0	NORM	12/12/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	0.0032 J
WHC1-BK05	11	NORM	12/12/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	0.0037 J
WHC1-BL01	0	NORM	12/3/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-BL01	10	NORM	12/3/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-BL02	0	NORM	12/2/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.011 U
WHC1-BL02	10	NORM	12/2/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.015 U
WHC1-BL03	0	NORM	12/8/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-BL03	10	NORM	12/18/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-BL04	0	NORM	12/17/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-BL04	12	NORM	12/22/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-BL05	0	NORM	11/21/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00017 U	< 0.0051 U
WHC1-BL05	10	NORM	11/21/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0052 U
WHC1-BL06	0	NORM	11/21/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0051 U
WHC1-BL06	11	NORM	11/21/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00018 U	< 0.0053 U
WHC1-BL07	0	NORM	11/21/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0051 U
WHC1-BL07	10	NORM	11/21/2008	< 0.00013 U	< 0.00035 U	< 0.000071 U	< 0.00013 U	< 0.00016 U	< 0.00016 U	< 0.00028 U	< 0.00022 U	< 0.00091 U
WHC1-BL08	0	NORM	11/18/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0053 U
WHC1-BL08	10	NORM	11/18/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00018 U	< 0.00073 U
WHC1-BL11	0	NORM	11/18/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	< 0.00071 U
WHC1-BL11	12	NORM	11/18/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 UJ	< 0.00013 U	< 0.00023 UJ	< 0.00018 U	< 0.00074 U
WHC1-BM01	0	NORM	12/3/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.00022 U	< 0.00018 U	< 0.00073 U
WHC1-BM01	10	NORM	12/3/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-BM02	0	NORM	12/2/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.011 U
WHC1-BM02	12	NORM	12/2/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.01 U
WHC1-BM03	0	NORM	12/8/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	< 0.00093 U
WHC1-BM03	10	NORM	12/18/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.00074 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 49 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Cymene (Isopropy- Itoluene)	Dibromochloromethane	Dibromochloropropane	Dibromomethane	Dichloromethane (Methylene chloride)
WHC1-BM04	0	NORM	12/17/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 U	< 0.00071 U
WHC1-BM04	0	FD	12/17/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 U	< 0.00072 U
WHC1-BM04	10	NORM	12/22/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-BM05	0	NORM	11/21/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00017 U	< 0.005 U
WHC1-BM05	10	NORM	11/21/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0052 U
WHC1-BM06	0	NORM	11/21/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0051 U
WHC1-BM06	0	FD	11/21/2008	< 0.00011 U	< 0.00029 U	< 0.000059 U	< 0.00011 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.0054 U
WHC1-BM06	10	NORM	11/21/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0052 U
WHC1-BM07	0	NORM	11/20/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0022 U
WHC1-BM07	11		11/20/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0023 U
WHC1-BM08	0		11/18/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	< 0.00071 U
WHC1-BM08	0	FD	11/18/2008	< 0.00012 U	< 0.00031 U	< 0.000062 U	< 0.00012 U	< 0.00014 U	< 0.00014 U	< 0.00024 U	< 0.00019 U	< 0.0058 U
WHC1-BM08	11		11/18/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 UJ	< 0.00013 U	< 0.00023 UJ	< 0.00018 U	< 0.0054 U
WHC1-BM09	0		11/18/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	< 0.00071 U
WHC1-BM09	12		11/18/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	< 0.00072 U
WHC1-BM10	0		11/18/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00018 U	< 0.00073 U
WHC1-BM10	3	11111111111111	11/18/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 UJ	< 0.00013 U	< 0.00023 UJ	< 0.00018 U	< 0.00074 U
WHC1-BM10	13		11/18/2008	< 0.00013 U	< 0.00035 U	< 0.00007 U	< 0.00013 U	< 0.00016 UJ	< 0.00015 U	< 0.00027 UJ	< 0.00021 U	< 0.00089 U
WHC1-BN01	0	NORM	12/1/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00018 U	< 0.00073 U
WHC1-BN01	12	NORM	12/1/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-BN02	0	NORM	12/1/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00073 U
WHC1-BN02	0	FD	12/1/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0029 U
WHC1-BN02	11	NORM	12/1/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-BN03	0	NORM	12/17/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 C	< 0.005 U
WHC1-BN03	10	NORM	12/18/2008	< 0.00011 UJ	< 0.00028 UJ	< 0.000057 UJ	< 0.00011 UJ	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 UJ	0.0019 J
WHC1-BN04	0	NORM	12/17/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 U	< 0.013 U
WHC1-BN04	7	NORM	12/22/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0072 U
WHC1-BN04	17	NORM	12/22/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-BN05	0		11/20/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00013 U	< 0.0014 U
WHC1-BN05	0	FD	11/20/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00012 U	< 0.00012 U	< 0.00021 U	< 0.00017 U	< 0.0014 U
WHC1-BN05	10		11/20/2008	< 0.0001 U	< 0.00027 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00017 U	< 0.0010 U
WHC1-BN05	0		11/20/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0023 U
WHC1-BN06	10		11/20/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00017 U	< 0.0018 U
WHC1-BN07	0		11/20/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0052 U
WHC1-BN07	3		11/21/2008	< 0.0001 UJ	< 0.00028 UJ	< 0.000056 UJ	< 0.0001 UJ	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 UJ	< 0.0052 UJ
WHC1-BN07	13		11/21/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 UJ	< 0.0052 U
WHC1-BN08	0		11/21/2008	< 0.0001 U	< 0.00028 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U < 0.00021 U	< 0.00017 U	< 0.0032 U
WHC1-BN08	10		11/20/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00017 U	< 0.0015 U
WITCI-DINUO	10	INDRIVI	11/20/2008	< 0.0001 U	< 0.00027 U	V.0000033 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0010 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 50 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Cymene (Isopropy- Itoluene)	Dibromochloromethane	Dibromochloropropane	Dibromomethane	Dichloromethane (Methylene chloride)
WHC1-BN09	0	NORM	12/17/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00018 U	< 0.0025 U
WHC1-BN09	11	NORM	12/19/2008	< 0.00011 U	< 0.0003 U	< 0.00006 U	< 0.00011 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	0.0042 J
WHC1-BN10	0	NORM	11/18/2008	< 0.00011 U	< 0.00029 U	< 0.000059 U	< 0.00011 U	< 0.00014 UJ	< 0.00013 U	< 0.00023 UJ	< 0.00018 U	< 0.00076 U
WHC1-BN10	10	NORM	11/18/2008	< 0.00012 U	< 0.00032 U	< 0.000065 U	< 0.00012 U	< 0.00015 UJ	< 0.00014 U	< 0.00025 UJ	< 0.0002 U	< 0.00083 U
WHC1-BO01	0	NORM	12/2/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-BO01	0	FD	12/2/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-BO01	4	NORM	12/2/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-BO01	14	NORM	12/2/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.00075 U
WHC1-BO02	0	NORM	12/1/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-BO02	12	NORM	12/1/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-BO03	0	NORM	12/15/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 U	< 0.0079 U
WHC1-BO03	12		12/19/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	0.0043 J
WHC1-BO04	0			< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 UJ	< 0.00013 U	< 0.00022 UJ	< 0.00018 U	< 0.00073 U
WHC1-BO04	12		12/19/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-BO05	0		11/20/2008	< 0.00011 U	< 0.00031 U	< 0.000062 U	< 0.00011 U	< 0.00014 U	< 0.00013 U	< 0.00024 U	< 0.00019 U	< 0.0018 U
WHC1-BO05	10		11/20/2008	< 0.00012 U	< 0.00031 U	< 0.000062 U	< 0.00012 U	< 0.00014 U	< 0.00014 U	< 0.00024 U	< 0.00019 U	< 0.0025 U
WHC1-BO06	0		11/20/2008	< 0.00011 U	< 0.0003 U	< 0.00006 U	< 0.00011 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.0017 U
WHC1-BO06	10		11/20/2008	< 0.00011 U	< 0.0003 U	< 0.000061 U	< 0.00011 U	< 0.00014 U	< 0.00013 U	< 0.00024 U	< 0.00019 U	< 0.0025 U
WHC1-BO07	0			< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 UJ	< 0.00021 UJ	< 0.00017 U	< 0.0007 U
WHC1-BO07	10		11/19/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 UJ	< 0.00021 UJ	< 0.00017 U	< 0.00071 U
WHC1-BO08	0	NORM	11/20/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0015 U
WHC1-BO08	0	FD	11/20/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0015 U
WHC1-BO08	11	NORM	11/20/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0015 U
WHC1-BO09	0	NORM	11/19/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 U	< 0.0052 UJ
WHC1-BO09	0	FD	11/19/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	< 0.0007 U
WHC1-BO09	6	NORM	11/19/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 UJ	< 0.00013 UJ	< 0.00023 UJ	< 0.00018 U	< 0.00074 U
WHC1-BO09	16	111117111111		< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 U	< 0.00071 U
WHC1-BO10	0		11/19/2008	< 0.0001 U	< 0.00028 U	< 0.000055 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 U	< 0.00071 U
WHC1-BO10	10	NORM	11/19/2008	< 0.0001 U	< 0.00028 U	< 0.000055 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	< 0.0052 U
WHC1-BP01	0	NORM	12/1/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-BP01	10	NORM	12/1/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	< 0.00071 U
WHC1-BP02	0	NORM	12/1/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	< 0.00072 U
WHC1-BP02	11	NORM	12/1/2008	< 0.0001 U	< 0.00029 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 C	< 0.00072 U
WHC1-BP03	0	NORM	12/15/2008	< 0.00011 U	< 0.00027 U	< 0.000055 U	< 0.00011 U	< 0.00013 UJ	< 0.00013 U	< 0.00023 UJ	< 0.00013 U	< 0.006 U
WHC1-BP03	0	FD	12/15/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U3	< 0.00017 U	< 0.0052 U
WHC1-BP03	11	NORM	12/19/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0032 U
WHC1-BP04	0	NORM	12/15/2008	< 0.00011 U	< 0.00029 U	< 0.000055 U	< 0.00011 U	< 0.00013 UJ	< 0.00013 U	< 0.00023 UJ	< 0.00013 U	< 0.00073 U
WHC1-BP04	12			< 0.0001 U	< 0.00028 U	< 0.000055 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	0.0047 J
111C1-D104	12	TACKIAI	12/17/2000	\ 0.0001 U	< 0.00020 U	< 0.000030 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	√ 0.00022 UJ	\ 0.00017 U	U.UU T / J

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 51 of 81)

							Volatile (Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Cymene (Isopropy- Itoluene)	Dibromochloromethane	Dibromochloropropane	Dibromomethane	Dichloromethane (Methylene chloride)
WHC1-BP05	0	NORM	12/15/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0051 U
WHC1-BP05	10	NORM	12/19/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.00074 U
WHC1-BP06	0	NORM	12/12/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	0.003 J
WHC1-BP06	10	NORM	12/12/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	0.0022 J
WHC1-BP07	0	NORM	11/20/2008	< 0.00011 U	< 0.0003 U	< 0.00006 U	< 0.00011 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.0017 U
WHC1-BP07	3	NORM	11/20/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.0018 U
WHC1-BP07	13	NORM	11/20/2008	< 0.00011 U	< 0.00029 U	< 0.000059 U	< 0.00011 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.0017 U
WHC1-BP08	0	NORM	11/19/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00018 U	< 0.00073 U
WHC1-BP08	4	NORM	11/19/2008	< 0.00011 U	< 0.00029 U	< 0.000059 U	< 0.00011 U	< 0.00014 UJ	< 0.00013 UJ	< 0.00023 UJ	< 0.00018 U	< 0.00075 U
WHC1-BP08	14	NORM	11/19/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00018 U	< 0.00073 U
WHC1-BP09	0	NORM	11/19/2008	< 0.0001 UJ	< 0.00027 UJ	< 0.000055 UJ	< 0.0001 UJ	< 0.00013 UJ	< 0.00012 UJ	< 0.00021 UJ	< 0.00017 UJ	< 0.0007 UJ
WHC1-BP09	10	NORM	11/19/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 UJ	< 0.00013 UJ	< 0.00023 UJ	< 0.00018 U	< 0.00074 U
WHC1-BP10	0	NORM	11/19/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00021 UJ	< 0.00017 U	< 0.0051 U
WHC1-BP10	10	NORM	11/19/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	< 0.0007 U
WHC1-D01	0	NORM	12/5/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-D01	10	NORM	12/5/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-D02	0	NORM	12/5/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00018 U	< 0.00073 U
WHC1-D02	10	NORM	12/5/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-D03	0	NORM	12/5/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-D03	0	FD	12/5/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-D03	10	NORM	12/5/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-D04	0	NORM	12/5/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 UJ	< 0.00013 U	< 0.00022 UJ	< 0.00018 U	< 0.00073 U
WHC1-D04	10	NORM	12/5/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-D05	0	NORM	12/5/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-D05	10	NORM	12/5/2008	< 0.0001 U	< 0.00028 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-D06	0	NORM	12/5/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	< 0.00072 U
WHC1-D06	10	NORM	12/5/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-D07	0	NORM	12/5/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0007 U
WHC1-D07	10	NORM	12/5/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0007 U
WHC1-D08	0	NORM	12/8/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0013 U
WHC1-D08	10	NORM	12/9/2008	< 0.00011 U	< 0.0003 U	< 0.000059 U	< 0.00011 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.00076 U
WHC1-D09	0	NORM	12/8/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0011 U
WHC1-D09	11	NORM	12/9/2008	< 0.00011 U	< 0.00029 U	< 0.000059 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.00075 U
WHC1-D10	0	NORM	12/8/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0013 U
WHC1-D10	10	NORM	12/9/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-D11	0	NORM	12/8/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 UJ	< 0.00013 U	< 0.00023 UJ	< 0.00018 U	< 0.0038 U
WHC1-D11	10	NORM	12/9/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-D12	0	NORM	12/10/2008	< 0.00011 U	< 0.0003 U	< 0.000061 U	< 0.00011 U	< 0.00014 U	< 0.00013 U	< 0.00024 U	< 0.00019 U	< 0.00078 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 52 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Cymene (Isopropy- ltoluene)	Dibromochloromethane	Dibromochloropropane	Dibromomethane	Dichloromethane (Methylene chloride)
WHC1-D12	10	NORM	12/10/2008	< 0.00014 U	< 0.00038 U	< 0.000077 U	< 0.00014 U	< 0.00018 U	< 0.00017 U	< 0.0003 U	< 0.00024 U	< 0.00098 U
WHC1-D13	0	NORM	12/8/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00018 U	< 0.00073 U
WHC1-D13	10	NORM	12/8/2008	< 0.00013 U	< 0.00036 U	< 0.000073 U	< 0.00013 U	< 0.00017 U	< 0.00016 U	< 0.00028 U	< 0.00022 U	< 0.00093 U
WHC1-D15	0	NORM	12/11/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	R	< 0.00012 UJ	R	< 0.00017 U	< 0.013 UJ
WHC1-D15	10	NORM	12/11/2008	< 0.00013 U	< 0.00035 U	< 0.00007 U	< 0.00013 U	< 0.00016 U	< 0.00015 U	< 0.00027 U	< 0.00021 U	< 0.013 U
WHC1-D16	0	NORM		< 0.00011 U	< 0.00029 U	< 0.000059 U	< 0.00011 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.00076 U
WHC1-D16	10		12/10/2008	< 0.00012 U	< 0.00031 U	< 0.000063 U	< 0.00012 U	< 0.00014 U	< 0.00014 U	< 0.00025 U	< 0.00019 U	< 0.0008 U
WHC1-D17	0	NORM	12/10/2008	< 0.00011 U	< 0.00029 U	< 0.000059 U	< 0.00011 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.00075 U
WHC1-D17	10	NORM	12/10/2008	< 0.00011 U	< 0.00031 U	< 0.000062 U	< 0.00011 U	< 0.00014 U	< 0.00014 U	< 0.00024 U	< 0.00019 U	< 0.00079 U
WHC1-D18	0	NORM	12/11/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	< 0.014 U
WHC1-D18	10	NORM	12/11/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.01 UJ
WHC1-D19	0	NORM	12/11/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00018 U	< 0.011 UJ
WHC1-D19	0	FD	12/11/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.013 U
WHC1-D19	10	NORM	12/11/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.012 U
WHC1-D20	0	NORM	12/12/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	0.0038 J
WHC1-D20	10	NORM	12/12/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	0.0031 J
WHC1-D21	0	NORM	12/16/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 UJ	< 0.00013 U	< 0.00023 UJ	< 0.00018 U	< 0.00074 U
WHC1-D21	10	NORM	12/16/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	< 0.00072 U
WHC1-D22	0	NORM	12/16/2008	< 0.00012 U	< 0.00033 U	< 0.000066 U	< 0.00012 U	< 0.00015 UJ	< 0.00014 U	< 0.00026 UJ	< 0.0002 U	< 0.0061 U
WHC1-D22	10	NORM	12/16/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.00074 U
WHC1-D23	0	NORM	12/16/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00018 U	< 0.0053 U
WHC1-D23	10	NORM	12/16/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0007 U
WHC1-D24	0	NORM	12/16/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 UJ	< 0.00013 UJ	< 0.00023 UJ	< 0.00018 U	< 0.0054 U
WHC1-D24	0	FD	12/16/2008	< 0.00011 U	< 0.00029 U	< 0.000059 U	< 0.00011 U	< 0.00013 UJ	< 0.00013 U	< 0.00023 UJ	< 0.00018 U	< 0.0054 U
WHC1-D24	10	NORM	12/16/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-D25	0	NORM	12/16/2008	< 0.00011 U	< 0.00029 U	< 0.000057 U	< 0.00011 U	< 0.00013 UJ	< 0.00013 UJ	< 0.00022 UJ	< 0.00018 U	< 0.0053 UJ
WHC1-D25	10	NORM	12/16/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	< 0.00072 U
WHC1-D26	0	NORM	12/12/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	0.0018 J
WHC1-D26	10	NORM	12/12/2008	< 0.00011 U	< 0.0003 U	< 0.00006 U	< 0.00011 U	< 0.00014 U	< 0.00013 U	< 0.00024 U	< 0.00019 U	0.0045 J
WHC1-D27	0	NORM	12/12/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	0.003 J
WHC1-D27	0	FD	12/12/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	0.0027 J
WHC1-D27	10		12/12/2008	< 0.00012 U	< 0.00031 U	< 0.000063 U	< 0.00012 U	< 0.00014 U	< 0.00014 U	< 0.00024 U	< 0.00019 U	0.0042 J
WHC1-D28	0	NORM	12/12/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	0.0027 J
WHC1-D28	10	NORM	12/12/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-D29	0	NORM	12/12/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	0.0035 J
WHC1-D29	10	NORM	12/12/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.00022 U	< 0.00018 U	0.0045 J
WHC1-P01	0	NORM	12/15/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0052 U
WHC1-P01	12	NORM	12/19/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 U	0.0043 J

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 53 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Cymene (Isopropy- Itoluene)	Dibromochloromethane	Dibromochloropropane	Dibromomethane	Dichloromethane (Methylene chloride)
WHC1-P02	0	NORM	12/1/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0007 U
WHC1-P02	10	NORM	12/1/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00021 U	< 0.00017 U	< 0.0007 U
WHC1-P03	0	NORM	12/15/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0058 U
WHC1-P03	3	NORM	12/18/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 U	0.0087
WHC1-P03	3	FD	12/18/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	0.0057
WHC1-P03	13	NORM	12/18/2008	< 0.0001 UJ	< 0.00028 UJ	< 0.000056 UJ	< 0.0001 UJ	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 UJ	0.0012 J
WHC1-P04	0	NORM	12/15/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-P04	10	NORM	12/18/2008	< 0.00011 UJ	< 0.00028 UJ	< 0.000057 UJ	< 0.00011 UJ	< 0.00013 UJ	< 0.00013 UJ	< 0.00022 UJ	< 0.00018 UJ	< 0.00073 UJ
WHC1-P05	0	NORM	12/8/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00074 U
WHC1-P05	0	FD	12/8/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	< 0.00081 U
WHC1-P05	10	NORM	12/18/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	0.011
WHC1-P06	0	NORM	12/2/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.02 U
WHC1-P06	12	NORM	12/2/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.027 U
WHC1-P07	0	NORM	12/2/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.018 U
WHC1-P07	3	NORM	12/2/2008	< 0.0001 U	< 0.00028 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.022 U
WHC1-P07	13	NORM	12/2/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.021 U
WHC1-P08	0	NORM	12/3/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-P08	11	NORM	12/3/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-P09	0	NORM	12/4/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-P09	0	FD	12/4/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-P09	10	NORM	12/4/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-P10	0	NORM	11/25/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0022 U
WHC1-P10	10	NORM	11/25/2008	< 0.00012 U	< 0.00033 U	< 0.000066 U	< 0.00012 U	< 0.00015 U	< 0.00014 U	< 0.00026 U	< 0.0002 U	< 0.0026 U
WHC1-P11	0	NORM	12/8/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	R	< 0.00012 UJ	R	< 0.00017 U	< 0.0044 UJ
WHC1-P11	0	FD	12/8/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 U	< 0.00022 UJ	< 0.00017 U	0.0023 J
WHC1-P11	10	NORM	12/9/2008	< 0.00011 U	< 0.00029 U	< 0.000059 U	< 0.00011 U	< 0.00014 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.00076 U
WHC1-P12	0	NORM	12/5/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-P12	11	NORM	12/5/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-P13	0	NORM	12/9/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-P13	10	NORM	12/9/2008	< 0.00015 U	< 0.00039 U	< 0.000079 U	< 0.00015 U	< 0.00018 U	< 0.00017 U	< 0.00031 U	< 0.00024 U	< 0.001 U
WHC1-P13	10	FD	12/9/2008	< 0.00013 U	< 0.00035 U	< 0.000071 U	< 0.00013 U	< 0.00016 U	< 0.00015 U	< 0.00028 U	< 0.00022 U	< 0.0009 U
WHC1-P14	0	NORM	12/17/2008	< 0.00012 U	< 0.00032 U	< 0.000065 U	< 0.00012 U	< 0.00015 UJ	< 0.00014 U	< 0.00025 UJ	< 0.0002 U	< 0.016 U
WHC1-P15	0	NORM	12/8/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 UJ	< 0.00013 U	< 0.00023 UJ	< 0.00018 U	< 0.00081 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.00011 U	< 0.00029 U	< 0.000058 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.00023 U	< 0.00018 U	< 0.00074 U
WHC1-P15	10	NORM	12/18/2008	< 0.00011 U	< 0.00028 U	< 0.000057 U	< 0.00011 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-P16	0	NORM	12/1/2008	< 0.00052 U	< 0.0014 U	< 0.00028 U	< 0.00052 U	< 0.00013 U	< 0.00012 U	< 0.0011 U	< 0.00086 U	0.017 J
WHC1-P16	11	NORM	12/1/2008	< 0.0001 U	< 0.00027 U	< 0.000055 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.0007 U
WHC1-P17	0	NORM	12/15/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 UJ	< 0.00012 UJ	< 0.00022 UJ	< 0.00017 U	< 0.00072 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 54 of 81)

							Volatile C	rganic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Chloroform	Chloromethane	is-1,2-Dichloroethene	is-1,3-Dichloropropene	Cymene (Isopropy- Itoluene)	Dibromochloromethane	Dibromochloropropane	Dibromomethane	Dichloromethane (Methylene chloride)
WHC1-P17	12		12/19/2008	< 0.0001 U	< 0.00028 U	< 0.000057 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00072 U
WHC1-P17	12		12/19/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-P18	0	NORM	12/1/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U
WHC1-P18	12	NORM	12/1/2008	< 0.0001 U	< 0.00028 U	< 0.000056 U	< 0.0001 U	< 0.00013 U	< 0.00012 U	< 0.00022 U	< 0.00017 U	< 0.00071 U

All units in mg/kg.

= Data not included in risk assessment. Sample location covered with fill material (see text).

⁻⁻ = no sample data.

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 55 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Dimethyldisulfide	Ethanol	Ethylbenzene	Freon-11 (Trichlorofluoromethane)	Freon-113 (1,1,2-Trifluoro- 1,2,2-trichloroethane)	Freon-12 (Dichloro- difluoromethane)	Heptane	Isopropylbenzene	m,p-Xylene
OSC1-BM11	0	NORM	9/21/2009	< 0.0005 U	< 0.064 UJ	< 0.0003 U	< 0.00032 U	< 0.00026 U	< 0.00026 U	< 0.00039 U	< 0.0003 U	< 0.00047 U
OSC1-BM11	10	NORM	9/21/2009	< 0.00056 U	< 0.072 UJ	< 0.00034 U	< 0.00036 U	< 0.00029 U	< 0.00029 U	< 0.00044 U	< 0.00033 U	< 0.00053 U
OSC1-BN11	0	NORM	9/22/2009	< 0.00048 U	< 0.062 UJ	< 0.00029 U	< 0.00031 U	< 0.00025 U	< 0.00025 U	< 0.00038 U	< 0.00029 U	< 0.00046 U
OSC1-BN11	5	NORM	9/22/2009	< 0.0005 U	< 0.065 UJ	< 0.00031 U	< 0.00032 U	< 0.00026 U	< 0.00026 U	< 0.00039 U	< 0.0003 U	< 0.00048 U
OSC1-BO11	0	NORM	9/16/2009	< 0.00051 U	< 0.066 UJ	< 0.00031 U	< 0.00033 U	< 0.00026 U	< 0.00026 U	< 0.0004 U	< 0.0003 U	< 0.00048 U
OSC1-BO11	0	FD	9/16/2009	< 0.00055 U	< 0.071 UJ	< 0.00033 U	< 0.00035 U	< 0.00028 U	< 0.00028 U	< 0.00043 U	< 0.00032 U	< 0.00052 U
OSC1-BO11	5	NORM	9/16/2009	< 0.0006 U	< 0.077 UJ	< 0.00036 U	< 0.00038 U	< 0.00031 U	< 0.00031 U	< 0.00047 U	< 0.00036 U	< 0.00057 U
OSC1-BP11	0	NORM	9/16/2009	< 0.0006 U	< 0.077 UJ	< 0.00036 U	< 0.00038 U	< 0.00031 U	< 0.00031 U	< 0.00046 U	< 0.00035 U	< 0.00056 U
OSC1-BP11	5	NORM	9/16/2009	< 0.00064 U	< 0.083 UJ	< 0.00039 U	< 0.00041 U	< 0.00033 U	< 0.00033 U	< 0.0005 U	< 0.00038 U	< 0.00061 U
OSC1-JP06	0	NORM	9/22/2009	< 0.00059 U	< 0.076 UJ	< 0.00036 U	< 0.00037 U	< 0.0003 U	< 0.0003 U	< 0.00046 U	< 0.00035 U	< 0.00055 U
OSC1-JP06	5	NORM	9/22/2009	< 0.00066 U	< 0.085 UJ	< 0.0004 U	< 0.00042 U	< 0.00034 U	< 0.00034 U	< 0.00051 U	< 0.00039 U	< 0.00062 U
OSC1-JP07	0	NORM	9/21/2009	< 0.00051 U	< 0.066 UJ	< 0.00031 U	< 0.00032 U	< 0.00026 U	< 0.00026 U	< 0.0004 U	< 0.0003 U	< 0.00048 U
OSC1-JP07	5	NORM	9/21/2009	< 0.0006 U	< 0.077 UJ	< 0.00036 U	< 0.00038 U	< 0.00031 U	< 0.00031 U	< 0.00046 U	< 0.00035 U	< 0.00056 U
OSC1-JP08	0	NORM	9/21/2009	< 0.00056 U	< 0.073 UJ	< 0.00034 U	< 0.00036 U	< 0.00029 U	< 0.00029 U	< 0.00044 U	< 0.00033 U	< 0.00053 U
OSC1-JP08	10	NORM	9/21/2009	< 0.00059 U	< 0.076 UJ	< 0.00036 U	< 0.00038 U	< 0.0003 U	< 0.0003 U	< 0.00046 U	< 0.00035 U	< 0.00056 U
WHC1-BF01	0	NORM	11/24/2008	< 0.00018 UJ	< 0.048 UJ	< 0.000059 UJ	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00016 U	< 0.0001 UJ	< 0.00017 UJ
WHC1-BF01	12	NORM	11/24/2008	< 0.00018 UJ	< 0.05 UJ	< 0.000061 UJ	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 UJ
WHC1-BF02	0	NORM	11/25/2008	< 0.00018 U	< 0.048 UJ	0.00082 J	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00016 U	< 0.0001 U	0.0028 J
WHC1-BF02	11	NORM	11/25/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BF03	0	NORM	11/25/2008	< 0.00018 U	< 0.048 UJ	< 0.00012 U	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00017 U	< 0.0001 U	< 0.00034 U
WHC1-BF03	10	NORM	11/25/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BF04	0	NORM	11/25/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00017 U	< 0.0001 U	< 0.00017 U
WHC1-BF04	0	FD	11/25/2008	< 0.00019 U	< 0.051 UJ	< 0.000062 U	< 0.00023 U	< 0.00016 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BF04	10	NORM	11/25/2008	< 0.00019 U	< 0.051 UJ	< 0.000062 U	< 0.00023 U	< 0.00016 U	< 0.00031 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-BF05	0	NORM	11/25/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BF05	12	NORM	12/10/2008	< 0.00025 U	< 0.067 UJ	< 0.000083 U	< 0.00031 U	< 0.00021 U	< 0.00041 U	< 0.00023 U	< 0.00015 U	< 0.00024 U
WHC1-BF06	0	NORM	12/10/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BF06	10	NORM	12/10/2008	< 0.00024 U	< 0.064 UJ	< 0.000079 U	< 0.0003 U	< 0.0002 U	< 0.00039 U	< 0.00022 U	< 0.00014 U	< 0.00023 U
WHC1-BG01	0	NORM	11/24/2008	< 0.00018 U	< 0.048 UJ	0.00021 J	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00016 U	< 0.0001 U	0.00074 J
WHC1-BG01	11	NORM	11/24/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BG02	0	NORM	11/24/2008	< 0.00018 UJ	< 0.048 UJ	< 0.000059 UJ	< 0.00022 UJ	< 0.00015 UJ	< 0.00029 UJ	< 0.00017 UJ	< 0.0001 UJ	< 0.00017 UJ
WHC1-BG02	0	FD	11/24/2008	< 0.00018 U	< 0.048 UJ	0.00021 J	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	0.00069 J
WHC1-BG02	10	NORM	11/24/2008	R	R	0.000079 J	R	R	R	R	R	0.0015 J
WHC1-BG03	0	NORM	12/11/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00016 U	< 0.0001 U	< 0.00017 U
WHC1-BG03	11	NORM	12/11/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BG04	0	NORM	12/11/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00017 U	< 0.0001 U	< 0.00017 U
WHC1-BG04	10	NORM	12/11/2008	< 0.00023 U	< 0.062 UJ	< 0.000077 U	< 0.00029 U	< 0.00019 U	< 0.00038 U	< 0.00022 U	< 0.00014 U	< 0.00022 U
WHC1-BG05	0	NORM	11/25/2008	< 0.00018 U	< 0.048 UJ	< 0.000076 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00022 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 56 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Dimethyldisulfide	Ethanol	Ethylbenzene	Freon-11 (Trichlorofluoromethane)	Freon-113 (1,1,2-Trifluoro- 1,2,2-trichloroethane)	Freon-12 (Dichloro- difluoromethane)	Heptane	Isopropylbenzene	m,p-Xylene
WHC1-BG05	10	NORM	11/25/2008	< 0.0002 U	< 0.054 UJ	< 0.000066 U	< 0.00025 U	< 0.00017 U	< 0.00033 U	< 0.00019 U	< 0.00012 U	< 0.00019 U
WHC1-BG06	0	NORM	12/10/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BG06	10	NORM	12/10/2008	< 0.00022 U	< 0.06 UJ	< 0.000073 U	< 0.00028 U	< 0.00018 U	< 0.00036 U	< 0.00021 U	< 0.00013 U	< 0.00021 U
WHC1-BH01	0	NORM	12/3/2008	< 0.00018 U	< 0.049 UJ	< 0.000076 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BH01	11	NORM	12/3/2008	< 0.00018 U	< 0.049 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BH02	0	NORM	12/4/2008	< 0.00018 U	< 0.049 U	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BH02	10	NORM	12/4/2008	< 0.00018 U	< 0.048 U	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00017 U	< 0.0001 U	< 0.00017 U
WHC1-BH03	0	NORM	12/9/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BH03	10	NORM	12/9/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BH04	0	NORM	12/11/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00017 U	< 0.0001 U	< 0.00017 U
WHC1-BH04	10	NORM	12/11/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BH05	0	NORM	12/9/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BH05	0	FD	12/9/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BH05	10	NORM	12/9/2008	< 0.00018 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BH06	0	NORM	12/11/2008	< 0.00019 U	< 0.052 UJ	< 0.000064 U	< 0.00024 U	< 0.00016 U	< 0.00032 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-BH06	0	FD	12/11/2008	< 0.00019 U	< 0.051 UJ	< 0.000063 U	< 0.00024 U	< 0.00016 U	< 0.00031 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-BH06	10	NORM	12/11/2008	< 0.0002 U	< 0.054 UJ	< 0.000066 U	< 0.00025 U	< 0.00017 U	< 0.00033 U	< 0.00019 U	< 0.00012 U	< 0.00019 U
WHC1-BI01	0	NORM	12/3/2008	< 0.00019 U	< 0.052 UJ	< 0.000085 U	< 0.00024 U	< 0.00016 U	< 0.00032 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-BI01	11	NORM	12/3/2008	< 0.00018 U	< 0.05 UJ	< 0.00007 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BI02	0	NORM	12/4/2008	< 0.00018 U	< 0.05 U	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BI02	3	NORM	12/4/2008	< 0.00018 U	< 0.049 U	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BI02	13	NORM	12/4/2008	< 0.00018 U	< 0.049 U	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BI03	0	NORM	12/4/2008	< 0.00018 U	< 0.049 U	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BI03	11	NORM	12/4/2008	< 0.00018 U	< 0.048 U	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00017 U	< 0.0001 U	< 0.00017 U
WHC1-BI04	0	NORM	12/8/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BI04	10	NORM	12/9/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BI05	0	NORM	12/9/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BI05	10	NORM	12/9/2008	< 0.00018 U	< 0.049 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BJ01	0	NORM	12/3/2008	< 0.00018 U	< 0.049 UJ	< 0.000082 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BJ01	3	NORM	12/3/2008	< 0.00018 U	< 0.049 UJ	< 0.000083 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BJ01	13	NORM	12/3/2008	< 0.00019 U	< 0.05 UJ	< 0.000071 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BJ02	0	NORM	12/2/2008	< 0.00018 U	< 0.049 UJ	0.000068 J	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	0.0002 J
WHC1-BJ02	0	FD	12/2/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BJ02	12	NORM	12/2/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.00018 U	< 0.048 U	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BJ03	0	FD	12/4/2008	< 0.00018 U	< 0.049 U	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.00018 U	< 0.049 U	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BJ04	0	NORM	12/4/2008	< 0.00018 U	< 0.048 U	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00017 U	< 0.0001 U	< 0.00017 U
1111C1 D307	U	1101011	12/7/2000	\ 0.00010 U	₹ 0.040 €	\ 0.000037 U	\ 0.00022 U	\ 0.00015 U	\ 0.00027 U	\ 0.00017 U	\ 0.0001 O	\ 0.0001 / O

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 57 of 81)

							Volatile O	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Dimethyldisulfide	Ethanol	Ethylbenzene	Freon-11 (Trichlorofluoromethane)	Freon-113 (1,1,2-Trifluoro- 1,2,2-trichloroethane)	Freon-12 (Dichloro- difluoromethane)	Heptane	Isopropylbenzene	m,p-Xylene
WHC1-BJ04	11	NORM	12/4/2008	< 0.00018 U	< 0.049 U	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BJ05	0	NORM	12/11/2008	< 0.00018 UJ	< 0.048 UJ	< 0.000059 UJ	< 0.00022 UJ	< 0.00015 UJ	< 0.00029 UJ	< 0.00017 UJ	< 0.00011 UJ	< 0.00017 UJ
WHC1-BJ05	10	NORM	12/11/2008	< 0.00018 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BK01	0	NORM	12/3/2008	< 0.00018 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BK01	0	FD	12/3/2008	< 0.00018 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BK01	10	NORM	12/3/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BK02	0	NORM	12/8/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BK02	11	NORM	12/18/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BK03	0	NORM	12/15/2008	< 0.00018 UJ	< 0.049 UJ	< 0.00006 UJ	< 0.00023 UJ	< 0.00015 UJ	< 0.0003 UJ	< 0.00017 UJ	< 0.00011 UJ	< 0.00017 UJ
WHC1-BK03	12	NORM	12/18/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BK04	0	NORM	12/4/2008	< 0.00018 U	< 0.049 U	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BK04	10	NORM	12/4/2008	< 0.00018 U	< 0.049 U	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BK05	0	NORM	12/12/2008	< 0.00018 U	< 0.049 UJ	< 0.000061 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BK05	11	NORM	12/12/2008	< 0.00018 U	< 0.049 UJ	< 0.000066 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BL01	0	NORM	12/3/2008	< 0.00018 U	< 0.049 UJ	< 0.000065 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BL01	10	NORM	12/3/2008	< 0.00018 U	< 0.049 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BL02	0	NORM	12/2/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BL02	10	NORM	12/2/2008	< 0.00019 U	< 0.051 UJ	< 0.000063 U	< 0.00024 U	< 0.00016 U	< 0.00031 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-BL03	0	NORM	12/8/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BL03	10	NORM	12/18/2008	< 0.00018 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BL04	0	NORM	12/17/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BL04	12	NORM	12/22/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BL05	0	NORM	11/21/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00017 U	< 0.0001 U	< 0.00017 U
WHC1-BL05	10	NORM	11/21/2008	< 0.00018 U	< 0.049 UJ	< 0.0052 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BL06	0	NORM	11/21/2008	< 0.00018 U	< 0.048 UJ	< 0.0051 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BL06	11	NORM	11/21/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BL07	0	NORM	11/21/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BL07	10	NORM	11/21/2008	< 0.00023 U	< 0.062 UJ	< 0.000076 U	< 0.00029 U	< 0.00019 U	< 0.00038 U	< 0.00021 U	< 0.00014 U	< 0.00022 U
WHC1-BL08	0		11/18/2008	< 0.00019 U	< 0.05 UJ	< 0.0053 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.0053 U
WHC1-BL08	10		11/18/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BL11	0		11/18/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BL11	12		11/18/2008	< 0.00019 U	< 0.051 UJ	< 0.000062 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BM01	0	NORM	12/3/2008	< 0.00019 U	< 0.05 UJ	< 0.000062 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BM01	10	NORM	12/3/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BM02	0	NORM	12/2/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BM02	12	NORM	12/2/2008	< 0.00019 U	< 0.051 UJ	< 0.000062 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BM03	0	NORM	12/8/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BM03	10	NORM		< 0.00019 U	< 0.051 UJ	< 0.000065 U	< 0.00023 U	< 0.00016 U	< 0.00031 U	< 0.00018 U	< 0.00011 U	< 0.00018 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 58 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Dimethyldisulfide	Ethanol	Ethylbenzene	Freon-11 (Trichlorofluoromethane)	Freon-113 (1,1,2-Trifluoro- 1,2,2-trichloroethane)	Freon-12 (Dichloro- difluoromethane)	Heptane	Isopropylbenzene	m.p-Xylene
WHC1-BM04	0	NORM	12/17/2008	< 0.00018 UJ	< 0.049 UJ	< 0.00006 UJ	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 UJ
WHC1-BM04	0	FD	12/17/2008	< 0.00018 UJ	< 0.049 UJ	< 0.00006 UJ	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 UJ
WHC1-BM04	10	NORM	12/22/2008	< 0.00018 U	< 0.049 UJ	< 0.000072 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BM05	0	NORM	11/21/2008	< 0.00018 U	< 0.048 UJ	< 0.005 U	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00016 U	< 0.0001 U	< 0.005 U
WHC1-BM05	10	NORM	11/21/2008	< 0.00018 U	< 0.049 UJ	< 0.0052 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BM06	0	NORM	11/21/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BM06	0	FD	11/21/2008	< 0.00019 U	< 0.052 UJ	< 0.000063 U	< 0.00024 U	< 0.00016 U	< 0.00031 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-BM06	10	NORM	11/21/2008	< 0.00018 U	< 0.049 UJ	< 0.0052 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.0052 U
WHC1-BM07	0	NORM	11/20/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BM07	11		11/20/2008	< 0.00018 U	< 0.049 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BM08	0		11/18/2008	< 0.00018 UJ	< 0.049 UJ	< 0.00006 UJ	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 U
WHC1-BM08	0	FD	11/18/2008	< 0.0002 U	< 0.055 UJ	< 0.0058 U	< 0.00025 U	< 0.00017 U	< 0.00033 U	< 0.00019 U	< 0.00012 U	< 0.0058 U
WHC1-BM08	11	NORM	11/18/2008	< 0.00019 U	< 0.051 UJ	< 0.000063 U	< 0.00024 U	< 0.00016 U	< 0.00031 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-BM09	0		11/18/2008	< 0.00018 UJ	< 0.049 UJ	< 0.00006 UJ	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 U
WHC1-BM09	12		11/18/2008	< 0.00018 UJ	< 0.049 UJ	< 0.000061 UJ	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 U
WHC1-BM10	0		11/18/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BM10	3		11/18/2008	< 0.00019 U	< 0.051 UJ	< 0.000062 U	< 0.00023 U	< 0.00016 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BM10	13		11/18/2008	< 0.00023 U	< 0.061 UJ	< 0.000075 U	< 0.00028 U	< 0.00019 U	< 0.00037 U	< 0.00021 U	< 0.00013 U	< 0.00021 U
WHC1-BN01	0	NORM	12/1/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BN01	12	NORM	12/1/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BN02	0	NORM	12/1/2008	< 0.00019 U	< 0.05 UJ	0.000084 J	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BN02	0	FD	12/1/2008	< 0.00018 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BN02	11	NORM	12/1/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BN03	0	NORM	12/17/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BN03	10	NORM	12/18/2008	< 0.00018 UJ	< 0.049 UJ	< 0.00006 UJ	< 0.00023 UJ	< 0.00015 UJ	< 0.0003 UJ	< 0.00017 UJ	< 0.00011 UJ	< 0.00017 UJ
WHC1-BN04	0	NORM	12/17/2008	< 0.00018 UJ	< 0.049 UJ	< 0.000061 UJ	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 UJ
WHC1-BN04	7	NORM	12/22/2008	< 0.00018 U	< 0.049 UJ	< 0.000071 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BN04	17	NORM	12/22/2008	< 0.00019 U	< 0.05 UJ	< 0.000068 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BN05	0		11/20/2008	< 0.00019 U	< 0.048 UJ	< 0.000067 U	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00017 U	< 0.0001 U	< 0.00018 U
WHC1-BN05	0	FD	11/20/2008	< 0.00018 U	< 0.048 UJ	< 0.000066 U	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00017 U	< 0.0001 U	< 0.00017 U
WHC1-BN05	10		11/20/2008	< 0.00018 U	< 0.05 UJ	< 0.000066 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.0001 U	< 0.00017 U
WHC1-BN06	0		11/20/2008	< 0.00018 U	< 0.048 UJ	< 0.00011 U	< 0.00023 U	< 0.00015 U	< 0.00029 U	< 0.00017 U	< 0.00011 U	< 0.00017 C
WHC1-BN06	10		11/20/2008	< 0.00018 U	< 0.049 UJ	< 0.000011 C	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.0001 U	< 0.00017 U
WHC1-BN07	0		11/21/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BN07	3	NORM	11/21/2008	< 0.00018 UJ	< 0.049 UJ	< 0.00006 UJ	< 0.00023 UJ	< 0.00015 UJ	< 0.0003 UJ	< 0.00017 UJ	< 0.00011 UJ	< 0.00017 UJ
WHC1-BN07	13	NORM	11/21/2008	< 0.00018 U	< 0.049 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BN08	0	NORM	11/20/2008	< 0.00018 U	< 0.048 UJ	< 0.000001 C	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BN08	10		11/20/2008	< 0.00018 U	< 0.048 UJ	< 0.000095 U	< 0.00022 U	< 0.00015 U	< 0.00023 U	< 0.00017 U	< 0.00011 U	< 0.00032 U
		111111		V.00010 C	~ V.VTU U#	V.0000000	\ 0.VV022 U	~ v.v.vv1.v U	V 44000 C	1 7 7 7 7 7 7 7	V-V-VVII U	N V V V V V

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 59 of 81)

Depth Sample ID Popth Sample								Volatile C	Organic Compoun	ds (VOCs)			1
WHCL-BNO 11	Sample ID	•	-	-	Dimethyldisulfide	Ethanol	Ethylbenzene	Freon-11 (Trichlorofluoromethane)	(1,1,	Freon-12 (Dichloro- difluoromethane)	Heptane	Isopropylbenzene	m.p-Xylene
WHCLEBOD O. NORM 1/18/2008 C.000015 U C.0053 U C.000064 U C.000024 U C.000032 U C.000018 U	WHC1-BN09	0	NORM	12/17/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U		< 0.00015 U	< 0.00031 U		< 0.00011 U	< 0.00018 U
WHCL-BOOL	WHC1-BN09	11	NORM	12/19/2008	< 0.00019 U	< 0.052 UJ	< 0.000082 U	< 0.00024 U	< 0.00016 U	< 0.00032 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-B001	WHC1-BN10	0	NORM	11/18/2008	< 0.00019 UJ	< 0.052 UJ	< 0.000064 UJ	< 0.00024 U	< 0.00016 U	< 0.00032 U	< 0.00018 U	< 0.00011 UJ	< 0.00018 U
WHCL-BOOL Q	WHC1-BN10	10	NORM	11/18/2008	< 0.00021 U		< 0.00007 U	< 0.00026 U	< 0.00017 U	< 0.00035 U	< 0.0002 U	< 0.00012 U	< 0.0002 U
WHCL-BOOL 4 NORM 12/22008 0.00018 U 0.0051 U 0.000006 U 0.00003 U 0.00015 U 0.000011 U 0.000017 U 0.000017 U WHCL-BOOL 0 NORM 12/22008 0.00018 U 0.00018 U 0.00006 U 0.00003 U 0.00003 U 0.00003 U 0.000017 U 0.000011 U 0.000017 U 0.	WHC1-BO01	0	NORM	12/2/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHCL-BOOI	WHC1-BO01	0	FD	12/2/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHCL-BOOI	WHC1-BO01	4	NORM	12/2/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHCI-BOO2 12 NORM 121/2008 < 0.00018 U	WHC1-BO01	14		12/2/2008	< 0.00019 U	< 0.051 UJ	< 0.000063 U	< 0.00024 U	< 0.00016 U	< 0.00031 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHCI-BOO2 12 NORM 121/2008 < 0.00018 U	WHC1-BO02	0	NORM	12/1/2008	< 0.00018 U		< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	
WHCL-BO03	WHC1-BO02	12		12/1/2008		< 0.049 UJ		< 0.00023 U					< 0.00017 U
WHCL-BO03 12 NORM 12/19/2008 < 0.00018 U < 0.009 U < 0.000069 U < 0.000032 U < 0.000015 U < 0.00001 U < 0.000011 U < 0.000011 U < 0.000011 U < 0.000017 U < 0.000011 U < 0.00001 U													
WHC1-BO05		12	NORM				< 0.000069 U						
WHC1-BO05	WHC1-BO04	0	NORM	12/15/2008	< 0.00019 U	< 0.05 UJ	< 0.000062 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BO05		12											
WHC1-BO06													
WHC1-BO06	WHC1-BO05	10	NORM	11/20/2008	< 0.0002 U	< 0.054 UJ	< 0.000067 U	< 0.00025 U	< 0.00017 U	< 0.00033 U	< 0.00019 U	< 0.00012 U	< 0.00019 U
WHC1-BO07													
WHC1-BO07	WHC1-BO06	10	NORM	11/20/2008	< 0.0002 U	< 0.054 UJ	< 0.000066 U	< 0.00025 U	< 0.00016 U	< 0.00033 U	< 0.00018 U	< 0.00012 U	< 0.00019 U
WHC1-BO08 0 NORM 11/20/2008 < 0.00018 U < 0.0001 U < 0.00023 U < 0.00015 U < 0.00017 U < 0.00011 U < 0.00034 U WHC1-BO08 0 FD 11/20/2008 < 0.00018 U	WHC1-BO07	0	NORM	11/19/2008	< 0.00018 UJ	< 0.048 UJ	< 0.000059 UJ	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00017 U		
WHC1-BO08 0 NORM 11/20/2008 < 0.00018 U < 0.0001 U < 0.00023 U < 0.00015 U < 0.00017 U < 0.00011 U < 0.00034 U WHC1-BO08 0 FD 11/20/2008 < 0.00018 U	WHC1-BO07	10	NORM	11/19/2008	< 0.00018 UJ	< 0.049 UJ	< 0.00006 UJ	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BO08	0	NORM	11/20/2008	< 0.00018 U	< 0.049 UJ	< 0.0001 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00034 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BO08	0	FD	11/20/2008	< 0.00018 U	< 0.049 UJ	< 0.000076 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00023 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BO08	11	NORM	11/20/2008	< 0.00018 U	< 0.049 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00025 U
WHC1-B009 6 NORM 11/19/2008 < 0.00019 UJ < 0.00062 UJ < 0.00023 U < 0.00016 U < 0.00018 U < 0.00011 UJ < 0.00018 U < 0.00018 U < 0.00017	WHC1-BO09	0	NORM	11/19/2008	< 0.00018 UJ	< 0.049 UJ	< 0.000061 UJ	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 U
WHC1-BO09 16 NORM 11/19/2008 < 0.00018 UJ < 0.00006 UJ < 0.00023 U < 0.00015 U < 0.00017 U < 0.00011 UJ < 0.00017 U < 0.00017	WHC1-BO09	0	FD	11/19/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-B010 0 NORM 11/19/2008 < 0.00018 UJ < 0.00006 UJ < 0.00015 U < 0.00017 U	WHC1-BO09	6	NORM	11/19/2008	< 0.00019 UJ	< 0.051 UJ	< 0.000062 UJ	< 0.00023 U	< 0.00016 U	< 0.00031 U	< 0.00018 U	< 0.00011 UJ	< 0.00018 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-BO09	16	NORM	11/19/2008	< 0.00018 UJ	< 0.049 UJ	< 0.00006 UJ	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 U
WHC1-BP01 0 NORM 12/1/2008 < 0.00018 U < 0.00006 U < 0.00023 U < 0.00015 U < 0.00017 U < 0.00018 U < 0.00018 U < 0.00018 U < 0.00018 U < 0.00017 U <td>WHC1-BO10</td> <td>0</td> <td>NORM</td> <td>11/19/2008</td> <td>< 0.00018 UJ</td> <td>< 0.049 UJ</td> <td>< 0.00006 UJ</td> <td>< 0.00022 U</td> <td>< 0.00015 U</td> <td>< 0.0003 U</td> <td>< 0.00017 U</td> <td>< 0.00011 UJ</td> <td>< 0.00017 U</td>	WHC1-BO10	0	NORM	11/19/2008	< 0.00018 UJ	< 0.049 UJ	< 0.00006 UJ	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 U
WHC1-BP01 0 NORM 12/1/2008 < 0.00018 U < 0.00006 U < 0.00023 U < 0.00015 U < 0.00017 U < 0.00018 U < 0.00018 U < 0.00018 U < 0.00018 U < 0.00017 U <td>WHC1-BO10</td> <td>10</td> <td>NORM</td> <td>11/19/2008</td> <td>< 0.00018 U</td> <td>< 0.049 UJ</td> <td>< 0.00006 U</td> <td>< 0.00023 U</td> <td>< 0.00015 U</td> <td>< 0.0003 U</td> <td>< 0.00017 U</td> <td>< 0.00011 U</td> <td>< 0.00017 U</td>	WHC1-BO10	10	NORM	11/19/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	NORM	12/1/2008									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	NORM										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11	NORM	12/1/2008									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	NORM	12/15/2008									
WHC1-BP03 11 NORM 12/19/2008 < 0.00019 U < 0.051 UJ < 0.00013 U < 0.00024 U < 0.00016 U < 0.00031 U < 0.00018 U < 0.00011 U 0.00021 J WHC1-BP04 0 NORM 12/15/2008 < 0.00018 U		0	FD			< 0.048 U		< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	
WHC1-BP04 0 NORM 12/15/2008 < 0.00018 U < 0.049 UJ < 0.00006 U < 0.00022 U < 0.00015 U < 0.0003 U < 0.00017 U < 0.00011 U < 0.00017 U		11	NORM										
	WHC1-BP04	0	NORM	12/15/2008		< 0.049 UJ		< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	
	WHC1-BP04	12	NORM	12/19/2008	< 0.00018 U	< 0.049 UJ	< 0.000068 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 60 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Dimethyldisulfide	Ethanol	Ethylbenzene	Freon-11 (Trichlorofluoromethane)	Freon-113 (1,1,2-Trifluoro-1,2,2-trichloroethane)	Freon-12 (Dichloro- difluoromethane)	Heptane	lsopropylbenzene	m,p-Xylene
WHC1-BP05	0	NORM	12/15/2008	< 0.00018 U	< 0.048 U	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	0.00019 J
WHC1-BP05	10	NORM	12/19/2008	< 0.00019 U	< 0.051 UJ	< 0.000062 U	< 0.00023 U	< 0.00016 U	< 0.00031 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-BP06	0		12/12/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BP06	10	NORM	12/12/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-BP07	0		11/20/2008	< 0.0002 U	< 0.053 UJ	< 0.00012 U	< 0.00024 U	< 0.00016 U	< 0.00032 U	< 0.00018 U	< 0.00011 U	< 0.00028 U
WHC1-BP07	3		11/20/2008	< 0.00019 U	< 0.051 UJ	< 0.000083 U	< 0.00024 U	< 0.00016 U	< 0.00031 U	< 0.00018 U	< 0.00011 U	< 0.00021 U
WHC1-BP07	13		11/20/2008	< 0.00019 U	< 0.052 UJ	< 0.000064 U	< 0.00024 U	< 0.00016 U	< 0.00032 U	< 0.00018 U	< 0.00011 U	< 0.0002 U
WHC1-BP08	0		11/19/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BP08	4		11/19/2008	< 0.00019 UJ	< 0.052 UJ	< 0.000064 UJ	< 0.00024 U	< 0.00016 U	< 0.00032 U	< 0.00018 U	< 0.00011 UJ	< 0.00018 U
WHC1-BP08	14		11/19/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-BP09	0		11/19/2008	< 0.00018 UJ	< 0.048 UJ	< 0.000059 UJ	< 0.00022 UJ	< 0.00015 UJ	< 0.00029 UJ	< 0.00017 UJ	< 0.0001 UJ	< 0.00017 UJ
WHC1-BP09	10		11/19/2008	< 0.00019 UJ	< 0.051 UJ	< 0.000062 UJ	< 0.00023 U	< 0.00016 U	< 0.00031 U	< 0.00017 U	< 0.00011 UJ	< 0.00018 U
WHC1-BP10	0		11/19/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00017 U	< 0.0001 U	< 0.00017 U
WHC1-BP10	10		11/19/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D01	0	NORM	12/5/2008	< 0.00018 U	< 0.049 UJ	< 0.000078 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D01	10	NORM	12/5/2008	< 0.00018 U	< 0.049 UJ	< 0.00008 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D02	0	NORM	12/5/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-D02	10	NORM	12/5/2008	< 0.00018 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D03	0	NORM	12/5/2008	< 0.00018 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D03	0	FD	12/5/2008	< 0.00018 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D03	10	NORM	12/5/2008	< 0.00018 U	< 0.049 UJ	< 0.000069 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D04	0	NORM	12/5/2008	< 0.00019 U	< 0.05 UJ	< 0.000067 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-D04	10	NORM	12/5/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D05	0	NORM	12/5/2008	< 0.00018 U	< 0.049 UJ	< 0.000063 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D05	10	NORM	12/5/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D06	0	NORM	12/5/2008	< 0.00018 U	< 0.05 UJ	< 0.000084 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D06	10	NORM	12/5/2008	< 0.00018 U	< 0.049 UJ	< 0.00011 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D07	0	NORM	12/5/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D07	10	NORM	12/5/2008	< 0.00018 U	< 0.048 UJ	< 0.000074 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D08	0	NORM	12/8/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D08	10	NORM	12/9/2008	< 0.00019 U	< 0.052 UJ	< 0.000064 U	< 0.00024 U	< 0.00016 U	< 0.00032 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-D09	0	NORM	12/8/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D09	11	NORM	12/9/2008	< 0.00019 U	< 0.051 UJ	< 0.000077 U	< 0.00024 U	< 0.00016 U	< 0.00031 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-D10	0	NORM	12/8/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D10	10	NORM	12/9/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D11	0	NORM	12/8/2008	< 0.00019 U	< 0.051 UJ	< 0.000063 U	< 0.00024 U	< 0.00016 U	< 0.00031 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-D11	10	NORM	12/9/2008	< 0.00018 U	< 0.05 UJ	< 0.000066 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D12	0	NORM	12/10/2008	< 0.0002 U	< 0.053 UJ	< 0.000065 U	< 0.00025 U	< 0.00016 U	< 0.00033 U	< 0.00018 U	< 0.00012 U	< 0.00019 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 61 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Dimethyldisulfide	Ethanol	Ethylbenzene	Freon-11 (Trichlorofluoromethane)	Freon-113 (1,1,2-Trifluoro- 1,2,2-trichloroethane)	Freon-12 (Dichloro- difluoromethane)	Heptane	Isopropylbenzene	m.p-Xylene
WHC1-D12	10	NORM	12/10/2008	< 0.00025 U	< 0.067 UJ	< 0.000083 U	< 0.00031 U	< 0.00021 U	< 0.00041 U	< 0.00023 U	< 0.00015 U	< 0.00024 U
WHC1-D13	0	NORM	12/8/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-D13	10	NORM	12/8/2008	< 0.00024 U	< 0.064 UJ	< 0.000078 U	< 0.00029 U	< 0.0002 U	< 0.00039 U	< 0.00022 U	< 0.00014 U	< 0.00022 U
WHC1-D15	0	NORM	12/11/2008	< 0.00018 UJ	< 0.05 UJ	0.00028 J	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 UJ
WHC1-D15	10	NORM	12/11/2008	< 0.00023 U	< 0.061 UJ	< 0.000075 U	< 0.00028 U	< 0.00019 U	< 0.00037 U	< 0.00021 U	< 0.00013 U	< 0.00021 U
WHC1-D16	0	NORM	12/10/2008	< 0.00019 U	< 0.052 UJ	< 0.000064 U	< 0.00024 U	< 0.00016 U	< 0.00032 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-D16	10	NORM	12/10/2008	< 0.00021 U	< 0.055 UJ	< 0.000068 U	< 0.00025 U	< 0.00017 U	< 0.00034 U	< 0.00019 U	< 0.00012 U	< 0.00019 U
WHC1-D17	0	NORM	12/10/2008	< 0.00019 U	< 0.052 UJ	< 0.000063 U	< 0.00024 U	< 0.00016 U	< 0.00032 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-D17	10	NORM	12/10/2008	< 0.0002 U	< 0.054 UJ	< 0.000067 U	< 0.00025 U	< 0.00017 U	< 0.00033 U	< 0.00019 U	< 0.00012 U	< 0.00019 U
WHC1-D18	0		12/11/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D18	10	NORM	12/11/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D19	0	NORM		< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-D19	0	FD	12/11/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D19	10			< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D20	0		12/12/2008	< 0.00018 U	< 0.049 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D20	10		12/12/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D21	0		12/16/2008	< 0.00019 U	< 0.051 UJ	< 0.000062 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-D21	10	NORM	12/16/2008	< 0.00018 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D22	0	NORM	12/16/2008	< 0.00021 U	< 0.058 UJ	< 0.000071 U	< 0.00027 U	< 0.00018 U	< 0.00035 U	< 0.0002 U	< 0.00013 U	< 0.0002 U
WHC1-D22	10	NORM	12/16/2008	< 0.00019 U	< 0.051 UJ	< 0.000063 U	< 0.00024 U	< 0.00016 U	< 0.00031 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-D23	0	NORM	12/16/2008	< 0.00019 UJ	< 0.05 UJ	< 0.000061 UJ	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00018 UJ
WHC1-D23	10	NORM	12/16/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D24	0	NORM	12/16/2008	< 0.00019 UJ	< 0.051 UJ	< 0.000063 UJ	< 0.00024 U	< 0.00016 U	< 0.00031 U	< 0.00017 U	< 0.00011 UJ	< 0.00018 UJ
WHC1-D24	0	FD	12/16/2008	< 0.00019 U	< 0.051 UJ	< 0.000063 U	< 0.00021 U	< 0.00016 U	< 0.00031 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-D24	10	NORM	12/16/2008	< 0.00019 U	< 0.051 UJ	< 0.000063 U	< 0.00024 C	< 0.00015 U	< 0.00031 C	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D25	0	NORM	12/16/2008	< 0.00019 UJ	< 0.05 UJ	< 0.000061 UJ	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 C
WHC1-D25	10	NORM	12/16/2008	< 0.00019 U	< 0.05 UJ	< 0.000062 U	< 0.00023 U	< 0.00015 U	< 0.00031 C	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D26	0	NORM	12/12/2008	< 0.00019 U	< 0.049 UJ	< 0.000001 C	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D26	10	NORM	12/12/2008	< 0.00018 U	< 0.053 UJ	< 0.000065 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D27	0	NORM	12/12/2008	< 0.0002 U	< 0.05 UJ	< 0.000061 U	< 0.00024 U	< 0.00015 U	< 0.00032 U	< 0.00017 U	< 0.00012 U	< 0.00019 U
WHC1-D27	0	FD	12/12/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D27	10	NORM	12/12/2008	< 0.00018 U	< 0.05 UJ	< 0.000067 U	< 0.00025 U	< 0.00013 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D28	0	NORM	12/12/2008	< 0.0002 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00017 U	< 0.00033 U	< 0.00019 U	< 0.00012 U	< 0.00019 U
WHC1-D28	10	NORM	12/12/2008	< 0.00018 U	< 0.049 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D29	0	NORM	12/12/2008	< 0.00018 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-D29	10	NORM	12/12/2008	< 0.00018 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P01	0	NORM	12/12/2008	< 0.00019 U	< 0.049 U	< 0.0052 U	< 0.00023 U	< 0.00015 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-P01	12			< 0.00018 UJ	< 0.049 UJ	< 0.0032 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 UJ
WIICI-FUI	12	NOKW	12/19/2008	< 0.00016 UJ	< 0.049 UJ	< 0.00000 UJ	< 0.000∠3 U	< 0.00013 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 UJ

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 62 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Dimethyldisulfide	Ethanol	Ethylbenzene	Freon-11 (Trichlorofluoromethane)	Freon-113 (1,1,2-Trifluoro- 1,2,2-trichloroethane)	Freon-12 (Dichloro- difluoromethane)	Heptane	lsopropylbenzene	m,p-Xylene
WHC1-P02	0	NORM	12/1/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P02	10	NORM	12/1/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00017 U	< 0.0001 U	< 0.00017 U
WHC1-P03	0	NORM	12/15/2008	< 0.00018 U	< 0.049 U	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P03	3	NORM	12/18/2008	< 0.00018 UJ	< 0.049 UJ	< 0.00006 UJ	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 UJ
WHC1-P03	3	FD	12/18/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P03	13	NORM	12/18/2008	< 0.00018 UJ	< 0.049 UJ	< 0.00006 UJ	< 0.00023 UJ	< 0.00015 UJ	< 0.0003 UJ	< 0.00017 UJ	< 0.00011 UJ	< 0.00017 UJ
WHC1-P04	0		12/15/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P04	10	NORM	12/18/2008	< 0.00019 UJ	< 0.05 UJ	< 0.000062 UJ	< 0.00023 UJ	< 0.00015 UJ	< 0.00031 UJ	< 0.00017 UJ	< 0.00011 UJ	< 0.00018 UJ
WHC1-P05	0	NORM	12/8/2008	< 0.00019 U	< 0.05 UJ	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P05	0	FD	12/8/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P05	10	NORM	12/18/2008	< 0.00019 U	< 0.051 UJ	< 0.000064 U	< 0.00023 U	< 0.00016 U	< 0.00031 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-P06	0	NORM	12/2/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P06	12	NORM	12/2/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P07	0	NORM	12/2/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P07	3	NORM	12/2/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P07	13	NORM	12/2/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P08	0	NORM	12/3/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P08	11	NORM	12/3/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P09	0	NORM	12/4/2008	< 0.00018 U	< 0.049 U	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P09	0	FD	12/4/2008	< 0.00018 U	< 0.049 U	< 0.000061 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P09	10	NORM	12/4/2008	< 0.00018 U	< 0.049 U	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P10	0	NORM	11/25/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.00029 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P10	10	NORM	11/25/2008	< 0.00021 U	< 0.058 UJ	< 0.000071 U	< 0.00027 U	< 0.00018 U	< 0.00035 U	< 0.0002 U	< 0.00013 U	< 0.0002 U
WHC1-P11	0	NORM	12/8/2008	< 0.00018 UJ	< 0.05 UJ	< 0.000061 UJ	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 UJ
WHC1-P11	0	FD	12/8/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P11	10	NORM	12/9/2008	< 0.00019 U	< 0.052 UJ	< 0.000095 U	< 0.00024 U	< 0.00016 U	< 0.00032 U	< 0.00018 U	< 0.00011 U	< 0.00024 U
WHC1-P12	0	NORM	12/5/2008	< 0.00018 U	< 0.049 UJ	< 0.000079 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00026 U
WHC1-P12	11	NORM	12/5/2008	< 0.00018 U	< 0.049 UJ	< 0.000085 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P13	0	NORM	12/9/2008	< 0.00018 U	< 0.049 UJ	< 0.000086 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00018 U
WHC1-P13	10	NORM	12/9/2008	< 0.00026 U	< 0.069 UJ	< 0.000095 U	< 0.00032 U	< 0.00021 U	< 0.00042 U	< 0.00024 U	< 0.00015 U	< 0.00024 U
WHC1-P13	10	FD	12/9/2008	< 0.00023 U	< 0.062 UJ	< 0.00011 U	< 0.00028 U	< 0.00019 U	< 0.00038 U	< 0.00021 U	< 0.00013 U	< 0.00022 U
WHC1-P14	0	NORM	12/17/2008	< 0.00021 U	< 0.057 UJ	< 0.00007 U	< 0.00026 U	< 0.00017 U	< 0.00035 U	< 0.0002 U	< 0.00012 U	< 0.0002 U
WHC1-P15	0	NORM	12/8/2008	< 0.00019 U	0.36 J	< 0.000063 U	< 0.00024 U	< 0.00016 U	< 0.00031 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.00019 U	< 0.051 UJ	< 0.000062 U	< 0.00023 U	< 0.00016 U	< 0.00031 U	< 0.00018 U	< 0.00011 U	< 0.00018 U
WHC1-P15	10	NORM	12/18/2008	< 0.00019 U	< 0.05 UJ	< 0.000063 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P16	0	NORM	12/1/2008	< 0.00091 U	< 0.24 UJ	0.00038 J	< 0.0011 U	< 0.00075 U	< 0.0015 U	< 0.00017 U	< 0.00053 U	< 0.00086 U
WHC1-P16	11	NORM	12/1/2008	< 0.00018 U	< 0.048 UJ	< 0.000059 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P17	0	NORM	12/15/2008	< 0.00018 UJ	< 0.049 UJ	< 0.00006 UJ	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 UJ	< 0.00017 UJ

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 63 of 81)

							Volatile C	rganic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	•	Sample Date	Dimethyldisulfide	Ethanol	Ethylbenzene	Freon-11 (Trichlorofluoromethane)	Freon-113 (1,1,2-Trifluoro- 1,2,2-trichloroethane)	Freon-12 (Dichloro- difluoromethane)	Heptane	Isopropylbenzene	m,p-Xylene
WHC1-P17	12	NORM	12/19/2008	< 0.00018 U	< 0.05 UJ	< 0.00011 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P17	12	FD	12/19/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P18	0	NORM	12/1/2008	< 0.00018 U	< 0.049 UJ	0.000076 J	< 0.00023 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U
WHC1-P18	12	NORM	12/1/2008	< 0.00018 U	< 0.049 UJ	< 0.00006 U	< 0.00022 U	< 0.00015 U	< 0.0003 U	< 0.00017 U	< 0.00011 U	< 0.00017 U

All units in mg/kg.

= Data not included in risk assessment. Sample location covered with fill material (see text).

⁻⁻ = no sample data.

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 64 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			1
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Methyl ethyl ketone (2-Butanone)	Methyl iodide	MTBE (Methyl tert-butyl ether)	n-Butylbenzene	Nonanal	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene
OSC1-BM11	0	NORM	9/21/2009	< 0.0006 U	< 0.0004 U	< 0.00048 U	< 0.00031 U	< 0.00038 U	< 0.00028 U	< 0.00024 U	< 0.00034 U	< 0.00022 U
OSC1-BM11	10	NORM	9/21/2009	< 0.00067 U	< 0.00045 U	< 0.00055 U	< 0.00034 U	< 0.00042 U	< 0.00032 U	< 0.00027 U	< 0.00038 U	< 0.00024 U
OSC1-BN11	0	NORM	9/22/2009	0.0012 J	< 0.00039 U	< 0.00047 U	< 0.0003 U	< 0.00037 U	< 0.00027 U	< 0.00024 U	< 0.00033 U	< 0.00021 U
OSC1-BN11	5	NORM	9/22/2009	< 0.0006 U	< 0.00041 U	< 0.00049 U	< 0.00031 U	< 0.00038 U	< 0.00029 U	< 0.00025 U	< 0.00034 U	< 0.00022 U
OSC1-BO11	0	NORM	9/16/2009	< 0.00061 U	< 0.00041 U	< 0.0005 U	< 0.00031 U	< 0.00039 U	< 0.00029 U	< 0.00025 U	< 0.00035 U	< 0.00022 U
OSC1-BO11	0	FD	9/16/2009	< 0.00065 U	< 0.00044 U	< 0.00053 U	< 0.00034 U	< 0.00041 U	< 0.00031 U	< 0.00027 U	< 0.00037 U	< 0.00024 U
OSC1-BO11	5	NORM	9/16/2009	< 0.00072 U	< 0.00048 U	< 0.00058 U	< 0.00037 U	< 0.00045 U	< 0.00034 U	< 0.00029 U	< 0.00041 U	< 0.00026 U
OSC1-BP11	0	NORM	9/16/2009	< 0.00071 U	< 0.00048 U	< 0.00058 U	< 0.00037 U	< 0.00045 U	< 0.00034 U	< 0.00029 U	< 0.0004 U	< 0.00026 U
OSC1-BP11	5	NORM	9/16/2009	< 0.00077 U	< 0.00052 U	< 0.00062 U	< 0.00039 U	< 0.00048 U	< 0.00036 U	< 0.00031 U	< 0.00043 U	< 0.00028 U
OSC1-JP06	0	NORM	9/22/2009	< 0.0007 U	< 0.00047 U	< 0.00057 U	< 0.00036 U	< 0.00044 U	< 0.00033 U	< 0.00029 U	< 0.0004 U	< 0.00025 U
OSC1-JP06	5	NORM	9/22/2009	< 0.00078 U	< 0.00053 U	< 0.00064 U	< 0.0004 U	< 0.0005 U	< 0.00037 U	< 0.00032 U	< 0.00044 U	< 0.00028 U
OSC1-JP07	0	NORM	9/21/2009	< 0.00061 U	< 0.00041 U	< 0.0005 U	< 0.00031 U	< 0.00039 U	< 0.00029 U	< 0.00025 U	< 0.00035 U	< 0.00022 U
OSC1-JP07	5	NORM	9/21/2009	< 0.00071 U	< 0.00048 U	< 0.00058 U	< 0.00037 U	< 0.00045 UJ	< 0.00034 U	< 0.00029 U	< 0.0004 U	< 0.00026 U
OSC1-JP08	0	NORM	9/21/2009	< 0.00067 U	< 0.00045 U	< 0.00055 U	< 0.00035 U	< 0.00043 U	< 0.00032 U	< 0.00028 U	< 0.00038 U	< 0.00024 U
OSC1-JP08	10	NORM	9/21/2009	< 0.0007 U	< 0.00048 U	< 0.00057 U	< 0.00036 U	< 0.00045 U	< 0.00034 U	< 0.00029 U	< 0.0004 U	< 0.00026 U
WHC1-BF01	0	NORM	11/24/2008	< 0.00087 U	< 0.00013 U	< 0.00009 U	< 0.00018 UJ	< 0.00047 UJ	< 0.00011 UJ	< 0.000077 UJ	< 0.00011 UJ	< 0.00017 UJ
WHC1-BF01	12	NORM	11/24/2008	< 0.00091 U	< 0.00013 U	< 0.000093 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.00008 UJ	< 0.00011 UJ	< 0.00018 UJ
WHC1-BF02	0	NORM	11/25/2008	< 0.00088 UJ	< 0.00013 U	< 0.00009 U	< 0.00018 U	< 0.00047 U	0.0004 J	0.00096 J	< 0.00011 U	0.00029 J
WHC1-BF02	11	NORM	11/25/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000094 U	< 0.00011 U	< 0.00018 U
WHC1-BF03	0	NORM	11/25/2008	< 0.00088 UJ	< 0.00013 U	< 0.00009 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.00012 U	< 0.00011 U	< 0.00018 U
WHC1-BF03	10	NORM	11/25/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BF04	0	NORM	11/25/2008	< 0.00088 UJ	< 0.00013 U	< 0.00009 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000077 U	< 0.00011 U	< 0.00018 U
WHC1-BF04	0	FD	11/25/2008	< 0.00093 UJ	< 0.00013 U	< 0.000095 U	< 0.00019 U	< 0.0005 U	< 0.00012 U	< 0.000082 U	< 0.00011 U	< 0.00019 U
WHC1-BF04	10	NORM	11/25/2008	< 0.00093 UJ	< 0.00013 U	< 0.000096 U	< 0.00019 U	< 0.0005 U	< 0.00012 U	< 0.000082 U	< 0.00011 U	< 0.00019 U
WHC1-BF05	0	NORM	11/25/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BF05	12	NORM	12/10/2008	< 0.0012 U	< 0.00018 U	< 0.00013 U	< 0.00026 UJ	< 0.00067 UJ	< 0.00016 UJ	< 0.00011 U	< 0.00015 UJ	< 0.00025 U
WHC1-BF06	0	NORM	12/10/2008	< 0.0009 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BF06	10	NORM	12/10/2008	< 0.0012 U	< 0.00017 U	< 0.00012 U	< 0.00024 U	< 0.00064 U	< 0.00015 U	< 0.0001 U	< 0.00014 U	< 0.00023 U
WHC1-BG01	0	NORM	11/24/2008	0.0078 J	< 0.00013 U	< 0.00009 U	< 0.00018 U	< 0.00047 U	0.0047 J	0.0003 J	< 0.00011 U	< 0.00017 U
WHC1-BG01	11			< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000079 U	< 0.00011 UJ	< 0.00018 U
WHC1-BG02	0	NORM	11/24/2008	< 0.00088 UJ	< 0.00013 UJ	< 0.000091 UJ	< 0.00018 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000077 UJ	< 0.00011 UJ	< 0.00018 UJ
WHC1-BG02	0	FD	11/24/2008	0.0062 J	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	0.0047 J	0.00027 J	< 0.00011 U	< 0.00018 U
WHC1-BG02	10	NORM	11/24/2008	0.0044 J	R	R	0.0011 J	< 0.00049 UJ	0.00093 J	0.00012 J	R	R
WHC1-BG03	0	NORM	12/11/2008	< 0.00088 U	< 0.00013 U	< 0.00009 U	< 0.00018 U	< 0.00047 U	< 0.00011 U	< 0.000077 U	< 0.00011 U	< 0.00017 U
WHC1-BG03	11	NORM	12/11/2008	< 0.00089 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000077 U	< 0.00011 U	< 0.00018 U
WHC1-BG04	0	NORM	12/11/2008	< 0.00088 U	< 0.00013 U	< 0.00009 U	< 0.00018 U	< 0.00047 U	< 0.00011 U	< 0.000077 U	< 0.00011 U	< 0.00018 U
WHC1-BG04	10	NORM	12/11/2008	< 0.0011 U	< 0.00016 U	< 0.00012 U	< 0.00024 UJ	< 0.00062 UJ	< 0.00014 UJ	< 0.0001 U	< 0.00014 UJ	< 0.00023 U
WHC1-BG05	0		11/25/2008	< 0.00089 UJ	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
	, ,	- , - 10111	- 1, 25, 2000	. 0.00007 00	. 0.00010 0	10.0000710	. 0.00010 0	1 0.000 10 0	10.000110	10.0000700	. 0.00011 0	. 0.00010 0

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 65 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			1
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Methyl ethyl ketone (2-Butanone)	Methyl iodide	MTBE (Methyl tert-butyl ether)	n-Butylbenzene	Nonanal	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene
WHC1-BG05	10	NORM	11/25/2008	< 0.00099 UJ	< 0.00014 U	< 0.0001 U	< 0.00021 U	< 0.00054 U	< 0.00012 U	< 0.000087 U	< 0.00012 U	< 0.0002 U
WHC1-BG06	0	NORM	12/10/2008	< 0.0009 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BG06	10	NORM	12/10/2008	< 0.0011 U	< 0.00016 U	< 0.00011 U	< 0.00023 U	< 0.00059 U	< 0.00014 U	< 0.000096 U	< 0.00013 U	< 0.00022 U
WHC1-BH01	0	NORM	12/3/2008	< 0.00089 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BH01	11	NORM	12/3/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BH02	0	NORM	12/4/2008	< 0.00089 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BH02	10	NORM	12/4/2008	< 0.00088 U	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000077 U	< 0.00011 U	< 0.00018 U
WHC1-BH03	0	NORM	12/9/2008	< 0.00089 UJ	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BH03	10	NORM	12/9/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BH04	0	NORM	12/11/2008	< 0.00088 U	< 0.00013 U	< 0.000091 U	< 0.00018 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000077 U	< 0.00011 UJ	< 0.00018 U
WHC1-BH04	10	NORM	12/11/2008	< 0.0009 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BH05	0	NORM	12/9/2008	< 0.00089 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BH05	0	FD	12/9/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BH05	10	NORM	12/9/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BH06	0	NORM	12/11/2008	< 0.00096 U	< 0.00014 U	< 0.000098 U	< 0.0002 UJ	< 0.00052 UJ	< 0.00012 UJ	< 0.000084 U	< 0.00012 UJ	< 0.00019 U
WHC1-BH06	0	FD	12/11/2008	< 0.00094 U	< 0.00013 U	< 0.000097 U	< 0.0002 U	< 0.00051 U	< 0.00012 U	< 0.000083 U	< 0.00012 U	< 0.00019 U
WHC1-BH06	10	NORM	12/11/2008	< 0.00099 U	< 0.00014 U	< 0.0001 U	< 0.00021 U	< 0.00054 U	< 0.00012 U	< 0.000087 U	< 0.00012 U	< 0.0002 U
WHC1-BI01	0	NORM	12/3/2008	< 0.00095 UJ	< 0.00014 U	< 0.000098 U	< 0.0002 U	< 0.00051 U	< 0.00012 U	< 0.000083 U	< 0.00012 U	< 0.00019 U
WHC1-BI01	11	NORM	12/3/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BI02	0	NORM	12/4/2008	< 0.00091 U	< 0.00013 U	< 0.000094 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BI02	3	NORM	12/4/2008	< 0.00089 U	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BI02	13	NORM	12/4/2008	< 0.00089 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BI03	0	NORM	12/4/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BI03	11	NORM	12/4/2008	< 0.00088 U	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000077 U	< 0.00011 U	< 0.00018 U
WHC1-BI04	0	NORM	12/8/2008	< 0.00089 U	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BI04	10	NORM	12/9/2008	< 0.00091 UJ	< 0.00013 U	< 0.000094 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BI05	0	NORM	12/9/2008	< 0.00089 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BI05	10	NORM	12/9/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BJ01	0	NORM	12/3/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	0.000085 J	< 0.00011 U	< 0.00018 U
WHC1-BJ01	3	NORM	12/3/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BJ01	13	NORM	12/3/2008	< 0.00092 UJ	< 0.00013 U	< 0.000095 U	< 0.00019 U	< 0.0005 U	< 0.00012 U	< 0.000081 U	< 0.00011 U	< 0.00018 U
WHC1-BJ02	0	NORM	12/2/2008	< 0.00091 U	< 0.00013 U	< 0.000093 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	0.00011 J	< 0.00011 UJ	< 0.00018 U
WHC1-BJ02	0	FD	12/2/2008	< 0.0009 U	< 0.00013 U	< 0.000093 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.000079 U	< 0.00011 UJ	< 0.00018 U
WHC1-BJ02	12	NORM	12/2/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.00089 U	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BJ03	0	FD	12/4/2008	< 0.00089 U	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.00091 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BJ04	0	NORM	12/4/2008	< 0.00088 U	< 0.00013 U	< 0.00009 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000077 U	< 0.00011 U	< 0.00018 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 66 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Methyl ethyl ketone (2-Butanone)	Methyl iodide	MTBE (Methyl tert-butyl ether)	n-Butylbenzene	Nonanal	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene
WHC1-BJ04	11	NORM	12/4/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BJ05	0	NORM	12/11/2008	< 0.00088 UJ	< 0.00013 UJ	< 0.000091 UJ	< 0.00018 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000078 UJ	< 0.00011 UJ	< 0.00018 UJ
WHC1-BJ05	10	NORM	12/11/2008	< 0.00091 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BK01	0	NORM	12/3/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BK01	0	FD	12/3/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BK01	10	NORM	12/3/2008	< 0.00092 UJ	< 0.00013 U	< 0.000094 U	< 0.00019 U	< 0.00049 U	< 0.00012 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BK02	0	NORM	12/8/2008	< 0.00089 U	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BK02	11	NORM	12/18/2008	< 0.00092 U	< 0.00013 U	< 0.000094 U	< 0.00019 U	< 0.0005 U	< 0.00012 U	< 0.000081 U	< 0.00011 U	< 0.00018 U
WHC1-BK03	0	NORM	12/15/2008	< 0.0009 UJ	< 0.00013 UJ	< 0.000092 UJ	< 0.00019 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000078 UJ	< 0.00011 UJ	< 0.00018 UJ
WHC1-BK03	12	NORM	12/18/2008	< 0.00091 U	< 0.00013 U	< 0.000094 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.00008 U	< 0.00011 UJ	< 0.00018 U
WHC1-BK04	0	NORM	12/4/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BK04	10	NORM	12/4/2008	< 0.00091 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BK05	0	NORM	12/12/2008	< 0.00089 UJ	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BK05	11	NORM	12/12/2008	< 0.0009 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BL01	0	NORM	12/3/2008	< 0.0009 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BL01	10	NORM	12/3/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BL02	0	NORM	12/2/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BL02	10	NORM	12/2/2008	< 0.00094 U	< 0.00013 U	< 0.000096 U	< 0.00019 U	< 0.00051 U	< 0.00012 U	< 0.000082 U	< 0.00011 U	< 0.00019 U
WHC1-BL03	0	NORM	12/8/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BL03	10	NORM	12/18/2008	< 0.00091 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BL04	0	NORM	12/17/2008	< 0.00091 U	< 0.00013 U	< 0.000094 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BL04	12	NORM	12/22/2008	< 0.0009 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BL05	0	NORM	11/21/2008	< 0.00088 UJ	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000077 U	< 0.00011 U	< 0.00018 U
WHC1-BL05	10	NORM	11/21/2008	< 0.0009 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BL06	0	NORM	11/21/2008	< 0.00089 UJ	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.0051 U	< 0.00011 U	< 0.00018 U
WHC1-BL06	11	NORM	11/21/2008	< 0.00091 UJ	< 0.00013 U	< 0.000094 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BL07	0	NORM	11/21/2008	< 0.00089 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BL07	10	NORM	11/21/2008	< 0.0011 UJ	< 0.00016 U	< 0.00012 U	< 0.00024 U	< 0.00062 U	< 0.00014 U	< 0.0001 U	< 0.00014 U	< 0.00023 U
WHC1-BL08	0	NORM	11/18/2008	< 0.00091 UJ	< 0.00013 U	< 0.000094 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BL08	10	NORM	11/18/2008	< 0.00092 U	< 0.00013 U	< 0.000094 U	< 0.00019 UJ	< 0.0005 UJ	< 0.00012 UJ	< 0.00008 U	< 0.00011 UJ	< 0.00018 U
WHC1-BL11	0		11/18/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000079 U	< 0.00011 UJ	< 0.00018 U
WHC1-BL11	12	NORM	11/18/2008	< 0.00093 U	< 0.00013 U	< 0.000095 U	< 0.00019 UJ	< 0.0005 UJ	< 0.00012 UJ	< 0.000081 U	< 0.00011 UJ	< 0.00018 U
WHC1-BM01	0	NORM	12/3/2008	< 0.00092 UJ	< 0.00013 U	< 0.000095 U	< 0.00019 U	< 0.0005 U	< 0.00012 U	< 0.000081 U	< 0.00011 U	< 0.00018 U
WHC1-BM01	10	NORM	12/3/2008	< 0.00089 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BM02	0	NORM	12/2/2008	< 0.00089 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BM02	12	NORM	12/2/2008	< 0.00093 U	< 0.00013 U	< 0.000095 U	< 0.00019 U	< 0.0005 U	< 0.00012 U	< 0.000081 U	< 0.00011 U	< 0.00018 U
WHC1-BM03	0	NORM	12/8/2008	< 0.00089 U	< 0.00013 U	< 0.000092 U	< 0.00019 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000078 U	< 0.00011 UJ	< 0.00018 U
WHC1-BM03	10	NORM	12/18/2008	< 0.00093 U	< 0.00013 U	< 0.000096 U	< 0.00019 U	< 0.0005 U	< 0.00012 U	< 0.000082 U	< 0.00011 U	< 0.00019 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 67 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Methyl ethyl ketone (2-Butanone)	Methyl iodide	MTBE (Methyl tert-butyl ether)	n-Butylbenzene	Nonanal	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene
WHC1-BM04	0	NORM	12/17/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000079 UJ	< 0.00011 UJ	< 0.00018 UJ
WHC1-BM04	0	FD	12/17/2008	< 0.0009 U	< 0.00013 U	< 0.000093 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.000079 UJ	< 0.00011 UJ	< 0.00018 UJ
WHC1-BM04	10	NORM	12/22/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BM05	0		11/21/2008	< 0.00088 UJ	< 0.00013 U	< 0.00009 U	< 0.00018 U	< 0.00047 U	< 0.00011 U	< 0.005 U	< 0.00011 U	< 0.00017 U
WHC1-BM05	10	NORM	11/21/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BM06	0		11/21/2008	< 0.00089 UJ	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BM06	0	FD	11/21/2008	< 0.00094 UJ	< 0.00014 U	< 0.000097 U	< 0.0002 U	< 0.00051 U	< 0.00012 U	< 0.000083 U	< 0.00012 U	< 0.00019 U
WHC1-BM06	10	NORM	11/21/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BM07	0	NORM	11/20/2008	< 0.00089 UJ	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BM07	11	NORM	11/20/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BM08	0	NORM	11/18/2008	< 0.00089 U	< 0.00013 U	< 0.000092 U	< 0.00019 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000078 U	< 0.00011 UJ	< 0.00018 UJ
WHC1-BM08	0	FD	11/18/2008	< 0.001 UJ	< 0.00014 U	< 0.0001 U	< 0.00021 U	< 0.00054 U	< 0.00013 U	< 0.000088 U	< 0.00012 U	< 0.0002 U
WHC1-BM08	11	NORM	11/18/2008	< 0.00094 U	< 0.00013 U	< 0.000096 U	< 0.00019 UJ	< 0.00051 UJ	< 0.00012 UJ	< 0.000082 U	< 0.00011 UJ	< 0.00019 U
WHC1-BM09	0	NORM	11/18/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000078 U	< 0.00011 UJ	< 0.00018 UJ
WHC1-BM09	12	NORM	11/18/2008	< 0.00091 U	< 0.00013 U	< 0.000093 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.000079 U	< 0.00011 UJ	< 0.00018 UJ
WHC1-BM10	0	NORM	11/18/2008	< 0.00092 U	< 0.00013 U	< 0.000094 U	< 0.00019 UJ	< 0.0005 UJ	< 0.00012 UJ	< 0.00008 U	< 0.00011 UJ	< 0.00018 U
WHC1-BM10	3	NORM	11/18/2008	< 0.00093 U	< 0.00013 U	< 0.000095 U	< 0.00019 UJ	< 0.0005 UJ	< 0.00012 UJ	< 0.000082 U	< 0.00011 UJ	< 0.00019 U
WHC1-BM10	13	NORM	11/18/2008	< 0.0011 U	< 0.00016 U	< 0.00011 U	< 0.00023 UJ	< 0.0006 UJ	< 0.00014 UJ	< 0.000098 U	< 0.00014 UJ	< 0.00022 U
WHC1-BN01	0	NORM	12/1/2008	< 0.00092 U	< 0.00013 U	< 0.000094 U	< 0.00019 U	< 0.00049 U	< 0.00012 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BN01	12	NORM	12/1/2008	< 0.0009 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BN02	0	NORM	12/1/2008	< 0.00091 U	< 0.00013 U	< 0.000094 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BN02	0	FD	12/1/2008	< 0.00091 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BN02	11	NORM	12/1/2008	< 0.00089 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BN03	0	NORM	12/17/2008	< 0.00092 U	< 0.00013 UJ	< 0.000094 U	< 0.00019 UJ	< 0.0005 UJ	< 0.00012 UJ	< 0.00008 U	< 0.00011 UJ	< 0.00018 U
WHC1-BN03	10	NORM	12/18/2008	< 0.0009 UJ	< 0.00013 UJ	< 0.000092 UJ	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.000079 UJ	< 0.00011 UJ	< 0.00018 UJ
WHC1-BN04	0	NORM	12/17/2008	< 0.0009 U	< 0.00013 U	< 0.000093 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.000079 UJ	< 0.00011 UJ	< 0.00018 UJ
WHC1-BN04	7	NORM	12/22/2008	< 0.0009 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BN04	17	NORM	12/22/2008	< 0.00092 U	< 0.00013 U	< 0.000094 U	< 0.00019 U	< 0.00049 U	< 0.00012 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BN05	0		11/20/2008	< 0.00087 UJ	< 0.00012 U	< 0.00009 U	< 0.00019 U	< 0.00047 U	< 0.00011 U	< 0.000077 U	< 0.00011 U	< 0.00017 U
WHC1-BN05	0	FD	11/20/2008	< 0.00088 UJ	< 0.00012 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000077 U	< 0.00011 U	< 0.00017 C
WHC1-BN05	10		11/20/2008	< 0.00091 UJ	< 0.00013 U	< 0.000091 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BN06	0		11/20/2008	< 0.00088 UJ	< 0.00013 U	< 0.00009 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000077 U	< 0.00011 U	< 0.00018 U
WHC1-BN06	10		11/20/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000077 U	< 0.00011 U	< 0.00018 U
WHC1-BN07	0		11/21/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BN07	3		11/21/2008	< 0.0009 UJ	< 0.00013 UJ	< 0.000092 UJ	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.000079 UJ	< 0.00011 UJ	< 0.00018 UJ
WHC1-BN07	13		11/21/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BN08	0		11/20/2008	< 0.00091 UJ	< 0.00013 U	< 0.00009 U	< 0.00019 U	< 0.00047 U	< 0.00011 U	< 0.00013 U	< 0.00011 U	< 0.00018 U
WHC1-BN08	10		11/20/2008	< 0.00089 UJ	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000084 U	< 0.00011 U	< 0.00018 U
11.101 11.100	10	. 101111	11/40/4000	\ 0.00000 03	~ 0.00015 U	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	× 0.000∓0 U	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ 0.000007 O	v.vvvii V	~ 0.00010 0

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 68 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			1
				/l ketone e)	de	thyl her)	zene		ızene		nzene	
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Methyl ethyl ketone (2-Butanone)	Methyl iodide	MTBE (Methyl iert-butyl ether)	n-Butylbenzene	Nonanal	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene
WHC1-BN09	0	NORM	12/17/2008	< 0.00092 U	< 0.00013 UJ	< 0.000094 U	< 0.00019 U	< 0.0005 U	< 0.00012 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BN09	11			< 0.00092 U	< 0.00014 U	< 0.000098 U	< 0.0001 U	< 0.00052 U	< 0.00012 U	< 0.000084 U	< 0.00011 U	< 0.00019 U
WHC1-BN10	0		11/18/2008	< 0.00095 U	< 0.00011 U	< 0.000098 U	< 0.0002 UJ	< 0.00051 UJ	< 0.00012 UJ	< 0.000083 U	< 0.00012 UJ	< 0.00019 UJ
WHC1-BN10	10		11/18/2008	< 0.001 U	< 0.00011 U	< 0.00011 U	< 0.00022 UJ	< 0.00051 UJ	< 0.00012 UJ	< 0.000093 U	< 0.00012 UJ	< 0.00021 U
WHC1-BO01	0	NORM	12/2/2008	< 0.0009 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	0.0048 J	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BO01	0	FD	12/2/2008	< 0.0009 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.0011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BO01	4	NORM	12/2/2008	< 0.0009 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BO01	14	NORM	12/2/2008	< 0.00094 U	< 0.00013 U	< 0.000096 U	< 0.00019 U	< 0.00051 U	< 0.00012 U	< 0.000082 U	< 0.00011 U	< 0.00019 U
WHC1-BO02	0	NORM	12/1/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BO02	12	NORM	12/1/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BO03	0	NORM	12/15/2008	< 0.00089 U	< 0.00013 U	< 0.000092 U	< 0.00019 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000078 UJ	< 0.00011 UJ	< 0.00018 UJ
WHC1-BO03	12	NORM	12/19/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000079 U	< 0.00011 UJ	< 0.00018 U
WHC1-BO04	0		12/15/2008	< 0.00092 U	< 0.00013 UJ	< 0.000095 U	< 0.00019 UJ	< 0.0005 UJ	< 0.00012 UJ	< 0.000081 U	< 0.00011 UJ	< 0.00018 U
WHC1-BO04	12		12/19/2008	< 0.00091 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BO05	0		11/20/2008	< 0.00099 UJ	< 0.00014 U	< 0.0001 U	< 0.00021 U	< 0.00053 U	< 0.00012 U	< 0.000087 U	< 0.00012 U	< 0.0002 U
WHC1-BO05	10	NORM	11/20/2008	< 0.001 UJ	< 0.00014 U	< 0.0001 U	< 0.00021 U	< 0.00054 U	< 0.00013 U	< 0.000087 U	< 0.00012 U	< 0.0002 U
WHC1-BO06	0	NORM	11/20/2008	< 0.00096 UJ	< 0.00014 U	< 0.000098 U	< 0.0002 U	< 0.00052 U	< 0.00012 U	< 0.000084 U	< 0.00012 U	< 0.00019 U
WHC1-BO06	10	NORM	11/20/2008	< 0.00098 UJ	< 0.00014 U	< 0.0001 U	< 0.0002 U	< 0.00053 U	< 0.00012 U	< 0.000086 U	< 0.00012 U	< 0.0002 U
WHC1-BO07	0	NORM	11/19/2008	< 0.00088 U	< 0.00013 U	< 0.00009 U	< 0.00018 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000077 U	< 0.00011 UJ	< 0.00018 UJ
WHC1-BO07	10	NORM	11/19/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.000079 U	< 0.00011 UJ	< 0.00018 UJ
WHC1-BO08	0	NORM	11/20/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00014 U	< 0.00011 U	< 0.00018 U
WHC1-BO08	0	FD	11/20/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BO08	11	NORM	11/20/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000098 U	< 0.00011 U	< 0.00018 U
WHC1-BO09	0	NORM	11/19/2008	< 0.00091 U	< 0.00013 U	< 0.000093 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.000079 U	< 0.00011 UJ	< 0.00018 UJ
WHC1-BO09	0	FD	11/19/2008	< 0.00089 U	< 0.00013 U	< 0.000091 U	< 0.00018 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000078 U	< 0.00011 UJ	< 0.00018 U
WHC1-BO09	6	NORM	11/19/2008	< 0.00093 U	< 0.00013 U	< 0.000096 U	< 0.00019 UJ	< 0.0005 UJ	< 0.00012 UJ	< 0.000082 U	< 0.00011 UJ	< 0.00019 UJ
WHC1-BO09	16	NORM	11/19/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.000079 U	< 0.00011 UJ	< 0.00018 UJ
WHC1-BO10	0	NORM	11/19/2008	< 0.00089 U	< 0.00013 U	< 0.000091 U	< 0.00018 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000078 U	< 0.00011 UJ	< 0.00018 UJ
WHC1-BO10	10	NORM	11/19/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.000079 U	< 0.00011 UJ	< 0.00018 U
WHC1-BP01	0	NORM	12/1/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BP01	10	NORM	12/1/2008	< 0.00091 U	< 0.00013 U	< 0.000093 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	0.000083 J	< 0.00011 UJ	< 0.00018 U
WHC1-BP02	0	NORM	12/1/2008	< 0.00091 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-BP02	11	NORM	12/1/2008	< 0.00093 U	< 0.00013 U	< 0.000095 U	< 0.00019 U	< 0.0005 U	< 0.00012 U	< 0.000081 U	< 0.00011 U	< 0.00018 U
WHC1-BP03	0	NORM	12/15/2008	< 0.00088 U	< 0.00013 U	< 0.000091 U	< 0.00018 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000077 U	< 0.00011 UJ	< 0.00018 U
WHC1-BP03	0	FD	12/15/2008	< 0.00089 U	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BP03	11	NORM	12/19/2008	< 0.00094 U	< 0.00013 U	< 0.000096 U	< 0.00019 U	< 0.00051 U	< 0.00012 U	0.000091 J	< 0.00011 U	< 0.00019 U
WHC1-BP04	0	NORM	12/15/2008	< 0.00089 U	< 0.00013 UJ	< 0.000091 U	< 0.00018 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000078 U	< 0.00011 UJ	< 0.00018 U
WHC1-BP04	12	NORM	12/19/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000079 U	< 0.00011 UJ	< 0.00018 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 69 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Methyl ethyl ketone (2-Butanone)	Methyl iodide	MTBE (Methyl tert-butyl ether)	n-Butylbenzene	Nonanal	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene
WHC1-BP05	0		12/15/2008	< 0.00089 U	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-BP05	10	NORM	12/19/2008	< 0.00093 U	< 0.00013 U	< 0.000096 U	< 0.00019 U	< 0.0005 U	< 0.00012 U	< 0.000082 U	< 0.00011 U	< 0.00019 U
WHC1-BP06	0	NORM	12/12/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BP06	10	NORM	12/12/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-BP07	0	NORM	11/20/2008	< 0.00096 UJ	< 0.00014 U	< 0.000099 U	< 0.0002 U	< 0.00052 U	< 0.00012 U	< 0.000085 U	< 0.00012 U	< 0.00019 U
WHC1-BP07	3		11/20/2008	< 0.00094 UJ	< 0.00013 U	< 0.000096 U	< 0.00019 U	< 0.00051 U	< 0.00012 U	< 0.000082 U	< 0.00011 U	< 0.00019 U
WHC1-BP07	13		11/20/2008	< 0.00095 UJ	< 0.00014 U	< 0.000098 U	< 0.0002 U	< 0.00051 U	< 0.00012 U	< 0.000084 U	< 0.00012 U	< 0.00019 U
WHC1-BP08	0	NORM	11/19/2008	< 0.00091 U	< 0.00013 U	< 0.000094 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.00008 U	< 0.00011 UJ	< 0.00018 U
WHC1-BP08	4	NORM	11/19/2008	< 0.00095 U	< 0.00014 U	< 0.000098 U	< 0.0002 UJ	< 0.00051 UJ	< 0.00012 UJ	< 0.000083 U	< 0.00012 UJ	< 0.00019 UJ
WHC1-BP08	14	NORM	11/19/2008	< 0.00092 U	< 0.00013 U	< 0.000094 U	< 0.00019 UJ	< 0.0005 UJ	< 0.00012 UJ	< 0.00008 U	< 0.00011 UJ	< 0.00018 U
WHC1-BP09	0	NORM	11/19/2008	< 0.00088 UJ	< 0.00013 UJ	< 0.000091 UJ	< 0.00018 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000077 UJ	< 0.00011 UJ	< 0.00018 UJ
WHC1-BP09	10	NORM	11/19/2008	< 0.00093 U	< 0.00013 U	< 0.000095 U	< 0.00019 UJ	< 0.0005 UJ	< 0.00012 UJ	< 0.000081 U	< 0.00011 UJ	< 0.00019 UJ
WHC1-BP10	0	NORM	11/19/2008	< 0.00088 U	< 0.00013 U	< 0.000091 U	< 0.00018 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000077 U	< 0.00011 UJ	< 0.00018 U
WHC1-BP10	10		11/19/2008	< 0.00089 U	< 0.00013 U	< 0.000091 U	< 0.00018 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000078 U	< 0.00011 UJ	< 0.00018 U
WHC1-D01	0	NORM	12/5/2008	< 0.0009 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-D01	10	NORM	12/5/2008	< 0.00089 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-D02	0	NORM	12/5/2008	< 0.00092 UJ	< 0.00013 U	< 0.000094 U	< 0.00019 U	< 0.0005 U	< 0.00012 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-D02	10	NORM	12/5/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-D03	0	NORM	12/5/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-D03	0	FD	12/5/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-D03	10	NORM	12/5/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-D04	0	NORM	12/5/2008	< 0.00092 UJ	< 0.00013 U	< 0.000095 U	< 0.00019 UJ	< 0.0005 UJ	< 0.00012 UJ	< 0.000081 U	< 0.00011 UJ	< 0.00018 U
WHC1-D04	10	NORM	12/5/2008	< 0.00089 UJ	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-D05	0	NORM	12/5/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-D05	10	NORM	12/5/2008	< 0.00089 UJ	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-D06	0	NORM	12/5/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.00008 U	< 0.00011 UJ	< 0.00018 U
WHC1-D06	10	NORM	12/5/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000085 U	< 0.00011 U	< 0.00018 U
WHC1-D07	0	NORM	12/5/2008	< 0.00089 UJ	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-D07	10	NORM	12/5/2008	< 0.00089 UJ	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-D08	0	NORM	12/8/2008	< 0.00089 U	< 0.00013 U	< 0.000091 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-D08	10	NORM	12/9/2008	< 0.00095 UJ	< 0.00014 U	< 0.000098 U	< 0.0002 U	< 0.00052 U	< 0.00012 U	< 0.000084 U	< 0.00012 U	< 0.00019 U
WHC1-D09	0	NORM	12/8/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-D09	11	NORM	12/9/2008	< 0.00094 UJ	< 0.00013 U	< 0.000097 U	< 0.0002 U	< 0.00051 U	< 0.00012 U	< 0.000082 U	< 0.00011 U	< 0.00019 U
WHC1-D10	0	NORM	12/8/2008	< 0.00089 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-D10	10	NORM	12/9/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-D11	0	NORM	12/8/2008	< 0.00094 U	< 0.00013 U	< 0.000096 U	< 0.00019 UJ	< 0.00051 UJ	< 0.00012 UJ	< 0.000082 U	< 0.00011 UJ	< 0.00019 U
WHC1-D11	10	NORM	12/9/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-D12	0	NORM	12/10/2008	< 0.00098 U	< 0.00014 U	< 0.0001 U	< 0.0002 U	< 0.00053 U	< 0.00012 U	< 0.000086 U	< 0.00012 U	< 0.0002 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 70 of 81)

Sample D Opph Sample Sample Sample Sample Sample Sample Opph Sample Sa								Volatile C	Organic Compoun	ds (VOCs)			
WHICLDIS													
WHICLIDIS 10 NORM	Sample ID	•	•	-	Methyl ethyl ketone (2-Butanone)	Methyl iodide	MTBE (Methyl tert-butyl ether)	n-Butylbenzene	Nonanal	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene
WHC1-D15	WHC1-D12	10	NORM	12/10/2008	< 0.0012 U	< 0.00018 U	< 0.00013 U	< 0.00026 U	< 0.00067 U	< 0.00016 U	< 0.00011 U	< 0.00015 U	< 0.00025 U
WHC1-D15	WHC1-D13		NORM	12/8/2008		< 0.00013 U	< 0.000094 U	< 0.00019 UJ	< 0.0005 UJ	< 0.00012 UJ	< 0.00008 U	< 0.00011 UJ	< 0.00018 U
WHICE-DIS	WHC1-D13	10	NORM	12/8/2008	< 0.0012 U	< 0.00017 U	< 0.00012 U	< 0.00024 U	< 0.00063 U	< 0.00015 U	< 0.0001 U	< 0.00014 U	< 0.00023 U
WHCI-D16	WHC1-D15	0	NORM	12/11/2008	< 0.00091 U	< 0.00013 U	< 0.000094 U		R	R	< 0.00008 UJ	R	< 0.00018 UJ
WHC1-D16	WHC1-D15	10	NORM	12/11/2008	< 0.0011 U	< 0.00016 U	< 0.00012 U	< 0.00023 U	< 0.00061 U	< 0.00014 U	< 0.000098 U	< 0.00014 U	< 0.00022 U
WHC1-D17	WHC1-D16	0	NORM	12/10/2008	< 0.00095 U	< 0.00014 U	< 0.000098 U	< 0.0002 U	< 0.00051 U	< 0.00012 U	< 0.000083 U	< 0.00012 U	< 0.00019 U
WHC1-D17	WHC1-D16	10	NORM	12/10/2008	< 0.001 U	< 0.00014 U	< 0.0001 U	< 0.00021 U	< 0.00055 U	< 0.00013 U	< 0.000089 U	< 0.00012 U	< 0.0002 U
WHC1-D18	WHC1-D17	0	NORM	12/10/2008	< 0.00095 U	< 0.00014 U	< 0.000097 U	< 0.0002 U	< 0.00051 U	< 0.00012 U	< 0.000083 U	< 0.00012 U	< 0.00019 U
WHC1-D18	WHC1-D17	10	NORM	12/10/2008	< 0.00099 U	< 0.00014 U	< 0.0001 U	< 0.00021 U	< 0.00054 U	< 0.00012 U	< 0.000087 U	< 0.00012 U	< 0.0002 U
WHC1-D19	WHC1-D18	0	NORM	12/11/2008	< 0.00089 U	< 0.00013 U	< 0.000092 U	< 0.00019 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000078 U	< 0.00011 UJ	< 0.00018 U
WHC1-D19	WHC1-D18	10	NORM	12/11/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-D29	WHC1-D19	0	NORM	12/11/2008	< 0.00092 U	< 0.00013 U	< 0.000094 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00012 UJ	< 0.00008 U	< 0.00011 UJ	< 0.00018 U
WHIC1-D20	WHC1-D19	0	FD	12/11/2008	< 0.00089 U	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHIC1-D20	WHC1-D19	10	NORM									< 0.00011 U	
WHC1-D21													
WHC1-D21	WHC1-D20	10	NORM	12/12/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-D21	0	NORM	12/16/2008	< 0.00093 U	< 0.00013 U	< 0.000095 U	< 0.00019 UJ	< 0.0005 UJ	< 0.00012 UJ		< 0.00011 UJ	< 0.00018 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-D21	10	NORM	12/16/2008	< 0.00091 U	< 0.00013 U	< 0.000093 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.00008 U	< 0.00011 UJ	0.0047 J
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-D22	0	NORM	12/16/2008	< 0.0011 U	< 0.00015 U	< 0.00011 U	< 0.00022 UJ	< 0.00057 UJ	< 0.00013 UJ	< 0.000093 U	< 0.00013 UJ	< 0.00021 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-D22	10	NORM	12/16/2008	< 0.00093 U	< 0.00013 U	< 0.000096 U	< 0.00019 U	< 0.0005 U	< 0.00012 U	< 0.000082 U		< 0.00019 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	NORM	12/16/2008	< 0.00089 U				< 0.00048 U	< 0.00011 U			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHC1-D24	10	NORM	12/16/2008	< 0.00091 U	< 0.00013 U		< 0.00019 U	< 0.00049 U	< 0.00011 U		< 0.00011 U	< 0.00018 U
WHC1-D25 10 NORM 12/16/2008 < 0.00013 U < 0.000094 U < 0.00019 UJ < 0.00011 UJ < 0.00018 U WHC1-D26 10 NORM 12/12/2008 < 0.00097 UJ	WHC1-D25	0	NORM	12/16/2008	< 0.00092 U	< 0.00013 U	< 0.000095 U	< 0.00019 UJ	< 0.0005 UJ	< 0.00012 UJ	< 0.000081 UJ	< 0.00011 UJ	< 0.00018 UJ
WHC1-D26 0 NORM 12/12/2008 < 0.00013 U < 0.000092 U < 0.00019 U < 0.00011 U < 0.000079 U < 0.00011 U < 0.00012 U < 0.00013 U<		10											
WHC1-D26 10 NORM 12/12/2008 < 0.0007 UJ < 0.00014 U < 0.00009 U < 0.0002 U < 0.00052 U < 0.00012 U < 0.00012 U < 0.00012 U < 0.00019 U WHC1-D27 0 NORM 12/12/2008 < 0.00091 UJ	WHC1-D26	0	NORM	12/12/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U		< 0.000079 U	< 0.00011 U	< 0.00018 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
WHC1-D27 10 NORM 12/12/2008 < 0.001 U < 0.0001 U < 0.00021 U < 0.00054 U < 0.00013 U < 0.00012 U < 0.0002 U WHC1-D28 0 NORM 12/12/2008 < 0.0009 UJ													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
WHC1-D29 0 NORM 12/12/2008 < 0.00011 U < 0.00013 U < 0.00019 U < 0.00019 U < 0.00011 U < 0.00011 U < 0.00011 U < 0.00018 U WHC1-D29 10 NORM 12/12/2008 < 0.00092 UJ													
WHC1-D29 10 NORM 12/12/2008 < 0.00092 UJ < 0.00013 U < 0.00019 U < 0.00015 U < 0.00012 U < 0.00018 U < 0.00018 U < 0.00018 U WHC1-P01 0 NORM 12/15/2008 < 0.00089 U													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
THISTIP I TO THE TIME TO THE TIME TO THE TOTAL TOTAL TO THE TOTAL TO T	WHC1-P01	12			< 0.0009 U	< 0.00013 U	< 0.000093 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.000079 UJ	< 0.00011 UJ	< 0.00018 UJ

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 71 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Methyl ethyl ketone (2-Butanone)	Methyl iodide	MTBE (Methyl tert-butyl ether)	n-Butylbenzene	Nonanal	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene
WHC1-P02	0	NORM	12/1/2008	< 0.00089 U	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-P02	10	NORM	12/1/2008	< 0.00088 U	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000077 U	< 0.00011 U	< 0.00018 U
WHC1-P03	0	NORM	12/15/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-P03	3	NORM	12/18/2008	< 0.00089 U	< 0.00013 U	< 0.000092 U	< 0.00019 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000078 UJ	< 0.00011 UJ	< 0.00018 UJ
WHC1-P03	3	FD	12/18/2008	< 0.00089 U	< 0.00013 U	< 0.000092 U	< 0.00019 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000078 U	< 0.00011 UJ	< 0.00018 U
WHC1-P03	13	NORM	12/18/2008	< 0.0009 UJ	< 0.00013 UJ	< 0.000093 UJ	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.000079 UJ	< 0.00011 UJ	< 0.00018 UJ
WHC1-P04	0	NORM	12/15/2008	< 0.0009 U	< 0.00013 UJ	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-P04	10	NORM	12/18/2008	< 0.00092 UJ	< 0.00013 UJ	< 0.000094 UJ	< 0.00019 UJ	< 0.0005 UJ	< 0.00012 UJ	< 0.000081 UJ	< 0.00011 UJ	< 0.00018 UJ
WHC1-P05	0	NORM	12/8/2008	< 0.00091 U	< 0.00013 U	< 0.000094 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-P05	0	FD	12/8/2008	< 0.0009 U	< 0.00013 U	< 0.000093 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.000079 U	< 0.00011 UJ	< 0.00018 U
WHC1-P05	10	NORM	12/18/2008	< 0.00093 U	< 0.00013 U	< 0.000095 U	< 0.00019 U	< 0.0005 U	< 0.00012 U	< 0.000081 U	< 0.00011 U	< 0.00018 U
WHC1-P06	0	NORM	12/2/2008	< 0.00089 U	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-P06	12	NORM	12/2/2008	< 0.00089 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-P07	0	NORM	12/2/2008	< 0.00089 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-P07	3	NORM	12/2/2008	< 0.00089 U	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-P07	13	NORM	12/2/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-P08	0	NORM	12/3/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-P08	11	NORM	12/3/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-P09	0	NORM	12/4/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-P09	0	FD	12/4/2008	< 0.00091 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-P09	10	NORM	12/4/2008	< 0.00089 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-P10	0	NORM	11/25/2008	< 0.00088 UJ	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-P10	10	NORM	11/25/2008	< 0.0011 UJ	< 0.00015 U	< 0.00011 U	< 0.00022 U	< 0.00057 U	< 0.00013 U	< 0.000093 U	< 0.00013 U	< 0.00021 U
WHC1-P11	0	NORM	12/8/2008	< 0.00091 U	< 0.00013 U	< 0.000093 U	R	R	R	< 0.00008 UJ	R	< 0.00018 UJ
WHC1-P11	0	FD	12/8/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 UJ	< 0.00048 UJ	< 0.00011 UJ	< 0.000078 U	< 0.00011 UJ	< 0.00018 U
WHC1-P11	10	NORM	12/9/2008	< 0.00095 UJ	< 0.00014 U	< 0.000098 U	< 0.0002 U	< 0.00051 U	< 0.00012 U	< 0.000085 U	< 0.00012 U	< 0.00019 U
WHC1-P12	0	NORM	12/5/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00011 U	< 0.00011 U	< 0.00018 U
WHC1-P12	11	NORM	12/5/2008	< 0.0009 UJ	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-P13	0	NORM	12/9/2008	< 0.00091 UJ	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000083 U	< 0.00011 U	< 0.00018 U
WHC1-P13	10	NORM	12/9/2008	< 0.0013 UJ	< 0.00018 U	< 0.00013 U	< 0.00015 U	< 0.00069 U	< 0.00011 U	< 0.00011 U	< 0.00011 U	< 0.00015 U
WHC1-P13	10	FD	12/9/2008	< 0.0011 UJ	< 0.00016 U	< 0.00012 U	< 0.00024 U	< 0.00061 U	< 0.00014 U	< 0.000099 U	< 0.00014 U	< 0.00023 U
WHC1-P14	0	NORM	12/17/2008	< 0.0011 U	< 0.00015 UJ	< 0.00011 U	< 0.00021 UJ	< 0.00056 UJ	< 0.00011 UJ	< 0.000091 U	< 0.00011 UJ	< 0.00021 U
WHC1-P15	0	NORM	12/8/2008	< 0.00094 U	< 0.00013 U	< 0.000011 C	< 0.00019 UJ	< 0.00051 UJ	< 0.00013 UJ	< 0.000091 U	< 0.00013 UJ	< 0.00019 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.00091 U	< 0.00013 U	< 0.000096 U	< 0.00019 U	< 0.0005 U	< 0.00012 U	< 0.000082 U	< 0.00011 U	< 0.00019 U
WHC1-P15	10	NORM	12/18/2008	< 0.00091 U	< 0.00013 U	< 0.000094 U	< 0.00019 U	< 0.00049 U	< 0.00012 U	< 0.00008 U	< 0.00011 U	< 0.00019 U
WHC1-P16	0	NORM	12/1/2008	0.32	< 0.00064 U	< 0.00046 U	< 0.00093 U	< 0.0024 U	< 0.00056 U	< 0.00039 U	< 0.00055 U	< 0.00089 U
WHC1-P16	11	NORM	12/1/2008	< 0.00089 U	< 0.00013 U	< 0.000091 U	< 0.00018 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U
WHC1-P17	0	NORM	12/15/2008	< 0.0009 U	< 0.00013 UJ	< 0.000091 U	< 0.00019 UJ	< 0.00049 UJ	< 0.00011 UJ	< 0.000079 UJ	< 0.00011 UJ	< 0.00018 UJ
,,1101111	Ü	1101011	12/13/2000	₹ 0.0007 0	\ 0.00013 OJ	\ 0.0000 <i>75</i> U	\ 0.00017 OJ	\ 0.000+2 OJ	\ 0.00011 OJ	\ 0.000077 UJ	\ 0.00011 OJ	\ 0.00010 OJ

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 72 of 81)

							Volatile C	rganic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	Methyl ethyl ketone (2-Butanone)	Methyl i odide	MTBE (Methyl tert-butyl ether)	ı-Butylbenzene	Vonanal	1-Propylbenzene	o-Xylene	.ec-Butylbenzene	Styrene
WHC1-P17	12	NORM	12/19/2008	< 0.00091 U	< 0.00013 U	< 0.000093 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.00008 U	< 0.00011 U	< 0.00018 U
WHC1-P17	12	FD	12/19/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00049 U	< 0.00011 U	< 0.000079 U	< 0.00011 U	< 0.00018 U
WHC1-P18	0	NORM	12/1/2008	< 0.0009 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	0.0047 J	0.00008 J	< 0.00011 U	< 0.00018 U
WHC1-P18	12	NORM	12/1/2008	< 0.00089 U	< 0.00013 U	< 0.000092 U	< 0.00019 U	< 0.00048 U	< 0.00011 U	< 0.000078 U	< 0.00011 U	< 0.00018 U

All units in mg/kg.

-- = no sample data.

= Data not included in risk assessment. Sample location covered with fill material (see text).

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 73 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	tert-Butylbenzene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloro- propene	Trichloroethene	Vinyl acetate	Vinyl chloride	Xylenes (total)
OSC1-BM11	0	NORM	9/21/2009	< 0.00023 U	< 0.00048 U	< 0.00025 U	< 0.00035 U	< 0.00018 U	< 0.00027 U	< 0.0004 U	< 0.00034 U	< 0.00067 U
OSC1-BM11	10	NORM	9/21/2009	< 0.00026 U	< 0.00054 U	< 0.00028 U	< 0.0004 U	< 0.00021 U	< 0.00031 U	< 0.00045 U	< 0.00038 U	< 0.00075 U
OSC1-BN11	0	NORM	9/22/2009	< 0.00023 U	< 0.00047 U	< 0.00024 U	< 0.00034 U	< 0.00018 U	< 0.00027 U	< 0.00038 U	< 0.00033 U	< 0.00065 U
OSC1-BN11	5	NORM	9/22/2009	< 0.00024 U	< 0.00049 U	< 0.00025 U	< 0.00036 U	< 0.00019 U	< 0.00028 U	< 0.0004 U	< 0.00034 U	< 0.00067 U
OSC1-BO11	0	NORM	9/16/2009	< 0.00024 U	< 0.00049 U	< 0.00026 U	< 0.00036 U	< 0.00019 U	< 0.00028 U	< 0.00041 U	< 0.00034 U	< 0.00068 U
OSC1-BO11	0	FD	9/16/2009	< 0.00026 U	< 0.00053 U	< 0.00027 U	< 0.00039 U	< 0.0002 U	< 0.0003 U	< 0.00044 U	< 0.00037 U	< 0.00073 U
OSC1-BO11	5	NORM	9/16/2009	< 0.00028 U	< 0.00058 U	< 0.0003 U	< 0.00042 U	< 0.00022 U	< 0.00033 U	< 0.00048 U	< 0.0004 U	< 0.0008 U
OSC1-BP11	0	NORM	9/16/2009	< 0.00028 U	< 0.00058 U	< 0.0003 U	< 0.00042 U	< 0.00022 U	< 0.00033 U	< 0.00047 U	< 0.0004 U	< 0.0008 U
OSC1-BP11	5	NORM	9/16/2009	< 0.0003 U	< 0.00062 U	< 0.00032 U	< 0.00045 U	< 0.00024 U	< 0.00035 U	< 0.00051 U	< 0.00043 U	< 0.00086 U
OSC1-JP06	0	NORM	9/22/2009	< 0.00028 U	< 0.00057 U	< 0.00029 U	< 0.00041 U	< 0.00022 U	< 0.00032 U	< 0.00047 U	< 0.0004 U	< 0.00078 U
OSC1-JP06	5	NORM	9/22/2009	< 0.00031 U	< 0.00063 U	< 0.00033 U	< 0.00046 U	< 0.00024 U	< 0.00036 U	< 0.00052 U	< 0.00044 U	< 0.00088 U
OSC1-JP07	0	NORM	9/21/2009	< 0.00024 U	< 0.00049 U	< 0.00026 U	< 0.00036 U	< 0.00019 U	< 0.00028 U	< 0.00041 U	< 0.00034 U	< 0.00068 U
OSC1-JP07	5	NORM	9/21/2009	< 0.00028 U	< 0.00058 U	< 0.0003 U	< 0.00042 U	< 0.00022 U	< 0.00033 U	< 0.00047 UJ	< 0.0004 U	< 0.0008 U
OSC1-JP08	0	NORM	9/21/2009	< 0.00027 U	< 0.00055 U	< 0.00028 U	< 0.0004 U	< 0.00021 U	< 0.00031 U	< 0.00045 U	< 0.00038 U	< 0.00075 U
OSC1-JP08	10	NORM	9/21/2009	< 0.00028 U	< 0.00057 U	< 0.0003 U	< 0.00042 U	< 0.00022 U	< 0.00032 U	< 0.00047 U	< 0.0004 U	< 0.00079 U
WHC1-BF01	0	NORM	11/24/2008	< 0.0001 UJ	< 0.000088 UJ	< 0.00032 UJ	< 0.000091 U	< 0.0001 UJ	< 0.0001 U	< 0.00024 U	< 0.00011 U	< 0.00023 UJ
WHC1-BF01	12	NORM	11/24/2008	< 0.0001 UJ	< 0.000091 UJ	< 0.00034 UJ	< 0.000094 U	< 0.0001 UJ	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 UJ
WHC1-BF02	0	NORM		< 0.0001 U	< 0.000088 U	0.0019 J	< 0.000091 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	0.0037 J
WHC1-BF02	11	NORM	11/25/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BF03	0	NORM	11/25/2008	< 0.0001 U	< 0.000088 U	< 0.00033 U	< 0.000091 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	< 0.00023 U
WHC1-BF03	10	NORM	11/25/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BF04	0	NORM	11/25/2008	< 0.0001 U	< 0.000088 U	< 0.00033 U	< 0.000091 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	< 0.00023 U
WHC1-BF04	0	FD	11/25/2008	< 0.00011 U	< 0.000093 U	< 0.00035 U	< 0.000097 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-BF04	10	NORM	11/25/2008	< 0.00011 U	< 0.000094 U	< 0.00035 U	< 0.000097 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-BF05	0	NORM	11/25/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BF05	12	NORM	12/10/2008	< 0.00014 UJ	< 0.00012 U	< 0.00046 U	< 0.00013 U	< 0.00014 U	< 0.00015 U	< 0.00034 U	< 0.00016 U	< 0.00033 U
WHC1-BF06	0	NORM	12/10/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BF06	10	NORM	12/10/2008	< 0.00014 U	< 0.00012 U	< 0.00044 U	< 0.00012 U	< 0.00014 U	< 0.00014 U	< 0.00033 U	< 0.00015 U	< 0.00031 U
WHC1-BG01	0	NORM	11/24/2008	0.00017 J	< 0.000088 U	0.00065 J	< 0.000091 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	0.001 J
WHC1-BG01	11	NORM	11/24/2008	< 0.0001 UJ	< 0.00009 U	< 0.00033 U	< 0.000091 U	< 0.0001 U	< 0.00011 U	< 0.00021 U	< 0.00011 U	< 0.0013
WHC1-BG02	0	NORM	11/24/2008	< 0.0001 UJ	< 0.000088 UJ	< 0.00064 UJ	< 0.000092 UJ	< 0.0001 UJ	< 0.00011 UJ	< 0.00024 UJ	< 0.00011 UJ	< 0.00023 UJ
WHC1-BG02	0	FD	11/24/2008	< 0.0001 U	< 0.000089 U	0.00062 J	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00021 U	< 0.00011 U	0.00096 J
WHC1-BG02	10	NORM	11/24/2008	R	R	0.0011 J	R	R	R	R	R	0.0015 J
WHC1-BG03	0	NORM	12/11/2008	< 0.0001 U	< 0.000088 U	0.00051 J	< 0.000091 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	< 0.00023 U
WHC1-BG03	11	NORM	12/11/2008	< 0.0001 U	< 0.00009 U	< 0.00031 U	< 0.000091 U	< 0.0001 U	< 0.00011 U	< 0.00021 U	< 0.00011 U	< 0.00024 U
WHC1-BG04	0	NORM	12/11/2008	< 0.0001 U	< 0.000088 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00012 U	< 0.00021 U
WHC1-BG04	10	NORM	12/11/2008	< 0.00013 UJ	< 0.00011 U	0.00072 J+	< 0.00012 U	< 0.0001 U	< 0.00011 U	< 0.00021 U	< 0.00011 U	< 0.00023 U
WHC1-BG05	0		11/25/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
	Ü	1101011	11/23/2000	10.0001 0	10.000007 0	10.00033 0	10.000072 0	₹ 0.0001 €	10.00011 0	10.00025	. 0.00011 0	10.000210

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 74 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	tert-Butylbenzene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloro- propene	Trichloroethene	Vinyl acetate	Vinyl chloride	Xylenes (total)
WHC1-BG05	10	NORM	11/25/2008	< 0.00011 U	< 0.0001 U	< 0.00037 U	< 0.0001 U	< 0.00011 U	< 0.00012 U	< 0.00027 U	< 0.00013 U	< 0.00026 U
WHC1-BG06	0	NORM	12/10/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BG06	10	NORM	12/10/2008	< 0.00013 U	< 0.00011 U	< 0.00041 U	< 0.00011 U	< 0.00013 U	< 0.00013 U	< 0.0003 U	< 0.00014 U	< 0.00029 U
WHC1-BH01	0	NORM	12/3/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BH01	11	NORM	12/3/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BH02	0	NORM	12/4/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BH02	10	NORM	12/4/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	< 0.00024 U
WHC1-BH03	0	NORM	12/9/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-BH03	10	NORM	12/9/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BH04	0	NORM	12/11/2008	< 0.0001 UJ	< 0.000089 U	0.00042 J+	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	< 0.00024 U
WHC1-BH04	10	NORM	12/11/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BH05	0	NORM	12/9/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BH05	0	FD	12/9/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BH05	10	NORM	12/9/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BH06	0	NORM	12/11/2008	< 0.00011 UJ	< 0.000096 U	0.00061 J+	< 0.000099 U	< 0.00011 U	< 0.00011 U	< 0.00027 U	< 0.00012 U	< 0.00026 U
WHC1-BH06	0	FD	12/11/2008	< 0.00011 U	< 0.000095 U	< 0.00035 U	< 0.000098 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-BH06	10	NORM	12/11/2008	< 0.00011 U	< 0.0001 U	0.00056 J	< 0.0001 U	< 0.00011 U	< 0.00012 U	< 0.00028 U	< 0.00013 U	< 0.00026 U
WHC1-BI01	0	NORM	12/3/2008	< 0.00011 U	< 0.000096 U	< 0.00035 U	< 0.000099 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-BI01	11	NORM	12/3/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BI02	0	NORM	12/4/2008	< 0.00011 U	< 0.000091 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BI02	3	NORM	12/4/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-BI02	13	NORM	12/4/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BI03	0	NORM	12/4/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BI03	11	NORM	12/4/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	< 0.00024 U
WHC1-BI04	0	NORM	12/8/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-BI04	10	NORM	12/9/2008	< 0.00011 U	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BI05	0	NORM	12/9/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BI05	10	NORM	12/9/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BJ01	0	NORM	12/3/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BJ01	3	NORM	12/3/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BJ01	13	NORM	12/3/2008	< 0.00011 U	< 0.000093 U	< 0.00034 U	< 0.000096 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-BJ02	0	NORM	12/2/2008	< 0.0001 UJ	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	0.00031 J
WHC1-BJ02	0	FD	12/2/2008	< 0.0001 UJ	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BJ02	12	NORM	12/2/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BJ03	0	NORM	12/4/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-BJ03	0	FD	12/4/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-BJ03	12	NORM	12/4/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-BJ04	0	NORM	12/4/2008	< 0.0001 U	< 0.000088 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	< 0.00023 U
,, IIC1 D307	U	1101011	12/7/2000	₹ 0.0001 0	\ 0.000000 C	\ 0.000 <i>33</i> O	\ 0.0000 <i>72</i> U	₹0.0001 0	\ 0.00011 U	₹0.0002∓ 0	\ 0.00011 U	\ 0.00023 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 75 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	tert-Butylbenzene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloro- propene	Trichloroethene	Vinyl acetate	Vinyl chloride	Xylenes (total)
WHC1-BJ04	11	NORM	12/4/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BJ05	0	NORM	12/11/2008	< 0.0001 UJ	< 0.000089 UJ	< 0.00046 UJ	< 0.000092 UJ	< 0.0001 UJ	< 0.00011 UJ	< 0.00024 UJ	< 0.00011 UJ	< 0.00024 UJ
WHC1-BJ05	10	NORM	12/11/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BK01	0	NORM	12/3/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BK01	0	FD	12/3/2008	< 0.00011 U	< 0.000091 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BK01	10	NORM	12/3/2008	< 0.00011 U	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BK02	0	NORM	12/8/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BK02	11	NORM	12/18/2008	< 0.00011 U	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BK03	0	NORM	12/15/2008	< 0.0001 UJ	< 0.00009 UJ	0.00037 J	< 0.000093 UJ	< 0.0001 UJ	< 0.00011 UJ	< 0.00025 UJ	< 0.00012 UJ	< 0.00024 UJ
WHC1-BK03	12	NORM	12/18/2008	< 0.00011 UJ	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BK04	0	NORM	12/4/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BK04	10	NORM	12/4/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BK05	0	NORM	12/12/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	R	< 0.00011 U	< 0.00024 U
WHC1-BK05	11	NORM		< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BL01	0	NORM	12/3/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BL01	10	NORM	12/3/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BL02	0	NORM	12/2/2008	< 0.0001 U	< 0.00009 U	< 0.00044 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BL02	10	NORM	12/2/2008	< 0.00011 U	< 0.000094 U	< 0.00054 U	< 0.000097 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-BL03	0	NORM	12/8/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BL03	10	NORM	12/18/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BL04	0	NORM	12/17/2008	< 0.00011 U	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BL04	12	NORM	12/22/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BL05	0	NORM		< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	< 0.00024 U
WHC1-BL05	10	NORM	11/21/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BL06	0	NORM	11/21/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-BL06	11	NORM	11/21/2008	< 0.00011 U	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BL07	0	NORM	11/21/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BL07	10	NORM	11/21/2008	< 0.00013 U	< 0.00011 U	< 0.00042 U	< 0.00012 U	< 0.00013 U	< 0.00014 U	< 0.00032 U	< 0.00015 U	< 0.0003 U
WHC1-BL08	0	NORM	11/18/2008	< 0.00011 U	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BL08	10		11/18/2008	< 0.00011 UJ	< 0.000092 U	< 0.00031 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 UJ	< 0.00012 U	< 0.00021 U
WHC1-BL11	0		11/18/2008	< 0.0001 UJ	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BL11	12		11/18/2008	< 0.00011 UJ	< 0.000093 U	< 0.00034 U	< 0.000096 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-BM01	0	NORM	12/3/2008	< 0.00011 U	< 0.000092 U	< 0.00034 U	< 0.000096 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00025 U
WHC1-BM01	10	NORM	12/3/2008	< 0.00011 U	< 0.00009 U	< 0.00031 U	< 0.000093 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BM02	0	NORM	12/2/2008	< 0.0001 U	< 0.00009 U	< 0.00046 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00021 U
WHC1-BM02	12	NORM	12/2/2008	< 0.00011 U	< 0.000093 U	< 0.00045 U	< 0.000096 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-BM03	0	NORM	12/8/2008	< 0.00011 UJ	< 0.000099 U	< 0.00033 U	< 0.000093 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BM03	10	NORM	12/18/2008	< 0.00011 U	< 0.000093 U	< 0.00035 U	< 0.000097 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
,, IIC1 DIVIO3	10	1101011	12/10/2000	\ 0.00011 U	\ 0.0000 <i>75</i> U	\ 0.000 <i>33</i> O	\ 0.000077 U	\ 0.00011 U	\ 0.00011 U	₹ 0.00020 €	\ 0.00012 U	₹0.00025 €

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 76 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	tert-Butylbenzene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloro- propene	Trichloroethene	Vinyl acetate	Vinyl chloride	Xylenes (total)
WHC1-BM04	0	NORM	12/17/2008	< 0.0001 UJ	< 0.00009 UJ	< 0.00033 UJ	< 0.000093 U	< 0.0001 UJ	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 UJ
WHC1-BM04	0	FD	12/17/2008	< 0.0001 UJ	< 0.00009 UJ	< 0.00033 UJ	< 0.000094 U	< 0.0001 UJ	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 UJ
WHC1-BM04	10	NORM	12/22/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BM05	0	NORM	11/21/2008	< 0.0001 U	< 0.000088 U	0.0016 J	< 0.000091 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	0.0014 J
WHC1-BM05	10	NORM	11/21/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BM06	0	NORM	11/21/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-BM06	0	FD	11/21/2008	< 0.00011 U	< 0.000095 U	< 0.00035 U	< 0.000098 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-BM06	10	NORM	11/21/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BM07	0	NORM	11/20/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-BM07	11	NORM	11/20/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BM08	0	NORM	11/18/2008	< 0.0001 UJ	< 0.00009 UJ	< 0.00033 UJ	< 0.000093 U	< 0.0001 UJ	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 UJ
WHC1-BM08	0	FD	11/18/2008	< 0.00012 U	< 0.0001 U	< 0.00037 U	< 0.0001 U	< 0.00012 U	< 0.00012 U	< 0.00028 U	< 0.00013 U	< 0.00027 U
WHC1-BM08	11	NORM	11/18/2008	< 0.00011 UJ	< 0.000094 U	< 0.00035 U	< 0.000097 U	< 0.00011 U	< 0.00011 U	< 0.00026 UJ	< 0.00012 U	< 0.00025 U
WHC1-BM09	0		11/18/2008	< 0.0001 UJ	< 0.00009 UJ	< 0.00033 UJ	< 0.000093 U	< 0.0001 UJ	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 UJ
WHC1-BM09	12		11/18/2008	< 0.0001 UJ	< 0.000091 UJ	< 0.00034 UJ	< 0.000094 U	< 0.0001 UJ	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 UJ
WHC1-BM10	0		11/18/2008	< 0.00011 UJ	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BM10	3	NORM	11/18/2008	< 0.00011 UJ	< 0.000093 U	< 0.00035 U	< 0.000097 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-BM10	13		11/18/2008	< 0.00013 UJ	< 0.00011 U	< 0.00042 U	< 0.00012 U	< 0.00013 U	< 0.00013 U	< 0.00031 U	< 0.00014 U	< 0.0003 U
WHC1-BN01	0	NORM	12/1/2008	< 0.00011 U	< 0.000092 U	< 0.00065 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BN01	12	NORM	12/1/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BN02	0	NORM	12/1/2008	< 0.00011 U	< 0.000092 U	< 0.00077 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BN02	0	FD	12/1/2008	< 0.0001 U	< 0.000091 U	< 0.00042 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BN02	11	NORM	12/1/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BN03	0	NORM	12/17/2008	< 0.00011 UJ	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BN03	10	NORM	12/18/2008	< 0.0001 UJ	< 0.00009 UJ	< 0.00033 UJ	< 0.000093 UJ	< 0.0001 UJ	< 0.00011 UJ	< 0.00025 UJ	< 0.00012 UJ	< 0.00024 UJ
WHC1-BN04	0	NORM	12/17/2008	< 0.0001 UJ	< 0.000091 UJ	< 0.00034 UJ	< 0.000094 U	< 0.0001 UJ	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 UJ
WHC1-BN04	7	NORM	12/22/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BN04	17	NORM	12/22/2008	< 0.0001 U	< 0.000091 U	< 0.00031 U	< 0.000091 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BN05	0		11/20/2008	< 0.00011 U	< 0.000088 U	< 0.00031 U	< 0.000091 U	< 0.00011 U	< 0.00011 U	< 0.00024 U	< 0.00012 U	< 0.00021 U
WHC1-BN05	0	FD	11/20/2008	< 0.0001 U	< 0.000088 U	< 0.00032 U	< 0.000091 U	< 0.0001 U	< 0.0001 U	< 0.00024 U	< 0.00011 U	< 0.00023 U
WHC1-BN05	10		11/20/2008	< 0.0001 U	< 0.000091 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	< 0.00023 U
WHC1-BN06	0		11/20/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BN06	10		11/20/2008	< 0.0001 U	< 0.00000 U	< 0.00033 U	< 0.000091 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	< 0.00023 U
WHC1-BN07	0		11/21/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BN07	3		11/21/2008	< 0.0001 UJ	< 0.00009 UJ	< 0.00033 U	< 0.000093 UJ	< 0.0001 UJ	< 0.00011 UJ	< 0.00025 UJ	< 0.00012 UJ	< 0.00024 UJ
WHC1-BN07	13		11/21/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BN08	0		11/20/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00023 U	< 0.00012 U	< 0.00024 U
WHC1-BN08	10		11/20/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000091 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	< 0.00024 U
11.101 11.100	10		11/40/4000	~ 0.0001 0	~ 0.000000 0	\ 0.00055 O	\0.000072	~ V.0001 O	V.00011 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	v.00011 U	~ 0.00047 0

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 77 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	tert-Butylbenzene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloro- propene	Trichloroethene	Vinyl acetate	Vinyl chloride	Xylenes (total)
WHC1-BN09	0	NORM	12/17/2008	< 0.00011 U	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BN09	11	NORM	12/19/2008	< 0.00011 U	< 0.000096 U	< 0.00036 U	< 0.0001 U	< 0.00011 U	< 0.00012 U	< 0.00027 U	< 0.00012 U	< 0.00026 U
WHC1-BN10	0	NORM	11/18/2008	< 0.00011 UJ	< 0.000096 UJ	< 0.00035 UJ	< 0.000099 U	< 0.00011 UJ	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 UJ
WHC1-BN10	10	NORM	11/18/2008	< 0.00012 UJ	< 0.0001 U	< 0.00039 U	< 0.00011 U	< 0.00012 U	< 0.00013 U	< 0.00029 U	< 0.00014 U	< 0.00028 U
WHC1-BO01	0	NORM	12/2/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BO01	0	FD	12/2/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BO01	4	NORM	12/2/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BO01	14	NORM	12/2/2008	< 0.00011 U	< 0.000094 U	< 0.00035 U	< 0.000097 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-BO02	0	NORM	12/1/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BO02	12	NORM	12/1/2008	< 0.0001 U	< 0.00009 U	< 0.00044 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BO03	0	NORM	12/15/2008	< 0.0001 UJ	< 0.00009 UJ	0.00057 J	< 0.000093 U	< 0.0001 UJ	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 UJ
WHC1-BO03	12	NORM	12/19/2008	< 0.0001 UJ	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BO04	0	NORM	12/15/2008	< 0.00011 UJ	< 0.000092 U	< 0.00034 U	< 0.000096 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00025 U
WHC1-BO04	12	NORM	12/19/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BO05	0	NORM	11/20/2008	< 0.00011 U	< 0.000099 U	< 0.00037 U	< 0.0001 U	< 0.00011 U	< 0.00012 U	< 0.00027 U	< 0.00013 U	< 0.00026 U
WHC1-BO05	10	NORM	11/20/2008	< 0.00012 U	< 0.0001 U	< 0.00037 U	< 0.0001 U	< 0.00012 U	< 0.00012 U	< 0.00028 U	< 0.00013 U	< 0.00027 U
WHC1-BO06	0	NORM	11/20/2008	< 0.00011 U	< 0.000096 U	< 0.00036 U	< 0.000099 U	< 0.00011 U	< 0.00011 U	< 0.00027 U	< 0.00012 U	< 0.00026 U
WHC1-BO06	10	NORM	11/20/2008	< 0.00011 U	< 0.000099 U	< 0.00037 U	< 0.0001 U	< 0.00011 U	< 0.00012 U	< 0.00027 U	< 0.00013 U	< 0.00026 U
WHC1-BO07	0	NORM	11/19/2008	< 0.0001 UJ	< 0.000088 UJ	< 0.00033 UJ	< 0.000091 U	< 0.0001 UJ	< 0.00011 U	< 0.00024 U	< 0.00011 U	< 0.00023 UJ
WHC1-BO07	10	NORM	11/19/2008	< 0.0001 UJ	< 0.00009 UJ	< 0.00033 UJ	< 0.000093 U	< 0.0001 UJ	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 UJ
WHC1-BO08	0	NORM	11/20/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BO08	0	FD	11/20/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BO08	11	NORM	11/20/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BO09	0	NORM	11/19/2008	< 0.0001 UJ	< 0.000091 UJ	< 0.00034 UJ	< 0.000094 U	< 0.0001 UJ	< 0.00011 U	< 0.00025 UJ	< 0.00012 U	< 0.00024 UJ
WHC1-BO09	0	FD	11/19/2008	< 0.0001 UJ	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 UJ	< 0.00011 U	< 0.00024 U
WHC1-BO09	6	NORM	11/19/2008	< 0.00011 UJ	< 0.000094 UJ	< 0.00035 UJ	< 0.000097 U	< 0.00011 UJ	< 0.00011 U	< 0.00026 UJ	< 0.00012 U	< 0.00025 UJ
WHC1-BO09	16		11/19/2008	< 0.0001 UJ	< 0.00009 UJ	< 0.00033 UJ	< 0.000093 U	< 0.0001 UJ	< 0.00011 U	< 0.00025 UJ	< 0.00012 U	< 0.00024 UJ
WHC1-BO10	0		11/19/2008	< 0.0001 UJ	< 0.000089 UJ	< 0.00033 UJ	< 0.000092 U	< 0.0001 UJ	< 0.00011 U	< 0.00025 UJ	< 0.00012 U	< 0.00024 UJ
WHC1-BO10	10		11/19/2008	< 0.0001 UJ	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BP01	0	NORM	12/1/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BP01	10	NORM	12/1/2008	< 0.0001 UJ	< 0.000091 U	< 0.00084 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BP02	0	NORM	12/1/2008	< 0.0001 U	< 0.000091 U	< 0.00045 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BP02	11	NORM	12/1/2008	< 0.00011 U	< 0.000093 U	< 0.00049 U	< 0.00096 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-BP03	0	NORM	12/15/2008	< 0.0001 UJ	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	< 0.00024 U
WHC1-BP03	0	FD	12/15/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-BP03	11	NORM	12/19/2008	< 0.00011 U	< 0.000094 U	< 0.00035 U	< 0.000097 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	0.0003 J
WHC1-BP04	0	NORM	12/15/2008	< 0.0001 UJ	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BP04	12	NORM	12/19/2008	< 0.0001 UJ	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 78 of 81)

1				Volatile Organic Compounds (VOCs)								
	Depth ft bgs)	Sample Type	Sample Date	tert-Butylbenzene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloro- propene	Trichloroethene	Vinyl acetate	Vinyl chloride	Xylenes (total)
WHC1-BP05	0	NORM	12/15/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-BP05	10	NORM	12/19/2008	< 0.00011 U	< 0.000093 U	< 0.00035 U	< 0.000097 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-BP06	0	NORM	12/12/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BP06	10	NORM	12/12/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BP07	0	NORM	11/20/2008	< 0.00011 U	< 0.000097 U	< 0.00036 U	< 0.0001 U	< 0.00011 U	< 0.00012 U	< 0.00027 U	< 0.00012 U	< 0.00026 U
WHC1-BP07	3	NORM	11/20/2008	< 0.00011 U	< 0.000094 U	< 0.00035 U	< 0.000097 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-BP07	13	NORM	11/20/2008	< 0.00011 U	< 0.000096 U	< 0.00035 U	< 0.000099 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-BP08	0	NORM	11/19/2008	< 0.00011 UJ	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 UJ	< 0.00012 U	< 0.00024 U
WHC1-BP08	4	NORM	11/19/2008	< 0.00011 UJ	< 0.000095 UJ	< 0.00035 UJ	< 0.000099 U	< 0.00011 UJ	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 UJ
WHC1-BP08	14	NORM	11/19/2008	< 0.00011 UJ	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-BP09	0	NORM	11/19/2008	< 0.0001 UJ	< 0.000089 UJ	< 0.00033 UJ	< 0.000092 UJ	< 0.0001 UJ	< 0.00011 UJ	< 0.00024 UJ	< 0.00011 UJ	< 0.00024 UJ
WHC1-BP09	10	NORM	11/19/2008	< 0.00011 UJ	< 0.000093 UJ	< 0.00035 UJ	< 0.000096 U	< 0.00011 UJ	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 UJ
WHC1-BP10	0	NORM	11/19/2008	< 0.0001 UJ	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	< 0.00024 U
WHC1-BP10	10	NORM	11/19/2008	< 0.0001 UJ	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-D01	0	NORM	12/5/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D01	10	NORM	12/5/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D02	0	NORM	12/5/2008	< 0.00011 U	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D02	10	NORM	12/5/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D03	0	NORM	12/5/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D03	0	FD	12/5/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D03	10	NORM	12/5/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D04	0	NORM	12/5/2008	< 0.00011 UJ	< 0.000093 U	< 0.00034 U	< 0.000096 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-D04	10	NORM	12/5/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-D05	0	NORM	12/5/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D05	10	NORM	12/5/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D06	0	NORM	12/5/2008	< 0.0001 UJ	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
	10	NORM	12/5/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D07	0	NORM	12/5/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-D07	10	NORM	12/5/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
	0	NORM	12/8/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
	10	NORM	12/9/2008	< 0.00011 U	< 0.000096 U	< 0.00035 U	< 0.000099 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
	0	NORM	12/8/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
	11	NORM	12/9/2008	< 0.00011 U	< 0.000094 U	< 0.00035 U	< 0.000098 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
	0	NORM	12/8/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D10	10	NORM	12/9/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
	0	NORM	12/8/2008	< 0.00011 UJ	< 0.000094 U	< 0.00035 U	< 0.000097 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-D11	10	NORM	12/9/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D12	0	NORM	12/10/2008	< 0.00011 U	< 0.000098 U	< 0.00036 U	< 0.0001 U	< 0.00011 U	< 0.00012 U	< 0.00027 U	< 0.00013 U	< 0.00026 U

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 79 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			1
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	tert-Butylbenzene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloro- propene	Trichloroethene	Vinyl acetate	Vinyl chloride	Xylenes (total)
WHC1-D12	10	NORM	12/10/2008	< 0.00014 U	< 0.00012 U	< 0.00046 U	< 0.00013 U	< 0.00014 U	< 0.00015 U	< 0.00034 U	< 0.00016 U	< 0.00033 U
WHC1-D13	0	NORM	12/8/2008	< 0.00011 UJ	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D13	10	NORM	12/8/2008	< 0.00013 U	< 0.00012 U	< 0.00043 U	< 0.00012 U	< 0.00013 U	< 0.00014 U	< 0.00032 U	< 0.00015 U	< 0.00031 U
WHC1-D15	0	NORM	12/11/2008	R	< 0.000091 UJ	0.0019 J	< 0.000095 U	< 0.00011 UJ	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 UJ
WHC1-D15	10	NORM	12/11/2008	< 0.00013 U	< 0.00011 U	< 0.00042 U	< 0.00012 U	< 0.00013 U	< 0.00013 U	< 0.00031 U	< 0.00014 U	< 0.0003 U
WHC1-D16	0	NORM	12/10/2008	< 0.00011 U	< 0.000095 U	< 0.00035 U	< 0.000099 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-D16	10	NORM	12/10/2008	< 0.00012 U	< 0.0001 U	< 0.00038 U	< 0.00011 U	< 0.00012 U	< 0.00012 U	< 0.00028 U	< 0.00013 U	< 0.00027 U
WHC1-D17	0	NORM	12/10/2008	< 0.00011 U	< 0.000095 U	< 0.00035 U	< 0.000098 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-D17	10	NORM	12/10/2008	< 0.00011 U	< 0.0001 U	< 0.00037 U	< 0.0001 U	< 0.00011 U	< 0.00012 U	< 0.00028 U	< 0.00013 U	< 0.00026 U
WHC1-D18	0	NORM	12/11/2008	< 0.0001 UJ	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D18	10	NORM	12/11/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D19	0	NORM	12/11/2008	< 0.00011 UJ	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D19	0	FD	12/11/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-D19	10		12/11/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D20	0		12/12/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D20	10		12/12/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D21	0		12/16/2008	< 0.00011 UJ	< 0.000093 U	< 0.00034 U	< 0.000096 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-D21	10		12/16/2008	< 0.0001 UJ	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D22	0	NORM	12/16/2008	< 0.00012 UJ	< 0.00011 U	< 0.00039 U	< 0.00011 U	< 0.00012 U	< 0.00013 U	< 0.00029 U	< 0.00014 U	< 0.00028 U
WHC1-D22	10	NORM	12/16/2008	< 0.00011 U	< 0.000094 U	< 0.00035 U	< 0.000097 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00011 U	< 0.00025 U
WHC1-D23	0	NORM	12/16/2008	< 0.00011 UJ	< 0.000092 UJ	< 0.00034 UJ	< 0.000095 U	< 0.00011 UJ	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 UJ
WHC1-D23	10	NORM		< 0.0001 U	< 0.000092 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-D24	0	NORM		< 0.00011 UJ	< 0.000094 UJ	< 0.00035 UJ	< 0.000097 U	< 0.00011 UJ	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 UJ
WHC1-D24	0	FD	12/16/2008	< 0.00011 UJ	< 0.000094 U	< 0.00035 U	< 0.000099 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-D24	10	NORM	12/16/2008	< 0.00011 U	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D25	0	NORM	12/16/2008	< 0.00011 UJ	< 0.000093 UJ	< 0.00034 UJ	< 0.000096 U	< 0.00011 UJ	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 UJ
WHC1-D25	10			< 0.00011 UJ	< 0.000093 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D26	0	NORM	12/12/2008	< 0.00011 U	< 0.000092 U	< 0.00034 U	< 0.000093 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D26	10	NORM		< 0.0001 U	< 0.00009 U	< 0.00035 U	< 0.0000 U	< 0.0001 U	< 0.00011 U	< 0.00023 U	< 0.00012 U	< 0.00024 U
WHC1-D27	0	NORM		< 0.00011 U	< 0.000097 U	< 0.00034 U	< 0.0001 U	< 0.00011 U	< 0.00012 U	< 0.00027 U	< 0.00013 U	< 0.00024 U
WHC1-D27	0	FD	12/12/2008	< 0.00011 U	< 0.000092 U	< 0.00034 U	< 0.000093 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D27	10	NORM	12/12/2008	< 0.0001 U	< 0.0000 U	< 0.00034 U	< 0.0001 U	< 0.0001 U	< 0.00011 U	< 0.00023 U	< 0.00012 U	< 0.00024 U
WHC1-D28	0	NORM	12/12/2008	< 0.00012 C	< 0.00001 U	< 0.00037 U	< 0.0001 U	< 0.00012 C	< 0.00012 U	< 0.00025 U	< 0.00013 U	< 0.00027 U
WHC1-D28	10	NORM	12/12/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D29	0	NORM	12/12/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-D29	10	NORM	12/12/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P01	0	NORM	12/12/2008	< 0.00011 U	< 0.000092 U	0.00034 U	< 0.000090 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00023 U
WHC1-P01	12		12/19/2008	< 0.0001 UJ	< 0.00009 UJ	< 0.00034 UJ	< 0.000093 U	< 0.0001 UJ	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 UJ
WIICI-FUI	14	NONVI	12/19/2008	< 0.0001 UJ	< 0.000091 UJ	< 0.00034 UJ	< 0.000094 U	< 0.0001 UJ	< 0.00011 U	< 0.000∠3 U	< 0.0001∠ U	< 0.00024 UJ

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 80 of 81)

							Volatile C	Organic Compoun	ds (VOCs)			1
Sample ID	Depth (ft bgs)	Sample Type	Sample Date	tert-Butylbenzene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloro- propene	Trichloroethene	Vinyl acetate	Vinyl chloride	Xylenes (total)
WHC1-P02	0	NORM	12/1/2008	< 0.0001 U	< 0.000089 U	< 0.00059 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-P02	10	NORM	12/1/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	< 0.00024 U
WHC1-P03	0	NORM	12/15/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P03	3	NORM	12/18/2008	< 0.0001 UJ	< 0.000089 UJ	< 0.00033 UJ	< 0.000093 U	< 0.0001 UJ	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 UJ
WHC1-P03	3	FD	12/18/2008	< 0.0001 UJ	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P03	13	NORM	12/18/2008	< 0.0001 UJ	< 0.000091 UJ	< 0.00034 UJ	< 0.000094 UJ	< 0.0001 UJ	< 0.00011 UJ	< 0.00025 UJ	< 0.00012 UJ	< 0.00024 UJ
WHC1-P04	0	NORM	12/15/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P04	10	NORM	12/18/2008	< 0.00011 UJ	< 0.000092 UJ	< 0.00034 UJ	< 0.000095 UJ	< 0.00011 UJ	< 0.00011 UJ	< 0.00025 UJ	< 0.00012 UJ	< 0.00025 UJ
WHC1-P05	0	NORM	12/8/2008	< 0.00011 U	< 0.000092 U	< 0.00034 U	< 0.000095 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P05	0	FD	12/8/2008	< 0.0001 UJ	< 0.00009 U	< 0.00033 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P05	10	NORM	12/18/2008	< 0.00011 U	< 0.000093 U	< 0.00034 U	< 0.000096 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-P06	0	NORM	12/2/2008	< 0.0001 U	< 0.000089 U	< 0.00053 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 U
WHC1-P06	12	NORM	12/2/2008	< 0.0001 U	< 0.000089 U	< 0.00039 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P07	0	NORM	12/2/2008	< 0.0001 U	< 0.00009 U	< 0.0005 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P07	3	NORM	12/2/2008	< 0.0001 U	< 0.000089 U	< 0.00057 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P07	13	NORM	12/2/2008	< 0.0001 U	< 0.00009 U	< 0.00056 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P08	0	NORM	12/3/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P08	11	NORM	12/3/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P09	0	NORM	12/4/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P09	0	FD	12/4/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P09	10	NORM	12/4/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P10	0	NORM	11/25/2008	< 0.0001 U	< 0.000089 U	< 0.00033 U	< 0.000092 U	< 0.0001 U	< 0.00011 U	< 0.00024 U	< 0.00011 U	< 0.00024 U
WHC1-P10	10		11/25/2008	< 0.00012 U	< 0.00011 U	< 0.00039 U	< 0.00011 U	< 0.00012 U	< 0.00013 U	< 0.00029 U	< 0.00014 U	< 0.00028 U
WHC1-P11	0	NORM	12/8/2008	R	< 0.000091 UJ	< 0.00034 UJ	< 0.000094 U	< 0.0001 UJ	< 0.00011 U	R	< 0.00012 U	< 0.00024 UJ
WHC1-P11	0	FD	12/8/2008	< 0.0001 UJ	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P11	10	NORM	12/9/2008	< 0.00011 U	< 0.000096 U	< 0.00035 U	< 0.000099 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-P12	0	NORM	12/5/2008	< 0.00011 U	< 0.000091 U	< 0.00033 U	< 0.000099 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P12	11	NORM	12/5/2008	< 0.0001 U	< 0.000091 C	< 0.00031 U	< 0.000091 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P13	0	NORM	12/9/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P13	10	NORM	12/9/2008	< 0.0001 U	< 0.000031 U	< 0.00034 U	< 0.000074 C	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P13	10	FD	12/9/2008	< 0.00013 U	< 0.00013 U	< 0.00047 U	< 0.00013 U	< 0.00013 U	< 0.00013 U	< 0.00033 U	< 0.00016 U	< 0.00034 C
WHC1-P14	0	NORM	12/17/2008	< 0.00013 UJ	< 0.00011 U	< 0.00039 U	< 0.00012 U	< 0.00013 U	< 0.00014 U	< 0.00031 U	< 0.00013 U	< 0.0003 U
WHC1-P15	0	NORM	12/8/2008	< 0.00012 UJ	< 0.00001 U	< 0.00035 U	< 0.000011 U	< 0.00012 U	< 0.00013 U	< 0.00029 U	< 0.00013 U	< 0.00025 U
WHC1-P15	1.5	NORM	12/8/2008	< 0.00011 U	< 0.000094 U	< 0.00035 U	< 0.000097 U	< 0.00011 U	< 0.00011 U	< 0.00026 U	< 0.00012 U	< 0.00025 U
WHC1-P15	10	NORM	12/18/2008	< 0.00011 U	< 0.000094 U	< 0.00033 U	< 0.000097 U	< 0.00011 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00023 U
WHC1-P16	0	NORM	12/1/2008	< 0.00011 U	< 0.000052 U	0.0018 J	< 0.00046 U	< 0.00051 U	< 0.00011 U	< 0.0012 U	< 0.00012 U	< 0.00024 C
WHC1-P16	11	NORM	12/1/2008	< 0.00032 C	< 0.000049 U	< 0.0018 J	< 0.00092 U	< 0.00032 C	< 0.00034 U	< 0.0012 U	< 0.00038 C	< 0.0012 U
WHC1-P17	0	NORM	12/15/2008	< 0.0001 UJ	< 0.000091 UJ	< 0.00033 U	< 0.000092 U	< 0.0001 UJ	< 0.00011 U	< 0.00025 U	< 0.00011 U	< 0.00024 UJ
W11C1-1 1/	U	TACKIAI	12/13/2000	< 0.0001 UJ	< 0.000091 UJ	< 0.00054 UJ	< 0.00002 4 U	< 0.0001 UJ	< 0.00011 U	< 0.00023 U	< 0.0001∠ U	< 0.0002+ UJ

SOIL VOLATILE ORGANIC COMPOUNDS (VOCS) DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 81 of 81)

							Volatile C	rganic Compoun	ds (VOCs)			
Sample ID	Depth (ft bgs)	•	Sample Date	tert-Butylbenzene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloro- propene	Trichloroethene	Vinyl acetate	Vinyl chloride	Xylenes (total)
WHC1-P17	12	NORM	12/19/2008	< 0.0001 U	< 0.000091 U	< 0.00034 U	< 0.000094 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P17	12	FD	12/19/2008	< 0.0001 U	< 0.00009 U	< 0.00033 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P18	0	NORM	12/1/2008	< 0.0001 U	< 0.00009 U	< 0.00083 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U
WHC1-P18	12	NORM	12/1/2008	< 0.0001 U	< 0.00009 U	< 0.00049 U	< 0.000093 U	< 0.0001 U	< 0.00011 U	< 0.00025 U	< 0.00012 U	< 0.00024 U

All units in mg/kg.

= Data not included in risk assessment. Sample location covered with fill material (see text).

⁻⁻ = no sample data.

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 21)

							Surfac	ce Flux				
Sample ID	Sample Type	Sample Date	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	I,1-Dichloropropene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene
OSC1-BO11	NORM	8/5/2010	< 0.01 U	< 0.0215 U	< 0.00381 UJ	< 0.0215 U	< 0.0158 U	< 0.0154 U	< 0.0108 U	< 0.0108 UJ	< 0.119 UJ	< 0.0781 U
OSC1-BP11	NORM	8/5/2010	< 0.0146 U	< 0.0308 U	< 0.00277 UJ	< 0.0308 U	< 0.0227 U	< 0.0219 U	< 0.015 U	< 0.015 U	< 0.169 UJ	< 0.111 UJ
OSC1-JP06	NORM	8/4/2010	< 0.0142 U	< 0.0304 U	< 0.00958 UJ	< 0.0304 U	< 0.0223 U	< 0.0219 U	< 0.015 U	< 0.015 UJ	< 0.168 U	< 0.11 U
OSC1-JP08	NORM	8/5/2010	< 0.01 U	< 0.0212 U	< 0.00373 UJ	< 0.0212 U	< 0.0154 U	< 0.0154 U	< 0.0104 U	< 0.0104 UJ	< 0.116 UJ	< 0.0762 U
WHC1-BJ01	NORM	10/22/2008	< 0.0192 U	< 0.0177 U	< 0.00165 UJ	< 0.0177 U	< 0.0127 U	< 0.0127 U	< 0.0119 U	< 0.0162 U	< 0.0182 UJ	0.0281 J
WHC1-BJ02	NORM	10/22/2008	< 0.0196 U	< 0.0181 U	< 0.00169 U	< 0.0181 U	< 0.0131 U	< 0.0131 U	< 0.0123 U	< 0.0169 U	< 0.0187 UJ	0.114 J
WHC1-BJ03	NORM	10/22/2008	< 0.0192 UJ	< 0.0173 UJ	< 0.00165 U	< 0.0173 UJ	< 0.0127 U	< 0.0127 U	< 0.0119 UJ	< 0.0162 UJ	< 0.0181 UJ	< 0.0158 UJ
WHC1-BJ04	NORM	10/22/2008	< 0.0192 U	< 0.0177 U	< 0.00165 UJ	< 0.0177 U	< 0.0131 U	< 0.0127 U	< 0.0123 U	< 0.0165 U	R	< 0.221 U
WHC1-BK01	NORM	10/23/2008	< 0.02 U	< 0.0185 U	0.00288 J	< 0.0185 U	< 0.0135 U	< 0.0131 U	< 0.0127 U	< 0.0169 U	< 0.019 UJ	< 0.0165 U
WHC1-BK04	NORM	10/22/2008	< 0.0192 U	< 0.0177 U	< 0.00165 UJ	< 0.0177 U	< 0.0127 U	< 0.0127 U	< 0.0119 U	< 0.0162 U	R	< 0.0627 U
WHC1-BL01	NORM	10/23/2008	< 0.0196 U	< 0.0181 U	< 0.00169 U	< 0.0181 U	< 0.0131 U	< 0.0131 U	< 0.0123 U	< 0.0169 U	< 0.0187 UJ	< 0.0162 U
WHC1-BL03	NORM	10/23/2008	< 0.0196 U	< 0.0177 U	< 0.00169 U	< 0.0177 U	< 0.0131 U	< 0.0127 U	< 0.0123 U	< 0.0165 U	< 0.0185 UJ	0.0181 J
WHC1-BL04	NORM	10/22/2008	< 0.0196 U	< 0.0177 U	< 0.00169 UJ	< 0.0177 U	< 0.0131 U	< 0.0127 U	< 0.0123 U	< 0.0165 U	R	< 0.0788 U
WHC1-BL06	NORM	10/24/2008	< 0.0219 UJ	< 0.02 UJ	< 0.00188 U	< 0.02 UJ	< 0.0146 U	< 0.0142 U	< 0.0135 UJ	< 0.0185 UJ	< 0.0207 UJ	< 0.0181 UJ
WHC1-BL07	NORM	10/24/2008	< 0.0212 U	< 0.0196 U	< 0.00185 U	< 0.0196 U	< 0.0142 U	< 0.0138 U	< 0.0135 U	< 0.0181 U	< 0.0202 UJ	0.0223 J
WHC1-BL08	NORM	10/24/2008	< 0.0208 U	< 0.0188 U	< 0.00335 UJ	< 0.0188 U	< 0.0138 U	< 0.0135 U	< 0.0131 U	< 0.0177 U	< 0.0196 UJ	0.0562 J
WHC1-BL11	NORM	10/23/2008	< 0.0208 U	< 0.0188 U	< 0.00177 U	< 0.0188 U	< 0.0138 U	< 0.0135 U	< 0.0131 U	< 0.0177 U	< 0.0196 UJ	< 0.0169 U
WHC1-BM01	NORM	10/23/2008	< 0.0204 U	< 0.0185 U	< 0.00177 UJ	< 0.0185 U	< 0.0135 U	< 0.0135 U	< 0.0127 U	< 0.0173 U	< 0.0193 UJ	< 0.0165 U
WHC1-BM03	NORM	10/22/2008	< 0.0192 U	< 0.0177 U	< 0.00165 UJ	< 0.0177 U	< 0.0131 U	< 0.0127 U	< 0.0123 U	< 0.0165 U	R	0.0219 J
WHC1-BM04	NORM	10/22/2008	< 0.0196 U	< 0.0181 U	< 0.00169 UJ	< 0.0181 U	< 0.0131 U	< 0.0131 U	< 0.0123 U	< 0.0169 U	R	< 0.0642 U
WHC1-BM06	NORM	10/24/2008	< 0.0212 U	< 0.0192 U	< 0.00181 U	< 0.0192 U	< 0.0142 U	< 0.0138 U	< 0.0131 U	< 0.0181 U	< 0.0201 UJ	0.43
WHC1-BM07	NORM	10/24/2008	< 0.0212 UJ	< 0.0196 UJ	< 0.00185 U	< 0.0196 UJ	< 0.0142 U	< 0.0138 U	< 0.0135 UJ	< 0.0181 UJ	< 0.0202 UJ	< 0.0177 UJ
WHC1-BM08	NORM	10/24/2008	< 0.0204 U	< 0.0185 U	< 0.00673 UJ	< 0.0185 U	< 0.0135 UJ	< 0.0131 UJ	< 0.0127 U	< 0.0173 U	< 0.0192 UJ	0.0385 J
WHC1-BM09	NORM	10/23/2008	< 0.0208 U	< 0.0188 U	< 0.00177 U	< 0.0188 U	< 0.0138 UJ	< 0.0135 UJ	< 0.0131 U	< 0.0177 U	< 0.0196 UJ	0.0181 J
WHC1-BM10	NORM	10/23/2008	< 0.0204 U	< 0.0185 U	< 0.00173 U	< 0.0185 U	< 0.0135 UJ	< 0.0131 UJ	< 0.0127 U	< 0.0173 U	< 0.0192 UJ	< 0.0165 U
WHC1-BN01	NORM	10/23/2008	< 0.0212 U	< 0.0192 U	< 0.00173 U	< 0.0192 U	< 0.0142 U	< 0.0138 U	< 0.0131 U	< 0.0181 U	< 0.0192 U	< 0.0173 U
WHC1-BN01R	FD	10/23/2008	< 0.0204 U	< 0.0185 U	< 0.00181 U	< 0.0185 U	< 0.0135 U	< 0.0131 U	< 0.0127 U	< 0.0173 U	< 0.0201 UJ	< 0.0165 U
WHC1-BN06	NORM	10/24/2008	< 0.0212 U	< 0.0192 U	< 0.00181 U	< 0.0192 U	< 0.0142 U	< 0.0138 U	< 0.0131 U	< 0.0177 U	< 0.0199 UJ	< 0.0173 U
WHC1-BN08	NORM	10/23/2008	< 0.0212 U	< 0.0196 U	< 0.00185 U	< 0.0196 U	< 0.0142 U	< 0.0138 U	< 0.0135 U	< 0.0181 U	< 0.0202 UJ	< 0.0177 U
WHC1-BN09	NORM	10/23/2008	< 0.0219 U	< 0.02 U	< 0.00188 UJ	< 0.02 U	< 0.0146 U	< 0.0142 U	< 0.0138 U	< 0.0188 U	< 0.0208 UJ	0.0596 J
WHC1-BN10	NORM	10/23/2008	< 0.0196 U	< 0.0181 U	< 0.00338 U	< 0.0181 U	< 0.0131 U	< 0.0131 U	< 0.0123 U	< 0.0169 U	< 0.0374 U	< 0.0162 U
WHC1-BN10R	FD	10/23/2008	< 0.02 U	< 0.0185 U	< 0.00173 U	< 0.0185 U	< 0.0135 UJ	< 0.0131 UJ	< 0.0127 U	< 0.0169 U	< 0.019 UJ	< 0.0165 U
WHC1-BO01	NORM	10/23/2008	< 0.0212 U	< 0.0192 U	< 0.00181 U	< 0.0192 U	< 0.0142 U	< 0.0138 U	< 0.0131 U	< 0.0177 U	< 0.0199 UJ	< 0.0173 U
WHC1-BO04	NORM	10/23/2008	< 0.0204 U	< 0.0185 U	< 0.00173 U	< 0.0185 U	< 0.0135 U	< 0.0131 U	< 0.0127 U	< 0.0173 U	< 0.0192 UJ	< 0.0165 U
WHC1-BO06	NORM	10/23/2008	< 0.02 U	< 0.0185 U	< 0.00173 UJ	< 0.0185 U	< 0.0135 U	< 0.0131 U	< 0.0127 U	< 0.0169 U	< 0.019 UJ	< 0.0165 UJ

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 21)

							Surfac	ce Flux				
Sample ID	Sample Type	Sample Date	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	I,1-Dichloroethane	I,1-Dichloroethene	I,1-Dichloropropene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene
WHC1-BO07	NORM	10/23/2008	< 0.0215 U	< 0.0196 U	< 0.00185 UJ	< 0.0196 U	< 0.0142 U	< 0.0142 U	< 0.0135 U	< 0.0181 U	< 0.0204 UJ	< 0.0177 U
WHC1-BO08	NORM	10/23/2008	< 0.0215 U	< 0.0196 U	< 0.00185 U	< 0.0196 U	< 0.0142 U	< 0.0142 U	< 0.0135 U	< 0.0181 U	< 0.0204 UJ	< 0.0177 U
WHC1-BO09	NORM	10/23/2008	< 0.0204 U	< 0.0185 U	< 0.00177 U	< 0.0185 U	< 0.0135 U	< 0.0135 U	< 0.0127 U	< 0.0173 U	< 0.0193 UJ	< 0.0165 UJ
WHC1-BO10	NORM	10/23/2008	< 0.02 UJ	< 0.0181 UJ	< 0.00142 U	< 0.0181 UJ	< 0.0135 U	< 0.0131 U	< 0.0123 UJ	< 0.0169 UJ	< 0.0157 UJ	< 0.0162 UJ
WHC1-BP01	NORM	10/23/2008	< 0.0212 U	< 0.0192 U	< 0.00181 U	< 0.0192 U	< 0.0142 U	< 0.0138 U	< 0.0131 U	< 0.0181 U	< 0.0201 UJ	0.177
WHC1-BP02	NORM	10/23/2008	< 0.0215 U	< 0.0196 U	< 0.00185 UJ	< 0.0196 U	< 0.0146 U	< 0.0142 U	< 0.0135 U	< 0.0185 U	< 0.0205 UJ	0.0331 J
WHC1-BP03	NORM	10/23/2008	< 0.02 U	< 0.0185 U	< 0.00173 U	< 0.0185 U	< 0.0135 U	< 0.0131 U	< 0.0127 U	< 0.0169 U	< 0.019 UJ	< 0.0165 U
WHC1-BP03R	FD	10/23/2008	< 0.0212 U	< 0.0196 U	< 0.00185 UJ	< 0.0196 U	< 0.0142 U	< 0.0138 U	< 0.0135 U	< 0.0181 U	< 0.0202 UJ	< 0.0177 U
WHC1-BP04	NORM	10/23/2008	< 0.02 U	< 0.0181 U	< 0.00169 UJ	< 0.0181 U	< 0.0135 U	< 0.0131 U	< 0.0123 U	< 0.0169 U	< 0.0188 UJ	< 0.0162 U
WHC1-BP06	NORM	10/23/2008	< 0.02 U	< 0.0181 U	< 0.00169 U	< 0.0181 U	< 0.0135 U	< 0.0131 U	< 0.0123 U	< 0.0169 U	< 0.0188 UJ	< 0.0162 UJ
WHC1-BP06R	FD	10/23/2008	< 0.02 U	< 0.0185 U	< 0.00173 U	< 0.0185 U	< 0.0135 U	< 0.0131 U	< 0.0127 U	< 0.0169 U	< 0.019 UJ	< 0.0165 UJ
WHC1-BP07	NORM	10/23/2008	< 0.0204 U	< 0.0185 U	< 0.00177 U	< 0.0185 U	< 0.0135 U	< 0.0135 U	< 0.0127 U	< 0.0173 U	< 0.0193 UJ	< 0.0165 UJ
WHC1-BP08	NORM	10/23/2008	< 0.0208 U	< 0.0188 U	< 0.00177 U	< 0.0188 U	< 0.0138 U	< 0.0135 U	< 0.0131 U	< 0.0177 U	< 0.0196 UJ	< 0.0169 UJ
WHC1-BP09	NORM	10/23/2008	< 0.0204 U	< 0.0185 U	< 0.00173 UJ	< 0.0185 U	< 0.0135 U	< 0.0131 U	< 0.0127 U	< 0.0173 U	< 0.0192 UJ	< 0.0165 UJ
WHC1-BP10	NORM	10/23/2008	< 0.02 U	< 0.0185 U	< 0.00173 U	< 0.0185 U	< 0.0135 U	< 0.0131 U	< 0.0127 U	< 0.0169 U	< 0.019 UJ	< 0.0165 UJ
WHC1-D02	NORM	10/21/2008	< 0.0246 U	< 0.0227 U	< 0.0106 U	< 0.0227 U	< 0.0165 U	< 0.0162 U	< 0.0154 U	< 0.0212 U	< 0.116 UJ	< 0.0204 UJ
WHC1-D04	NORM	10/21/2008	< 0.02 U	< 0.0185 U	< 0.00173 UJ	< 0.0185 U	< 0.0135 U	< 0.0131 U	< 0.0127 U	< 0.0169 U	< 0.0188 UJ	< 0.0165 UJ
WHC1-D06	NORM	10/21/2008	< 0.0223 U	< 0.0204 U	< 0.00192 U	< 0.0204 U	< 0.015 U	< 0.0146 U	< 0.0138 U	< 0.0188 UJ	< 0.0209 UJ	0.0542 J-
WHC1-D08	NORM	10/21/2008	< 0.0208 U	< 0.0188 U	< 0.00177 UJ	< 0.0188 U	< 0.0138 U	< 0.0135 U	< 0.0131 U	< 0.0177 U	< 0.0194 UJ	0.03 J
WHC1-D09	NORM	10/21/2008	< 0.0208 U	< 0.0188 U	< 0.00177 U	< 0.0188 U	< 0.0138 U	< 0.0135 U	< 0.0131 U	< 0.0177 U	< 0.0194 UJ	0.0169 J
WHC1-D13	NORM	10/21/2008	< 0.0212 U	< 0.0192 U	< 0.00181 U	< 0.0192 U	< 0.0142 U	< 0.0138 U	< 0.0131 U	< 0.0177 U	< 0.0197 UJ	< 0.0173 UJ
WHC1-D15	NORM	10/21/2008	< 0.0219 U	< 0.02 U	< 0.00188 UJ	< 0.02 U	< 0.0146 U	< 0.0142 U	< 0.0138 U	< 0.0188 UJ	< 0.0207 UJ	0.24 J-
WHC1-D17	NORM	10/21/2008	< 0.0223 U	< 0.0204 U	< 0.00192 UJ	< 0.0204 U	< 0.015 U	< 0.0146 U	< 0.0138 U	0.281 J-	< 0.0209 UJ	0.125 J-
WHC1-D19	NORM	10/22/2008	< 0.02 U	< 0.0181 U	< 0.00169 UJ	< 0.0181 U	< 0.0135 U	< 0.0131 U	< 0.0123 U	< 0.0169 U	R	< 0.363 U
WHC1-D21	NORM	10/22/2008	< 0.0212 U	< 0.0192 U	< 0.00181 UJ	< 0.0192 U	< 0.0142 U	< 0.0138 U	< 0.0131 U	< 0.0177 U	R	< 0.438 UJ
WHC1-D23	NORM	10/22/2008	< 0.0204 U	< 0.0188 U	< 0.00404 UJ	< 0.0188 U	< 0.0138 U	< 0.0135 U	< 0.0127 U	< 0.0173 U	R	< 0.0169 U
WHC1-D23R	FD	10/22/2008	< 0.02 U	< 0.0181 U	< 0.00169 U	< 0.0181 U	< 0.0135 U	< 0.0131 U	< 0.0123 U	< 0.0169 U	< 0.0187 UJ	< 0.0565 U
WHC1-D24	NORM	10/22/2008	< 0.0208 U	< 0.0188 U	< 0.00177 U	< 0.0188 U	< 0.0138 U	< 0.0135 U	< 0.0131 U	< 0.0177 U	< 0.0194 UJ	0.0638 J
WHC1-D25	NORM	10/22/2008	< 0.0204 U	< 0.0185 U	< 0.00177 U	< 0.0185 U	< 0.0135 U	< 0.0135 U	< 0.0127 U	< 0.0173 U	< 0.0191 UJ	< 0.34 UJ
WHC1-D27	NORM	10/23/2008	< 0.0215 U	< 0.0196 U	< 0.00185 UJ	< 0.0196 U	< 0.0146 U	< 0.0142 U	< 0.0135 U	< 0.0185 U	< 0.0205 UJ	< 0.0177 UJ
WHC1-D28	NORM	10/23/2008	< 0.0204 U	< 0.0188 U	< 0.00177 U	< 0.0188 U	< 0.0138 U	< 0.0135 U	< 0.0127 U	< 0.0173 U	< 0.0195 UJ	< 0.0169 UJ
WHC1-P03	NORM	10/22/2008	< 0.0192 U	< 0.0177 U	< 0.00335 UJ	< 0.0177 U	< 0.0131 U	< 0.0127 U	< 0.0123 U	< 0.0165 U	< 0.0368 UJ	0.0212 J
WHC1-P04	NORM	10/22/2008	< 0.0196 UJ	< 0.0177 UJ	< 0.00169 UJ	< 0.0177 UJ	< 0.0131 U	< 0.0127 U	< 0.0123 UJ	< 0.0165 UJ	R	< 0.0162 UJ
WHC1-P05	NORM	10/22/2008	< 0.02 U	< 0.0181 U	< 0.00169 U	< 0.0181 U	< 0.0135 U	< 0.0131 U	< 0.0123 U	< 0.0169 U	< 0.0188 UJ	< 0.0162 U
WHC1-P06	NORM	10/22/2008	< 0.0196 U	< 0.0181 U	< 0.00169 UJ	< 0.0181 U	< 0.0131 U	< 0.0131 U	< 0.0123 U	< 0.0169 U	< 0.0187 UJ	< 0.0162 U

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 21)

							Surfac	e Flux				
	Sample	Sample	.1,2-Tetrachloroethane	, 1-Trichloroethane	',2,2-Tetrachloroethane	,,2-Trichloroethane	-Dichloroethane	-Dichloroethene	-Dichloropropene	3.3-Trichloropropane	,4-Trichlorobenzene	,4-Trimethylbenzene
Sample ID	Type	Date	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,2	1,2	1,2
WHC1-P07	NORM	10/22/2008	< 0.02 U	< 0.0181 U	< 0.00169 U	< 0.0181 U	< 0.0135 U	< 0.0131 U	< 0.0123 U	< 0.0169 U	< 0.0188 UJ	< 0.0162 U
WHC1-P08	NORM	10/21/2008	< 0.0738 U	< 0.0673 U	< 0.00169 UJ	< 0.0673 U	< 0.0496 U	< 0.0485 U	< 0.0462 U	< 0.0627 U	< 0.0185 UJ	< 0.0608 UJ
WHC1-P09	NORM	10/21/2008	< 0.0192 U	< 0.0177 U	< 0.00165 UJ	< 0.0177 U	< 0.0131 U	< 0.0127 U	< 0.0123 U	< 0.0165 U	< 0.0182 UJ	< 0.0158 UJ
WHC1-P10	NORM	10/21/2008	< 0.0223 UJ	< 0.02 UJ	< 0.00192 UJ	< 0.02 UJ	< 0.015 UJ	< 0.0146 UJ	< 0.0138 UJ	< 0.0188 UJ	< 0.0208 UJ	< 0.0438 UJ
WHC1-P11	NORM	10/22/2008	< 0.0196 U	< 0.0181 U	< 0.00169 UJ	< 0.0181 U	< 0.0131 U	< 0.0131 U	< 0.0123 U	< 0.0169 U	R	< 0.32 UJ
WHC1-P12	NORM	10/21/2008	< 0.0208 U	< 0.0188 U	< 0.00177 UJ	< 0.0188 U	< 0.0138 U	< 0.0135 U	< 0.0131 U	< 0.0177 U	< 0.0194 UJ	< 0.0169 UJ
WHC1-P13	NORM	10/21/2008	< 0.0212 U	< 0.0192 U	< 0.00181 UJ	< 0.0192 U	< 0.0142 U	< 0.0138 U	< 0.0131 U	< 0.0181 U		< 0.0173 UJ
WHC1-P16	NORM	10/22/2008	< 0.02 U	< 0.0181 U	< 0.00169 U	< 0.0181 U	< 0.0135 U	< 0.0131 U	< 0.0123 U	< 0.0169 U	< 0.0188 UJ	< 0.0162 U
WHC1-P17	NORM	10/22/2008	< 0.0204 U	< 0.0185 U	< 0.00173 U	< 0.0185 U	< 0.0135 U	< 0.0131 U	< 0.0127 U	< 0.0173 U	< 0.0192 UJ	< 0.0165 U
WHC1-P18	NORM	10/22/2008	< 0.02 U	< 0.0185 U	< 0.00173 UJ	< 0.0185 U	< 0.0135 U	< 0.0131 U	< 0.0127 U	< 0.0169 U	< 0.019 UJ	< 0.0165 U

All units in μg/m², min⁻¹.

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 21)

							Surfac	e Flux				
Sample ID	Sample Type	Sample Date	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	1,4-Dioxane	2,2-Dichloropropane	2-Hexanone
OSC1-BO11	NORM	8/5/2010	< 0.0935 UJ	< 0.00227 UJ	< 0.0185 U	< 0.0204 U	< 0.0954 UJ	< 0.0108 U	< 0.00335 UJ	< 0.0262 UJ	< 0.0146 U	< 0.0104 UJ
OSC1-BP11	NORM	8/5/2010	< 0.133 UJ	< 0.00165 U	< 0.0262 U	< 0.0288 UJ	< 0.135 UJ	< 0.0154 U	0.00408 J	< 0.0373 U	< 0.0208 U	0.0231 J
OSC1-JP06	NORM	8/4/2010	< 0.132 UJ	< 0.00573 U	< 0.0262 U	< 0.0285 U	< 0.135 U	< 0.0154 U	< 0.00838 U	< 0.0373 UJ	< 0.0208 U	< 0.0146 UJ
OSC1-JP08	NORM	8/5/2010	< 0.0915 UJ	< 0.00223 UJ	< 0.0181 U	< 0.0196 U	< 0.0931 UJ	< 0.0108 U	< 0.00327 UJ	< 0.0258 UJ	< 0.0142 U	< 0.01 UJ
WHC1-BJ01	NORM	10/22/2008	< 0.0188 U	0.00146	< 0.015 U	0.0192 J	< 0.0192 U	< 0.0119 U	< 0.00192 UJ	< 0.01 UJ	< 0.133 U	< 0.0115 UJ
WHC1-BJ02	NORM	10/22/2008	< 0.0192 U	< 0.001 U	< 0.0154 U	0.0273 J	< 0.0196 U	< 0.0123 U	< 0.00369 UJ	< 0.0104 UJ	< 0.136 U	< 0.0115 UJ
WHC1-BJ03	NORM	10/22/2008	< 0.0188 UJ	0.00112	< 0.015 UJ	< 0.0162 UJ	< 0.0192 UJ	< 0.0119 UJ	< 0.00223 UJ	0.0142 J	< 0.132 U	0.0173 J
WHC1-BJ04	NORM	10/22/2008	< 0.0192 U	0.00242 J+	< 0.015 U	< 0.0638 U	< 0.0196 U	< 0.0123 U	< 0.00227 UJ	0.12 J	< 0.133 U	< 0.0115 UJ
WHC1-BK01	NORM	10/23/2008	< 0.0196 U	0.00342 J	< 0.0158 U	< 0.0169 U	< 0.02 U	< 0.0127 U	< 0.00469 UJ	< 0.0104 UJ	< 0.138 U	< 0.0119 UJ
WHC1-BK04	NORM	10/22/2008	< 0.0188 U	0.00165 J+	< 0.015 U	< 0.0215 U	< 0.0192 U	< 0.0119 U	< 0.00215 UJ	0.0696 J	< 0.133 U	< 0.0115 UJ
WHC1-BL01	NORM	10/23/2008	< 0.0192 U	0.00119	< 0.0154 U	< 0.0169 U	< 0.0196 U	< 0.0123 U	< 0.00273 UJ	< 0.0104 UJ	< 0.136 U	< 0.0115 UJ
WHC1-BL03	NORM	10/23/2008	< 0.0192 U	0.00123	< 0.0154 U	< 0.0165 U	< 0.0196 U	< 0.0123 U	< 0.0015 UJ	< 0.01 UJ	< 0.135 U	0.0208 J
WHC1-BL04	NORM	10/22/2008	< 0.0192 U	0.00365 J+	< 0.0154 U	< 0.03 U	< 0.0196 U	< 0.0123 U	< 0.00315 UJ	0.103 J	< 0.135 U	0.0531 J
WHC1-BL06	NORM	10/24/2008	< 0.0215 UJ	< 0.00169 U	< 0.0169 U	< 0.0185 UJ	< 0.0219 UJ	< 0.0138 UJ	< 0.00358 UJ	< 0.0112 UJ	< 0.15 U	< 0.0131 UJ
WHC1-BL07	NORM	10/24/2008	< 0.0212 U	< 0.0015 U	< 0.0165 U	0.025 J	< 0.0215 U	< 0.0135 U	< 0.00581 UJ	< 0.0112 UJ	< 0.147 U	0.0185 J
WHC1-BL08	NORM	10/24/2008	< 0.0204 U	< 0.00177 U	< 0.0162 U	0.0365 J	< 0.0208 U	< 0.0131 U	< 0.00846 UJ	0.015 J	< 0.143 U	0.0481 J
WHC1-BL11	NORM	10/23/2008	< 0.0204 U	0.00119	< 0.0162 U	< 0.0177 U	< 0.0208 U	< 0.0131 U	< 0.00227 UJ	0.0781 J	< 0.143 U	< 0.0123 UJ
WHC1-BM01	NORM	10/23/2008	< 0.02 U	0.00146 J	< 0.0158 U	< 0.0173 U	< 0.0204 U	< 0.0127 U	< 0.00219 UJ	< 0.0108 UJ	< 0.14 U	< 0.0119 UJ
WHC1-BM03	NORM	10/22/2008	< 0.0192 U	0.00181 J+	< 0.015 U	< 0.0165 U	< 0.0196 U	< 0.0123 U	< 0.00331 UJ	< 0.01 UJ	< 0.133 U	0.0146 J
WHC1-BM04	NORM	10/22/2008	< 0.0192 U	0.00104 J+	< 0.0154 U	< 0.0204 U	< 0.0196 U	< 0.0123 U	< 0.00354 UJ	< 0.0104 UJ	< 0.136 U	< 0.0115 UJ
WHC1-BM06	NORM	10/24/2008	< 0.0208 U	< 0.00219 U	< 0.0165 U	0.33	< 0.0212 UJ	< 0.0135 U	0.00354 J-	< 0.0112 U	< 0.146 U	< 0.0127 UJ
WHC1-BM07	NORM	10/24/2008	< 0.0212 UJ	< 0.00112 U	< 0.0165 U	< 0.0181 UJ	< 0.0215 UJ	< 0.0135 UJ	< 0.00338 UJ	0.0142 J	< 0.147 U	< 0.0127 UJ
WHC1-BM08	NORM	10/24/2008	< 0.02 U	< 0.00204 U	< 0.0158 U	0.0196 J	< 0.0204 U	< 0.0127 U	< 0.00838 UJ	< 0.0104 UJ	< 0.139 U	< 0.0119 UJ
WHC1-BM09	NORM	10/23/2008	< 0.0204 U	< 0.00108 U	< 0.0162 U	0.0188 J	< 0.0208 U	< 0.0131 U	< 0.00158 UJ	0.0254 J	< 0.143 U	0.0369 J
WHC1-BM10	NORM	10/23/2008	< 0.02 U	0.00108	< 0.0158 U	< 0.0173 U	< 0.0204 U	< 0.0127 U	< 0.00154 UJ	< 0.0104 UJ	< 0.139 U	< 0.0119 UJ
WHC1-BN01	NORM	10/23/2008	< 0.0208 U	0.00142	< 0.0165 U	< 0.0181 U	< 0.0212 U	< 0.0135 U	0.00208	0.115 J	< 0.146 U	< 0.0127 UJ
WHC1-BN01R	FD	10/23/2008	< 0.02 U	0.00262	< 0.0158 U	< 0.0173 U	< 0.0204 U	< 0.0127 U	< 0.00219 UJ	< 0.0104 U	< 0.139 U	0.0208 J
WHC1-BN06	NORM	10/24/2008	< 0.0208 U	< 0.00108 U	< 0.0165 U	< 0.0181 U	< 0.0212 UJ	< 0.0131 U	< 0.00158 UJ	< 0.0108 U	< 0.145 U	< 0.0123 UJ
WHC1-BN08	NORM	10/23/2008	< 0.0212 U	0.00142	< 0.0165 U	< 0.0181 U	< 0.0215 U	< 0.0135 U	< 0.00162 UJ	0.0704 J	< 0.147 U	0.02 J
WHC1-BN09	NORM	10/23/2008	< 0.0215 U	0.00173 J	< 0.0173 U	0.0388 J	< 0.0219 U	< 0.0138 U	< 0.00165 UJ	0.0115 J	< 0.152 U	0.0135 J
WHC1-BN10	NORM	10/23/2008	< 0.0192 U	< 0.001 UJ	< 0.0154 U	< 0.0169 U	< 0.0196 U	< 0.0123 U	< 0.00296 U	< 0.0104 UJ	< 0.136 U	< 0.0115 UJ
WHC1-BN10R	FD	10/23/2008	< 0.0196 U	< 0.00104 U	< 0.0158 U	< 0.0169 U	< 0.02 U	< 0.0127 U	< 0.00185 UJ	< 0.0104 UJ	< 0.138 U	< 0.0119 UJ
WHC1-BO01	NORM	10/23/2008	< 0.0208 U	< 0.00108 U	< 0.0165 U	< 0.0181 U	< 0.0212 U	< 0.0131 U	< 0.00273 UJ	< 0.0108 UJ	< 0.145 U	< 0.0123 UJ
WHC1-BO04	NORM	10/23/2008	< 0.02 U	0.00154	< 0.0158 U	< 0.0173 U	< 0.0204 U	< 0.0127 U	< 0.00246 UJ	< 0.0104 UJ	< 0.139 U	< 0.0119 UJ
WHC1-BO06	NORM	10/23/2008	< 0.0196 U	0.00131 J	< 0.0158 U	< 0.0169 U	< 0.02 UJ	< 0.0127 U	< 0.00192 UJ	< 0.0104 U	< 0.138 U	< 0.0119 UJ

SURFACE FLUX DATA

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 5 of 21)

							Surfac	ce Flux				
						eue						
			,2-Dichlorobenzene	ne	,2-Dichloropropane	,3,5-Trimethylbenzene	,3-Dichlorobenzene	,3-Dichloropropane	,4-Dichlorobenzene		2,2-Dichloropropane	
			nec	,2-Dichloroethane	orop	ıylb	oenz	orop	oenz		orop	
			orol	oroe	orol	netł	orol	orol	orol	me	orol	ne
			chl	chl	chl	Trir	chl	chl	chl	1,4-Dioxane	chl	2-Hexanone
	Sample	Sample	iŌ-	iO-	ΞĠ	2,	-Di	Ρ̈́	Ξ̈́	-Di	ΞŌ	łex
Sample ID	Type	Date	1		1	1	1	1	1			
WHC1-BO07	NORM	10/23/2008	< 0.0212 U	0.00165	< 0.0169 U	< 0.0185 U	< 0.0215 U	< 0.0135 U	< 0.00162 UJ	0.0465 J	< 0.148 U	0.0246 J
WHC1-BO08	NORM	10/23/2008	< 0.0212 U	< 0.00112 UJ	< 0.0169 U	< 0.0185 U	< 0.0215 U	< 0.0135 U	< 0.00162 UJ	< 0.0112 UJ	< 0.148 U	< 0.0127 UJ
WHC1-BO09	NORM	10/23/2008	< 0.02 U	0.00112	< 0.0158 U	< 0.0173 U	< 0.0204 UJ	< 0.0127 U	< 0.00165 UJ	< 0.0108 U	< 0.14 U	< 0.0119 UJ
WHC1-BO10	NORM	10/23/2008	< 0.0196 UJ	0.000885	< 0.0154 UJ	< 0.0169 UJ	< 0.02 UJ	< 0.0123 UJ	< 0.00123 UJ	< 0.0104 UJ	< 0.137 U	< 0.0119 UJ
WHC1-BP01	NORM	10/23/2008	< 0.0208 U	< 0.00108 U	< 0.0165 U	0.0473 J	< 0.0212 U	< 0.0135 U	< 0.00238 UJ	< 0.0112 UJ	< 0.146 U	< 0.0127 UJ
WHC1-BP02	NORM	10/23/2008	< 0.0212 U	0.00154	< 0.0169 U	< 0.0185 U	< 0.0219 U	< 0.0135 U	< 0.00304 UJ	< 0.0112 UJ	< 0.149 U	0.0438 J
WHC1-BP03	NORM	10/23/2008	< 0.0196 U	0.00108	< 0.0158 U	< 0.0169 U	< 0.02 U	< 0.0127 U	< 0.00158 UJ	< 0.0104 UJ	< 0.138 U	< 0.0119 UJ
WHC1-BP03R	FD	10/23/2008	< 0.0212 U	0.00123	< 0.0165 U	< 0.0181 U	< 0.0215 U	< 0.0135 U	< 0.00165 UJ	< 0.0112 UJ	< 0.147 U	< 0.0127 UJ
WHC1-BP04	NORM	10/23/2008	< 0.0196 U	0.00131	< 0.0154 U	< 0.0169 U	< 0.02 U	< 0.0123 U	< 0.00235 UJ	< 0.0104 UJ	< 0.137 U	< 0.0119 UJ
WHC1-BP06	NORM	10/23/2008	< 0.0196 U	0.00104	< 0.0154 U	< 0.0169 U	< 0.02 UJ	< 0.0123 U	< 0.00231 UJ	< 0.0104 U	< 0.137 U	< 0.0119 UJ
WHC1-BP06R	FD	10/23/2008	< 0.0196 U	0.00108	< 0.0158 U	< 0.0169 U	< 0.02 UJ	< 0.0127 U	< 0.00269 UJ	< 0.0104 U	< 0.138 U	< 0.0119 UJ
WHC1-BP07	NORM	10/23/2008	< 0.02 U	< 0.00104 U	< 0.0158 U	< 0.0173 U	< 0.0204 UJ	< 0.0127 U	< 0.00177 UJ	< 0.0108 U	< 0.14 U	< 0.0119 UJ
WHC1-BP08	NORM	10/23/2008	< 0.0204 U	0.00169	< 0.0162 U	< 0.0177 U	< 0.0208 UJ	< 0.0131 U	< 0.00158 UJ	< 0.0108 U	< 0.143 U	< 0.0123 UJ
WHC1-BP09	NORM	10/23/2008	0.0304 J-	0.00138	< 0.0158 U	< 0.0173 U	0.0242 J	< 0.0127 U	< 0.00185 UJ	< 0.0104 U	< 0.139 U	< 0.0119 UJ
WHC1-BP10	NORM	10/23/2008	< 0.0196 UJ	0.00123	< 0.0158 U	< 0.0169 U	< 0.02 UJ	< 0.0127 U	< 0.0015 UJ	< 0.0104 U	< 0.138 U	< 0.0119 UJ
WHC1-D02	NORM	10/21/2008	< 0.0242 U	< 0.00635 U	< 0.0192 U	< 0.0212 U	< 0.025 UJ	< 0.0154 U	< 0.0222 UJ	< 0.0127 U	< 0.17 U	< 0.0146 UJ
WHC1-D04	NORM	10/21/2008	< 0.0196 U	0.00131 J	< 0.0158 U	< 0.0169 U	< 0.02 UJ	< 0.0127 U	< 0.00223 UJ	< 0.0104 U	< 0.138 U	< 0.0119 UJ
WHC1-D06 WHC1-D08	NORM	10/21/2008	< 0.0219 UJ	0.00215 J	< 0.0173 U	0.0219 J-	< 0.0223 UJ	< 0.0138 U	< 0.00581 UJ	0.0323 J	< 0.154 U < 0.143 U	< 0.0131 UJ
WHC1-D08	NORM NORM	10/21/2008 10/21/2008	< 0.0204 U	0.0045 J	< 0.0162 U	< 0.0177 U	< 0.0208 UJ < 0.0208 UJ	< 0.0131 U < 0.0131 U	< 0.00431 UJ < 0.00388 U	0.0335 J 0.0112 J		< 0.0123 UJ
WHC1-D09			< 0.0204 UJ	0.00208 J	< 0.0162 U	< 0.0177 U	< 0.0208 UJ < 0.0212 UJ				< 0.143 U	0.0312 J < 0.0123 UJ
WHC1-D15	NORM NORM	10/21/2008 10/21/2008	< 0.0208 UJ < 0.0215 UJ	0.00212 J 0.00573 J	< 0.0165 U < 0.0173 U	< 0.0181 U 0.12 J-	< 0.0212 UJ < 0.0219 UJ	< 0.0131 U < 0.0138 U	< 0.00458 U < 0.00231 UJ	< 0.0108 U < 0.0115 U	< 0.145 U < 0.152 U	< 0.0123 UJ < 0.0131 UJ
WHC1-D13	NORM	10/21/2008	< 0.0213 UJ < 0.0219 UJ	0.00373 J 0.00292 J	< 0.0173 U	0.12 J- 0.0488 J-	< 0.0219 UJ	< 0.0138 U	< 0.00231 UJ	0.236	< 0.132 U	0.0208 J-
WHC1-D17 WHC1-D19	NORM	10/21/2008	< 0.0219 UJ < 0.0196 U	0.00292 J 0.00142 J+	< 0.0173 U < 0.0154 U	< 0.102 U	< 0.0223 UJ	< 0.0138 U < 0.0123 U	< 0.00412 UJ	< 0.0104 UJ	< 0.134 U	< 0.0119 UJ
WHC1-D19	NORM	10/22/2008	< 0.0208 U	0.00142 J+ 0.00323 J+	< 0.0154 U	< 0.102 U	< 0.02 U	< 0.0123 U	< 0.00331 UJ	0.0165 J	< 0.137 U	0.0119 UJ 0.0135 J
WHC1-D23	NORM	10/22/2008	< 0.0204 U	< 0.00323 JT	< 0.0162 U	< 0.123 CJ < 0.0177 U	< 0.0212 U	< 0.0131 U	< 0.00233 UJ	< 0.0103 J	< 0.143 U	< 0.0133 J
WHC1-D23R	FD	10/22/2008	< 0.0196 U	< 0.00212 UJ	< 0.0162 U	< 0.0354 U	< 0.02 U	< 0.0131 U	< 0.00281 UJ	< 0.0108 UJ	< 0.142 U	< 0.0123 UJ
WHC1-D23K	NORM	10/22/2008	< 0.0204 U	0.00131	< 0.0162 U	0.0208 J	< 0.02 U	< 0.0123 U	< 0.00342 UJ	< 0.0104 UJ	< 0.137 U	0.0315 J
WHC1-D25	NORM	10/22/2008	< 0.02 U	0.00296	< 0.0152 U	< 0.103 UJ	< 0.0204 U	< 0.0131 U	< 0.004 UJ	0.0135 J	< 0.14 U	< 0.0119 UJ
WHC1-D27	NORM	10/23/2008	< 0.0212 UJ	< 0.00112 U	< 0.0169 U	< 0.0185 U	< 0.0219 UJ	< 0.0127 U	< 0.00162 UJ	0.0135 J	< 0.149 U	< 0.0127 UJ
WHC1-D28	NORM	10/23/2008	< 0.0204 UJ	0.00142	< 0.0162 U	< 0.0177 U	< 0.0208 UJ	< 0.0133 U	< 0.00185 UJ	< 0.0108 U	< 0.142 U	< 0.0127 UJ
WHC1-P03	NORM	10/22/2008	< 0.0192 U	< 0.002 UJ	< 0.015 U	< 0.0165 U	< 0.0196 U	< 0.0123 U	0.00527 J	0.0165 J	< 0.133 U	0.0238 J
WHC1-P04	NORM	10/22/2008	< 0.0192 UJ	0.00204 J+	< 0.0154 UJ	< 0.0165 UJ	< 0.0196 UJ	< 0.0123 UJ	< 0.00246 UJ	< 0.01 UJ	< 0.135 U	< 0.0115 UJ
WHC1-P05	NORM	10/22/2008	< 0.0196 U	< 0.001 U	< 0.0154 U	< 0.0169 U	< 0.02 U	< 0.0123 U	< 0.00204 UJ	< 0.0104 UJ	< 0.137 U	< 0.0119 UJ
WHC1-P06	NORM	10/22/2008	< 0.0192 U	0.00465 J	< 0.0154 U	< 0.0169 U	< 0.0196 U	< 0.0123 U	< 0.00262 UJ	1.03 J	< 0.136 U	< 0.0115 UJ

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 6 of 21)

							Surfac	e Flux				
Sample ID	Sample Type	Sample Date	',2-Dichlorobenzene	,,2-Dichloroethane	,2-Dichloropropane	,3,5-Trimethylbenzene	i,3-Dichlorobenzene	i,3-Dichloropropane	,4-Dichlorobenzene	,4-Dioxane	2,2-Dichloropropane	2-Hexanone
WHC1-P07	NORM	10/22/2008	< 0.0196 U	0.00146	< 0.0154 U	< 0.0169 U	< 0.02 U	< 0.0123 U	< 0.00162 UJ	< 0.0104 UJ	< 0.137 U	0.0138 J
WHC1-P08	NORM	10/21/2008	0.133 J-	0.00108 J	0.0658 J	< 0.0631 U	0.109 J	< 0.0465 U	< 0.00185 UJ	0.0454 J	< 0.509 U	< 0.0438 UJ
WHC1-P09	NORM	10/21/2008	< 0.0192 U	0.00127 J	< 0.015 U	< 0.0165 U	< 0.0196 UJ	< 0.0123 U	< 0.00296 UJ	< 0.01 U	< 0.133 U	< 0.0115 UJ
WHC1-P10	NORM	10/21/2008	< 0.0219 UJ	0.00419 J	< 0.0173 UJ	< 0.0188 UJ	< 0.0223 UJ	< 0.0138 UJ	< 0.00492 UJ	0.479 J	< 0.153 UJ	0.0154 J
WHC1-P11	NORM	10/22/2008	< 0.0192 U	0.00138 J+	< 0.0154 U	< 0.0935 UJ	< 0.0196 U	< 0.0123 U	< 0.00219 UJ	< 0.0104 UJ	< 0.136 U	0.0127 J
WHC1-P12	NORM	10/21/2008	< 0.0204 U	< 0.00108 U	< 0.0162 U	< 0.0177 U	< 0.0208 UJ	< 0.0131 U	< 0.00204 UJ	0.025 J	< 0.143 U	< 0.0123 UJ
WHC1-P13	NORM	10/21/2008	< 0.0208 UJ	0.00269 J	< 0.0165 U	< 0.0181 U	< 0.0212 UJ	< 0.0135 U	< 0.00365 UJ	< 0.0112 U	< 0.146 U	< 0.0127 UJ
WHC1-P16	NORM	10/22/2008	< 0.0196 U	0.00427	< 0.0154 U	< 0.0169 U	< 0.02 U	< 0.0123 U	< 0.00292 UJ	< 0.0104 UJ	< 0.137 U	< 0.0119 UJ
WHC1-P17	NORM	10/22/2008	< 0.02 U	0.00215	< 0.0158 U	< 0.0173 U	< 0.0204 U	< 0.0127 U	< 0.00258 UJ	< 0.0104 UJ	< 0.139 U	< 0.0119 UJ
WHC1-P18	NORM	10/22/2008	< 0.0196 U	< 0.00104 U	< 0.0158 U	< 0.0169 U	< 0.02 U	< 0.0127 U	< 0.00162 UJ	< 0.0104 UJ	< 0.138 U	0.0242 J

All units in μg/m², min⁻¹.

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 7 of 21)

							Surfac	e Flux				
Sample ID	Sample Type	Sample Date	4-Methyl-2-pentanone (MIBK)	Acetone	Acetonitrile	Benzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene
OSC1-BO11	NORM	8/5/2010	< 0.0112 U	0.411	< 0.0135 U	< 0.0181 U	< 0.00962 U	< 0.01 U	< 0.0158 U	< 0.0208 U	< 0.0035 UJ	< 0.0181 U
OSC1-BP11	NORM	8/5/2010	< 0.0158 U	1.56	< 0.0188 U	< 0.0246 U	< 0.0138 U	< 0.0142 U	< 0.0223 U	0.469	< 0.00254 U	< 0.0258 U
OSC1-JP06	NORM	8/4/2010	< 0.0158 UJ	0.497	< 0.0188 UJ	0.0219 J	< 0.0135 U	< 0.0138 UJ	< 0.0223 U	0.366	0.012 J+	< 0.0258 U
OSC1-JP08	NORM	8/5/2010	< 0.0108 U	0.636	< 0.0131 U	< 0.0185 U	< 0.00923 U	< 0.00962 U	< 0.0154 U	< 0.0108 U	0.0122 J	< 0.0177 U
WHC1-BJ01	NORM	10/22/2008	0.0192 J	1.6 J	< 0.0131 U	0.222	< 0.0169 U	< 0.0304 UJ	< 0.0127 U	< 0.00885 U	0.00288	< 0.0146 U
WHC1-BJ02	NORM	10/22/2008	< 0.0123 U	< 0.09 UJ	< 0.0131 U	< 0.0215 U	< 0.0173 U	< 0.0312 UJ	< 0.0131 U	0.0719 J	0.00412	< 0.015 U
WHC1-BJ03	NORM	10/22/2008	0.0269 J	1.35 J	< 0.0127 U	< 0.0292 UJ	< 0.0169 UJ	< 0.03 UJ	< 0.0127 U	< 0.00885 U	0.00342	< 0.0146 UJ
WHC1-BJ04	NORM	10/22/2008	< 0.0269 U	< 0.607 UJ	< 0.0131 U	< 0.0292 U	< 0.0169 U	< 0.0304 UJ	< 0.0127 U	< 0.00885 U	0.00535 J+	< 0.015 U
WHC1-BK01	NORM	10/23/2008	< 0.0123 U	0.158 J	< 0.0135 U	< 0.0219 U	< 0.0177 U	< 0.0315 UJ	< 0.0131 U	< 0.00923 UJ	0.0217 J	< 0.0154 U
WHC1-BK04	NORM	10/22/2008	< 0.0162 U	< 0.231 UJ	< 0.0131 U	< 0.0331 U	< 0.0169 U	< 0.0304 UJ	< 0.0127 U	< 0.00885 U	0.00535 J+	< 0.0146 U
WHC1-BL01	NORM	10/23/2008	< 0.0123 U	0.137 J	< 0.0131 U	< 0.0223 U	< 0.0173 U	< 0.0312 UJ	< 0.0131 U	< 0.00885 UJ	0.00573	< 0.015 U
WHC1-BL03	NORM	10/23/2008	< 0.0119 U	0.245 J	< 0.0131 U	< 0.0177 U	< 0.0173 U	< 0.0308 U	< 0.0131 U	< 0.00885 UJ	0.00404	< 0.015 U
WHC1-BL04	NORM	10/22/2008	0.101	< 1.08 UJ	< 0.0131 U	0.288	< 0.0173 U	< 0.0308 UJ	< 0.0131 U	< 0.00885 U	0.00796 J+	< 0.015 U
WHC1-BL06	NORM	10/24/2008	< 0.0135 UJ	1.67	0.314	< 0.0381 UJ	< 0.0192 UJ	< 0.0342 UJ	< 0.0146 U	0.0227 J	0.00473	< 0.0169 UJ
WHC1-BL07	NORM	10/24/2008	0.0215 J	0.411 J	< 0.0142 U	0.0373 J	< 0.0188 U	< 0.0335 UJ	< 0.0142 U	< 0.00962 U	< 0.0025 U	< 0.0165 U
WHC1-BL08	NORM	10/24/2008	0.0192 J	0.769 J	< 0.0138 U	0.0335 J	< 0.0181 U	< 0.0327 UJ	< 0.0138 U	< 0.00923 U	< 0.00208 U	< 0.0158 U
WHC1-BL11	NORM	10/23/2008	< 0.0127 U	1.31 J	< 0.0138 U	< 0.0288 U	< 0.0181 U	< 0.0327 UJ	< 0.0138 U	< 0.00923 UJ	0.0035	< 0.0158 U
WHC1-BM01	NORM	10/23/2008	< 0.0127 U	0.194 J	< 0.0138 U	< 0.0208 U	< 0.0177 U	< 0.0319 UJ	< 0.0135 U	< 0.00923 UJ	0.00542 J	< 0.0158 U
WHC1-BM03	NORM	10/22/2008	< 0.0119 U	0.285 J	< 0.0131 U	< 0.0304 U	< 0.0169 U	< 0.0304 UJ	< 0.0127 U	< 0.00885 U	0.00585 J	< 0.015 U
WHC1-BM04	NORM	10/22/2008	< 0.0138 U	< 0.616 UJ	< 0.0131 U	< 0.0296 U	< 0.0173 U	< 0.0312 UJ	< 0.0131 U	< 0.00885 U	0.00438 J+	< 0.015 U
WHC1-BM06	NORM	10/24/2008	< 0.0131 UJ	1.36	0.0965	0.0758 J	< 0.0185 U	< 0.0335 U	< 0.0138 U	0.0196 J	0.00446	< 0.0162 U
WHC1-BM07	NORM	10/24/2008	< 0.0131 UJ	0.784	0.134	< 0.0227 UJ	< 0.0188 UJ	< 0.0335 UJ	< 0.0142 U	0.0488	< 0.002 U	< 0.0165 UJ
WHC1-BM08	NORM	10/24/2008	< 0.0123 U	0.525 J	< 0.0135 U	< 0.0269 U	< 0.0177 U	< 0.0319 UJ	< 0.0135 U	< 0.00923 U	< 0.00258 U	< 0.0154 U
WHC1-BM09	NORM	10/23/2008	< 0.0127 U	0.577 J	< 0.0138 U	< 0.0258 U	< 0.0181 U	< 0.0327 UJ	< 0.0138 U	< 0.00923 U	0.00377	< 0.0158 U
WHC1-BM10	NORM	10/23/2008	< 0.0123 U	0.166 J	0.0192 J	< 0.0142 U	< 0.0177 U	< 0.0319 UJ	< 0.0135 U	< 0.03 U	0.00554	< 0.0154 U
WHC1-BN01	NORM	10/23/2008	< 0.0131 U	0.444 J	< 0.0142 U	0.0958	< 0.0185 U	< 0.0335 UJ	< 0.0138 U	< 0.00962 U	0.00904	< 0.0162 U
WHC1-BN01R	FD	10/23/2008	< 0.0123 U	0.533	< 0.0135 U	0.0227 J	< 0.0177 U	< 0.0319 U	< 0.0135 U	< 0.00923 U	0.00835	< 0.0154 U
WHC1-BN06	NORM	10/24/2008	< 0.0131 UJ	0.271	< 0.0142 U	< 0.0304 U	< 0.0185 U	< 0.0331 U	< 0.0138 U	0.0154 J	< 0.00331 U	< 0.0162 U
WHC1-BN08	NORM	10/23/2008	0.0285 J	< 1.09 UJ	< 0.0142 U	< 0.0627 U	< 0.0188 U	< 0.0335 UJ	< 0.0142 U	< 0.00962 U	< 0.00169 U	< 0.0165 U
WHC1-BN09	NORM	10/23/2008	< 0.0135 U	< 0.545 UJ	< 0.0146 U	< 0.0462 U	< 0.0192 U	< 0.0346 UJ	< 0.0146 U	< 0.01 U	0.00565 J	< 0.0169 U
WHC1-BN10	NORM	10/23/2008	< 0.0123 U	< 0.152 UJ	< 0.0131 U	< 0.0304 U	< 0.0173 U	< 0.0312 UJ	< 0.0131 U	< 0.00885 U	0.00465 J	< 0.015 U
WHC1-BN10R	FD	10/23/2008	< 0.0123 U	< 0.0985 UJ	< 0.0135 U	< 0.0135 U	< 0.0177 U	< 0.0315 UJ	< 0.0131 U	< 0.00923 U	0.00527	< 0.0154 U
WHC1-BO01	NORM	10/23/2008	< 0.0131 U	0.116 J	0.0192 J	< 0.0312 U	< 0.0185 U	< 0.0331 UJ	< 0.0138 U	< 0.0231 UJ	0.00435	< 0.0162 U
WHC1-BO04	NORM	10/23/2008	< 0.0123 U	0.286 J	< 0.0135 U	< 0.0196 U	< 0.0177 U	< 0.0319 UJ	< 0.0135 U	< 0.00923 UJ	0.00615	< 0.0154 U
WHC1-BO06	NORM	10/23/2008	< 0.0123 UJ	< 0.173 U	0.025 J	< 0.0373 U	< 0.0177 U	< 0.0315 U	< 0.0131 U	< 0.00923 U	0.00331 J	< 0.0154 U

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 8 of 21)

							Surfac	ce Flux				
Sample ID	Sample Type	Sample Date	4-Methyl-2-pentanone (MIBK)	Acetone	Acetonitrile	Benzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene
WHC1-BO07	NORM	10/23/2008	0.0323 J	0.866 J	< 0.0146 U	< 0.0327 U	< 0.0188 U	< 0.0338 UJ	< 0.0142 U	< 0.00962 U	0.0102 J	< 0.0165 U
WHC1-BO08	NORM	10/23/2008	< 0.0135 U	0.519 J	0.135	< 0.035 U	< 0.0188 U	< 0.0338 UJ	< 0.0142 U	0.113	0.00546	< 0.0165 U
WHC1-BO09	NORM	10/23/2008	< 0.0127 UJ	< 0.0888 U	< 0.0138 U	< 0.0254 U	< 0.0177 U	< 0.0319 U	< 0.0135 U	0.0123 J	0.00423	< 0.0158 U
WHC1-BO10	NORM	10/23/2008	< 0.0123 UJ	0.161 J	0.0135 J	< 0.0146 UJ	< 0.0173 UJ	< 0.0312 UJ	< 0.0131 U	0.0585 J-	0.00554	< 0.0154 UJ
WHC1-BP01	NORM	10/23/2008	< 0.0131 U	0.825 J	< 0.0142 U	< 0.0462 U	< 0.0185 U	< 0.0335 UJ	< 0.0138 U	< 0.00962 UJ	0.00242	< 0.0162 U
WHC1-BP02	NORM	10/23/2008	0.0346 J	1.91 J	< 0.0146 U	< 0.0404 U	< 0.0188 U	< 0.0342 UJ	< 0.0142 U	< 0.01 UJ	0.00342 J	< 0.0165 U
WHC1-BP03	NORM	10/23/2008	< 0.0123 U	0.145 J	< 0.0135 U	< 0.0185 U	< 0.0177 U	< 0.0315 UJ	< 0.0131 U	< 0.00923 UJ	0.00469	< 0.0154 U
WHC1-BP03R	FD	10/23/2008	0.0162 J	0.637 J	< 0.0142 U	0.0815	< 0.0188 U	< 0.0335 UJ	< 0.0142 U	< 0.00962 UJ	0.00273 J	< 0.0165 U
WHC1-BP04	NORM	10/23/2008	0.0127 J	0.247 J	< 0.0135 U	< 0.0188 U	< 0.0173 U	< 0.0312 UJ	< 0.0131 U	< 0.00885 UJ	0.00419	< 0.0154 U
WHC1-BP06	NORM	10/23/2008	< 0.0123 UJ	< 0.165 U	0.0188 J	< 0.0431 U	< 0.0173 U	< 0.0312 U	< 0.0131 U	0.0112 J	0.00346	< 0.0154 U
WHC1-BP06R	FD	10/23/2008	< 0.0123 UJ	< 0.223 U	0.0185 J	< 0.0404 U	< 0.0177 U	< 0.0315 U	< 0.0131 U	< 0.00923 U	0.00312	< 0.0154 U
WHC1-BP07	NORM	10/23/2008	< 0.0127 UJ	< 0.168 U	0.0196 J	< 0.0423 U	< 0.0177 U	< 0.0319 U	< 0.0135 U	0.0512	0.00362	< 0.0158 U
WHC1-BP08	NORM	10/23/2008	< 0.0127 UJ	< 0.192 U	0.015 J	< 0.035 U	< 0.0181 U	< 0.0327 U	< 0.0138 U	< 0.00923 U	0.00569	< 0.0158 U
WHC1-BP09	NORM	10/23/2008	< 0.0123 UJ	< 0.12 UJ	0.0492 J	< 0.0492 U	< 0.0177 U	< 0.0319 UJ	< 0.0135 U	0.00962 J	0.00658	< 0.0154 U
WHC1-BP10	NORM	10/23/2008	< 0.0123 UJ	0.128	0.169	< 0.0331 U	< 0.0177 U	< 0.0315 U	< 0.0131 U	0.117	0.00619 J	< 0.0154 U
WHC1-D02	NORM	10/21/2008	< 0.0154 UJ	0.285	0.0762 J	< 0.0446 U	< 0.0215 U	< 0.0388 U	< 0.0165 U	0.045 J	0.0164	< 0.0188 U
WHC1-D04	NORM	10/21/2008	< 0.0123 UJ	0.256	0.0158 J	< 0.0288 U	< 0.0177 U	< 0.0315 U	< 0.0131 U	0.00962 J	0.00619 J	< 0.0154 U
WHC1-D06	NORM	10/21/2008	< 0.0138 UJ	< 0.668 U	< 0.15 U	< 0.0612 U	< 0.0196 U	< 0.035 U	< 0.0146 U	0.0173 J	0.00519 J	< 0.0173 U
WHC1-D08	NORM	10/21/2008	0.0165 J	0.545	0.0696	< 0.0642 U	< 0.0181 U	< 0.0327 U	< 0.0138 U	0.107	0.00962 J	< 0.0158 U
WHC1-D09	NORM	10/21/2008	0.0185 J	0.987	0.177	< 0.0546 U	< 0.0181 U	< 0.0327 U	< 0.0138 U	0.349	0.00592 J	< 0.0158 U
WHC1-D13	NORM	10/21/2008	< 0.0131 UJ	0.183	0.0285 J	< 0.0265 U	< 0.0185 U	< 0.0331 U	< 0.0138 U	0.01 J	0.0149	< 0.0162 U
WHC1-D15	NORM	10/21/2008	0.0146 J-	1.35	< 0.292 U	< 0.112 U	< 0.0192 U	< 0.0346 U	< 0.0146 U	0.0396 J	0.00415 J	< 0.0169 U
WHC1-D17	NORM	10/21/2008	0.0181 J-	1.5	0.67	< 0.085 U	< 0.0196 U	< 0.035 U	< 0.0146 U	0.0465 J	0.00281 J	< 0.0173 U
WHC1-D19	NORM	10/22/2008	< 0.0273 U	< 0.492 UJ	< 0.0135 U	< 0.0285 U	< 0.0173 U	< 0.0312 UJ	< 0.0131 U	< 0.00885 U	0.00642 J+	< 0.0154 U
WHC1-D21	NORM	10/22/2008	< 0.0531 UJ	< 0.533 UJ	< 0.0142 U	< 0.0719 UJ	< 0.0185 U	< 0.0331 UJ	< 0.0138 U	< 0.00962 U	0.00423 J+	< 0.0162 U
WHC1-D23	NORM	10/22/2008	< 0.0127 U	< 0.0915 UJ	< 0.0138 U	< 0.0273 U	< 0.0181 U	< 0.0323 UJ	< 0.0135 U	< 0.0312 U	< 0.00323 UJ	< 0.0158 U
WHC1-D23R	FD	10/22/2008	< 0.0123 U	< 0.291 UJ	< 0.0135 U	< 0.0254 U	< 0.0173 U	< 0.0312 UJ	< 0.0131 U	< 0.00885 U	0.00423	< 0.0154 U
WHC1-D24	NORM	10/22/2008	< 0.0127 U	< 0.455 UJ	< 0.0138 U	< 0.0288 U	< 0.0181 U	< 0.0327 UJ	< 0.0138 U	< 0.00923 U	0.00665	< 0.0158 U
WHC1-D25	NORM	10/22/2008	< 0.0438 UJ	< 0.617 UJ	< 0.0138 U	< 0.0988 UJ	< 0.0177 U	< 0.0319 UJ	< 0.0135 U	< 0.00923 U	0.00642	< 0.0158 U
WHC1-D27	NORM	10/23/2008	0.0235 J	1.39	0.597	< 0.0477 U	< 0.0188 U	< 0.0342 U	< 0.0142 U	0.0415 J	0.00281	< 0.0165 U
WHC1-D28	NORM	10/23/2008	< 0.0127 UJ	0.253	0.196	< 0.0404 U	< 0.0181 U	< 0.0323 U	< 0.0135 U	0.639	0.00896	< 0.0158 U
WHC1-P03	NORM	10/22/2008	0.0173 J	0.752 J	< 0.0131 U	< 0.0527 U	< 0.0169 U	< 0.0304 UJ	< 0.0127 U	< 0.00885 U	0.00873 J	< 0.015 U
WHC1-P04	NORM	10/22/2008	< 0.0119 UJ	0.433 J	< 0.0131 U	< 0.0169 UJ	< 0.0173 UJ	< 0.0308 UJ	< 0.0131 U	< 0.00885 U	0.00992 J+	< 0.015 UJ
WHC1-P05	NORM	10/22/2008	< 0.0123 U	0.32 J	< 0.0135 U	< 0.0131 U	< 0.0173 U	< 0.0312 UJ	< 0.0131 U	< 0.00885 U	0.00392	< 0.0154 U
WHC1-P06	NORM	10/22/2008	< 0.0123 U	< 0.0788 UJ	< 0.0131 U	< 0.02 U	< 0.0173 U	< 0.0312 UJ	< 0.0131 U	< 0.00885 U	0.0104 J	< 0.015 U

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 9 of 21)

							Surfac	e Flux				
Sample ID	Sample Type	Sample Date	4-Methyl-2-pentanone (MIBK)	Acetone	Acetonitrile	3enzene	Bromodichloromethane	3romoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene
WHC1-P07	NORM	10/22/2008	< 0.0123 U	0.324 J	< 0.0135 U	< 0.0227 U	< 0.0173 U	< 0.0312 UJ	< 0.0131 U	< 0.00885 U	0.00473	< 0.0154 U
WHC1-P08	NORM	10/21/2008	< 0.0458 UJ	0.911	0.254	< 0.119 U	< 0.065 U	< 0.117 U	< 0.0488 U	0.282	0.00454 J	< 0.0569 U
WHC1-P09	NORM	10/21/2008	< 0.0119 UJ	< 0.00692 U	< 0.0131 U	< 0.0338 U	< 0.0169 U	< 0.0304 U	< 0.0127 U	< 0.00885 U	0.00481 J	< 0.015 U
WHC1-P10	NORM	10/21/2008	0.1 J	0.272 J	< 0.015 UJ	< 0.0258 UJ	< 0.0196 UJ	< 0.035 UJ	< 0.0146 UJ	< 0.0415 UJ	0.00854 J	< 0.0169 UJ
WHC1-P11	NORM	10/22/2008	< 0.0308 UJ	< 0.484 UJ	< 0.0131 U	< 0.0412 UJ	< 0.0173 U	< 0.0312 UJ	< 0.0131 U	< 0.0173 UJ	0.00488 J+	< 0.015 U
WHC1-P12	NORM	10/21/2008	< 0.0127 UJ	0.341 J	0.06 J	< 0.0327 U	< 0.0181 U	< 0.0327 U	< 0.0138 U	0.0415 J	0.00385 J	< 0.0158 U
WHC1-P13	NORM	10/21/2008	< 0.0131 UJ	0.202	0.0727	< 0.0515 U	< 0.0185 U	< 0.0335 U	< 0.0138 U	0.202	0.009 J	< 0.0162 U
WHC1-P16	NORM	10/22/2008	< 0.0123 U	< 0.00692 UJ	< 0.0135 U	< 0.0231 U	< 0.0173 U	< 0.0312 UJ	< 0.0131 U	< 0.00885 U	0.0126	< 0.0154 U
WHC1-P17	NORM	10/22/2008	< 0.0123 U	0.251 J	0.102	< 0.0185 U	< 0.0177 U	< 0.0319 UJ	< 0.0135 U	0.0327 J	0.0107	< 0.0154 U
WHC1-P18	NORM	10/22/2008	0.0196 J	< 0.138 UJ	< 0.0135 U	< 0.0173 U	< 0.0177 U	< 0.0315 UJ	< 0.0131 U	< 0.00923 U	0.00492	< 0.0154 U

All units in μg/m², min⁻¹.

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 10 of 21)

							Surfac	ce Flux				
Sample ID	Sample Type	Sample Date	Chlorobromomethane	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Cymene (Isopropyltoluene)	Dibromochloromethane	Dibromochloropropane	Dibromomethane
OSC1-BO11	NORM	8/5/2010	< 0.01 U	< 0.0108 U	0.00662 J	0.0169 J	< 0.0158 U	< 0.0188 U	< 0.0135 UJ	< 0.00208 UJ	< 0.0141 UJ	< 0.00962 U
OSC1-BP11	NORM	8/5/2010	< 0.0142 U	< 0.015 U	0.00446 J	0.0135 J	< 0.0227 U	< 0.0265 U	< 0.0192 U	0.00315 J	< 0.0109 UJ	< 0.0135 U
OSC1-JP06	NORM	8/4/2010	< 0.0142 U	< 0.015 U	< 0.00681 U	0.0415 J	< 0.0223 U	< 0.0265 U	< 0.0192 UJ	< 0.00431 UJ	0.0335 J	< 0.0135 U
OSC1-JP08	NORM	8/5/2010	< 0.01 U	< 0.0104 U	0.00469 J	0.0565	< 0.0154 U	< 0.0185 U	< 0.0135 UJ	0.00285 J	< 0.0152 UJ	< 0.00923 U
WHC1-BJ01	NORM	10/22/2008	< 0.0142 U	< 0.00846 U	0.00288	< 0.00654 U	< 0.0127 U	< 0.015 U	< 0.0158 U	< 0.0015 UJ	< 0.00488 UJ	< 0.0196 U
WHC1-BJ02	NORM	10/22/2008	< 0.0146 U	0.0492	0.00231	0.0842	< 0.0131 U	< 0.0154 U	< 0.0162 U	< 0.00154 U	< 0.005 UJ	< 0.0204 U
WHC1-BJ03	NORM	10/22/2008	< 0.0142 U	< 0.00846 U	0.00227	< 0.00654 U	< 0.0127 U	< 0.015 UJ	< 0.0158 UJ	< 0.00146 U	< 0.00485 UJ	< 0.0196 UJ
WHC1-BJ04	NORM	10/22/2008	< 0.0146 U	< 0.00885 U	0.00258 J+	< 0.00654 U	< 0.0131 U	< 0.0154 U	0.0235 J	< 0.0015 UJ	< 0.00492 UJ	< 0.02 U
WHC1-BK01	NORM	10/23/2008	< 0.015 U	< 0.00885 U	0.051 J	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0165 U	< 0.00154 UJ	< 0.00508 UJ	< 0.0204 U
WHC1-BK04	NORM	10/22/2008	< 0.0142 U	< 0.00846 U	0.00335 J+	< 0.00654 U	< 0.0127 U	< 0.015 U	< 0.0158 U	< 0.0015 UJ	< 0.00488 UJ	< 0.0196 U
WHC1-BL01	NORM	10/23/2008	< 0.0146 U	< 0.00885 U	0.00508	< 0.00692 U	< 0.0131 U	< 0.0154 U	< 0.0162 U	< 0.00154 U	< 0.005 UJ	< 0.0204 U
WHC1-BL03	NORM	10/23/2008	< 0.0146 U	< 0.00885 U	0.00496	< 0.00692 U	< 0.0131 U	< 0.0154 U	< 0.0162 U	< 0.0015 U	< 0.00496 UJ	< 0.02 U
WHC1-BL04	NORM	10/22/2008	< 0.0146 U	< 0.00885 U	0.00519 J+	< 0.00692 U	< 0.0131 U	< 0.0154 U	< 0.0162 U	< 0.0015 UJ	< 0.00496 UJ	< 0.02 U
WHC1-BL06	NORM	10/24/2008	< 0.0162 U	0.0104 J	0.00877	0.0477	< 0.0146 U	< 0.0173 UJ	< 0.0177 UJ	< 0.00169 U	< 0.00554 UJ	< 0.0223 UJ
WHC1-BL07	NORM	10/24/2008	< 0.0158 U	< 0.00962 U	0.008	< 0.00731 U	< 0.0142 U	< 0.0169 U	< 0.0173 U	< 0.00165 U	< 0.00542 UJ	< 0.0219 U
WHC1-BL08	NORM	10/24/2008	< 0.0154 U	< 0.00923 U	0.011	< 0.00731 U	< 0.0138 U	< 0.0162 U	< 0.0169 U	< 0.00162 U	< 0.00527 UJ	< 0.0212 U
WHC1-BL11	NORM	10/23/2008	< 0.0154 U	< 0.00923 U	0.00338	< 0.00731 U	< 0.0138 U	< 0.0162 U	0.0285 J	< 0.00162 U	< 0.00527 UJ	< 0.0212 U
WHC1-BM01	NORM	10/23/2008	< 0.015 U	< 0.00923 U	0.00581 J	< 0.00692 U	< 0.0135 U	< 0.0162 U	< 0.0165 U	< 0.00158 UJ	< 0.00519 UJ	< 0.0208 U
WHC1-BM03	NORM	10/22/2008	< 0.0146 U	< 0.00885 U	0.00169 J+	< 0.00654 U	< 0.0131 U	< 0.0154 U	< 0.0158 U	< 0.0015 UJ	< 0.00492 UJ	< 0.02 U
WHC1-BM04	NORM	10/22/2008	< 0.0146 U	< 0.00885 U	0.00254 J+	< 0.00692 U	< 0.0131 U	< 0.0154 U	< 0.0162 U	< 0.00154 UJ	< 0.005 UJ	< 0.0204 U
WHC1-BM06	NORM	10/24/2008	< 0.0158 U	< 0.00962 U	0.0198	0.0365	< 0.0142 U	< 0.0165 U	0.0192 J	< 0.00165 U	< 0.00538 UJ	< 0.0215 U
WHC1-BM07	NORM	10/24/2008	< 0.0158 U	< 0.00962 U	0.00627	0.0173 J	< 0.0142 U	< 0.0169 UJ	< 0.0173 UJ	< 0.00165 U	< 0.00542 UJ	< 0.0219 UJ
WHC1-BM08	NORM	10/24/2008	< 0.015 U	< 0.00923 U	0.012	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0165 U	< 0.00158 U	< 0.00512 UJ	< 0.0208 U
WHC1-BM09	NORM	10/23/2008	< 0.0154 U	< 0.00923 U	0.00181	< 0.00731 U	< 0.0138 U	< 0.0162 U	< 0.0169 U	< 0.00162 U	< 0.00527 UJ	< 0.0212 U
WHC1-BM10	NORM	10/23/2008	< 0.015 U	< 0.00923 U	0.00358	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0165 U	< 0.00158 U	< 0.00512 UJ	< 0.0208 U
WHC1-BN01	NORM	10/23/2008	< 0.0158 U	< 0.00962 U	0.00419	< 0.00731 U	< 0.0142 U	< 0.0165 U	< 0.0173 U	< 0.00158 U	< 0.00512 U	< 0.0215 U
WHC1-BN01R	FD	10/23/2008	< 0.015 U	< 0.00923 U	0.00842	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0165 U	< 0.00165 U	< 0.00538 UJ	< 0.0208 U
WHC1-BN06	NORM	10/24/2008	< 0.0158 U	< 0.00962 U	< 0.00365 U	0.00731 J	< 0.0142 U	< 0.0165 U	< 0.0173 U	< 0.00162 U	< 0.00535 UJ	< 0.0215 U
WHC1-BN08	NORM	10/23/2008	< 0.0158 U	< 0.00962 U	0.00258	< 0.00731 U	< 0.0142 U	< 0.0169 U	< 0.0173 U	< 0.00165 U	< 0.00542 UJ	< 0.0219 U
WHC1-BN09	NORM	10/23/2008	< 0.0165 U	< 0.01 U	0.00219 J	< 0.00769 U	< 0.0146 U	< 0.0173 U	< 0.0181 U	< 0.00169 UJ	< 0.00558 UJ	< 0.0227 U
WHC1-BN10	NORM	10/23/2008	< 0.0146 U	< 0.00885 U	0.00219 J	< 0.00692 U	< 0.0131 U	< 0.0154 U	< 0.0162 U	< 0.00304 U	< 0.01 U	< 0.0204 U
WHC1-BN10R	FD	10/23/2008	< 0.015 U	< 0.00885 U	0.00169	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0165 U	< 0.00154 U	< 0.00508 UJ	< 0.0204 U
WHC1-BO01	NORM	10/23/2008	< 0.0158 U	< 0.00962 U	0.00288	0.0177 J	< 0.0142 U	< 0.0165 U	< 0.0173 U	< 0.00162 U	< 0.00535 UJ	< 0.0215 U
WHC1-BO04	NORM	10/23/2008	< 0.015 U	< 0.00923 U	0.00377	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0165 U	< 0.00158 U	< 0.00512 UJ	< 0.0208 U
WHC1-BO06	NORM	10/23/2008	< 0.015 U	< 0.00885 U	0.00585 J	0.0181 J	< 0.0135 U	< 0.0158 U	< 0.0165 U	< 0.00154 UJ	< 0.00508 UJ	< 0.0204 U
ICI D000	1101011	10/23/2000	V 0.013 O	. 0.00005 0	3.00303 3	0.01013	10.0133 0	10.0130 0	10.0105 0	10.0015105	10.00500 03	10.02010

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 11 of 21)

							Surfac	ce Flux				
Sample ID	Sample Type	Sample Date	Chlorobromomethane	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Cymene (Isopropyltoluene)	Dibromochloromethane	Dibromochloropropane	Dibromomethane
WHC1-BO07	NORM	10/23/2008	< 0.0162 U	< 0.00962 U	0.00492	< 0.00731 U	< 0.0142 U	< 0.0169 U	< 0.0177 U	< 0.00165 UJ	< 0.00546 UJ	< 0.0219 U
WHC1-BO08	NORM	10/23/2008	< 0.0162 U	< 0.00962 U	0.00327 J	0.0158 J	< 0.0142 U	< 0.0169 U	< 0.0177 U	< 0.00165 U	< 0.00546 UJ	< 0.0219 U
WHC1-BO09	NORM	10/23/2008	< 0.015 U	< 0.00923 U	0.00304	0.00923 J	< 0.0135 U	< 0.0162 U	< 0.0165 U	< 0.00158 U	< 0.00519 UJ	< 0.0208 U
WHC1-BO10	NORM	10/23/2008	< 0.015 U	< 0.00885 U	0.00188	0.00769 J	< 0.0135 U	< 0.0158 UJ	< 0.0162 UJ	< 0.00127 U	< 0.00419 UJ	< 0.0204 UJ
WHC1-BP01	NORM	10/23/2008	< 0.0158 U	< 0.00962 U	0.00196	< 0.00731 U	< 0.0142 U	< 0.0165 U	< 0.0173 U	< 0.00165 U	< 0.00538 UJ	< 0.0215 U
WHC1-BP02	NORM	10/23/2008	< 0.0162 U	< 0.00962 U	0.00208	< 0.00731 U	< 0.0146 U	< 0.0169 U	< 0.0177 U	< 0.00169 UJ	< 0.0055 UJ	< 0.0223 U
WHC1-BP03	NORM	10/23/2008	< 0.015 U	< 0.00885 U	0.00258	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0165 U	< 0.00154 U	< 0.00508 UJ	< 0.0204 U
WHC1-BP03R	FD	10/23/2008	< 0.0158 U	< 0.00962 U	0.00235	< 0.00731 U	< 0.0142 U	< 0.0169 U	< 0.0173 U	< 0.00165 UJ	< 0.00542 UJ	< 0.0219 U
WHC1-BP04	NORM	10/23/2008	< 0.015 U	< 0.00885 U	0.00292	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0162 U	< 0.00154 UJ	< 0.00504 UJ	< 0.0204 U
WHC1-BP06	NORM	10/23/2008	< 0.015 U	< 0.00885 U	0.00423	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0162 U	< 0.00154 U	< 0.00504 UJ	< 0.0204 U
WHC1-BP06R	FD	10/23/2008	< 0.015 U	< 0.00885 U	0.00388	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0165 U	< 0.00154 U	< 0.00508 UJ	< 0.0204 U
WHC1-BP07	NORM	10/23/2008	< 0.015 U	< 0.00923 U	0.0035	0.0704	< 0.0135 U	< 0.0162 U	< 0.0165 U	< 0.00158 U	< 0.00519 UJ	< 0.0208 U
WHC1-BP08	NORM	10/23/2008	< 0.0154 U	< 0.00923 U	0.00788	0.0196 J	< 0.0138 U	< 0.0162 U	< 0.0169 U	< 0.00162 U	< 0.00527 UJ	< 0.0212 U
WHC1-BP09	NORM	10/23/2008	< 0.015 U	< 0.00923 U	0.00358	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0165 U	< 0.00158 UJ	< 0.00512 UJ	< 0.0208 U
WHC1-BP10	NORM	10/23/2008	< 0.015 U	< 0.00885 U	0.00212	0.0138 J	< 0.0135 U	< 0.0158 U	< 0.0165 U	< 0.00154 U	< 0.00508 UJ	< 0.0204 U
WHC1-D02	NORM	10/21/2008	< 0.0185 U	< 0.0112 U	< 0.00758 U	0.0435	< 0.0165 U	< 0.0196 U	< 0.0204 U	< 0.00958 U	< 0.0314 UJ	< 0.0254 U
WHC1-D04	NORM	10/21/2008	< 0.015 U	< 0.00885 U	0.00342 J	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0165 U	< 0.00154 UJ	< 0.00508 UJ	< 0.0204 U
WHC1-D06	NORM	10/21/2008	< 0.0165 U	< 0.01 U	0.0207	0.147	< 0.015 U	< 0.0177 U	< 0.0181 U	< 0.00173 U	< 0.00565 UJ	< 0.0227 U
WHC1-D08	NORM	10/21/2008	< 0.0154 U	< 0.00923 U	0.0192 J	0.0212 J	< 0.0138 U	< 0.0162 U	< 0.0169 U	< 0.00162 UJ	< 0.00527 UJ	< 0.0212 U
WHC1-D09	NORM	10/21/2008	< 0.0154 U	< 0.00923 U	0.0134	0.106	< 0.0138 U	< 0.0162 U	< 0.0169 U	< 0.00162 U	< 0.00527 UJ	< 0.0212 U
WHC1-D13	NORM	10/21/2008	< 0.0158 U	< 0.00962 U	0.00446 J	0.00769 J	< 0.0142 U	< 0.0165 U	< 0.0173 U	< 0.00162 U	< 0.00535 UJ	< 0.0215 U
WHC1-D15	NORM	10/21/2008	< 0.0165 U	0.0192 J	0.00665 J	0.12	< 0.0146 U	< 0.0173 U	< 0.0181 U	< 0.00169 UJ	< 0.00558 UJ	< 0.0227 U
WHC1-D17	NORM	10/21/2008	< 0.0165 U	0.0108 J	0.00938 J	0.812	0.0935	< 0.0177 U	< 0.0181 U	< 0.00173 UJ	< 0.00565 UJ	< 0.0227 U
WHC1-D19	NORM	10/22/2008	< 0.015 U	< 0.00885 U	0.00773 J+	< 0.00692 U	< 0.0135 U	< 0.0158 U	0.0373 J	< 0.00154 UJ	< 0.00504 UJ	< 0.0204 U
WHC1-D21	NORM	10/22/2008	< 0.0158 U	< 0.00962 U	0.00262 J+	< 0.00731 U	< 0.0142 U	< 0.0165 U	0.0404 J+	< 0.00162 UJ	< 0.00535 UJ	< 0.0215 U
WHC1-D23	NORM	10/22/2008	< 0.0154 U	< 0.00923 U	0.00292 J	< 0.00692 U	< 0.0138 U	< 0.0162 U	< 0.0169 U	< 0.00319 UJ	< 0.0104 UJ	< 0.0212 U
WHC1-D23R	FD	10/22/2008	< 0.015 U	< 0.00885 U	0.00231	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0162 U	< 0.00154 U	< 0.00504 UJ	< 0.0204 U
WHC1-D24	NORM	10/22/2008	< 0.0154 U	< 0.00923 U	0.00319	< 0.00731 U	< 0.0138 U	< 0.0162 U	< 0.0169 U	< 0.00162 U	< 0.00527 UJ	< 0.0212 U
WHC1-D25	NORM	10/22/2008	< 0.015 U	< 0.00923 U	0.00196	< 0.00692 U	< 0.0135 U	< 0.0162 U	0.0319 J+	< 0.00158 U	< 0.00519 UJ	< 0.0208 U
WHC1-D27	NORM	10/23/2008	< 0.0162 U	< 0.00962 U	0.00258	0.00923 J	< 0.0146 U	< 0.0169 U	< 0.0177 U	< 0.00169 UJ	< 0.0055 UJ	< 0.0223 U
WHC1-D28	NORM	10/23/2008	< 0.0154 U	< 0.00923 U	0.00569	0.0265 J	< 0.0138 U	< 0.0162 U	< 0.0169 U	< 0.00158 U	< 0.00523 UJ	< 0.0212 U
WHC1-P03	NORM	10/22/2008	< 0.0146 U	< 0.00885 U	< 0.00238 UJ	< 0.00654 U	< 0.0131 U	< 0.0154 U	< 0.0158 U	< 0.003 UJ	< 0.00985 UJ	< 0.02 U
WHC1-P04	NORM	10/22/2008	< 0.0146 U	< 0.00885 U	0.00854 J+	< 0.00692 U	< 0.0131 U	< 0.0154 UJ	0.0327 J	< 0.0015 UJ	< 0.00496 UJ	< 0.02 UJ
WHC1-P05	NORM	10/22/2008	< 0.015 U	< 0.00885 U	< 0.00123 U	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0162 U	< 0.00154 U	< 0.00504 UJ	< 0.0204 U
WHC1-P06	NORM	10/22/2008	< 0.0146 U	< 0.00885 U	0.00354 J	< 0.00692 U	< 0.0131 U	< 0.0154 U	< 0.0162 U	< 0.00154 UJ	< 0.005 UJ	< 0.0204 U

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 12 of 21)

							Surfac	e Flux				
Sample ID	Sample Type	Sample Date	Chlorobromomethane	Chloroethane	hloroform	hloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Cymene (Isopropyltoluene)	ibromochloromethane	Sibromochloropropane)i bromomethane
WHC1-P07	NORM	10/22/2008	< 0.015 U	< 0.00885 U	0.00277	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0162 U	< 0.00154 U	< 0.00504 UJ	< 0.0204 U
WHC1-P08	NORM	10/21/2008	< 0.055 U	< 0.0331 U	0.00215 J	< 0.0254 U	< 0.0496 U	< 0.0585 U	< 0.0604 U	< 0.00154 UJ	< 0.005 UJ	< 0.0758 U
WHC1-P09	NORM	10/21/2008	< 0.0146 U	< 0.00885 U	0.00212 J	< 0.00654 U	< 0.0131 U	< 0.0154 U	< 0.0158 U	< 0.0015 UJ	< 0.00492 UJ	< 0.02 U
WHC1-P10	NORM	10/21/2008	< 0.0165 UJ	< 0.01 UJ	0.00792 J	0.0404 J	< 0.0146 UJ	< 0.0173 UJ	< 0.0181 UJ	< 0.00173 UJ	< 0.00562 UJ	< 0.0227 UJ
WHC1-P11	NORM	10/22/2008	< 0.0146 U	< 0.00885 U	0.00404 J+	< 0.00692 U	< 0.0131 U	< 0.0154 U	0.0331 J+	< 0.00154 UJ	< 0.005 UJ	< 0.0204 U
WHC1-P12	NORM	10/21/2008	< 0.0154 U	< 0.00923 U	0.00227 J	0.0181 J	< 0.0138 U	< 0.0162 U	< 0.0169 U	< 0.00162 U	< 0.00527 UJ	< 0.0212 U
WHC1-P13	NORM	10/21/2008	< 0.0158 U	< 0.00962 U	0.00892 J	0.025 J	< 0.0142 U	< 0.0165 U	< 0.0173 U	< 0.00165 UJ	< 0.00538 UJ	< 0.0215 U
WHC1-P16	NORM	10/22/2008	< 0.015 U	< 0.00885 U	0.00742	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0162 U	< 0.00154 U	< 0.00504 UJ	< 0.0204 U
WHC1-P17	NORM	10/22/2008	< 0.015 U	< 0.00923 U	0.00623	0.0204 J	< 0.0135 U	< 0.0158 U	< 0.0165 U	< 0.00158 U	< 0.00512 UJ	< 0.0208 U
WHC1-P18	NORM	10/22/2008	< 0.015 U	< 0.00885 U	0.0025	< 0.00692 U	< 0.0135 U	< 0.0158 U	< 0.0165 U	< 0.00154 UJ	< 0.00508 UJ	< 0.0204 U

All units in μg/m², min⁻¹.

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 13 of 21)

			Surface Flux											
Sample S	Sample Date	Dichloromethane (Methylene chloride)	Ethanol	Ethylbenzene	Freon-11 (Trichlorofluoromethane)	Freon-113 (1,1,2-Trifluoro 1,2,2-trichloroethane)	Freon-12 (Dichloro- difluoromethane)	Heptane	Hexachlorobutadiene	Isopropylbenzene	Methyl ethyl ketone (2-Butanone)			
OSC1-BO11 NORM 8	8/5/2010	< 0.0138 U	< 0.101 UJ	< 0.0177 U	< 0.0227 U	< 0.0304 U	< 0.02 U	0.0119 J	< 0.00596 UJ	< 0.0135 U	0.0623			
OSC1-BP11 NORM 8	8/5/2010	< 0.02 U	< 0.143 UJ	< 0.025 U	< 0.0323 U	< 0.0431 U	< 0.0288 U	< 0.0127 U	< 0.00435 UJ	< 0.0188 U	0.273			
OSC1-JP06 NORM 8	8/4/2010	< 0.0196 U	< 0.142 UJ	< 0.0246 U	< 0.0319 U	< 0.0427 U	0.0365 J	< 0.0127 U	< 0.015 UJ	< 0.0188 UJ	0.0858			
OSC1-JP08 NORM 8	8/5/2010	< 0.0138 U	< 0.0985 UJ	< 0.0173 U	0.0392 J	< 0.0296 U	0.0738 J	< 0.00885 U	< 0.00585 UJ	< 0.0131 U	0.195			
WHC1-BJ01 NORM 10	0/22/2008	< 0.0115 U	< 0.0146 UJ	< 0.0142 U	< 0.0185 U	< 0.0246 U	< 0.0165 U	0.145	< 0.00258 UJ	< 0.0146 U	< 0.00808 U			
WHC1-BJ02 NORM 10	0/22/2008	< 0.0115 U	0.125 J	< 0.0146 U	0.0273 J	< 0.0254 U	< 0.0169 U	0.0112 J	< 0.00273 UJ	0.0238 J	< 0.00808 U			
WHC1-BJ03 NORM 10	0/22/2008	< 0.0112 U	< 0.0142 UJ	< 0.0142 UJ	< 0.0181 U	< 0.0242 U	< 0.0162 U	0.0185 J	< 0.00258 UJ	< 0.0146 UJ	< 0.00808 U			
WHC1-BJ04 NORM 10	0/22/2008	< 0.0115 U	< 0.0146 UJ	< 0.0327 U	< 0.0185 U	< 0.025 U	< 0.0165 U	< 0.0331 U	R	< 0.139 U	< 0.00808 U			
WHC1-BK01 NORM 10	0/23/2008	< 0.0119 U	< 0.015 UJ	< 0.015 U	< 0.0192 U	< 0.0258 U	< 0.0169 U	< 0.0112 U	< 0.00269 UJ	< 0.0154 U	< 0.00846 U			
WHC1-BK04 NORM 10	0/22/2008	< 0.0115 U	< 0.0146 UJ	< 0.0142 U	< 0.0185 U	< 0.0246 U	< 0.0165 U	< 0.0358 U	R	< 0.0442 U	< 0.00808 U			
WHC1-BL01 NORM 10	0/23/2008	< 0.0115 U	< 0.015 UJ	< 0.0146 U	< 0.0188 U	< 0.0254 U	< 0.0169 U	< 0.0112 U	< 0.00265 UJ	< 0.015 U	< 0.00808 U			
WHC1-BL03 NORM 10	0/23/2008	< 0.0115 U	< 0.0146 UJ	< 0.0146 U	< 0.0188 U	< 0.025 U	< 0.0165 U	< 0.0112 U	< 0.00265 UJ	< 0.015 U	< 0.00808 U			
WHC1-BL04 NORM 10	0/22/2008	< 0.0115 U	< 0.0146 UJ	< 0.0262 U	< 0.0188 U	< 0.025 U	< 0.0165 U	< 0.177 U	R	< 0.0531 U	0.0196 J			
WHC1-BL06 NORM 10	0/24/2008	< 0.0131 U	0.403 J	< 0.0162 UJ	0.0219 J+	< 0.0281 U	0.0192 J+	< 0.0123 UJ	< 0.00296 UJ	< 0.0165 UJ	< 0.00923 U			
WHC1-BL07 NORM 10	0/24/2008	< 0.0127 U	< 0.0162 UJ	0.0215 J	< 0.0204 U	< 0.0273 U	< 0.0181 U	< 0.0119 U	< 0.00292 UJ	0.0185 J	< 0.00885 U			
WHC1-BL08 NORM 10	0/24/2008	< 0.0123 U	0.41 J	0.0346 J	< 0.0196 U	< 0.0265 U	< 0.0177 U	0.0258 J	< 0.00281 UJ	0.0385 J	0.00923 J			
WHC1-BL11 NORM 10	0/23/2008	< 0.0123 U	2.31 J	< 0.0154 U	< 0.0196 U	< 0.0265 U	< 0.0177 U	0.0246 J	< 0.00281 UJ	< 0.0158 U	< 0.00846 U			
WHC1-BM01 NORM 10	0/23/2008	< 0.0119 U	< 0.0154 UJ	< 0.015 U	< 0.0196 U	< 0.0262 U	< 0.0173 U	< 0.0115 U	< 0.00273 UJ	< 0.0158 U	< 0.00846 U			
WHC1-BM03 NORM 10	0/22/2008	< 0.0115 U	< 0.0146 UJ	< 0.0142 U	< 0.0185 U	< 0.025 U	< 0.0165 U	0.0181 J	R	< 0.015 U	< 0.00808 U			
WHC1-BM04 NORM 10	0/22/2008	< 0.0115 U	< 0.015 UJ	< 0.0146 U	< 0.0188 U	< 0.0254 U	< 0.0169 U	< 0.0327 U	< 0.0035 UJ	< 0.0269 U	< 0.00808 U			
WHC1-BM06 NORM 10	0/24/2008	0.0131 J	0.307 J	0.14	< 0.0204 U	< 0.0269 U	< 0.0181 U	0.0273 J	< 0.00288 UJ	0.26	< 0.00885 U			
WHC1-BM07 NORM 10	0/24/2008	0.0162 J	0.452 J	< 0.0158 UJ	< 0.0204 U	< 0.0273 U	< 0.0181 U	< 0.0119 UJ	< 0.00292 UJ	< 0.0162 UJ	< 0.00885 U			
WHC1-BM08 NORM 10	0/24/2008	< 0.0119 U	0.181 J	0.0254 J	< 0.0192 U	< 0.0258 U	< 0.0173 U	0.025 J	< 0.00385 UJ	0.0312 J	< 0.00846 U			
WHC1-BM09 NORM 10	0/23/2008	< 0.0123 U	1.4 J	< 0.0154 U	< 0.0196 U	< 0.0265 U	< 0.0177 U	0.0238 J	< 0.00281 UJ	< 0.0158 U	< 0.00846 U			
WHC1-BM10 NORM 10	0/23/2008	< 0.0119 U	0.0427 J	< 0.015 U	< 0.0192 U	< 0.0258 U	< 0.0173 U	< 0.0115 U	< 0.00273 UJ	< 0.0154 U	< 0.00846 U			
WHC1-BN01 NORM 10	0/23/2008	< 0.0127 U	< 0.0158 UJ	< 0.0158 U	< 0.0204 U	< 0.0269 U	< 0.0181 U	0.0154 J	< 0.00273 U	< 0.0162 U	< 0.00885 U			
WHC1-BN01R FD 10	0/23/2008	< 0.0119 U	< 0.0154 U	< 0.015 U	< 0.0192 U	< 0.0258 U	< 0.0173 U	0.0135 J	< 0.00285 UJ	< 0.0154 U	< 0.00846 U			
WHC1-BN06 NORM 10	0/24/2008	< 0.0123 U	0.04 J	< 0.0154 U	< 0.02 U	< 0.0269 U	< 0.0177 U	< 0.0119 U	< 0.00285 UJ	< 0.0162 U	< 0.00885 U			
WHC1-BN08 NORM 10	0/23/2008	< 0.0127 U	< 0.0162 UJ	< 0.0158 U	< 0.0204 U	< 0.0273 U	< 0.0181 U	< 0.0277 U	< 0.00288 UJ	< 0.0162 U	< 0.00885 U			
WHC1-BN09 NORM 10	0/23/2008	< 0.0131 U	< 0.0165 UJ	< 0.0162 U	< 0.0212 U	< 0.0281 U	< 0.0188 U	< 0.0435 U	< 0.00296 UJ	0.0362 J	< 0.00923 U			
WHC1-BN10 NORM 10	0/23/2008	< 0.0115 U	< 0.015 UJ	< 0.0146 U	< 0.0188 U	< 0.0254 U	< 0.0169 U	< 0.0112 U	< 0.00538 U	< 0.015 U	< 0.00808 U			
WHC1-BN10R FD 10	0/23/2008	< 0.0119 U	< 0.015 UJ	< 0.015 U	< 0.0192 U	< 0.0258 U	< 0.0169 U	< 0.0112 U	< 0.00269 UJ	< 0.0154 U	< 0.00846 U			
WHC1-BO01 NORM 10	0/23/2008	< 0.0123 U	0.0665 J	< 0.0154 U	< 0.02 U	< 0.0269 U	< 0.0177 U	0.0258 J	< 0.00285 UJ	< 0.0162 U	< 0.00885 U			
WHC1-BO04 NORM 10	0/23/2008	< 0.0119 U	< 0.0154 UJ	< 0.015 U	< 0.0192 U	< 0.0258 U	< 0.0173 U	< 0.0115 U	< 0.00273 UJ	< 0.0154 U	< 0.00846 U			
WHC1-BO06 NORM 10	0/23/2008	< 0.0119 U	0.0473 J-	< 0.015 U	< 0.0192 U	< 0.0258 U	< 0.0169 U	< 0.0112 U	< 0.00269 UJ	< 0.0154 U	< 0.00846 U			

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 14 of 21)

							Surfac	ce Flux				
Sample ID	Sample Type	Sample Date	Dichloromethane (Methylene chloride)	Ethanol	Ethylbenzene	Freon-11 (Trichlorofluoromethane)	Freon-113 (1,1,2-Trifluoro- 1,2,2-trichloroethane)	Freon-12 (Dichloro- difluoromethane)	Heptane	Hexachlorobutadiene	Isopropylbenzene	Methyl ethyl ketone (2-Butanone)
WHC1-BO07	NORM	10/23/2008	< 0.0127 U	< 0.0162 UJ	< 0.0158 U	< 0.0208 U	< 0.0277 U	< 0.0185 U	0.0238 J	< 0.00288 UJ	< 0.0165 U	< 0.00885 U
WHC1-BO08	NORM	10/23/2008	0.0227 J	0.136 J	< 0.0158 U	< 0.0208 U	< 0.0277 U	< 0.0185 U	0.0246 J	< 0.00288 UJ	< 0.0165 U	< 0.00885 U
WHC1-BO09	NORM	10/23/2008	< 0.0119 U	< 0.0154 UJ	< 0.015 U	< 0.0196 U	< 0.0262 U	< 0.0173 U	< 0.0115 U	< 0.00273 UJ	< 0.0158 U	< 0.00846 U
WHC1-BO10	NORM	10/23/2008	< 0.0119 U	0.0327 J	< 0.0146 UJ	< 0.0188 U	< 0.0254 U	< 0.0169 U	< 0.0112 UJ	< 0.00223 UJ	< 0.0154 UJ	< 0.00808 U
WHC1-BP01	NORM	10/23/2008	< 0.0127 U	< 0.0158 UJ	< 0.0158 U	< 0.0204 U	< 0.0269 U	< 0.0181 U	0.0485 J	< 0.00285 UJ	0.0246 J	< 0.00885 U
WHC1-BP02	NORM	10/23/2008	< 0.0127 U	< 0.0162 UJ	< 0.0162 U	< 0.0208 U	< 0.0277 U	< 0.0185 U	0.0346 J	< 0.00292 UJ	< 0.0165 U	< 0.00885 U
WHC1-BP03	NORM	10/23/2008	< 0.0119 U	< 0.015 UJ	< 0.015 U	< 0.0192 U	< 0.0258 U	< 0.0169 U	< 0.0112 U	< 0.00269 UJ	< 0.0154 U	< 0.00846 U
WHC1-BP03R	FD	10/23/2008	< 0.0127 U	< 0.0162 UJ	< 0.0158 U	< 0.0204 U	< 0.0273 U	< 0.0181 U	0.0919	< 0.00288 UJ	< 0.0162 U	< 0.00885 U
WHC1-BP04	NORM	10/23/2008	< 0.0119 U	< 0.015 UJ	< 0.0146 U	< 0.0188 U	< 0.0254 U	< 0.0169 U	< 0.0112 U	< 0.00269 UJ	< 0.0154 U	< 0.00808 U
WHC1-BP06	NORM	10/23/2008	< 0.0119 U	0.0808 J-	< 0.0146 U	< 0.0188 U	< 0.0254 U	< 0.0169 U	0.0154 J	< 0.00269 UJ	< 0.0154 U	< 0.00808 U
WHC1-BP06R	FD	10/23/2008	< 0.0119 U	0.155 J-	< 0.015 U	< 0.0192 U	< 0.0258 U	< 0.0169 U	< 0.0112 U	< 0.00269 UJ	< 0.0154 U	< 0.00846 U
WHC1-BP07	NORM	10/23/2008	< 0.0119 U	0.0435 J-	< 0.015 U	< 0.0196 U	< 0.0262 U	< 0.0173 U	< 0.0115 U	< 0.00273 UJ	< 0.0158 U	< 0.00846 U
WHC1-BP08	NORM	10/23/2008	< 0.0123 U	0.0412 J-	< 0.0154 U	< 0.0196 U	< 0.0265 U	< 0.0177 U	< 0.0115 U	< 0.00281 UJ	< 0.0158 U	< 0.00846 U
WHC1-BP09	NORM	10/23/2008	< 0.0119 U	0.0496 J-	< 0.015 U	< 0.0192 U	< 0.0258 U	< 0.0173 U	0.0123 J	< 0.00273 UJ	< 0.0154 U	< 0.00846 U
WHC1-BP10	NORM	10/23/2008	0.0746	0.112 J-	< 0.015 U	< 0.0192 U	< 0.0258 U	< 0.0169 U	< 0.0112 U	< 0.00269 UJ	< 0.0154 U	< 0.00846 U
WHC1-D02	NORM	10/21/2008	< 0.0146 U	0.153 J-	< 0.0185 U	0.0462 J+	< 0.0315 U	< 0.0869 U	< 0.0138 U	< 0.0167 UJ	< 0.0188 U	< 0.0104 U
WHC1-D04	NORM	10/21/2008	< 0.0119 U	0.0554 J-	< 0.015 U	0.0242 J+	< 0.0258 U	< 0.0169 U	< 0.0112 U	< 0.00269 UJ	< 0.0154 U	< 0.00846 U
WHC1-D06	NORM	10/21/2008	< 0.0131 U	0.289 J-	0.0238 J	< 0.0215 U	< 0.0285 U	< 0.0188 U	0.0181 J	< 0.003 UJ	0.0212 J-	< 0.00923 U
WHC1-D08	NORM	10/21/2008	0.0146 J	0.111 J-	0.0338 J	0.0246 J+	< 0.0265 U	< 0.0258 U	0.0231 J	< 0.00281 UJ	0.0185 J	< 0.00846 U
WHC1-D09	NORM	10/21/2008	< 0.0123 U	< 0.0158 UJ	0.0242 J	< 0.0196 U	< 0.0265 U	< 0.0177 U	0.0204 J	< 0.00281 UJ	0.0423 J	< 0.00846 U
WHC1-D13	NORM	10/21/2008	< 0.0123 U	0.102 J-	< 0.0154 U	< 0.02 U	< 0.0269 U	< 0.0177 U	< 0.0119 U	< 0.00285 UJ	< 0.0162 U	< 0.00885 U
WHC1-D15	NORM	10/21/2008	0.124	1.02 J-	0.241	0.0427 J+	< 0.0281 U	0.0269 J	0.108	< 0.00296 UJ	0.102 J-	0.0158 J
WHC1-D17	NORM	10/21/2008	< 0.0131 U	< 0.171 UJ	0.0181 J	< 0.0215 U	< 0.0285 U	< 0.0188 U	0.0212 J	< 0.003 UJ	0.0362 J-	< 0.00923 U
WHC1-D19	NORM	10/22/2008	< 0.0119 U	< 0.015 UJ	< 0.0454 U	< 0.0188 U	< 0.0254 U	< 0.0169 U	< 0.0331 U	R	0.242	< 0.00808 U
WHC1-D21	NORM	10/22/2008	0.0204 J+	< 0.0158 UJ	< 0.0612 UJ	< 0.02 U	< 0.0269 U	< 0.0177 U	< 0.135 UJ	R	0.266 J+	< 0.00885 U
WHC1-D23	NORM	10/22/2008	< 0.0123 U	< 0.0154 UJ	< 0.015 U	< 0.0196 U	< 0.0262 U	< 0.0173 U	< 0.0115 U	< 0.00973 UJ	< 0.0158 U	< 0.00846 U
WHC1-D23R	FD	10/22/2008	< 0.0119 U	< 0.015 UJ	< 0.0146 U	< 0.0188 U	< 0.0254 U	< 0.0169 U	< 0.0269 U	< 0.00269 UJ	< 0.0358 U	< 0.00808 U
WHC1-D24	NORM	10/22/2008	< 0.0123 U	< 0.0158 UJ	< 0.0154 U	< 0.0196 U	< 0.0265 U	< 0.0177 U	< 0.0365 U	< 0.00281 UJ	0.0427 J	< 0.00846 U
WHC1-D25	NORM	10/22/2008	< 0.0119 U	< 0.0154 UJ	< 0.0512 UJ	< 0.0196 U	< 0.0262 U	< 0.0173 U	< 0.0677 UJ	< 0.00273 UJ	0.227 J+	< 0.00846 U
WHC1-D27	NORM	10/23/2008	0.0181 J	0.0765 J-	< 0.0162 U	< 0.0208 U	< 0.0277 U	< 0.0185 U	0.0454 J	< 0.00292 UJ	0.0219 J	< 0.00885 U
WHC1-D28	NORM	10/23/2008	0.104	0.0927 J-	< 0.015 U	< 0.0254 UJ	< 0.0262 U	< 0.0408 U	< 0.0115 U	< 0.00277 UJ	< 0.0158 U	< 0.00846 U
WHC1-P03	NORM	10/22/2008	< 0.0115 U	< 0.0146 UJ	< 0.0142 U	< 0.0185 U	< 0.025 U	< 0.0165 U	0.0512 J	< 0.00527 UJ	< 0.015 U	< 0.00808 U
WHC1-P04	NORM	10/22/2008	< 0.0115 U	4.42 J	< 0.0146 UJ	< 0.0188 U	< 0.025 U	< 0.0165 U	< 0.0112 UJ	R	< 0.015 UJ	< 0.00808 U
WHC1-P05	NORM	10/22/2008	< 0.0119 U	< 0.015 UJ	< 0.0146 U	< 0.0188 U	< 0.0254 U	< 0.0169 U	< 0.0112 U	< 0.00269 UJ	< 0.0154 U	< 0.00808 U
WHC1-P06	NORM	10/22/2008	0.0188 J	< 0.015 UJ	< 0.0146 U	< 0.0188 U	< 0.0254 U	< 0.0169 U	< 0.0112 U	< 0.00265 UJ	< 0.015 U	< 0.00808 U

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 15 of 21)

				Surface Flux									
Sample ID	Sample Type	Sample Date	Dichloromethane (Methylene chloride)	Ethanol	3thylbenzene	Freon-11 (Trichlorofluoromethane)	Freon-113 (1,1,2-Trifluoro 1,2,2-trichloroethane)	Freon-12 (Dichloro- difluoromethane)	Heptane	lexachlorobutadiene	sopropylbenzene	Methyl ethyl ketone (2-Butanone)	
WHC1-P07	NORM	10/22/2008	< 0.0119 U	< 0.015 UJ	< 0.0146 U	< 0.0188 U	< 0.0254 U	< 0.0169 U	0.0327 J	< 0.00269 UJ	< 0.0154 U	< 0.00808 U	
WHC1-P08	NORM	10/21/2008	< 0.0438 U	0.385 J-	< 0.0546 U	< 0.0708 U	< 0.0946 U	< 0.0631 U	< 0.0415 U	< 0.00265 UJ	< 0.0565 U	< 0.0308 U	
WHC1-P09	NORM	10/21/2008	< 0.0115 U	< 0.0146 UJ	< 0.0142 U	< 0.0185 U	< 0.025 U	< 0.0165 U	< 0.0108 U	< 0.00262 UJ	< 0.015 U	< 0.00808 U	
WHC1-P10	NORM	10/21/2008	0.0162 J	< 0.0165 UJ	0.0169 J	0.0238 J	< 0.0285 UJ	< 0.0188 UJ	0.0142 J	< 0.003 UJ	0.0288 J	< 0.00923 UJ	
WHC1-P11	NORM	10/22/2008	< 0.0115 U	< 0.015 UJ	< 0.0427 UJ	< 0.0188 U	< 0.0254 U	< 0.0169 U	< 0.0196 UJ	R	< 0.125 UJ	< 0.00808 U	
WHC1-P12	NORM	10/21/2008	< 0.0123 U	0.065 J-	< 0.0154 U	< 0.0196 U	< 0.0265 U	< 0.0177 U	< 0.0115 U	< 0.00281 UJ	< 0.0158 U	< 0.00846 U	
WHC1-P13	NORM	10/21/2008	< 0.0127 U	0.0927 J-	< 0.0158 U	< 0.0204 U	< 0.0269 U	< 0.0181 U	< 0.0119 U	< 0.00285 UJ	< 0.0162 U	< 0.00885 U	
WHC1-P16	NORM	10/22/2008	< 0.0119 U	< 0.015 UJ	< 0.0146 U	< 0.0188 U	< 0.0254 U	< 0.0169 U	0.0285 J	< 0.00269 UJ	< 0.0154 U	< 0.00808 U	
WHC1-P17	NORM	10/22/2008	< 0.0119 U	0.0269 J	< 0.015 U	< 0.0192 U	< 0.0258 U	< 0.0173 U	< 0.0115 U	< 0.00273 UJ	< 0.0154 U	0.00885 J	
WHC1-P18	NORM	10/22/2008	< 0.0119 U	< 0.015 UJ	< 0.015 U	< 0.0192 U	< 0.0258 U	< 0.0169 U	< 0.0112 U	< 0.00269 UJ	< 0.0154 U	< 0.00846 U	

All units in μg/m², min⁻¹.

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 16 of 21)

							Surfac	e Flux				
Sample ID	Sample Type	Sample Date	Methyl iodide	MTBE (Methyl tert- butyl ether)	Naphthalene	n-Butylbenzene	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene	tert-Butylbenzene	Tetrachloroethene
OSC1-BO11	NORM	8/5/2010	< 0.00692 U	< 0.00962 U	< 0.0181 UJ	< 0.0127 UJ	< 0.0131 U	< 0.0173 U	< 0.0138 U	< 0.0169 U	< 0.0131 U	< 0.0269 U
OSC1-BP11	NORM	8/5/2010	< 0.00962 U	< 0.0135 U	< 0.0254 UJ	< 0.0181 U	< 0.0188 U	< 0.0246 U	< 0.0196 U	< 0.0242 UJ	< 0.0185 U	< 0.0381 U
OSC1-JP06	NORM	8/4/2010	< 0.00962 U	< 0.0135 U	< 0.0254 UJ	< 0.0181 UJ	< 0.0185 UJ	< 0.0242 U	< 0.0196 UJ	< 0.0242 U	< 0.0185 UJ	< 0.0381 U
OSC1-JP08	NORM	8/5/2010	< 0.00654 U	< 0.00923 U	< 0.0177 UJ	< 0.0127 UJ	< 0.0131 U	< 0.0169 U	< 0.0135 U	< 0.0165 U	< 0.0127 U	< 0.0262 U
WHC1-BJ01	NORM	10/22/2008	< 0.0377 U	< 0.00885 U	0.00365 J	< 0.0158 UJ	< 0.0131 U	< 0.0138 UJ	< 0.0158 U	< 0.0138 U	< 0.0154 UJ	< 0.0219 U
WHC1-BJ02	NORM	10/22/2008	< 0.0385 U	< 0.00923 U	0.00615 J	< 0.0162 UJ	0.0169 J	0.0312 J	< 0.0162 U	< 0.0142 U	< 0.0158 UJ	< 0.0223 U
WHC1-BJ03	NORM	10/22/2008	< 0.0373 U	< 0.00885 U	< 0.00262 UJ	< 0.0158 UJ	< 0.0131 UJ	< 0.0138 UJ	< 0.0158 UJ	< 0.0138 UJ	< 0.0154 UJ	0.0354 J
WHC1-BJ04	NORM	10/22/2008	< 0.0377 U	< 0.00885 U	0.00312 J	< 0.0162 UJ	< 0.0388 U	< 0.0558 UJ	0.0262 J	< 0.0138 U	< 0.03 UJ	< 0.0219 U
WHC1-BK01	NORM	10/23/2008	< 0.0392 U	< 0.00923 U	< 0.00273 UJ	< 0.0165 UJ	< 0.0135 U	< 0.0146 UJ	< 0.0165 U	< 0.0142 U	< 0.0162 UJ	< 0.0227 U
WHC1-BK04	NORM	10/22/2008	< 0.0377 U	< 0.00885 U	0.00327 J	< 0.0158 UJ	< 0.0131 U	< 0.0212 UJ	< 0.0158 U	< 0.0138 U	< 0.0154 UJ	0.503
WHC1-BL01	NORM	10/23/2008	< 0.0385 U	< 0.00923 U	< 0.00269 UJ	< 0.0162 UJ	< 0.0135 U	< 0.0142 UJ	< 0.0162 U	< 0.0142 U	< 0.0158 UJ	< 0.0223 U
WHC1-BL03	NORM	10/23/2008	< 0.0381 U	< 0.00885 U	< 0.00269 UJ	< 0.0162 UJ	< 0.0131 U	< 0.0142 UJ	< 0.0162 U	< 0.0142 U	< 0.0158 UJ	< 0.0223 U
WHC1-BL04	NORM	10/22/2008	< 0.0381 U	< 0.00885 U	0.00269 J	< 0.0162 UJ	< 0.0262 U	< 0.0242 UJ	< 0.0162 U	< 0.0142 U	< 0.0158 UJ	< 0.0223 U
WHC1-BL06	NORM	10/24/2008	< 0.0427 U	< 0.01 U	0.00419 J	< 0.0181 UJ	< 0.0146 UJ	0.0196 J	< 0.0177 UJ	< 0.0158 UJ	< 0.0177 UJ	< 0.0246 UJ
WHC1-BL07	NORM	10/24/2008	< 0.0415 U	< 0.01 U	< 0.00292 UJ	< 0.0177 UJ	< 0.0146 U	0.0265 J	< 0.0173 U	< 0.0154 U	< 0.0173 UJ	0.0273 J
WHC1-BL08	NORM	10/24/2008	< 0.0404 U	< 0.00962 U	0.00558 J	< 0.0169 UJ	< 0.0138 U	0.0488 J	< 0.0169 U	0.0154 J	< 0.0169 UJ	0.0327 J
WHC1-BL11	NORM	10/23/2008	< 0.0404 U	< 0.00962 U	< 0.00285 UJ	< 0.0169 UJ	< 0.0138 U	< 0.015 UJ	< 0.0169 U	< 0.015 U	< 0.0169 UJ	< 0.0235 U
WHC1-BM01	NORM	10/23/2008	< 0.0396 U	< 0.00923 U	< 0.00281 UJ	< 0.0169 UJ	< 0.0138 U	< 0.0146 UJ	< 0.0165 U	< 0.0146 U	< 0.0165 UJ	< 0.0231 U
WHC1-BM03	NORM	10/22/2008	< 0.0377 U	< 0.00885 U	0.00408 J	< 0.0162 UJ	< 0.0131 U	< 0.0142 UJ	< 0.0158 U	< 0.0138 U	< 0.0158 UJ	< 0.0219 U
WHC1-BM04	NORM	10/22/2008	< 0.0385 U	< 0.00923 U	R	< 0.0162 UJ	< 0.0135 U	< 0.0177 UJ	< 0.0162 U	< 0.0142 U	< 0.0158 UJ	< 0.0223 U
WHC1-BM06	NORM	10/24/2008	< 0.0415 U	< 0.00962 U	0.0156 J	0.035 J	0.161	0.242	0.0635 J	< 0.0215 U	0.131 J	0.0323 J
WHC1-BM07	NORM	10/24/2008	< 0.0415 U	< 0.01 U	< 0.00292 UJ	< 0.0177 UJ	< 0.0146 UJ	< 0.0154 UJ	< 0.0173 UJ	< 0.0154 UJ	< 0.0173 UJ	< 0.0242 UJ
WHC1-BM08	NORM	10/24/2008	< 0.0396 U	< 0.00923 U	< 0.00277 UJ	< 0.0165 UJ	< 0.0138 U	0.035 J	< 0.0165 U	< 0.0146 U	< 0.0165 UJ	< 0.0231 U
WHC1-BM09	NORM	10/23/2008	< 0.0404 U	< 0.00962 U	< 0.00285 UJ	< 0.0169 UJ	< 0.0138 U	< 0.015 UJ	< 0.0169 U	< 0.015 U	< 0.0169 UJ	< 0.0235 U
WHC1-BM10	NORM	10/23/2008	< 0.0396 U	< 0.00923 U	< 0.00277 UJ	< 0.0165 UJ	< 0.0138 U	< 0.0146 UJ	< 0.0165 U	< 0.0146 U	< 0.0165 UJ	< 0.0231 U
WHC1-BN01	NORM	10/23/2008	< 0.0415 U	< 0.00962 U	< 0.00277 U	< 0.0177 UJ	< 0.0142 U	< 0.0154 UJ	< 0.0173 U	< 0.0154 U	< 0.0173 UJ	0.0535 J
WHC1-BN01R	FD	10/23/2008	< 0.0396 U	< 0.00923 U	< 0.00292 UJ	< 0.0165 U	< 0.0138 U	< 0.0146 U	< 0.0165 U	< 0.0146 U	< 0.0165 U	< 0.0231 U
WHC1-BN06	NORM	10/24/2008	< 0.0412 U	< 0.00962 U	< 0.00288 UJ	< 0.0173 UJ	< 0.0142 U	< 0.0154 U	< 0.0173 UJ	< 0.015 U	< 0.0169 UJ	< 0.0238 U
WHC1-BN08	NORM	10/23/2008	< 0.0415 U	< 0.01 U	< 0.00292 UJ	< 0.0177 UJ	0.0242 J	< 0.0154 UJ	< 0.0173 U	< 0.0154 U	< 0.0173 UJ	< 0.0242 U
WHC1-BN09	NORM	10/23/2008	< 0.0431 U	< 0.01 U	0.00388 J	< 0.0181 UJ	< 0.015 U	0.0219 J	< 0.0181 U	< 0.0158 U	< 0.0177 UJ	< 0.025 U
WHC1-BN10	NORM	10/23/2008	< 0.0385 U	< 0.00923 U	< 0.00542 U	< 0.0162 UJ	< 0.0135 U	< 0.0142 UJ	< 0.0162 U	< 0.0142 U	< 0.0158 UJ	< 0.0223 U
WHC1-BN10R	FD	10/23/2008	< 0.0392 U	< 0.00923 U	< 0.00273 UJ	< 0.0165 UJ	< 0.0135 U	< 0.0146 UJ	< 0.0165 U	< 0.0142 U	< 0.0162 UJ	< 0.0227 U
WHC1-BO01	NORM	10/23/2008	< 0.0412 U	< 0.00962 U	< 0.00288 UJ	< 0.0173 UJ	< 0.0142 U	< 0.0154 UJ	< 0.0173 U	< 0.015 U	< 0.0169 UJ	< 0.0238 U
WHC1-BO04	NORM	10/23/2008	< 0.0396 U	< 0.00923 U	< 0.00277 UJ	< 0.0165 UJ	< 0.0138 U	< 0.0146 UJ	< 0.0165 U	< 0.0146 U	< 0.0165 UJ	< 0.0231 U
WHC1-BO06	NORM	10/23/2008	< 0.0392 U	< 0.00923 U	< 0.00273 UJ	< 0.0165 UJ	< 0.0135 U	< 0.0146 U	< 0.0165 UJ	< 0.0142 U	< 0.0162 UJ	< 0.0227 U

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 17 of 21)

							Surfac	ce Flux				
Sample ID	Sample Type	Sample Date	Methyl iodide	MTBE (Methyl tert- butyl ether)	Naphthalene	n-Butylbenzene	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene	tert-Butylbenzene	Tetrachloroethene
WHC1-BO07	NORM	10/23/2008	< 0.0419 U	< 0.01 U	< 0.00296 UJ	< 0.0177 UJ	< 0.0146 U	< 0.0158 UJ	< 0.0177 U	< 0.0154 U	< 0.0173 UJ	< 0.0242 U
WHC1-BO08	NORM	10/23/2008	< 0.0419 U	< 0.01 U	0.00712 J	< 0.0177 UJ	< 0.0146 U	< 0.0158 UJ	< 0.0177 U	< 0.0154 U	< 0.0173 UJ	< 0.0242 U
WHC1-BO09	NORM	10/23/2008	< 0.0396 U	< 0.00923 U	< 0.00281 UJ	< 0.0169 UJ	< 0.0138 U	< 0.0146 U	< 0.0165 UJ	< 0.0146 U	< 0.0165 UJ	< 0.0231 U
WHC1-BO10	NORM	10/23/2008	< 0.0388 U	< 0.00923 U	< 0.00227 UJ	< 0.0165 UJ	< 0.0135 UJ	< 0.0146 UJ	< 0.0162 UJ	< 0.0142 UJ	< 0.0162 UJ	< 0.0227 UJ
WHC1-BP01	NORM	10/23/2008	< 0.0415 U	< 0.00962 U	< 0.00292 UJ	< 0.0177 UJ	0.157	0.0277 J	0.0185 J	< 0.0154 U	0.0227 J-	< 0.0238 U
WHC1-BP02	NORM	10/23/2008	< 0.0423 U	< 0.01 U	0.00796 J	< 0.0181 UJ	< 0.0146 U	0.0162 J	< 0.0177 U	< 0.0154 U	< 0.0177 UJ	< 0.0246 U
WHC1-BP03	NORM	10/23/2008	< 0.0392 U	< 0.00923 U	< 0.00273 UJ	< 0.0165 UJ	< 0.0135 U	< 0.0146 UJ	< 0.0165 U	< 0.0142 U	< 0.0162 UJ	< 0.0227 U
WHC1-BP03R	FD	10/23/2008	< 0.0415 U	< 0.01 U	0.00296 J	< 0.0177 UJ	0.0885 J	< 0.0154 UJ	< 0.0173 U	< 0.0154 U	< 0.0173 UJ	< 0.0242 U
WHC1-BP04	NORM	10/23/2008	< 0.0388 U	< 0.00923 U	< 0.00273 UJ	< 0.0165 UJ	< 0.0135 U	< 0.0146 UJ	< 0.0162 U	< 0.0142 U	< 0.0162 UJ	< 0.0227 U
WHC1-BP06	NORM	10/23/2008	< 0.0388 U	< 0.00923 U	< 0.00273 UJ	< 0.0165 UJ	< 0.0135 U	< 0.0146 U	< 0.0162 UJ	< 0.0142 U	< 0.0162 UJ	< 0.0227 U
WHC1-BP06R	FD	10/23/2008	< 0.0392 U	< 0.00923 U	< 0.00273 UJ	< 0.0165 UJ	< 0.0135 U	< 0.0146 U	< 0.0165 UJ	< 0.0142 U	< 0.0162 UJ	< 0.0227 U
WHC1-BP07	NORM	10/23/2008	< 0.0396 U	< 0.00923 U	< 0.00281 UJ	< 0.0169 UJ	< 0.0138 U	< 0.0146 U	< 0.0165 UJ	< 0.0146 U	< 0.0165 UJ	< 0.0231 U
WHC1-BP08	NORM	10/23/2008	< 0.0404 U	< 0.00962 U	< 0.00285 UJ	< 0.0169 UJ	< 0.0138 U	< 0.015 U	< 0.0169 UJ	< 0.015 U	< 0.0169 UJ	< 0.0235 U
WHC1-BP09	NORM	10/23/2008	< 0.0396 U	< 0.00923 U	< 0.00277 UJ	< 0.0165 UJ	< 0.0138 U	< 0.0146 U	< 0.0165 UJ	< 0.0146 U	< 0.0165 UJ	< 0.0231 U
WHC1-BP10	NORM	10/23/2008	< 0.0392 U	< 0.00923 U	< 0.00273 UJ	< 0.0165 UJ	< 0.0135 U	< 0.0146 U	< 0.0165 UJ	< 0.0142 U	< 0.0162 UJ	< 0.0227 U
WHC1-D02	NORM	10/21/2008	< 0.0485 U	< 0.0115 U	< 0.017 UJ	< 0.0204 UJ	< 0.0165 U	< 0.0181 U	< 0.0204 UJ	< 0.0177 U	< 0.02 UJ	< 0.0281 U
WHC1-D04	NORM	10/21/2008	< 0.0392 U	< 0.00923 U	< 0.00273 UJ	< 0.0165 UJ	< 0.0135 U	< 0.0146 U	< 0.0165 UJ	< 0.0142 U	< 0.0162 UJ	< 0.0227 U
WHC1-D06	NORM	10/21/2008	< 0.0435 U	< 0.0104 U	0.00342 J	< 0.0185 UJ	0.0242 J-	0.0388 J	< 0.0181 UJ	< 0.0162 U	< 0.0181 UJ	0.0346 J
WHC1-D08	NORM	10/21/2008	< 0.0404 U	< 0.00962 U	0.00358 J	< 0.0169 UJ	< 0.0138 U	0.0381 J	< 0.0169 UJ	< 0.015 U	< 0.0169 UJ	0.0273 J
WHC1-D09	NORM	10/21/2008	< 0.0404 U	< 0.00962 U	< 0.00285 UJ	< 0.0169 UJ	< 0.0138 U	0.0281 J	< 0.0169 UJ	< 0.015 U	< 0.0169 UJ	< 0.0235 U
WHC1-D13	NORM	10/21/2008	< 0.0412 U	< 0.00962 U	0.0112 J	< 0.0173 UJ	< 0.0142 U	< 0.0154 U	< 0.0173 UJ	< 0.015 U	< 0.0169 UJ	< 0.0238 U
WHC1-D15	NORM	10/21/2008	< 0.0431 U	< 0.01 U	0.00931 J	< 0.0181 UJ	0.0535 J-	0.378	< 0.0181 UJ	< 0.0158 U	0.0331 J-	4.1
WHC1-D17	NORM	10/21/2008	< 0.0435 U	< 0.0104 U	0.0132 J	< 0.0185 UJ	0.0185 J-	0.0419 J	< 0.0181 UJ	< 0.0162 U	0.0212 J-	1.14
WHC1-D19	NORM	10/22/2008	< 0.0388 U	< 0.00923 U	R	< 0.0165 UJ	< 0.06 U	< 0.0777 UJ	0.0377 J	< 0.0142 U	< 0.0477 UJ	0.0323 J
WHC1-D21	NORM	10/22/2008	< 0.0412 U	< 0.00962 U	R	0.0381 J	< 0.112 UJ	< 0.103 UJ	0.0512 J+	< 0.015 U	< 0.0581 UJ	< 0.0238 U
WHC1-D23	NORM	10/22/2008	< 0.04 U	< 0.00962 U	R	< 0.0169 UJ	< 0.0138 U	< 0.015 UJ	< 0.0169 U	< 0.0146 U	< 0.0165 UJ	< 0.0231 U
WHC1-D23R	FD	10/22/2008	< 0.0388 U	< 0.00923 U	< 0.00273 UJ	< 0.0165 UJ	< 0.0135 U	< 0.0154 UJ	< 0.0162 U	< 0.0142 U	< 0.0162 UJ	< 0.0227 U
WHC1-D24	NORM	10/22/2008	< 0.0404 U	< 0.00962 U	0.0111 J	< 0.0169 UJ	0.0631 J	0.0169 J	< 0.0169 U	< 0.015 U	< 0.0169 UJ	< 0.0235 U
WHC1-D25	NORM	10/22/2008	< 0.0396 U	< 0.00923 U	0.00442 J	< 0.0169 UJ	< 0.0577 UJ	< 0.0881 UJ	0.0362 J+	< 0.0146 U	< 0.0165 UJ	< 0.0231 U
WHC1-D27	NORM	10/23/2008	< 0.0423 U	< 0.01 U	0.00365 J	< 0.0181 UJ	0.0169 J	< 0.0158 U	< 0.0177 UJ	< 0.0154 U	< 0.0177 UJ	< 0.0246 U
WHC1-D28	NORM	10/23/2008	< 0.04 U	< 0.00962 U	< 0.00281 UJ	< 0.0169 UJ	< 0.0138 U	< 0.015 U	< 0.0169 UJ	< 0.0146 U	< 0.0165 UJ	< 0.0231 U
WHC1-P03	NORM	10/22/2008	< 0.0377 U	< 0.00885 U	0.00565 J	< 0.0162 UJ	< 0.0131 U	0.0177 J	< 0.0158 U	< 0.0138 U	< 0.0158 UJ	0.502
WHC1-P04	NORM	10/22/2008	< 0.0381 U	< 0.00885 U	R	< 0.0162 UJ	< 0.0131 UJ	< 0.0142 UJ	< 0.0162 UJ	< 0.0142 UJ	< 0.0158 UJ	< 0.0223 UJ
WHC1-P05	NORM	10/22/2008	< 0.0388 U	< 0.00923 U	< 0.00273 UJ	< 0.0165 UJ	< 0.0135 U	< 0.0146 UJ	< 0.0162 U	< 0.0142 U	< 0.0162 UJ	< 0.0227 U
WHC1-P06	NORM	10/22/2008	< 0.0385 U	< 0.00923 U	< 0.00269 UJ	< 0.0162 UJ	< 0.0135 U	< 0.0142 UJ	< 0.0162 U	< 0.0142 U	< 0.0158 UJ	< 0.0223 U

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 18 of 21)

				Surface Flux									
Sample ID	Sample Type	Sample Date	Methyl iodide	MTBE (Methyl tert- butyl ether)	Vaphthalene	-Butylbenzene	-Propylbenzene	-Xylene	2c-Butylbenzene	tyrene	rt-Butylbenzene	etrachloroethene	
WHC1-P07	NORM	10/22/2008	< 0.0388 U	< 0.00923 U	< 0.00273 UJ	< 0.0165 UJ	< 0.0135 U	< 0.0146 UJ	< 0.0162 U	< 0.0142 U	< 0.0162 UJ	< 0.0227 U	
WHC1-P08	NORM	10/21/2008	< 0.144 U	< 0.0342 U	< 0.00269 UJ	< 0.0612 UJ	< 0.05 U	< 0.0538 U	< 0.0604 UJ	< 0.0531 U	< 0.06 UJ	< 0.0838 U	
WHC1-P09	NORM	10/21/2008	< 0.0377 U	< 0.00885 U	< 0.00265 UJ	< 0.0162 UJ	< 0.0131 U	< 0.0142 U	< 0.0158 UJ	< 0.0138 U	< 0.0158 UJ	< 0.0219 U	
WHC1-P10	NORM	10/21/2008	< 0.0431 UJ	< 0.0104 UJ	0.0164 J	< 0.0185 UJ	< 0.015 UJ	0.0246 J	< 0.0181 UJ	< 0.0158 UJ	< 0.0181 UJ	0.467 J	
WHC1-P11	NORM	10/22/2008	< 0.0385 U	< 0.00923 U	R	0.0254 J	< 0.0546 UJ	< 0.0812 UJ	0.0346 J+	< 0.0142 U	< 0.0427 UJ	< 0.0223 U	
WHC1-P12	NORM	10/21/2008	< 0.0404 U	< 0.00962 U	< 0.00285 UJ	< 0.0169 UJ	< 0.0138 U	< 0.015 U	< 0.0169 UJ	< 0.015 U	< 0.0169 UJ	< 0.0235 U	
WHC1-P13	NORM	10/21/2008	< 0.0415 U	< 0.00962 U	0.00435 J	< 0.0177 UJ	< 0.0142 U	< 0.0154 U	< 0.0173 UJ	< 0.0154 U	< 0.0173 UJ	< 0.0238 U	
WHC1-P16	NORM	10/22/2008	< 0.0388 U	< 0.00923 U	< 0.00273 UJ	< 0.0165 UJ	< 0.0135 U	< 0.0146 UJ	< 0.0162 U	< 0.0142 U	< 0.0162 UJ	< 0.0227 U	
WHC1-P17	NORM	10/22/2008	< 0.0396 U	< 0.00923 U	< 0.00277 UJ	< 0.0165 UJ	< 0.0138 U	< 0.0146 UJ	< 0.0165 U	< 0.0146 U	< 0.0165 UJ	< 0.0231 U	
WHC1-P18	NORM	10/22/2008	< 0.0392 U	< 0.00923 U	0.0095 J	< 0.0165 UJ	< 0.0135 U	< 0.0146 UJ	< 0.0165 U	< 0.0142 U	< 0.0162 UJ	< 0.0227 U	

All units in μg/m², min⁻¹.

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 19 of 21)

						Surface Flux			
Sample ID	Sample Type	Sample Date	Foluene	rans-1,2-Dichloroethene	trans-1,3-Dichloro- propene	Frichloroethene	Vinyl acetate	Vinyl chloride	Xylenes (Total)
OSC1-BO11	NORM	8/5/2010	0.0642 J	< 0.0104 U	< 0.0185 U	< 0.0215 U	< 0.0442 UJ	< 0.0104 U	< 0.0346 U
OSC1-BP11	NORM	8/5/2010	0.045 J	< 0.0146 U	< 0.0262 UJ	< 0.0304 U	< 0.0631 UJ	< 0.0146 U	< 0.0492 U
OSC1-JP06	NORM	8/4/2010	< 0.035 U	< 0.0142 U	< 0.0258 UJ	< 0.0304 U	< 0.0623 UJ	< 0.0146 U	< 0.0488 U
OSC1-JP08	NORM	8/5/2010	0.0454 J	< 0.01 U	< 0.0181 U	< 0.0212 U	< 0.0435 UJ	< 0.01 U	< 0.0338 U
WHC1-BJ01	NORM	10/22/2008	0.0527 J	< 0.0108 U	< 0.015 U	< 0.0173 U	< 0.00962 U	< 0.00846 U	0.0542 J
WHC1-BJ02	NORM	10/22/2008	0.0462 J	< 0.0112 U	< 0.0154 U	< 0.0177 U	< 0.00962 U	< 0.00846 U	0.0662 J
WHC1-BJ03	NORM	10/22/2008	0.0438 J	< 0.0108 U	< 0.0146 UJ	< 0.0173 UJ	< 0.00962 U	< 0.00846 U	< 0.0281 UJ
WHC1-BJ04	NORM	10/22/2008	< 0.0696 U	< 0.0108 U	< 0.015 U	< 0.0327 U	< 0.00962 U	< 0.00846 U	< 0.103 UJ
WHC1-BK01	NORM	10/23/2008	0.035 J	< 0.0112 U	< 0.0154 U	< 0.0181 U	< 0.01 U	< 0.00885 U	< 0.0292 UJ
WHC1-BK04	NORM	10/22/2008	< 0.135 U	< 0.0108 U	< 0.015 U	< 0.0315 U	< 0.00962 U	< 0.00846 U	< 0.0381 UJ
WHC1-BL01	NORM	10/23/2008	0.0319 J	< 0.0112 U	< 0.0154 U	< 0.0177 U	< 0.00962 U	< 0.00846 U	< 0.0288 UJ
WHC1-BL03	NORM	10/23/2008	0.0412 J	< 0.0112 U	< 0.015 U	< 0.0177 U	< 0.00962 U	< 0.00846 U	0.0296 J
WHC1-BL04	NORM	10/22/2008	< 0.0554 U	< 0.0112 U	< 0.015 U	< 0.0315 U	0.459	< 0.00846 U	< 0.0665 UJ
WHC1-BL06	NORM	10/24/2008	0.0938 J	< 0.0123 U	< 0.0169 UJ	< 0.0196 UJ	< 0.0108 UJ	< 0.00962 U	0.0542 J
WHC1-BL07	NORM	10/24/2008	0.122	< 0.0119 U	< 0.0165 U	< 0.0192 U	< 0.0108 U	< 0.00923 U	0.0646 J
WHC1-BL08	NORM	10/24/2008	0.167	< 0.0115 U	< 0.0162 U	< 0.0188 U	< 0.0104 U	< 0.00885 U	0.114 J
WHC1-BL11	NORM	10/23/2008	0.015 J	< 0.0115 U	< 0.0162 U	< 0.0188 U	< 0.0104 U	< 0.00885 U	< 0.0304 UJ
WHC1-BM01	NORM	10/23/2008	0.0288 J	< 0.0115 U	< 0.0158 U	< 0.0185 U	< 0.01 U	< 0.00885 U	< 0.03 UJ
WHC1-BM03	NORM	10/22/2008	0.0412 J	< 0.0108 U	< 0.015 U	< 0.0177 U	< 0.00962 U	< 0.00846 U	0.0315 J
WHC1-BM04	NORM	10/22/2008	< 0.0377 U	< 0.0112 U	< 0.0154 U	< 0.0281 U	< 0.00962 U	< 0.00846 U	< 0.035 UJ
WHC1-BM06	NORM	10/24/2008	0.322	< 0.0119 U	< 0.0165 U	0.0273 J	< 0.0104 UJ	< 0.00923 U	1.11
WHC1-BM07	NORM	10/24/2008	< 0.0135 UJ	< 0.0119 U	< 0.0165 UJ	< 0.0192 UJ	< 0.0108 UJ	< 0.00923 U	< 0.0312 UJ
WHC1-BM08	NORM	10/24/2008	0.13	< 0.0115 U	< 0.0158 U	< 0.0185 U	< 0.01 U	< 0.00885 UJ	0.0854 J
WHC1-BM09	NORM	10/23/2008	0.0258 J	< 0.0115 U	< 0.0162 U	< 0.0188 U	< 0.0104 U	< 0.00885 UJ	< 0.0304 UJ
WHC1-BM10	NORM	10/23/2008	0.0277 J	< 0.0115 U	< 0.0158 U	< 0.0185 U	< 0.01 U	< 0.00885 UJ	< 0.0296 UJ
WHC1-BN01	NORM	10/23/2008	0.0465 J	< 0.0119 U	< 0.0165 U	< 0.0192 U	< 0.0104 U	< 0.00923 U	< 0.0312 UJ
WHC1-BN01R	FD	10/23/2008	0.0308 J	< 0.0115 U	< 0.0158 U	< 0.0185 U	< 0.01 U	< 0.00885 U	< 0.0296 U
WHC1-BN06	NORM	10/24/2008	0.0465 J	< 0.0119 U	< 0.0162 U	< 0.0192 U	< 0.0104 UJ	< 0.00923 U	< 0.0308 U
WHC1-BN08	NORM	10/23/2008	< 0.0654 U	< 0.0119 U	< 0.0165 U	< 0.0192 U	< 0.0108 U	< 0.00923 U	< 0.0312 UJ
WHC1-BN09	NORM	10/23/2008	< 0.109 U	< 0.0123 U	< 0.0169 U	< 0.02 U	< 0.0108 U	< 0.00962 U	0.0604 J
WHC1-BN10	NORM	10/23/2008	< 0.0358 U	< 0.0112 U	< 0.0154 U	< 0.0177 U	< 0.00962 U	< 0.00846 U	< 0.0288 UJ
WHC1-BN10R	FD	10/23/2008	< 0.0127 U	< 0.0112 U	< 0.0154 U	< 0.0181 U	< 0.01 U	< 0.00885 UJ	< 0.0292 UJ
WHC1-BO01	NORM	10/23/2008	0.0581 J	< 0.0119 U	< 0.0162 U	< 0.0192 U	0.0269 J	< 0.00923 U	< 0.0308 UJ
WHC1-BO04	NORM	10/23/2008	0.0808	< 0.0115 U	< 0.0158 U	< 0.0185 U	< 0.01 U	< 0.00885 U	< 0.0296 UJ
WHC1-BO06	NORM	10/23/2008	0.0362 J	< 0.0112 U	< 0.0154 U	< 0.0181 U	0.0115 J-	< 0.00885 U	< 0.0292 U

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 20 of 21)

						Surface Flux			
Sample ID	Sample Type	Sample Date	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloro- propene	Trichloroethene	Vinyl acetate	Vinyl chloride	Xylenes (Total)
WHC1-BO07	NORM	10/23/2008	0.0358 J	< 0.0123 U	< 0.0165 U	< 0.0196 U	< 0.0108 U	< 0.00923 U	< 0.0315 UJ
WHC1-BO08	NORM	10/23/2008	0.0862	< 0.0123 U	< 0.0165 U	< 0.0196 U	0.0688	< 0.00923 U	< 0.0315 UJ
WHC1-BO09	NORM	10/23/2008	0.0177 J	< 0.0115 U	< 0.0158 U	< 0.0185 U	< 0.01 UJ	< 0.00885 U	< 0.03 U
WHC1-BO10	NORM	10/23/2008	0.0208 J	< 0.0112 U	< 0.0154 UJ	< 0.0181 UJ	0.0181 J	< 0.00885 U	< 0.0292 UJ
WHC1-BP01	NORM	10/23/2008	0.0208 J	< 0.0119 U	< 0.0165 U	< 0.0192 U	< 0.0104 U	< 0.00923 U	0.0681 J
WHC1-BP02	NORM	10/23/2008	0.0319 J	< 0.0123 U	< 0.0169 U	< 0.0196 U	< 0.0108 U	< 0.00962 U	0.0392 J
WHC1-BP03	NORM	10/23/2008	< 0.0127 U	< 0.0112 U	< 0.0154 U	< 0.0181 U	< 0.01 U	< 0.00885 U	< 0.0292 UJ
WHC1-BP03R	FD	10/23/2008	0.0162 J	< 0.0119 U	< 0.0165 U	< 0.0192 U	< 0.0108 U	< 0.00923 U	< 0.0312 UJ
WHC1-BP04	NORM	10/23/2008	0.0242 J	< 0.0112 U	< 0.0154 U	< 0.0181 U	< 0.01 U	< 0.00885 U	< 0.0292 UJ
WHC1-BP06	NORM	10/23/2008	0.0792	< 0.0112 U	< 0.0154 U	< 0.0181 U	0.0181 J-	< 0.00885 U	< 0.0292 U
WHC1-BP06R	FD	10/23/2008	0.0531 J	< 0.0112 U	< 0.0154 U	< 0.0181 U	0.0181 J-	< 0.00885 U	< 0.0292 U
WHC1-BP07	NORM	10/23/2008	0.0258 J	< 0.0115 U	< 0.0158 U	< 0.0185 U	0.0185 J-	< 0.00885 U	< 0.03 U
WHC1-BP08	NORM	10/23/2008	0.0173 J	< 0.0115 U	< 0.0162 U	< 0.0188 U	0.0285 J-	< 0.00885 U	< 0.0304 U
WHC1-BP09	NORM	10/23/2008	0.0846	< 0.0115 U	< 0.0158 U	< 0.0185 U	< 0.01 U	< 0.00885 U	< 0.0296 U
WHC1-BP10	NORM	10/23/2008	0.0831	< 0.0112 U	< 0.0154 U	< 0.0181 U	0.0169 J	< 0.00885 U	< 0.0292 U
WHC1-D02	NORM	10/21/2008	0.0396 J	< 0.0138 U	< 0.0192 U	< 0.0223 U	< 0.0123 UJ	< 0.0108 U	< 0.0362 U
WHC1-D04	NORM	10/21/2008	0.0131 J	< 0.0112 U	< 0.0154 U	< 0.0181 U	< 0.01 UJ	< 0.00885 U	< 0.0292 U
WHC1-D06	NORM	10/21/2008	0.138	< 0.0127 U	< 0.0173 U	< 0.0204 U	0.143	< 0.00962 U	0.12 J
WHC1-D08	NORM	10/21/2008	0.677	< 0.0115 U	< 0.0162 U	< 0.0188 U	0.141 J-	< 0.00885 U	0.128 J
WHC1-D09	NORM	10/21/2008	0.128	< 0.0115 U	< 0.0162 U	< 0.0188 U	< 0.0104 UJ	< 0.00885 U	0.103 J
WHC1-D13	NORM	10/21/2008	0.0281 J	< 0.0119 U	< 0.0162 U	< 0.0192 U	< 0.0104 UJ	< 0.00923 U	< 0.0308 U
WHC1-D15	NORM	10/21/2008	1.79	< 0.0123 U	< 0.0169 U	< 0.02 U	0.197	< 0.00962 U	1.16
WHC1-D17	NORM	10/21/2008	0.0765	< 0.0127 U	< 0.0173 U	0.388	0.132	< 0.00962 U	0.104 J
WHC1-D19	NORM	10/22/2008	< 0.0827 U	< 0.0112 U	< 0.0154 U	< 0.0181 U	< 0.01 U	< 0.00885 U	< 0.138 UJ
WHC1-D21	NORM	10/22/2008	0.308 J+	< 0.0119 U	< 0.0162 U	< 0.0285 UJ	< 0.0104 U	< 0.00923 U	< 0.198 UJ
WHC1-D23	NORM	10/22/2008	0.0873	< 0.0115 U	< 0.0158 U	< 0.0185 U	0.025 J	< 0.00885 U	< 0.03 UJ
WHC1-D23R	FD	10/22/2008	< 0.0323 U	< 0.0112 U	< 0.0154 U	< 0.0254 U	< 0.01 U	< 0.00885 U	< 0.0292 UJ
WHC1-D24	NORM	10/22/2008	< 0.0342 U	< 0.0115 U	< 0.0162 U	< 0.0273 U	< 0.0104 U	< 0.00885 U	0.0346 J
WHC1-D25	NORM	10/22/2008	< 0.132 UJ	< 0.0115 U	< 0.0158 U	< 0.0592 UJ	< 0.01 U	< 0.00885 U	< 0.152 UJ
WHC1-D27	NORM	10/23/2008	0.0396 J	< 0.0123 U	< 0.0169 U	< 0.0196 U	0.134	< 0.00962 U	0.0362 J
WHC1-D28	NORM	10/23/2008	0.0458 J	< 0.0115 U	< 0.0158 U	< 0.0185 U	0.03 J	< 0.00885 U	< 0.03 U
WHC1-P03	NORM	10/22/2008	0.17	< 0.0108 U	< 0.015 U	< 0.0177 U	< 0.00962 U	< 0.00846 U	0.0531 J
WHC1-P04	NORM	10/22/2008	0.0135 J	< 0.0112 U	< 0.015 UJ	< 0.0177 UJ	< 0.00962 U	< 0.00846 U	< 0.0288 UJ
WHC1-P05	NORM	10/22/2008	< 0.0127 U	< 0.0112 U	< 0.0154 U	< 0.0181 U	< 0.01 U	< 0.00885 U	< 0.0292 UJ
WHC1-P06	NORM	10/22/2008	< 0.0127 U	< 0.0112 U	< 0.0154 U	< 0.0177 U	< 0.00962 U	< 0.00846 U	< 0.0288 UJ

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 21 of 21)

						Surface Flux			
Sample ID	Sample Type	Sample Date	Foluene	trans-1,2-Dichloroethene	trans-1,3-Dichloro- propene	Frichloroethene	Vinyl acetate	Vinyl chloride	Xylenes (Total)
WHC1-P07	NORM	10/22/2008	0.0492 J	< 0.0112 U	< 0.0154 U	< 0.0181 U	< 0.01 U	< 0.00885 U	< 0.0292 UJ
WHC1-P08	NORM	10/21/2008	< 0.0469 U	< 0.0419 U	< 0.0573 U	< 0.0669 U	< 0.0365 U	< 0.0323 U	< 0.108 U
WHC1-P09	NORM	10/21/2008	< 0.0123 U	< 0.0108 U	< 0.015 U	< 0.0177 U	< 0.00962 UJ	< 0.00846 U	< 0.0285 U
WHC1-P10	NORM	10/21/2008	0.142 J	< 0.0127 UJ	< 0.0173 UJ	< 0.02 UJ	< 0.0112 UJ	< 0.00962 UJ	0.0596 J
WHC1-P11	NORM	10/22/2008	< 0.0704 UJ	< 0.0112 U	< 0.0154 U	< 0.0177 U	< 0.00962 U	< 0.00846 U	< 0.142 UJ
WHC1-P12	NORM	10/21/2008	0.0188 J	< 0.0115 U	< 0.0162 U	< 0.0188 U	0.139 J-	< 0.00885 U	< 0.0304 U
WHC1-P13	NORM	10/21/2008	0.0469 J	< 0.0119 U	< 0.0165 U	< 0.0192 U	< 0.0104 UJ	< 0.00923 U	0.0535 J
WHC1-P16	NORM	10/22/2008	0.0319 J	< 0.0112 U	< 0.0154 U	< 0.0181 U	< 0.01 U	< 0.00885 U	< 0.0292 UJ
WHC1-P17	NORM	10/22/2008	0.0138 J	< 0.0115 U	< 0.0158 U	< 0.0185 U	< 0.01 U	< 0.00885 U	< 0.0296 UJ
WHC1-P18	NORM	10/22/2008	0.0215 J	< 0.0112 U	< 0.0154 U	< 0.0181 U	< 0.01 U	< 0.00885 U	< 0.0292 UJ

All units in μg/m², min⁻¹.

SPLP DATA SUMMARY

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 4)

Parameter of Interest	Compound List	Units	WHC1-BM09 Result	WHC1-BN06 Result	WHC1-BO10 Result	Total Count	Residential Water BCL ^c	Count of Detects > BCL	MCL	Count of Detects > MCL
Aldehydes	Acetaldehyde	mg/L	< 0.0082 U	< 0.0082 UJ	< 0.0082 U	3	0.00221			
·	Formaldehyde	mg/L	< 0.021 U	< 0.021 UJ	< 0.021 U	3	0.00146			
General	Ammonia (as N)	mg/L	0.0352 J	< 0.0078 UJ	0.0842	3	0.209	0		
Chemistry	Bromide	mg/L	< 0.025 U	< 0.025 UJ	< 0.025 U	3				
·	Chlorate	mg/L	< 0.053 U	< 0.053 UJ	< 0.053 U	3				
	Chloride	mg/L	124	2 J	31.6	3				
	Fluoride	mg/L	0.12	0.11 J	0.35	3	4	0	4	0
	Nitrate	mg/L				0	10		10	
	Nitrite	mg/L	< 0.2 U	< 0.002 UJ	< 0.02 U	3	1		1	
	Orthophosphate as P	mg/L	< 0.05 U	0.087 J	< 0.05 U	3				
	Perchlorate	mg/L	0.0023 J	0.0049	0.00505	3	0.018	0	0.018/0.0245(1)	0
	Total Kjeldahl Nitrogen (TKN)	mg/L	0.37 J	< 0.25 UJ	< 0.25 U	3				
Metals	Aluminum	mg/L	< 0.04955 U	9.71 J	< 0.04955 U	3	0.05	1		
	Antimony	mg/L	< 0.0034 U	< 0.0034 UJ	< 0.0034 U	3	0.006		0.006	
	Arsenic	mg/L	0.0123 J	0.0171 J	0.0176 J	3	0.01	3	0.01	3
	Barium	mg/L	0.0612	0.157 J	0.0524	3	2	0	2	0
	Beryllium	mg/L	< 0.00064 U	< 0.00064 UJ	< 0.00064 U	3	0.004		0.004	
	Boron	mg/L	< 0.25 U	< 0.09 UJ	< 0.25 U	3	7.3			
	Cadmium	mg/L	< 0.00021 U	< 0.00021 UJ	< 0.00021 U	3	0.005		0.005	
	Calcium	mg/L	113	13 J	122	3				
	Chromium	mg/L	< 0.015 U	< 0.015 UJ	< 0.015 U	3	0.1		0.1	
	Chromium (VI)	mg/L	< 0.002 U	< 0.002 UJ	< 0.002 U	3	0.1		0.1	
	Cobalt	mg/L	< 0.00122 U	0.0052 J	< 0.00122 U	3	0.011	0		
	Copper	mg/L	< 0.00405 U	0.0112 J	< 0.00405 U	3	1.3	0	1.3	0
	Iron	mg/L	< 0.08 U	7.44 J	< 0.08 U	3	0.3	1		
	Lead	mg/L	< 0.00246 U	0.0057 J	< 0.00246 U	3	0.015	0	0.015	0
	Lithium	mg/L	< 0.025 U	0.0276 J	< 0.025 U	3	0.073	0		
	Magnesium	mg/L	8.62	7.89 J	3.95	3	207	0		
	Manganese	mg/L	< 0.003 U	0.11 J	< 0.003 U	3	0.02	1		
	Mercury	mg/L	< 0.0000612 U	< 0.0000612 UJ	< 0.0000612 U	3	0.002		0.002	
	Molybdenum	mg/L	0.0069 J	< 0.00224 UJ	< 0.00224 U	3	0.183	0		
	Nickel	mg/L	0.0037 J	0.0125 J	0.0031 J	3	0.73	0		
	Potassium	mg/L	11.4	3.63 J	4.23	3				
	Selenium	mg/L	0.0025 J	< 0.002402 UJ	< 0.002402 U	3	0.05	0	0.05	0
	Silver	mg/L	< 0.001014 U	< 0.001014 UJ	< 0.001014 U	3	0.1			
	Sodium	mg/L	119	34.5 J	53.9	3				
	Strontium	mg/L	3.27	0.159 J	3.69	3	21.9	0		
	Thallium	mg/L	< 0.0003 U	< 0.0003 UJ	< 0.0003 U	3	0.002		0.002	
	Tin	mg/L	< 0.0034 U	< 0.0034 UJ	< 0.0034 U	3	21.9			
	Titanium	mg/L	< 0.00755 U	0.573 J	< 0.00755 U	3	146	0		
	Tungsten	mg/L	< 0.00755 U	< 0.00755 UJ	< 0.00755 U	3	0.274			
	Uranium	mg/L	< 0.001048 U	0.0024 J	< 0.001048 U	3	0.03	0	0.03	0
	Vanadium	mg/L	0.0383 J	0.0244 J	0.0867	3	0.183	0		
	Zinc	mg/L	< 0.02 U	0.0268 J	< 0.02 U	3	11	0		

SPLP DATA SUMMARY

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 4)

Parameter of Interest	Compound List	Units	WHC1-BM09 Result	WHC1-BN06 Result	WHC1-BO10 Result	Total Count	Residential Water BCL ^c	Count of Detects > BCL	MCL	Count of Detects > MCL
OCPs	2,4-DDD	mg/L	< 0.000011 U	< 0.000011 UJ	< 0.000011 U	3				
	2,4-DDE	mg/L	< 0.000009 U	< 0.000009 UJ	< 0.000009 U	3				
	4.4-DDD	mg/L	< 0.0000038 U	< 0.0000038 UJ	< 0.0000038 U	3	0.00028			
	4,4-DDE	mg/L	< 0.0000027 U	< 0.0000027 UJ	< 0.0000027 U	3	0.000198			
	4.4-DDT	mg/L	< 0.000056 U	< 0.0000056 UJ	< 0.0000056 U	3	0.000198			
	Aldrin	mg/L	< 0.000004 U	< 0.000004 UJ	< 0.000004 U	3	0.00000395			
	alpha-BHC	mg/L	< 0.0000025 U	< 0.0000025 UJ	< 0.0000025 U	3	0.011			
	alpha-Chlordane	mg/L	< 0.000003 U	< 0.000003 UJ	< 0.000003 U	3				
	beta-BHC	mg/L	< 0.000013 U	< 0.000013 UJ	< 0.000013 U	3	0.00219			
	Chlordane	mg/L	< 0.00018 U	< 0.00018 UJ	< 0.00018 U	3	0.002		0.002	
	delta-BHC	mg/L	< 0.000006 U	< 0.000006 UJ	< 0.000016 U	3				
	Dieldrin	mg/L	< 0.000003 U	< 0.000003 UJ	< 0.000003 U	3	0.0000042			
	Endosulfan I	mg/L	< 0.0000025 U	< 0.0000025 UJ	< 0.0000025 U	3	0.219			
	Endosulfan II	mg/L	< 0.00001 U	< 0.00001 UJ	< 0.0000025 C	3	0.219			
	Endosulfan sulfate	mg/L	< 0.00001 U	< 0.00001 UJ	< 0.00001 U	3	0.21)			
	Endosultan surface Endrin	mg/L	< 0.000017 C	< 0.000017 UJ	< 0.000017 C	3	0.002		0.002	
	Endrin aldehyde	mg/L	< 0.0000028 U	< 0.0000032 UJ	< 0.0000028 U	3				
	Endrin ketone	mg/L mg/L	< 0.000016 U	< 0.000016 UJ	< 0.0000032 U	3				
	gamma-BHC (Lindane)	mg/L mg/L	< 0.000016 U	< 0.000010 UJ	< 0.000010 U	3	0.0002		0.0002	
	gamma-Chlordane	mg/L	< 0.0000023 U	< 0.0000027 UJ	< 0.0000023 U	3	0.0002		0.0002	
	Heptachlor	mg/L	< 0.0000027 U	< 0.0000027 UJ	< 0.0000027 U	3	0.0004		0.0004	
	Heptachlor epoxide	mg/L	< 0.0000023 U	< 0.0000023 UJ	< 0.0000023 U	3	0.0004		0.0004	
	Methoxychlor	mg/L	< 0.0000052 U	< 0.0000052 UJ	< 0.0000032 U	3	0.002		0.0002	
	Toxaphene		< 0.00033 U	< 0.00003 UJ	< 0.00003 U	3	0.003		0.003	
PAHs		mg/L	< 0.00033 U < 0.00025 U	< 0.00035 UJ < 0.00025 U	< 0.00033 U < 0.00025 U	3	0.003			
rans	Acenaphthene	mg/L					0.00624			
	Acenaphthylene	mg/L	< 0.00025 U	< 0.00025 U	< 0.00025 U	3				
	Anthracene	mg/L	< 0.00025 U	< 0.00025 U	< 0.00025 U	3	0.00625			
	Benzo(a)anthracene	mg/L	< 0.00025 U	< 0.00025 U	< 0.00025 U	3	0.0000921			
	Benzo(a)pyrene	mg/L	< 0.00025 U	< 0.00025 U	< 0.00025 U	3	0.0002		0.0002	
	Benzo(b)fluoranthene	mg/L	< 0.00025 U	< 0.00025 U	< 0.00025 U	3	0.0000921			
	Benzo(g,h,i)perylene	mg/L	< 0.00025 U	< 0.00025 U	< 0.00025 U	3	1.1			
	Benzo(k)fluoranthene	mg/L	< 0.00025 U	< 0.00025 U	< 0.00025 U	3	0.000921			
	Chrysene	mg/L	< 0.00025 U	< 0.00025 U	< 0.00025 U	3	0.00921			
	Dibenzo(a,h)anthracene	mg/L	< 0.00025 U	< 0.00025 U	< 0.00025 U	3	0.00000921			
	Indeno(1,2,3-cd)pyrene	mg/L	< 0.00025 U	< 0.00025 U	< 0.00025 U	3	0.0000921			
	Phenanthrene	mg/L	< 0.00025 U	< 0.00025 U	< 0.00025 U	3	0.00622			
	Pyrene	mg/L	< 0.00025 U	< 0.00025 U	< 0.00025 U	3	0.00622			
Radionuclides	Radium-226	pCi/L	0.067 UJ	0.337 U	0.177 UJ	3	0.005			
	Radium-228	pCi/L	1.4 UJ	0.296 UJ	0.472 UJ	3	0.005			
	Thorium-228	pCi/L	-0.121 UJ	0.269 U	0.428 UJ	3	0.00011			
	Thorium-230	pCi/L	1.27 J	1 U	1 UJ	3	0.00042	1		
	Thorium-232	pCi/L	-0.0883 UJ	-0.0101 U	0.347 J-	3	0.00014	1		
	Uranium-233/234	pCi/L	4.01 J-	0.451 U	0.735 J-	3				
	Uranium-235/236	pCi/L	0.333 UJ	0.0461 U	0.364 J-	3				
	Uranium-238	pCi/L	0.91 J-	0.225 U	0.22 UJ	3				

SPLP DATA SUMMARY

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 3 of 4)

Parameter of Interest	Compound List	Units	WHC1-BM09 Result	WHC1-BN06 Result	WHC1-BO10 Result	Total Count	Residential Water BCL ^c	Count of Detects > BCL	MCL	Count of Detects > MCL
SVOCs	1,2,4,5-Tetrachlorobenzene	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.011			
	1,2-Diphenylhydrazine	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.000084			
	1,4-Dioxane	mg/L	< 0.005 UJ	< 0.005 U	< 0.005 U	3	0.000672			
	2,2'-Dichlorobenzil	mg/L	< 0.0165 U	< 0.0165 U	< 0.0165 U	3	0.011			
	2,4,5-Trichlorophenol	mg/L	< 0.005 U	< 0.005 U	< 0.005 U	3	3.65			
	2,4,6-Trichlorophenol	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.00611			
	2,4-Dichlorophenol	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.11			
	2,4-Dimethylphenol	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.73			
	2,4-Dinitrophenol	mg/L	< 0.05 U	< 0.05 U	< 0.05 U	3	0.073			
	2,4-Dinitrotoluene	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.000217			
	2,6-Dinitrotoluene	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.0365			
	2-Chloronaphthalene	mg/L	< 0.00175 U	< 0.00175 U	< 0.00175 U	3	0.00208			
	2-Chlorophenol	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.0664			
	2-Methylnaphthalene	mg/L	< 0.0015 U	< 0.0015 U	< 0.0015 U	3				
	2-Nitroaniline	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.11			
	2-Nitrophenol	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3				
	3,3-Dichlorobenzidine	mg/L	< 0.005 U	< 0.005 U	< 0.005 U	3	0.000149			
	3-Nitroaniline	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3				
	4-Bromophenyl phenyl ether	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3				
	4-Chloro-3-methylphenol	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3				
	4-Chlorophenyl phenyl ether	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3				
	4-Chlorothioanisole	mg/L	< 0.0165 U	< 0.0165 U	< 0.0165 U	3				
	4-Nitroaniline	mg/L	< 0.015 U	< 0.015 U	< 0.015 U	3				
	4-Nitrophenol	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.292			
	Acetophenone	mg/L	< 0.01 UJ	< 0.01 U	< 0.01 U	3	0.679			
	Aniline	mg/L	< 0.0125 U	< 0.0125 U	< 0.0125 U	3	0.0118			
	Benzenethiol	mg/L	< 0.033 U	< 0.033 U	< 0.033 U	3				
	Benzoic acid	mg/L	< 0.03 U	< 0.03 U	< 0.03 U	3	146			
	Benzyl alcohol	mg/L	< 0.01 UJ	< 0.01 U	< 0.01 UJ	3	18.3			
	bis(2-Chloroethoxy)methane	mg/L	< 0.015 U	< 0.015 U	< 0.015 U	3				
	bis(2-Chloroethyl) ether	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.0000119			
	bis(2-Chloroisopropyl) ether	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.000323			
	bis(2-Ethylhexyl) phthalate	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.006		0.006	
	bis(p-Chlorophenyl) sulfone	mg/L	< 0.0165 U	< 0.0165 U	< 0.0165 U	3				
	bis(p-Chlorophenyl)disulfide	mg/L	< 0.0165 U	< 0.0165 U	< 0.0165 U	3				
	Butylbenzyl phthalate	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.0354			
	Carbazole	mg/L	< 0.001 U	< 0.001 U	< 0.001 UJ	3	0.00336			
	Dibenzofuran	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.073			
	Diethyl phthalate	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	29.2			
	Dimethyl phthalate	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	365			
	Di-n-butyl phthalate	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	3.65			
	Di-n-octyl phthalate	mg/L	< 0.015 U	< 0.015 U	< 0.015 U	3				
	Diphenyl disulfide	mg/L	< 0.0165 U	< 0.0165 U	< 0.0165 U	3				
	Diphenyl sulfide	mg/L	< 0.0165 U	< 0.0165 U	< 0.0165 U	3				
	Diphenyl sulfone	mg/L	< 0.0165 U	< 0.0165 U	< 0.0165 U	3	0.11			

SPLP DATA SUMMARY

HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 4 of 4)

Parameter of Interest	Compound List	Units	WHC1-BM09 Result	WHC1-BN06 Result	WHC1-BO10 Result	Total Count	Residential Water BCL ^c	Count of Detects > BCL	MCL	Count of Detects > MCL
SVOCs	Diphenylamine	mg/L	< 0.015 U	< 0.015 U	< 0.015 U	3	0.913			
	Fluoranthene	mg/L	< 0.001 U	< 0.001 U	< 0.001 U	3	1.46			
	Fluorene	mg/L	< 0.001 U	< 0.001 U	< 0.001 U	3	0.00623			
	Hexachlorobenzene	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.001		0.001	
	Hexachlorobutadiene	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.000862			
	Hexachlorocyclopentadiene	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.05		0.05	
	Hexachloroethane	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.0048			
	Hydroxymethyl phthalimide	mg/L	< 0.0165 U	< 0.0165 U	< 0.0165 U	3				
	Isophorone	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.0708			
	m,p-Cresols	mg/L	< 0.015 U	< 0.015 U	< 0.015 U	3	0.183			
	Naphthalene	mg/L	< 0.0015 U	< 0.0015 U	< 0.0015 U	3	0.000143			
	Nitrobenzene	mg/L	< 0.015 U	< 0.015 U	< 0.015 U	3	0.000122			
	N-nitrosodi-n-propylamine	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.0000096			
	o-Cresol	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	1.83			
	Octachlorostyrene	mg/L	< 0.0165 U	< 0.0165 U	< 0.0165 U	3				
	p-Chloroaniline	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.000336			
	p-Chlorobenzenethiol	mg/L	< 0.0165 U	< 0.0165 U	< 0.0165 U	3				
	Pentachlorobenzene	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.0292			
	Pentachlorophenol	mg/L	< 0.01 U	< 0.01 U	< 0.01 U	3	0.001		0.001	
	Phenol	mg/L	< 0.005 U	< 0.005 U	< 0.005 U	3	11			
	Pyridine	mg/L	< 0.005 U	< 0.005 U	< 0.005 U	3	0.0319			

BCL = Basic Comparison Levels (BCLs) from NDEP 2013. Values used are residential water BCLs.

MCL = USEPA Maximum Contaminant Level.

 $^{^{(1)}}$ A MCL for perchlorate has not been promulgated. The USEPA Drinking Water Equivalent Level of 24.5 ug/L was used.

APPENDIX C

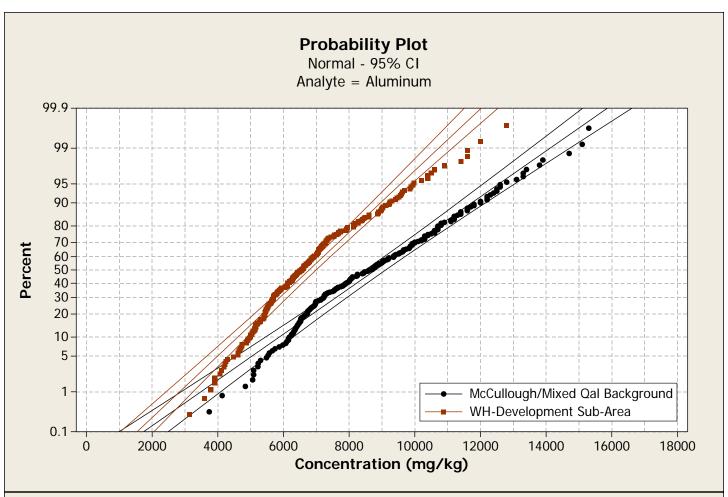
GES FIELD REPORTS (on the report CD in Appendix B)

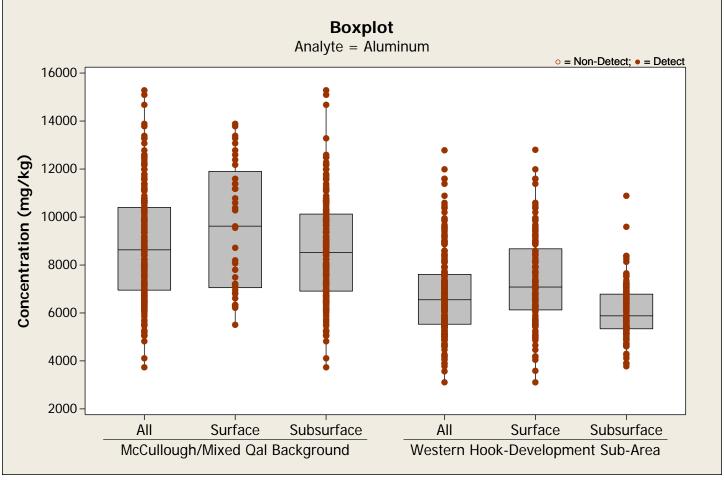
APPENDIX D

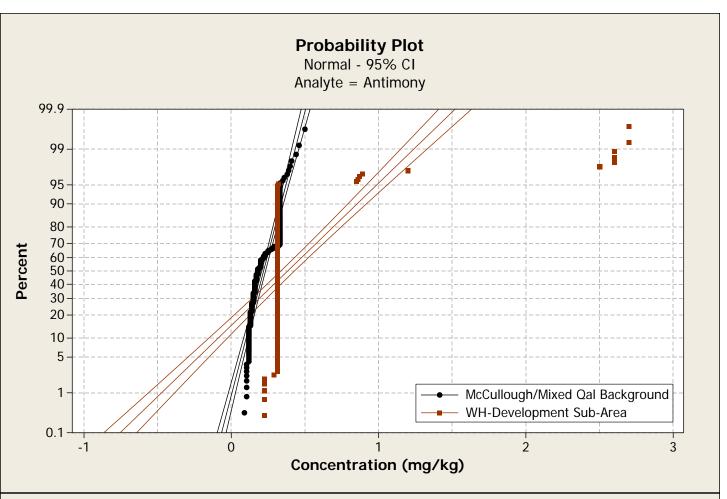
SURFACE FLUX CHAMBER TESTING INVESTIGATOR'S REPORT (on the report CD in Appendix B)

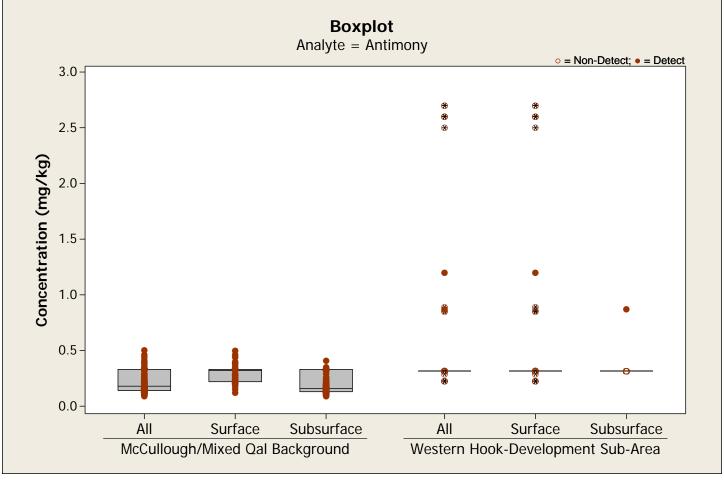
APPENDIX E

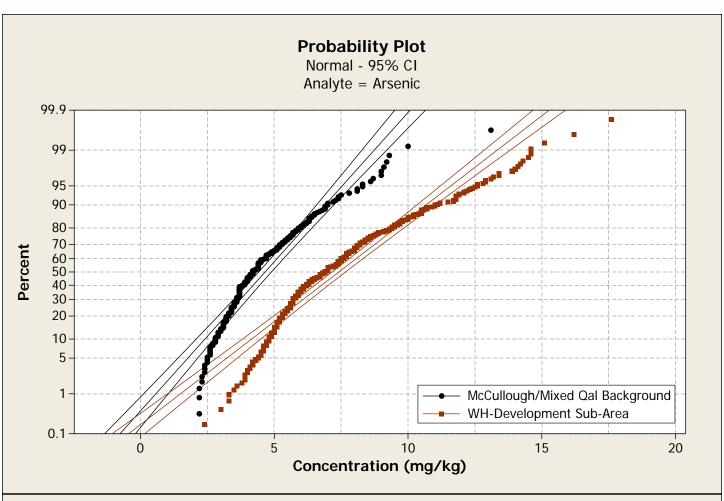
DATA USABILITY TABLES (on the report CD in Appendix B)

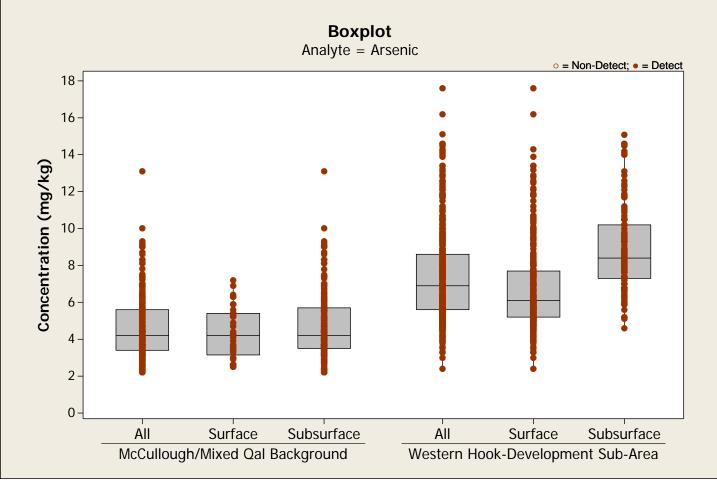

LIST OF TABLES (APPENDIX E)

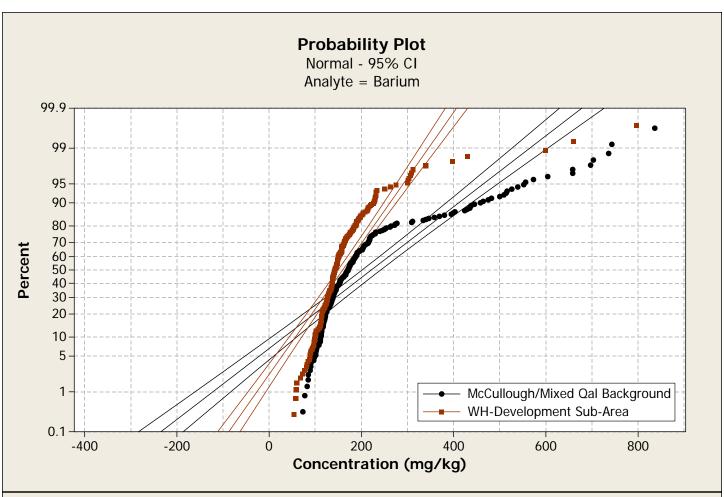

Table E-1	Data Usability Evaluation for Semi-Volatile Organic Compounds
Table E-2	Data Usability Evaluation for Dioxins/Furans
Table E-3	Data Usability Evaluation for Aldehydes
Table E-4	Data Usability Evaluation for Radionuclides
Table E-5	Data Usability Evaluation for Polychlorinated Biphenyls
Table E-6	Data Usability Evaluation for Organochlorine Pesticides
Table E-7	Data Usability Evaluation for General Chemistry Parameters
Table E-8	Data Usability Evaluation for Volatile Organic Compounds in Soil
Table E-9	Data Usability Evaluation for Metals
Table E-10	Data Usability Evaluation for Volatile Organic Compounds in Surface Flux
Table E-11	Data Usability Evaluation for Low MS and LCS Recoveries
Table E-12	Data Usability Evaluation for Field Duplicate RPD Exceedances
Table E-13	Data Usability Evaluation for Low Surrogate Recoveries
Table E-14	Data Censored Due to Lab or Field Blank Contamination

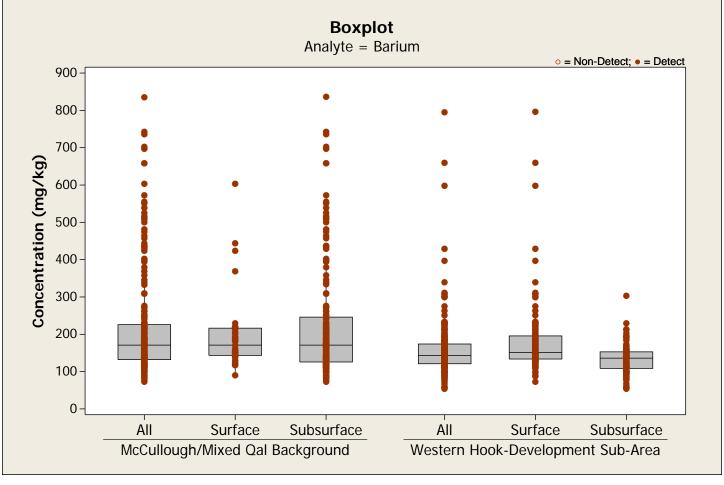

APPENDIX F DATA VALIDATION SUMMARY REPORTS

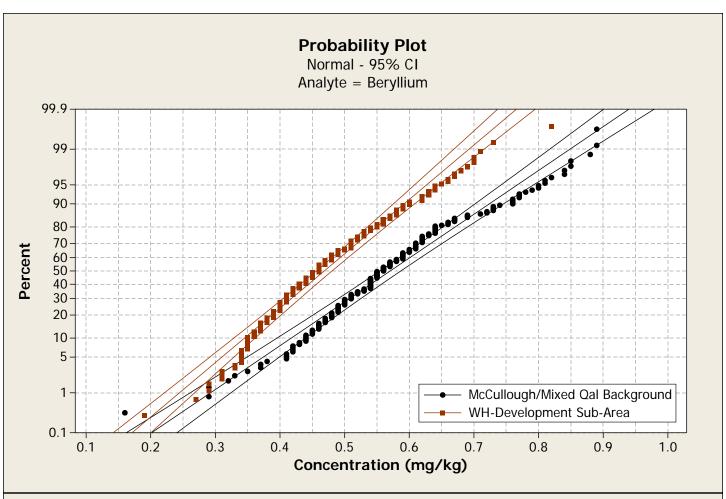

APPENDIX G

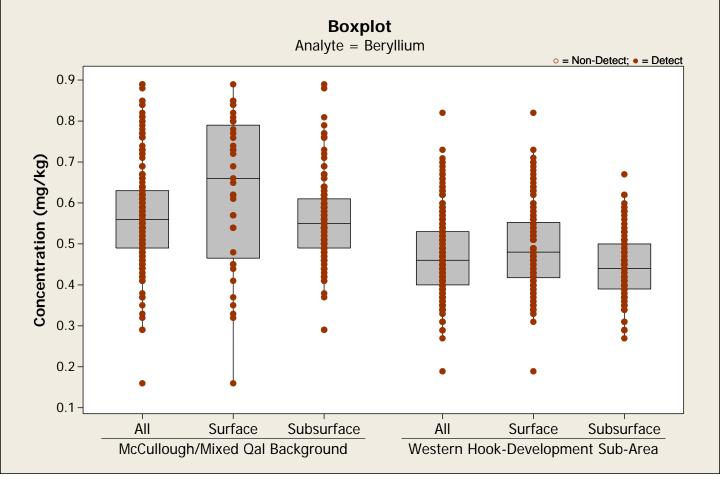

CUMULATIVE PROBABILITY PLOTS AND BOXPLOTS FOR METALS AND RADIONUCLIDES

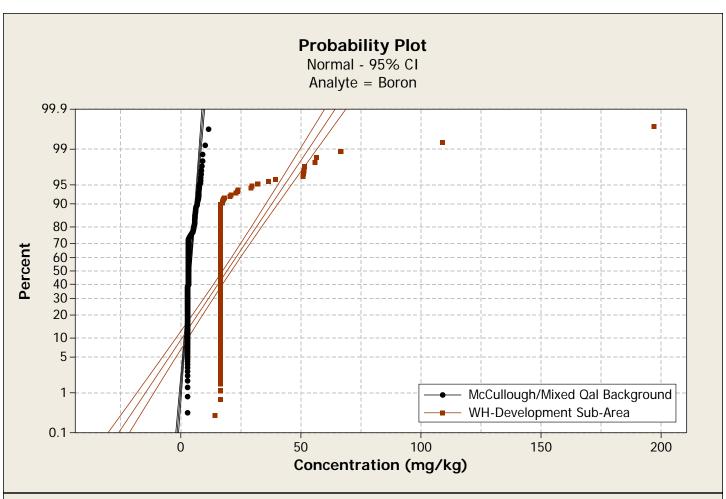


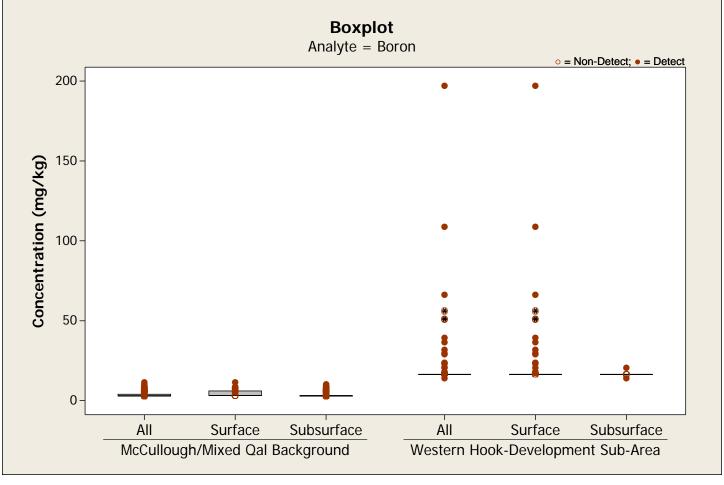


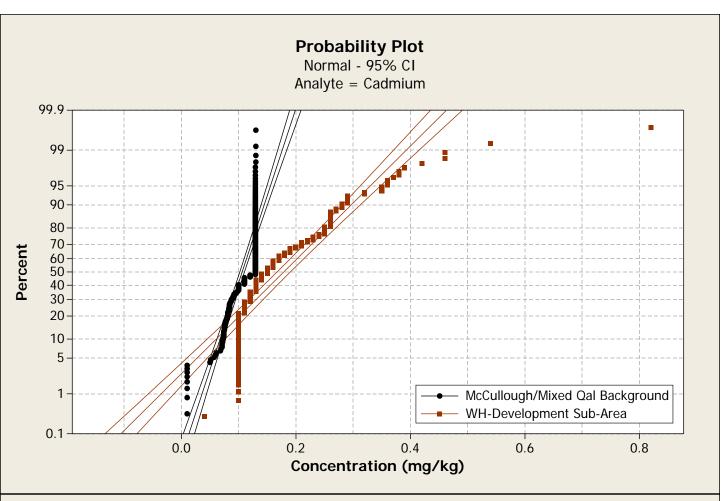


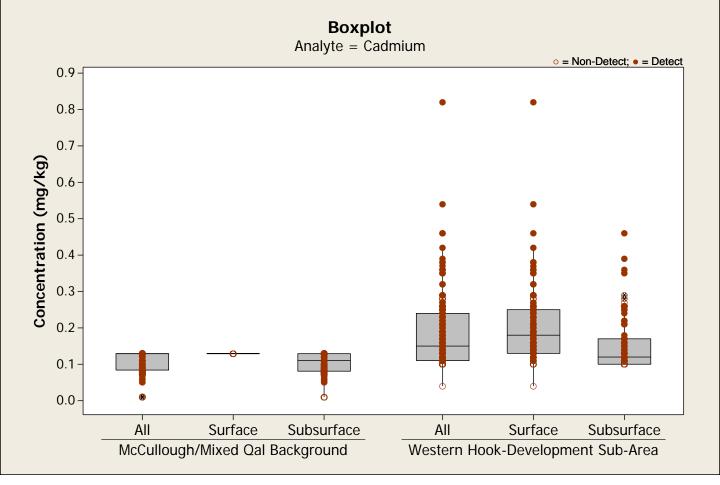


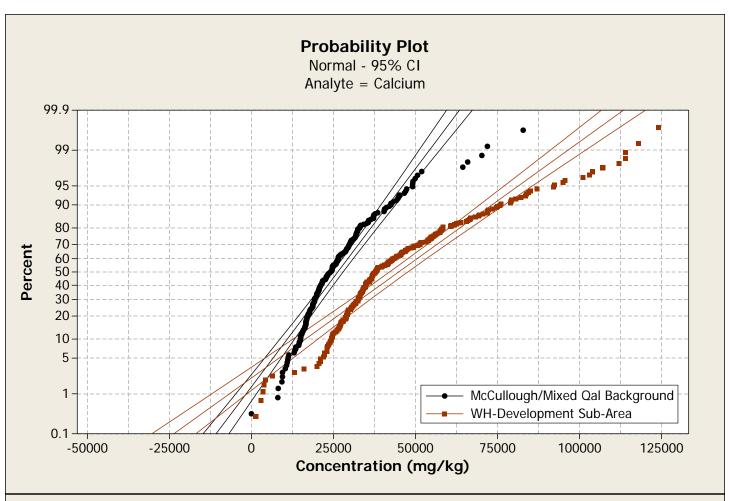


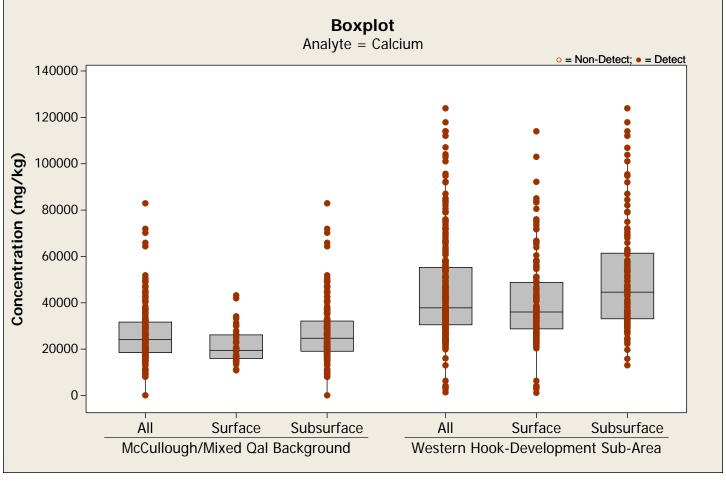


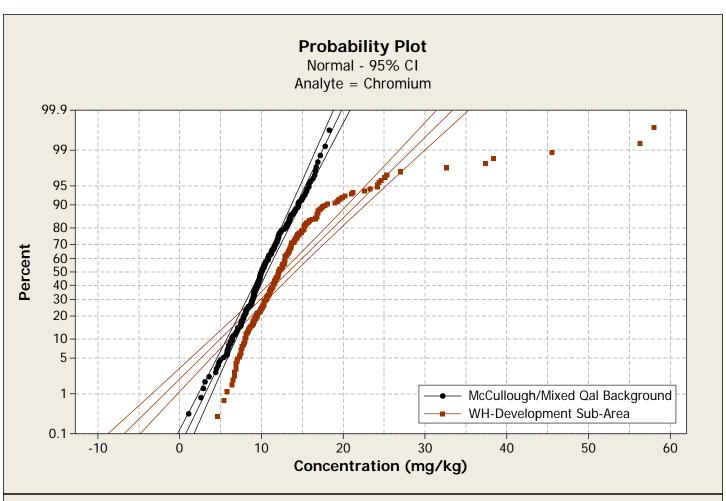


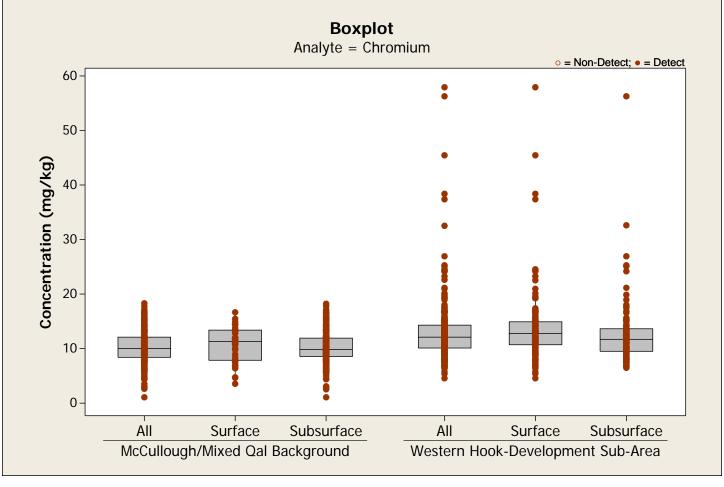


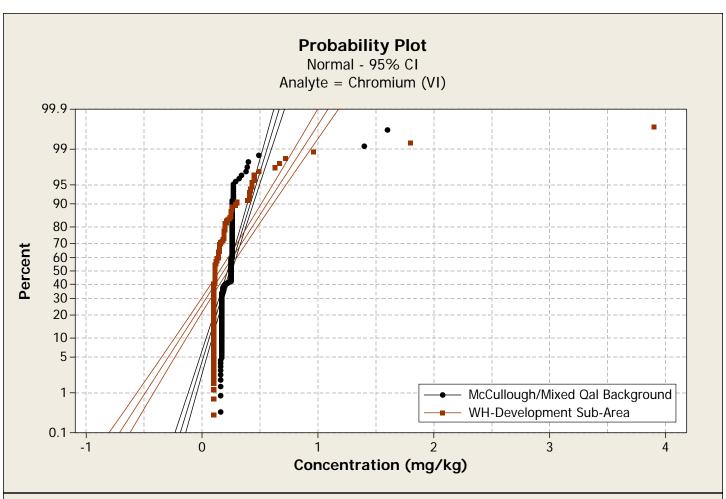


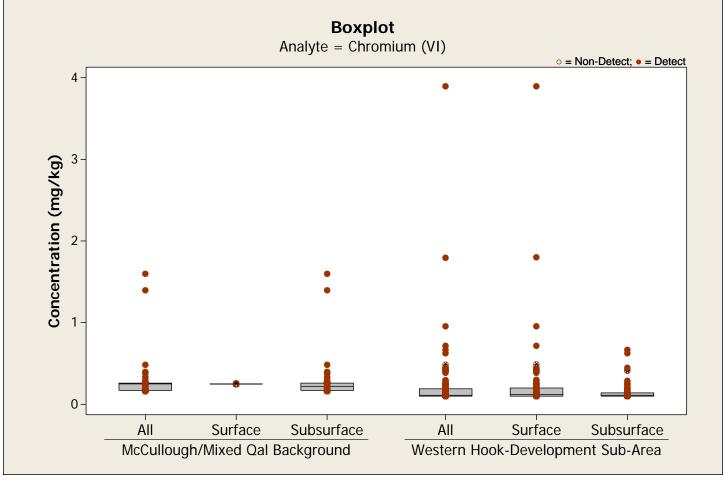


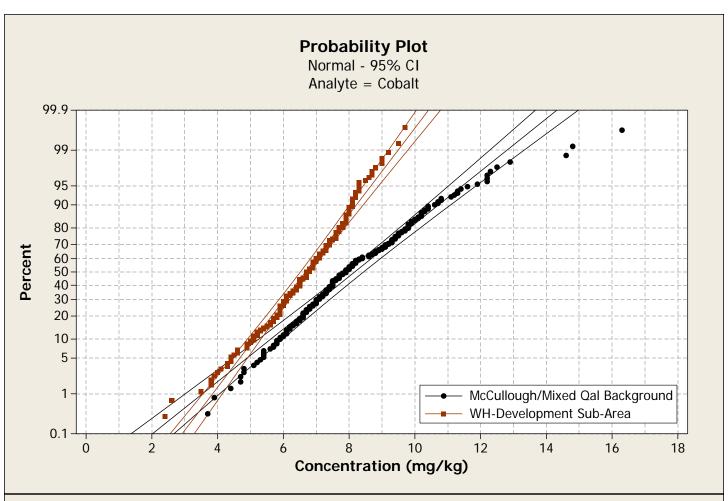


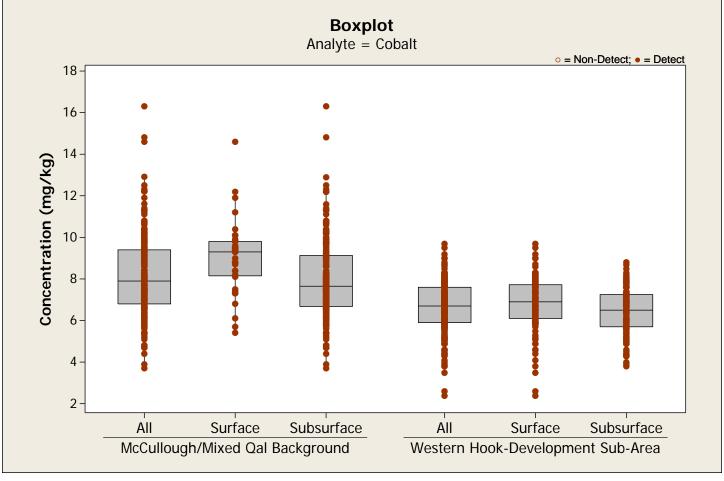


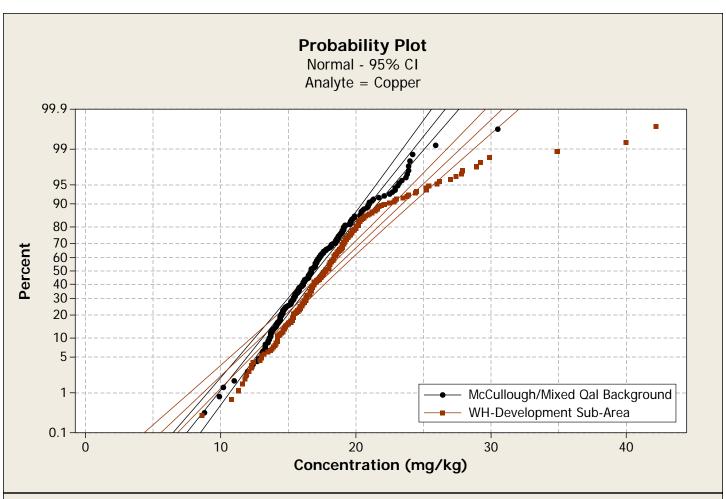


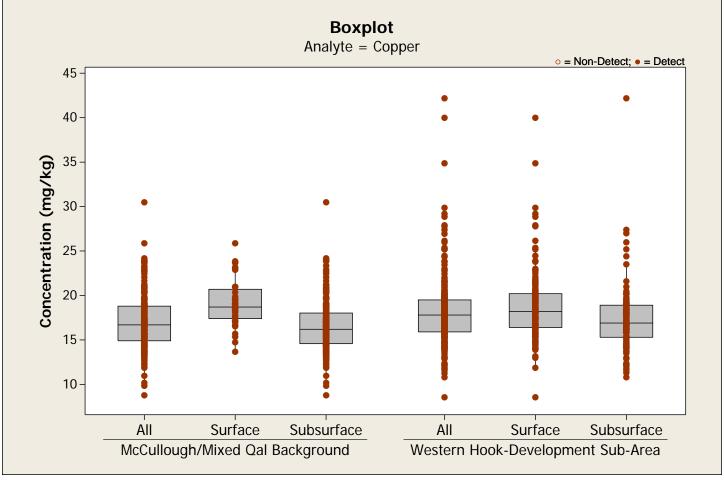


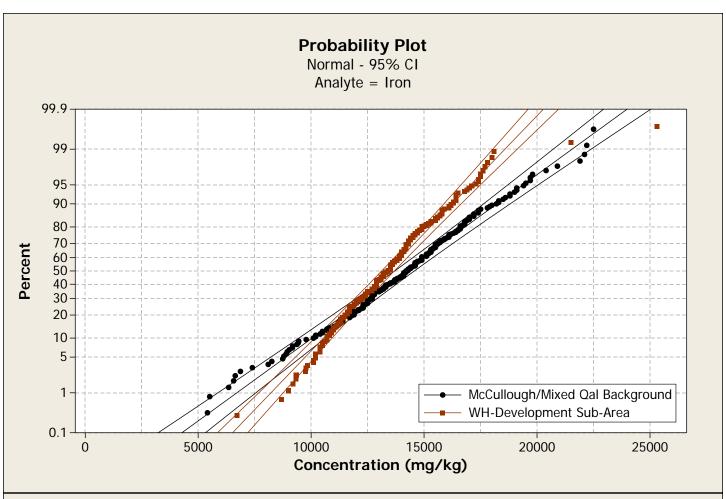


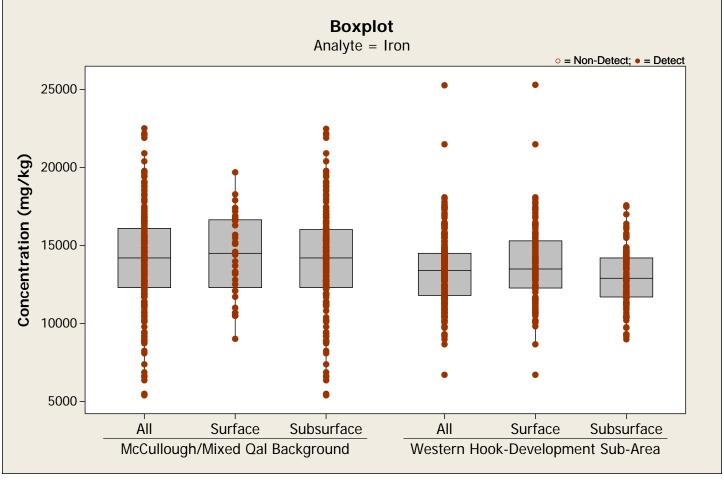


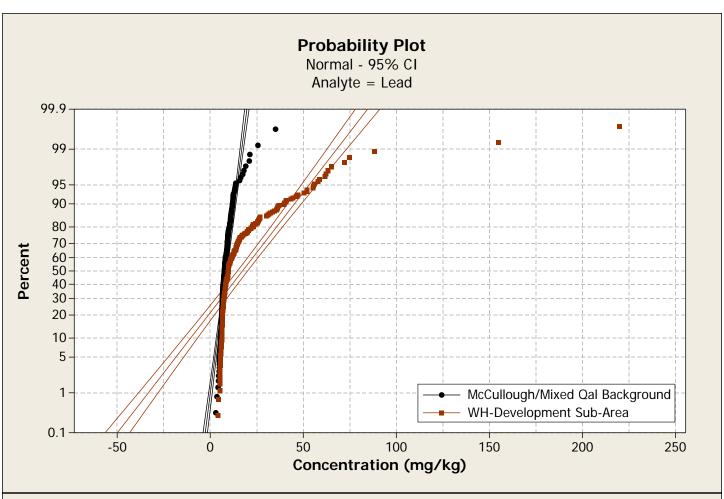


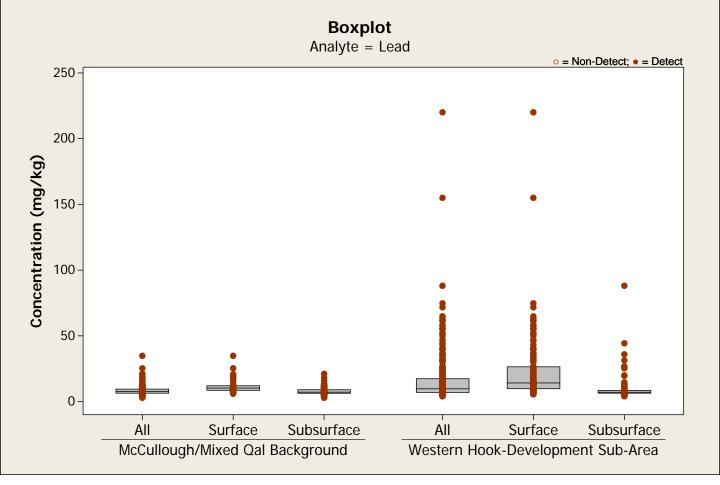


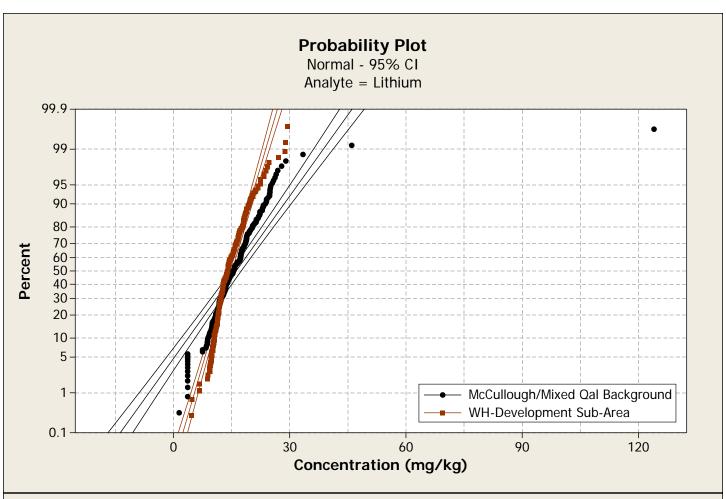


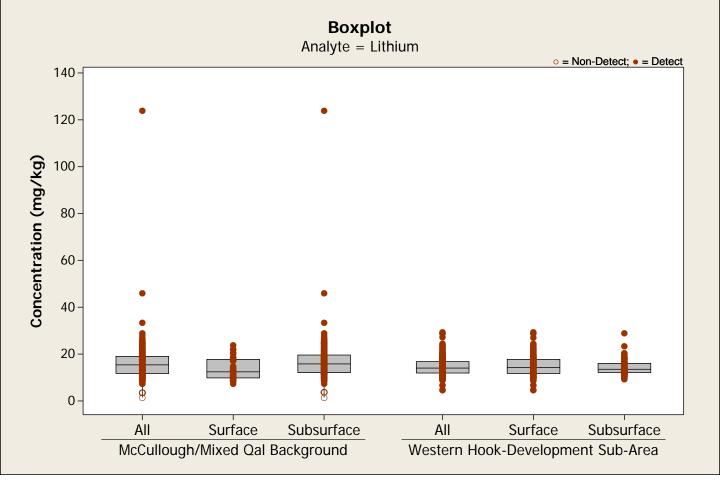


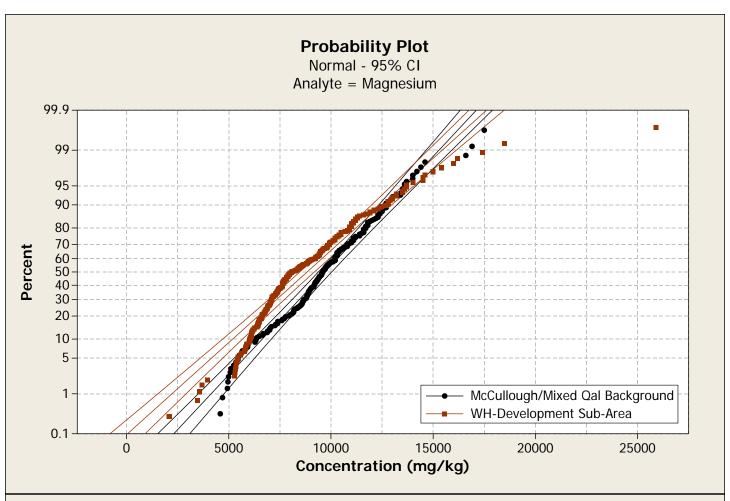


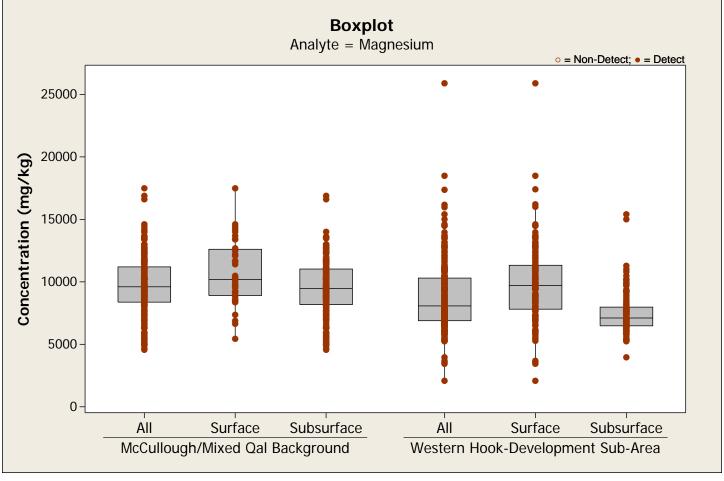


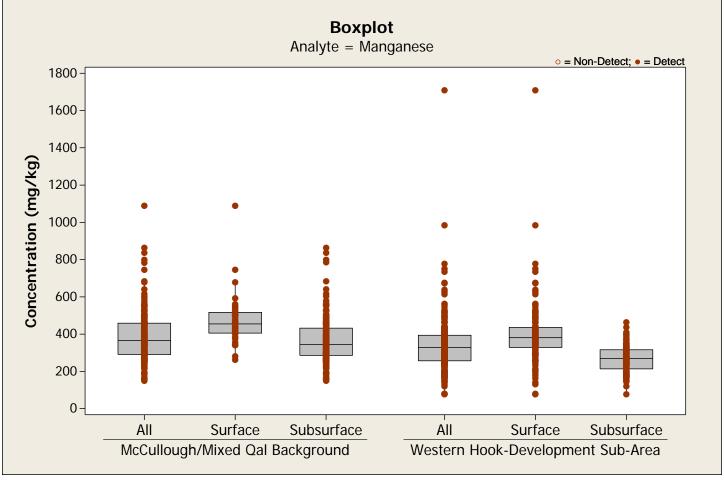


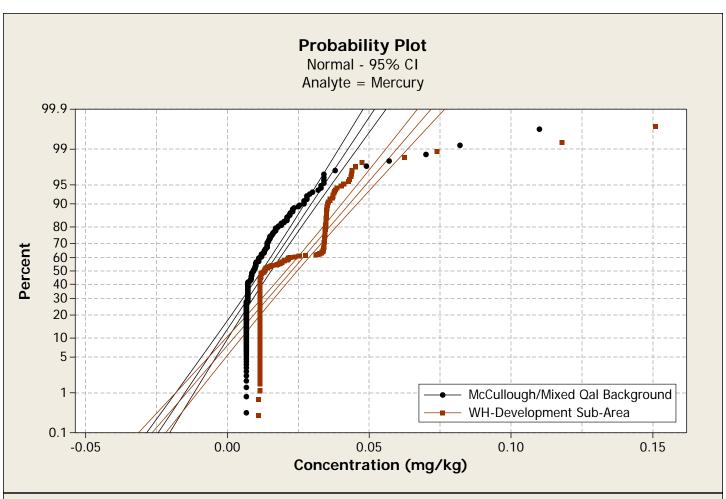


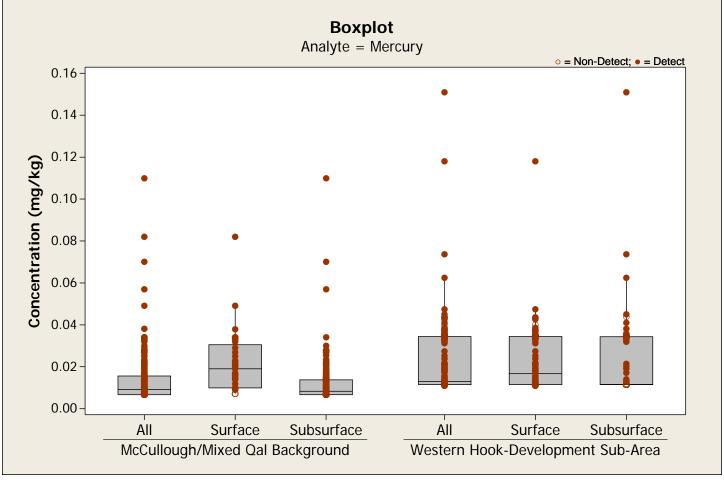


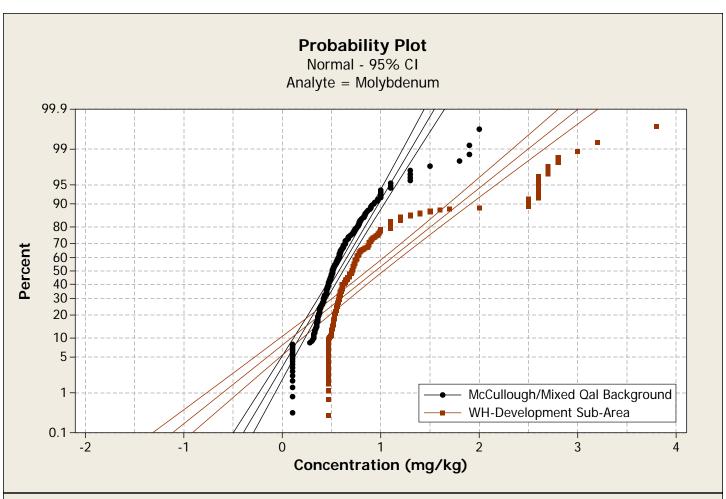


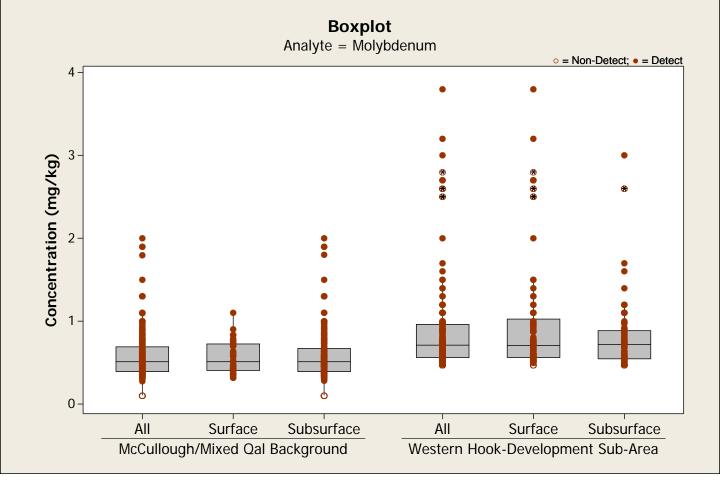


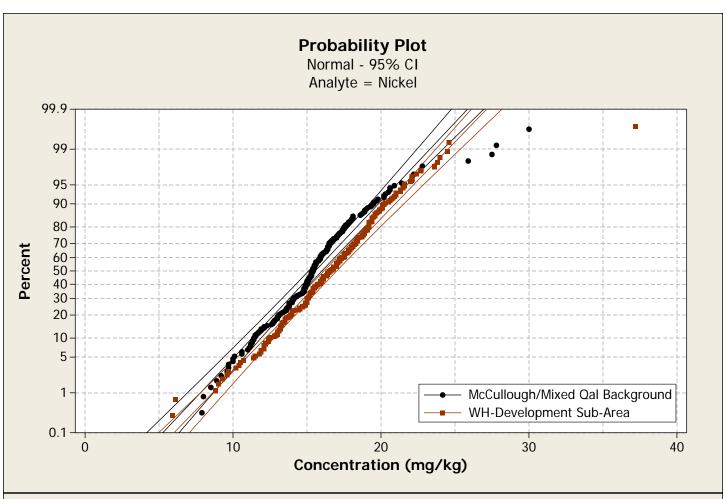




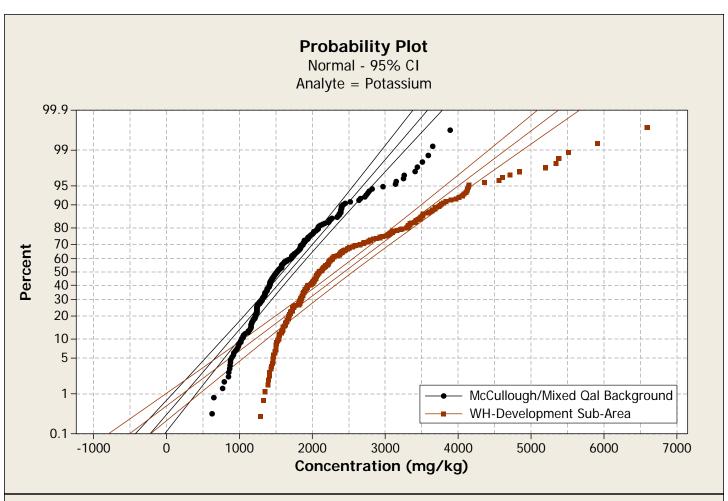


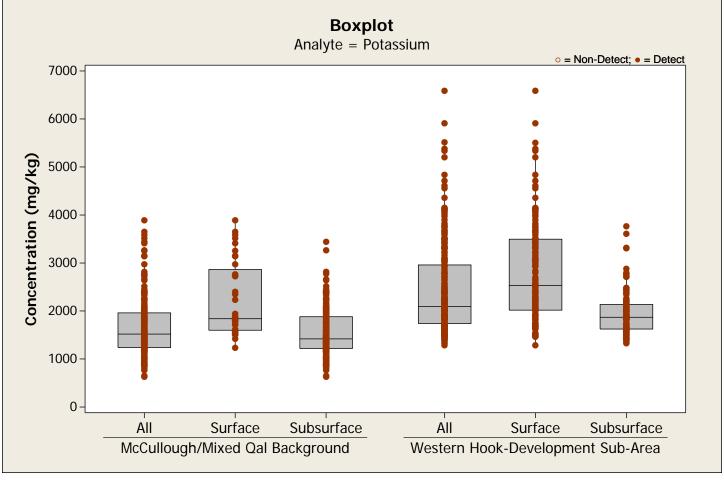


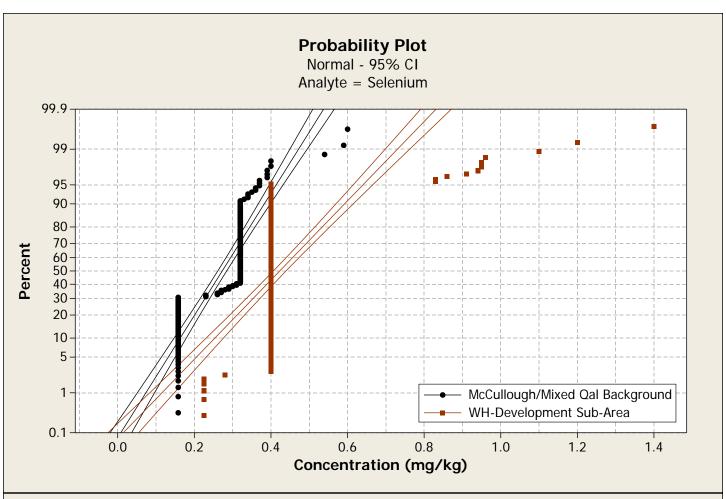


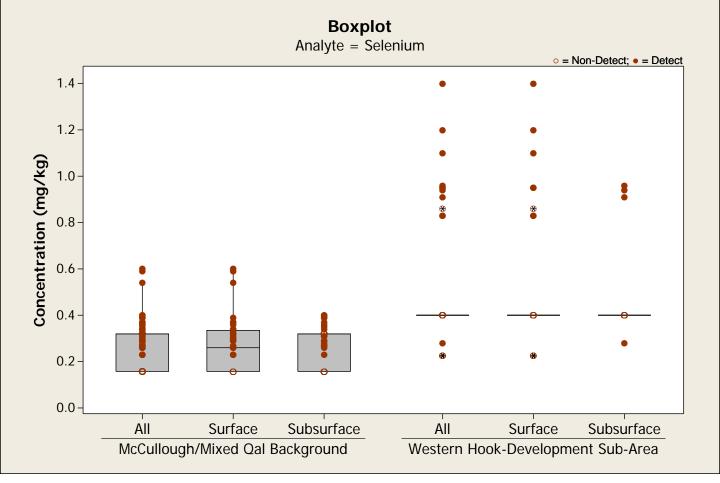


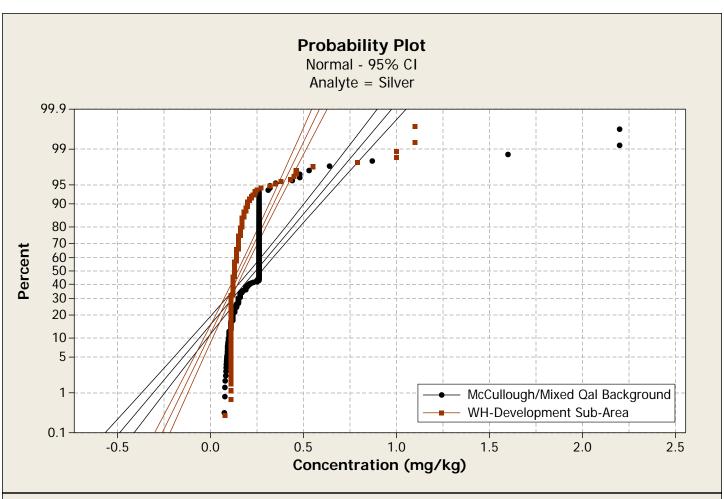


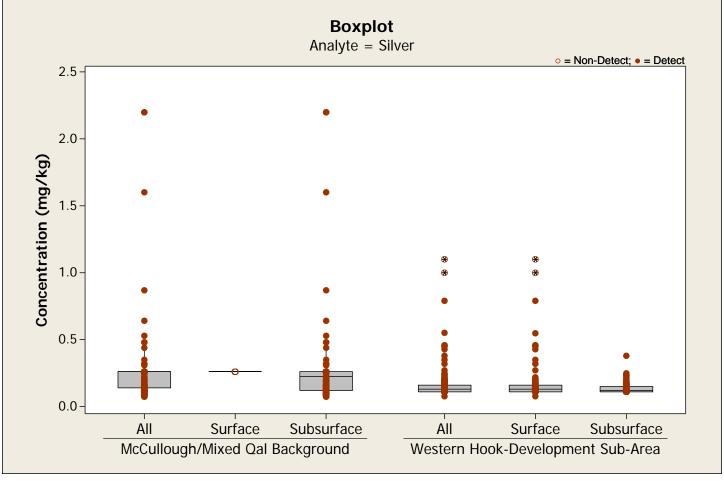


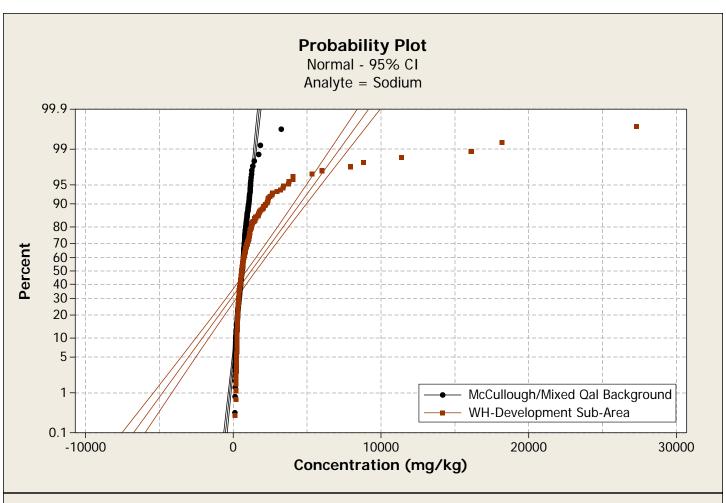


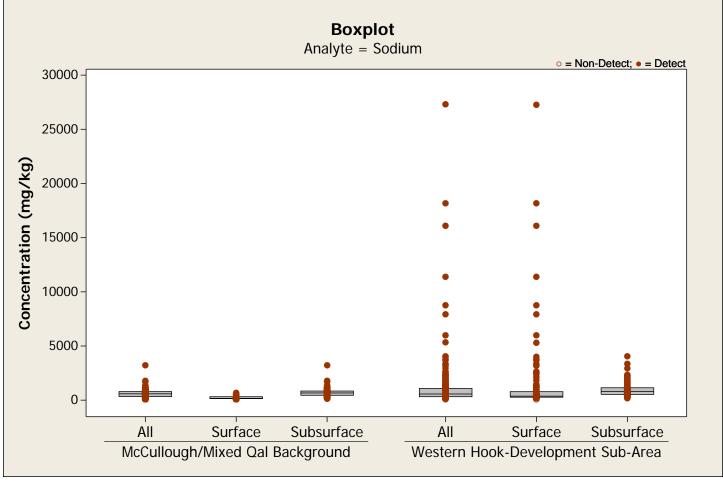


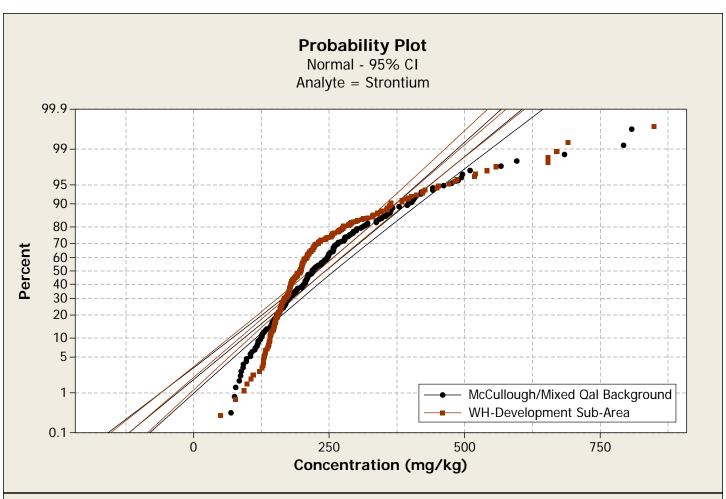


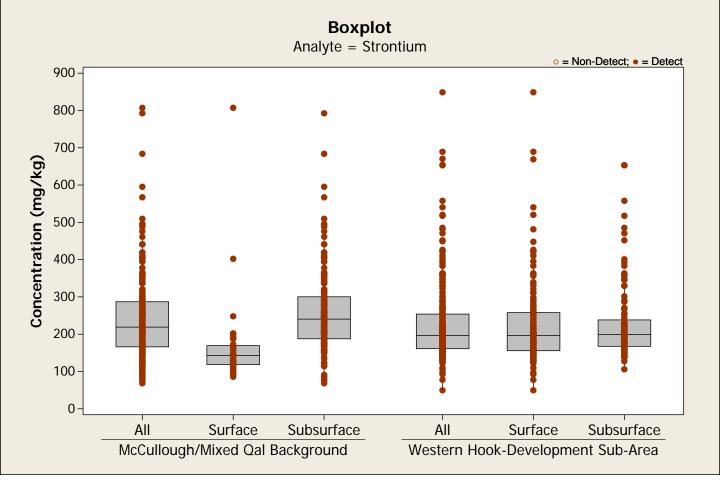


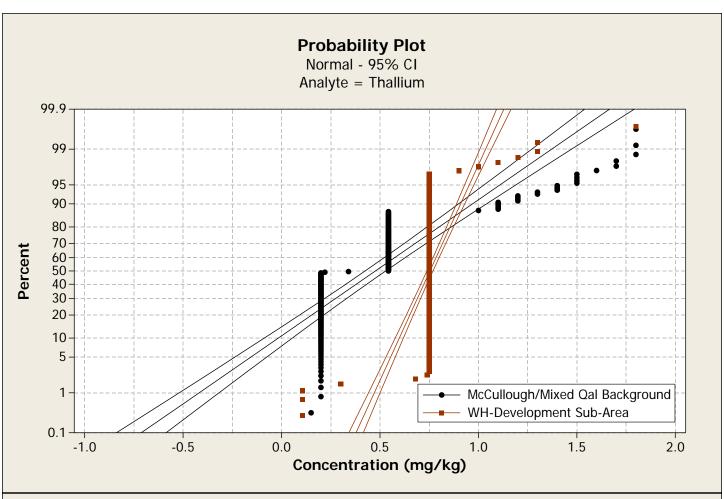


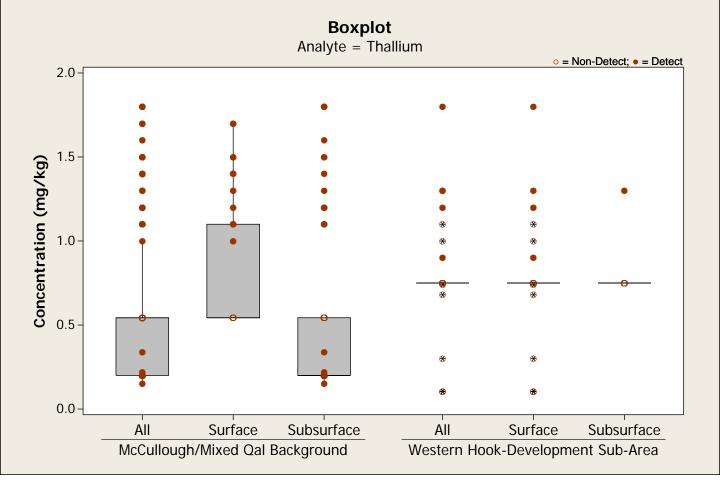


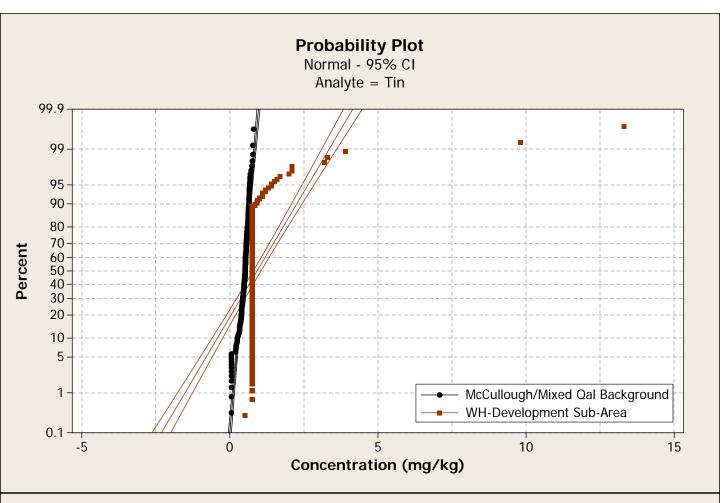


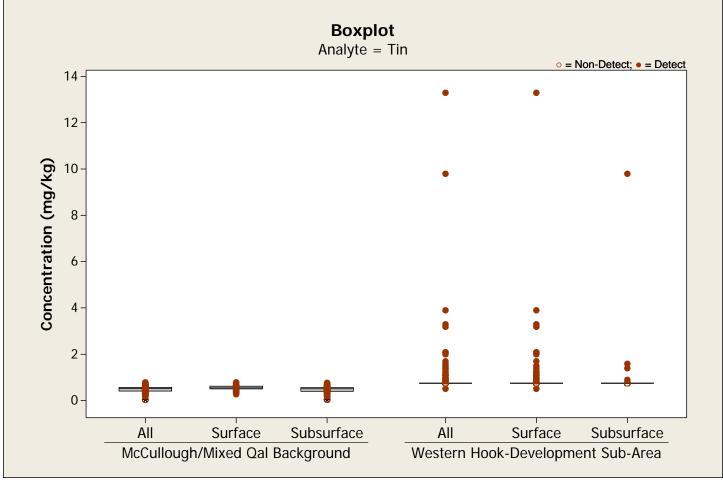


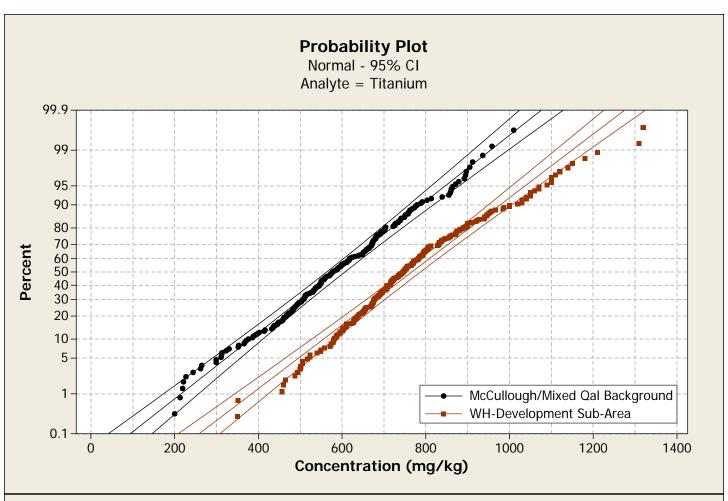


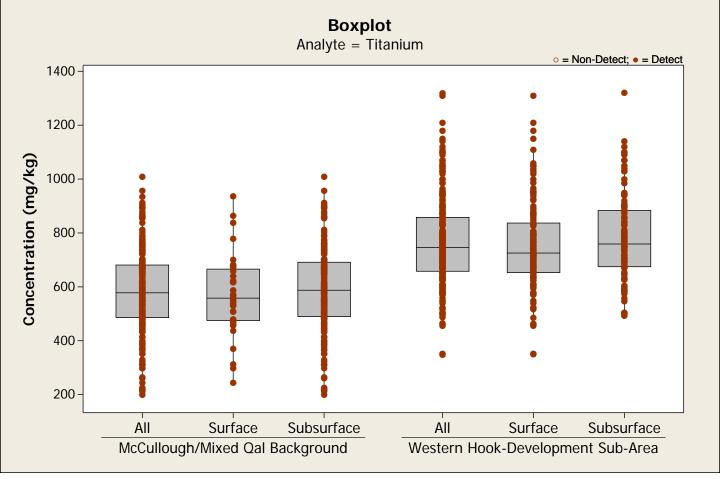


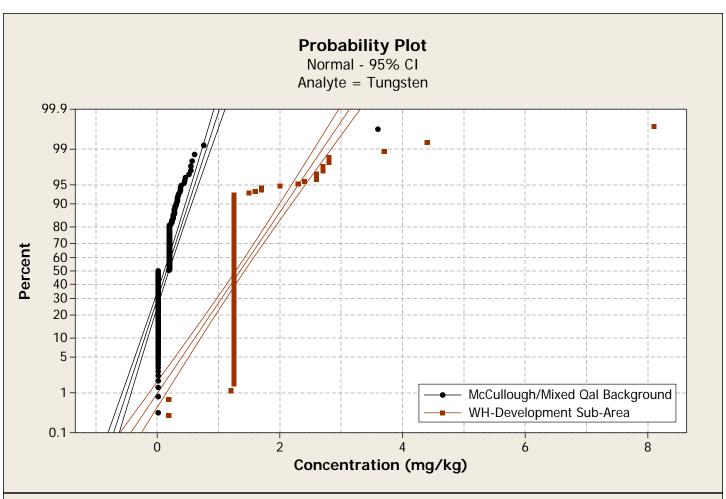


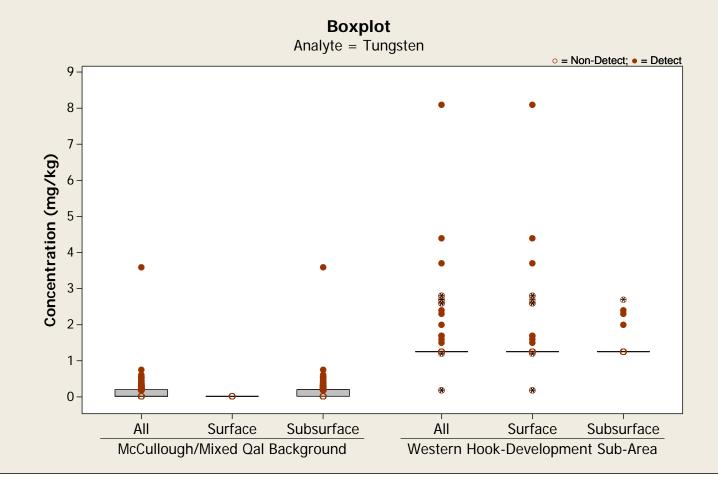


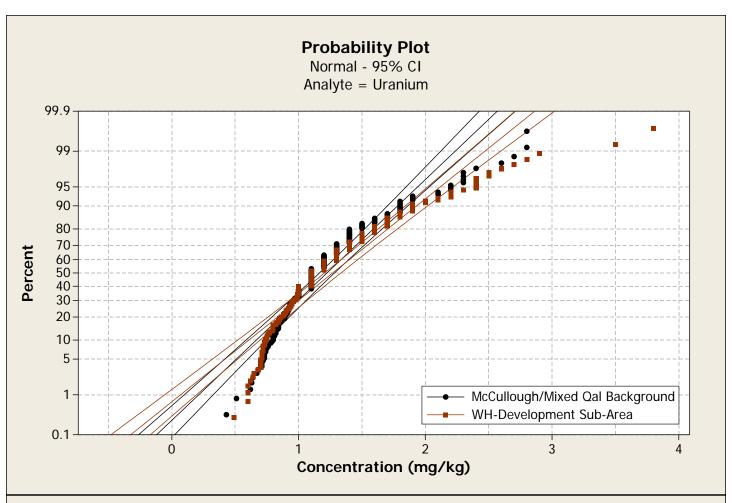


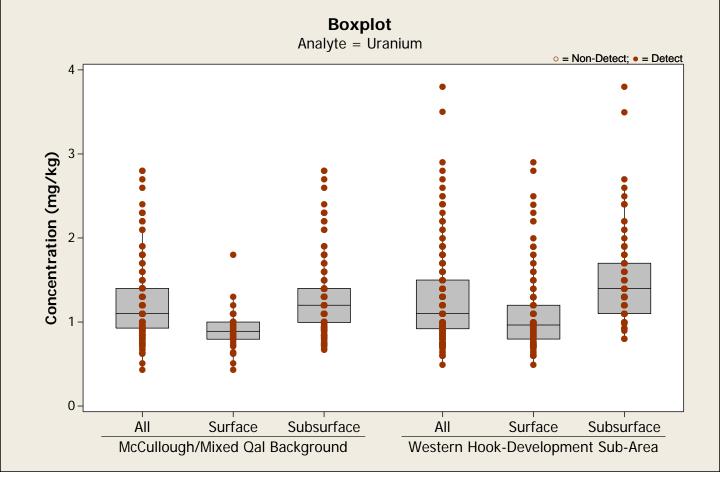


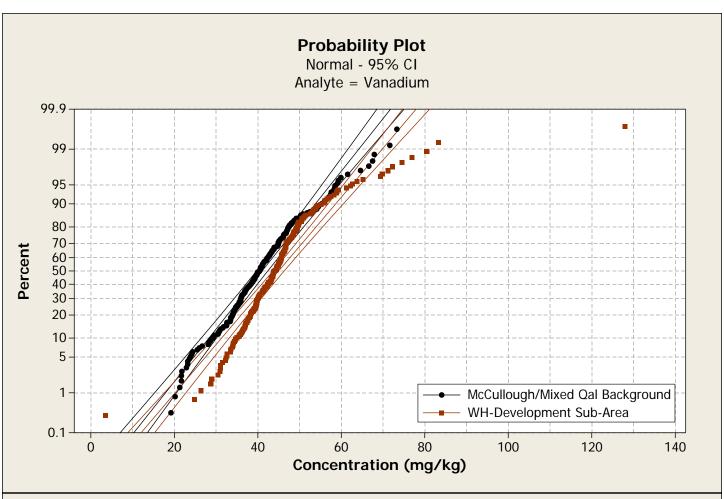


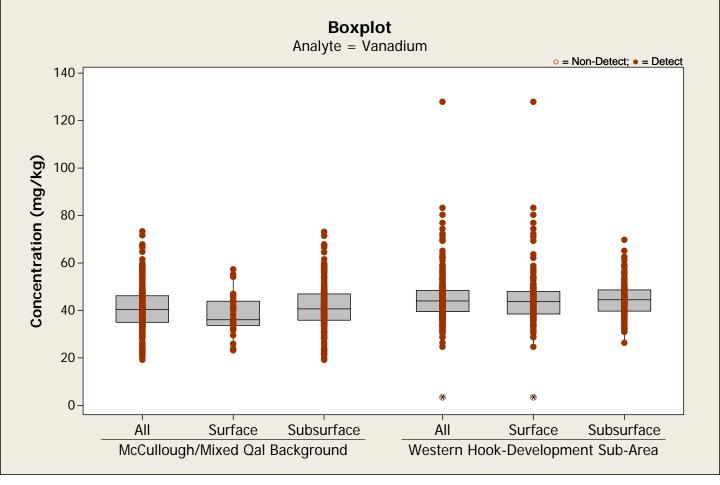


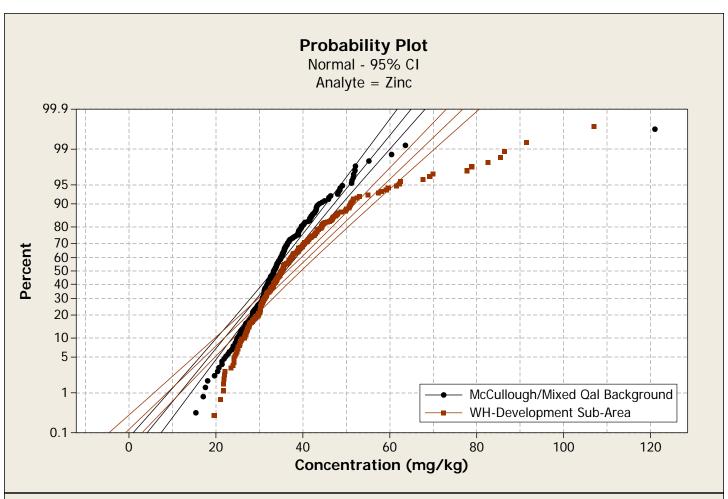


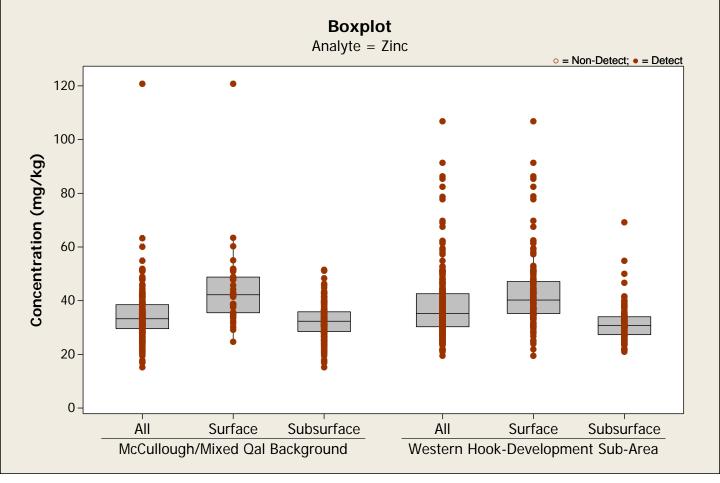


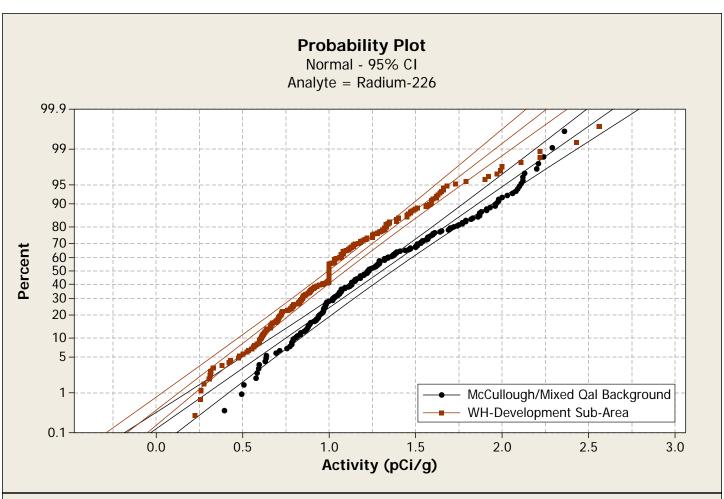


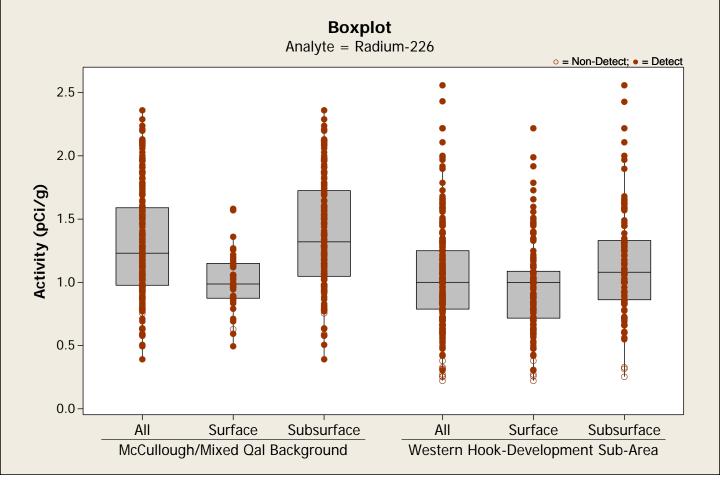


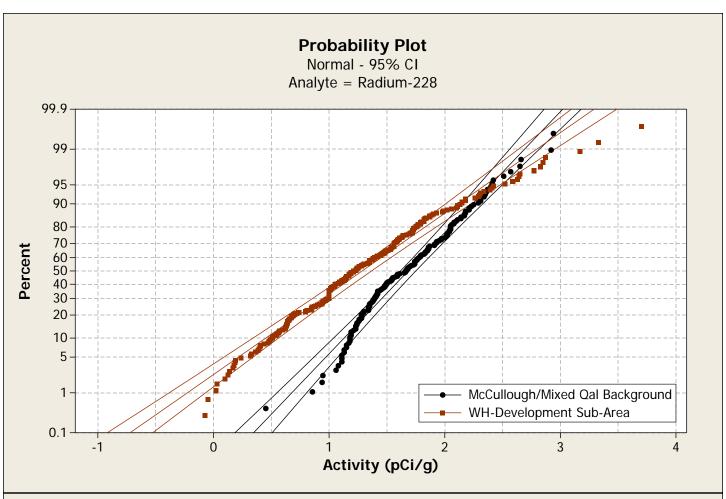


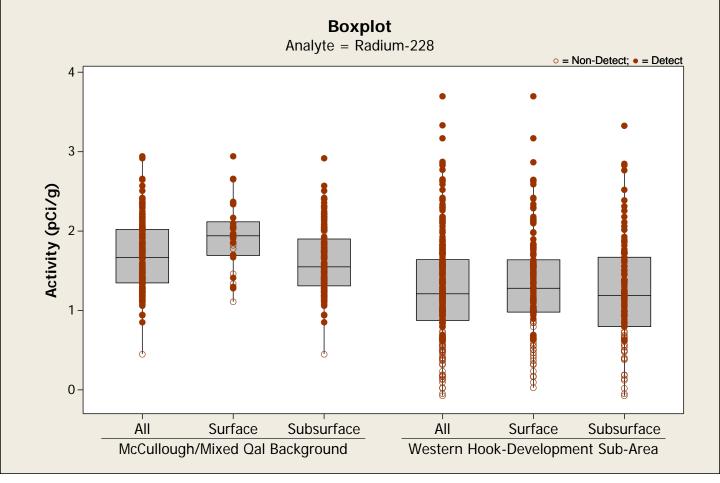


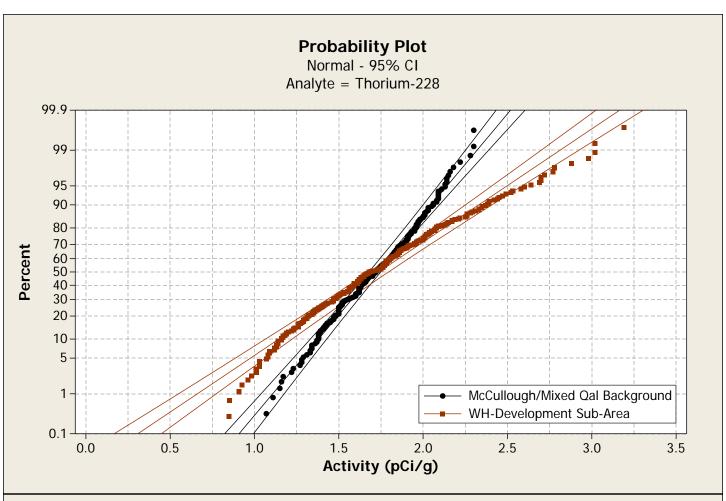


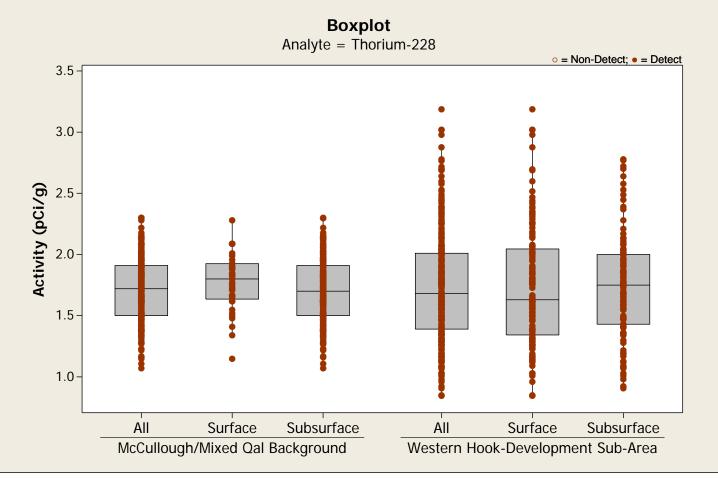


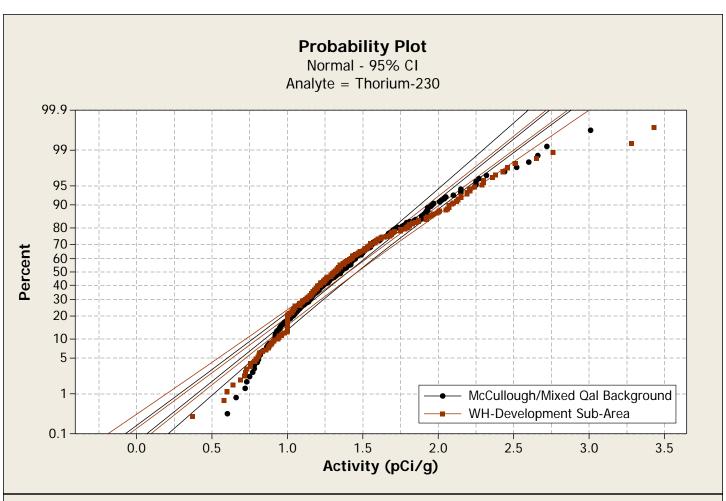


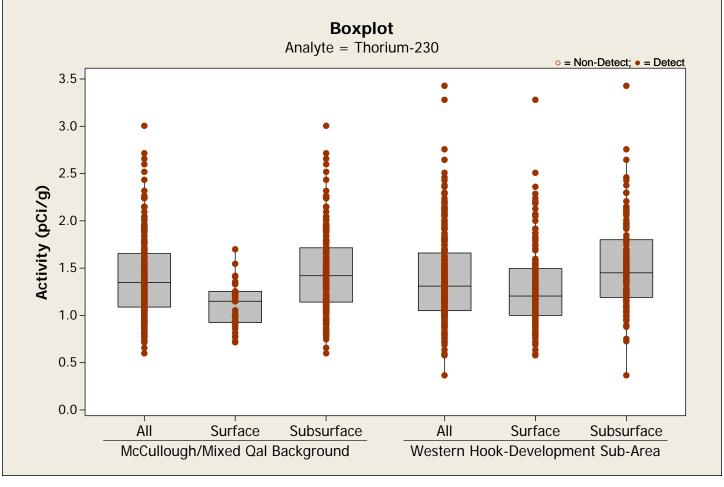


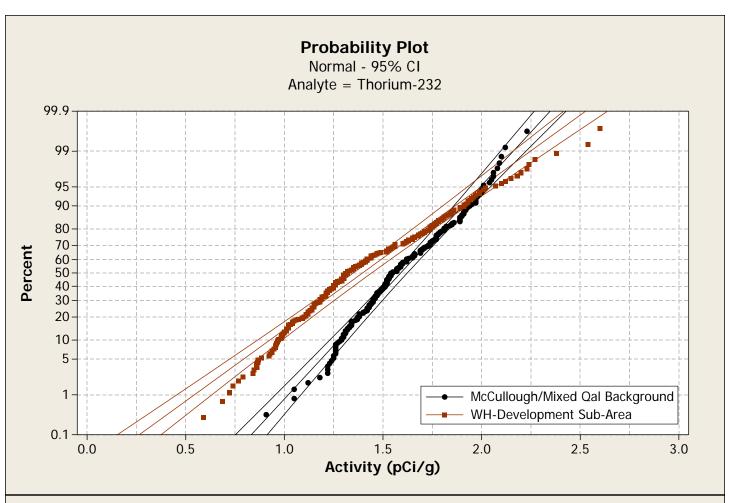


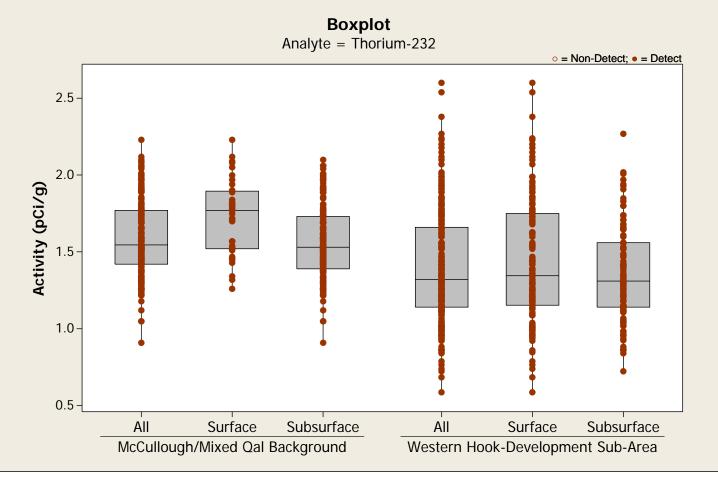


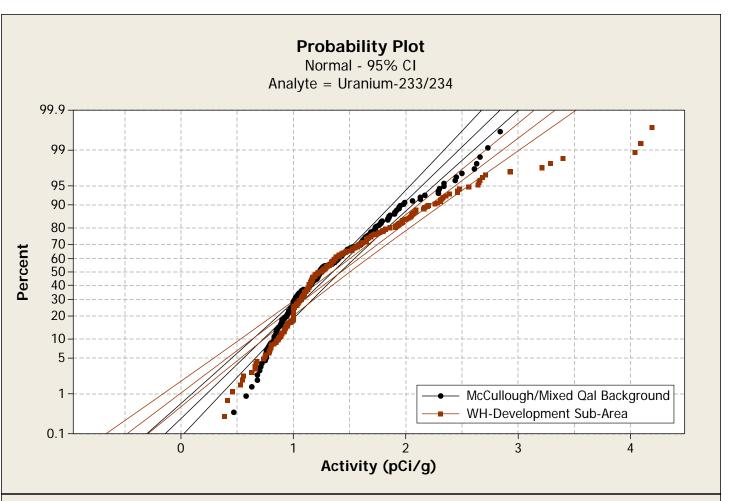


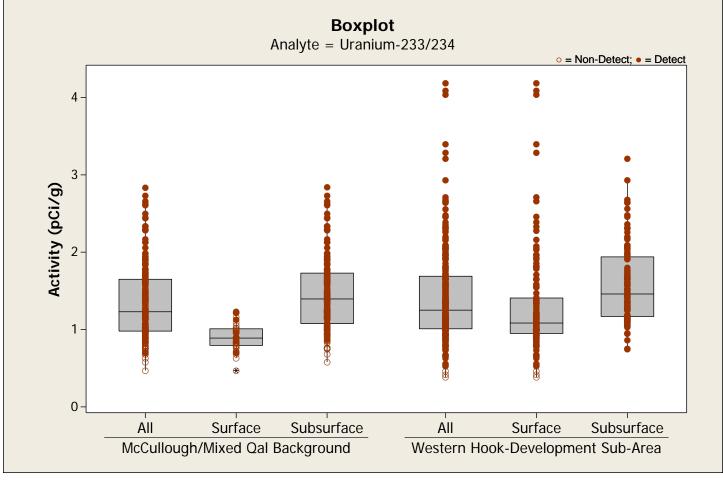


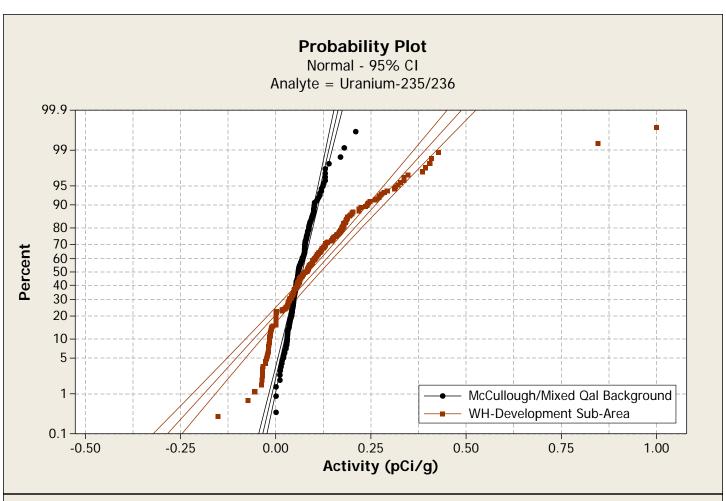


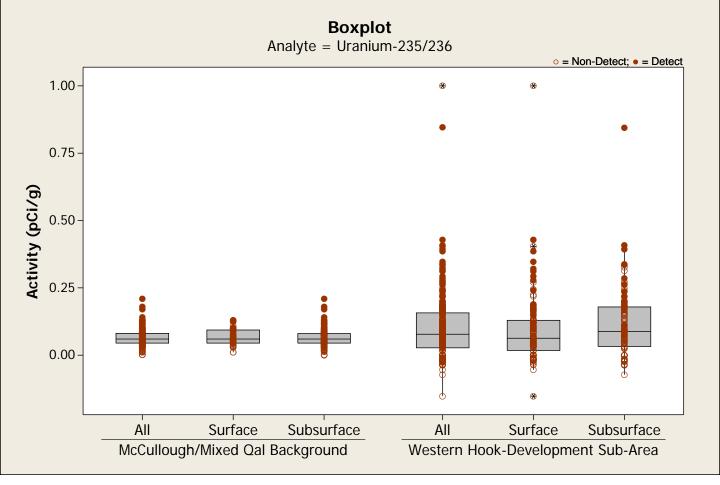


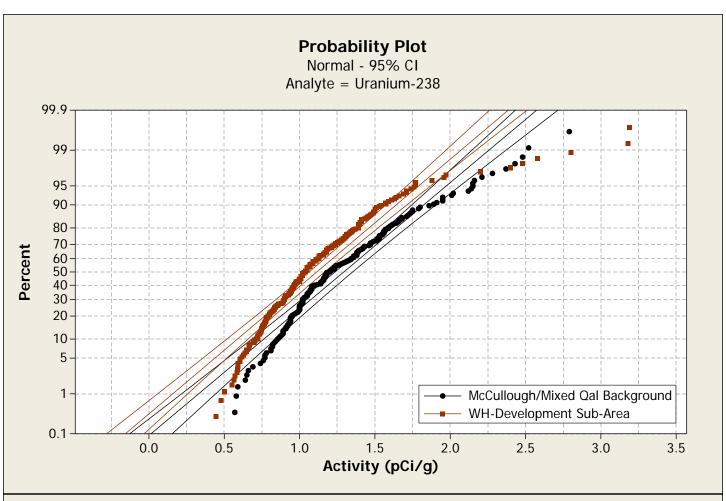


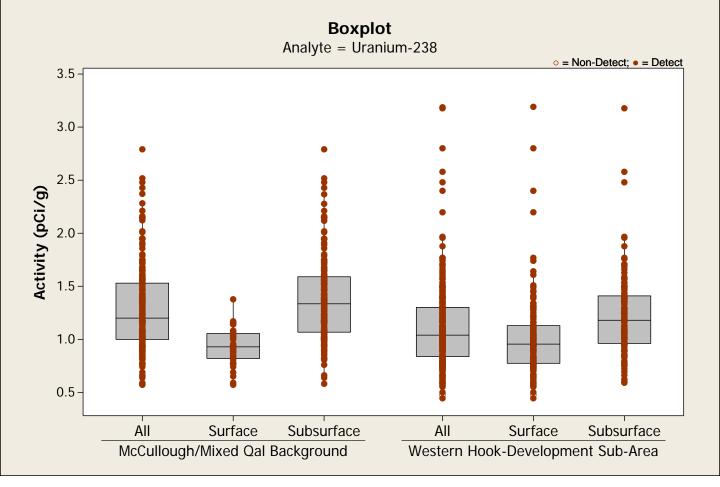






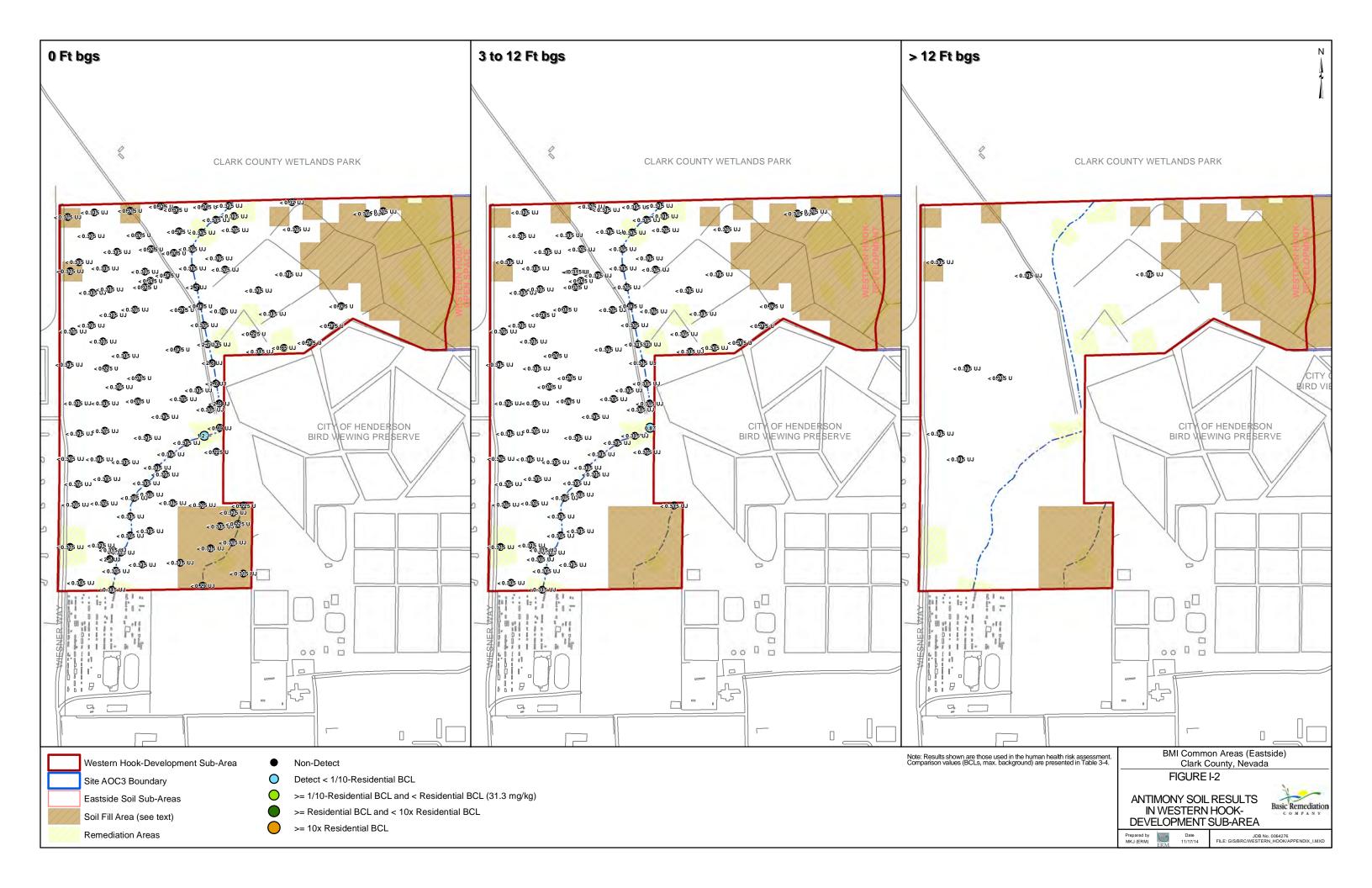






APPENDIX H

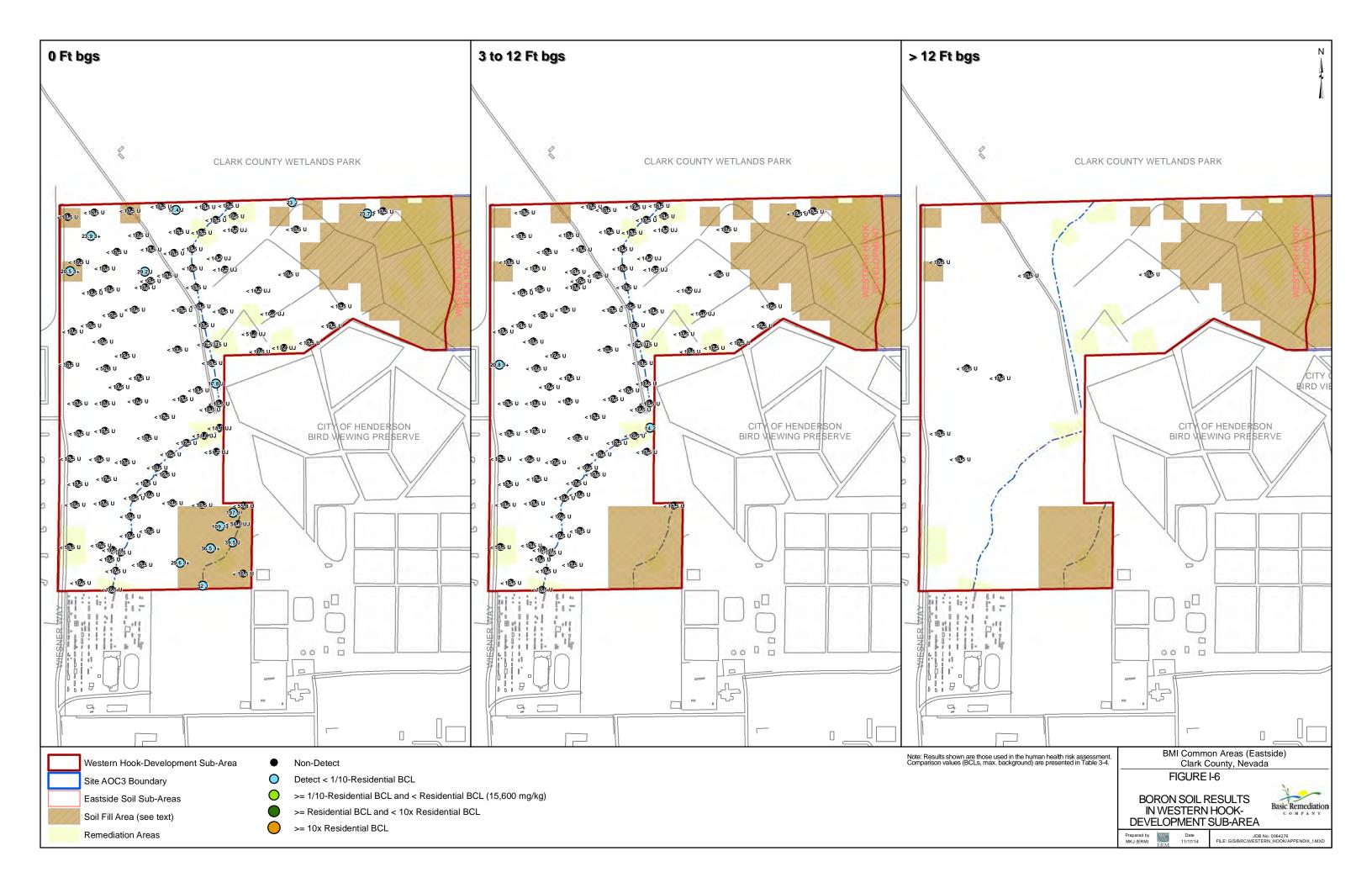
HUMAN HEALTH RISK ASSESSMENT CALCULATION SPREADSHEETS (on the report CD in Appendix B)


APPENDIX I

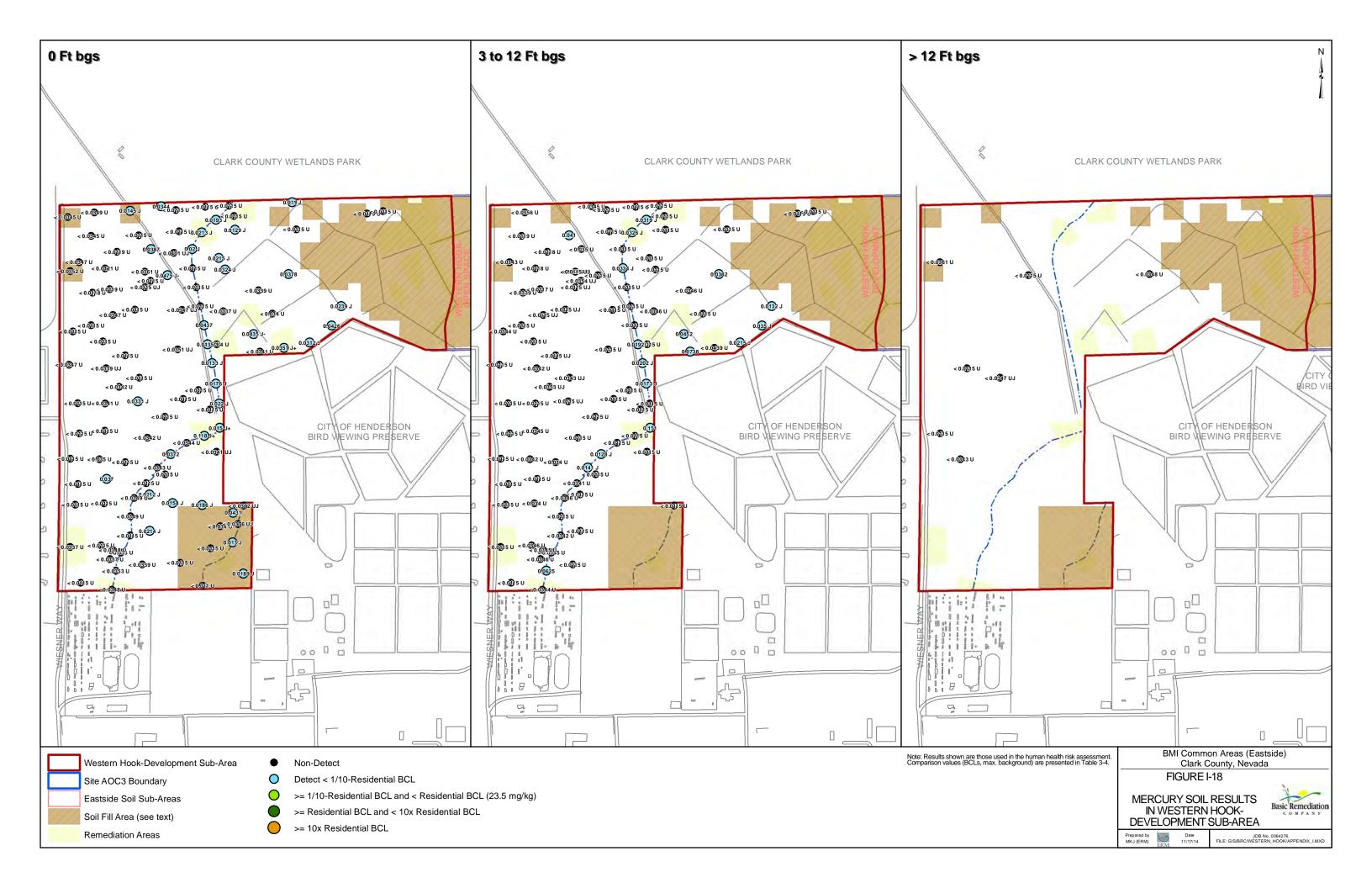
METALS AND CHEMICALS OF POTENTIAL CONCERN INTENSITY PLOTS

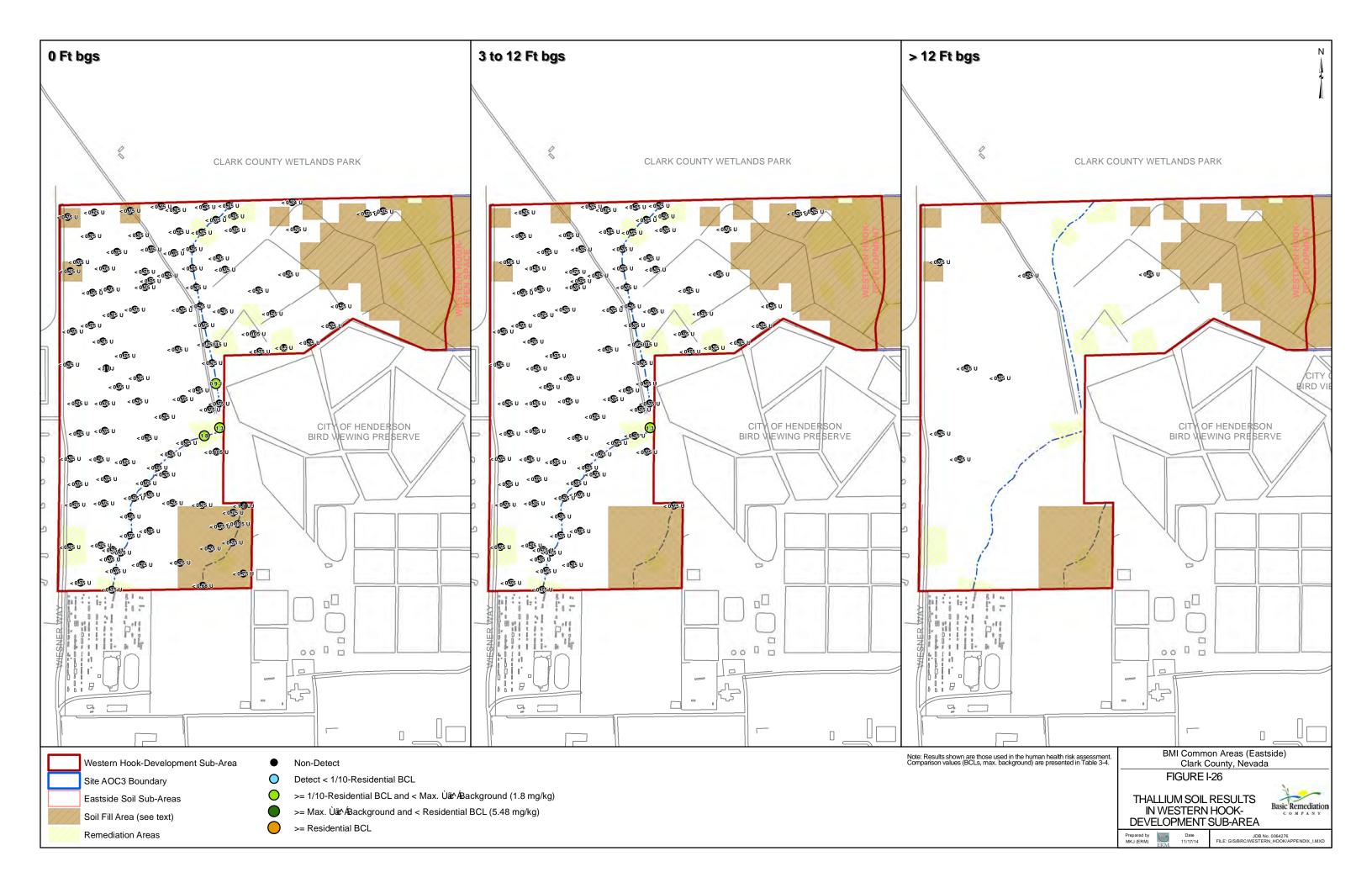
LIST OF FIGURES (APPENDIX I)

Figure I-1	Aluminum Soil Results in Western Hook-Development Sub-Area
Figure I-2	Antimony Soil Results in Western Hook-Development Sub-Area
Figure I-3	Arsenic Soil Results in Western Hook-Development Sub-Area
Figure I-4	Barium Soil Results in Western Hook-Development Sub-Area
Figure I-5	Beryllium Soil Results in Western Hook-Development Sub-Area
Figure I-6	Boron Soil Results in Western Hook-Development Sub-Area
Figure I-7	Cadmium Soil Results in Western Hook-Development Sub-Area
Figure I-8	Calcium Soil Results in Western Hook-Development Sub-Area
Figure I-9	Chromium Soil Results in Western Hook-Development Sub-Area
Figure I-10	Chromium (VI) Soil Results in Western Hook-Development Sub-Area
Figure I-11	Cobalt Soil Results in Western Hook-Development Sub-Area
Figure I-12	Copper Soil Results in Western Hook-Development Sub-Area
Figure I-13	Iron Soil Results in Western Hook-Development Sub-Area
Figure I-14	Lead Soil Results in Western Hook-Development Sub-Area
Figure I-15	Lithium Soil Results in Western Hook-Development Sub-Area
Figure I-16	Magnesium Soil Results in Western Hook-Development Sub-Area
Figure I-17	Manganese Soil Results in Western Hook-Development Sub-Area
Figure I-18	Mercury Soil Results in Western Hook-Development Sub-Area
Figure I-19	Molybdenum Soil Results in Western Hook-Development Sub-Area
Figure I-20	Nickel Soil Results in Western Hook-Development Sub-Area
Figure I-21	Potassium Soil Results in Western Hook-Development Sub-Area
Figure I-22	Selenium Soil Results in Western Hook-Development Sub-Area
Figure I-23	Silver Soil Results in Western Hook-Development Sub-Area
Figure I-24	Sodium Soil Results in Western Hook-Development Sub-Area
Figure I-25	Strontium Soil Results in Western Hook-Development Sub-Area
Figure I-26	Thallium Soil Results in Western Hook-Development Sub-Area
Figure I-27	Tin Soil Results in Western Hook-Development Sub-Area
Figure I-28	Titanium Soil Results in Western Hook-Development Sub-Area
Figure I-29	Tungsten Soil Results in Western Hook-Development Sub-Area
Figure I-30	Uranium Soil Results in Western Hook-Development Sub-Area
Figure I-31	Vanadium Soil Results in Western Hook-Development Sub-Area
Figure I-32	Zinc Soil Results in Western Hook-Development Sub-Area
Figure I-33	4,4-DDE Soil Results in Western Hook-Development Sub-Area
Figure I-34	Ammonia (as N) Soil Results in Western Hook-Development Sub-Area
Figure I-35	Benzo(a)pyrene Soil Results in Western Hook-Development Sub-Area
Figure I-36	Cyanide Soil Results in Western Hook-Development Sub-Area
Figure I-37	Hexachlorobenzene Soil Results in Western Hook-Development Sub-Area
Figure I-38	Perchlorate Soil Results in Western Hook-Development Sub-Area
Figure I-39	Asbestos Soil Results in Western Hook-Development Sub-Area
Figure I-40	TCDD TEQ Soil Results in Western Hook-Development Sub-Area

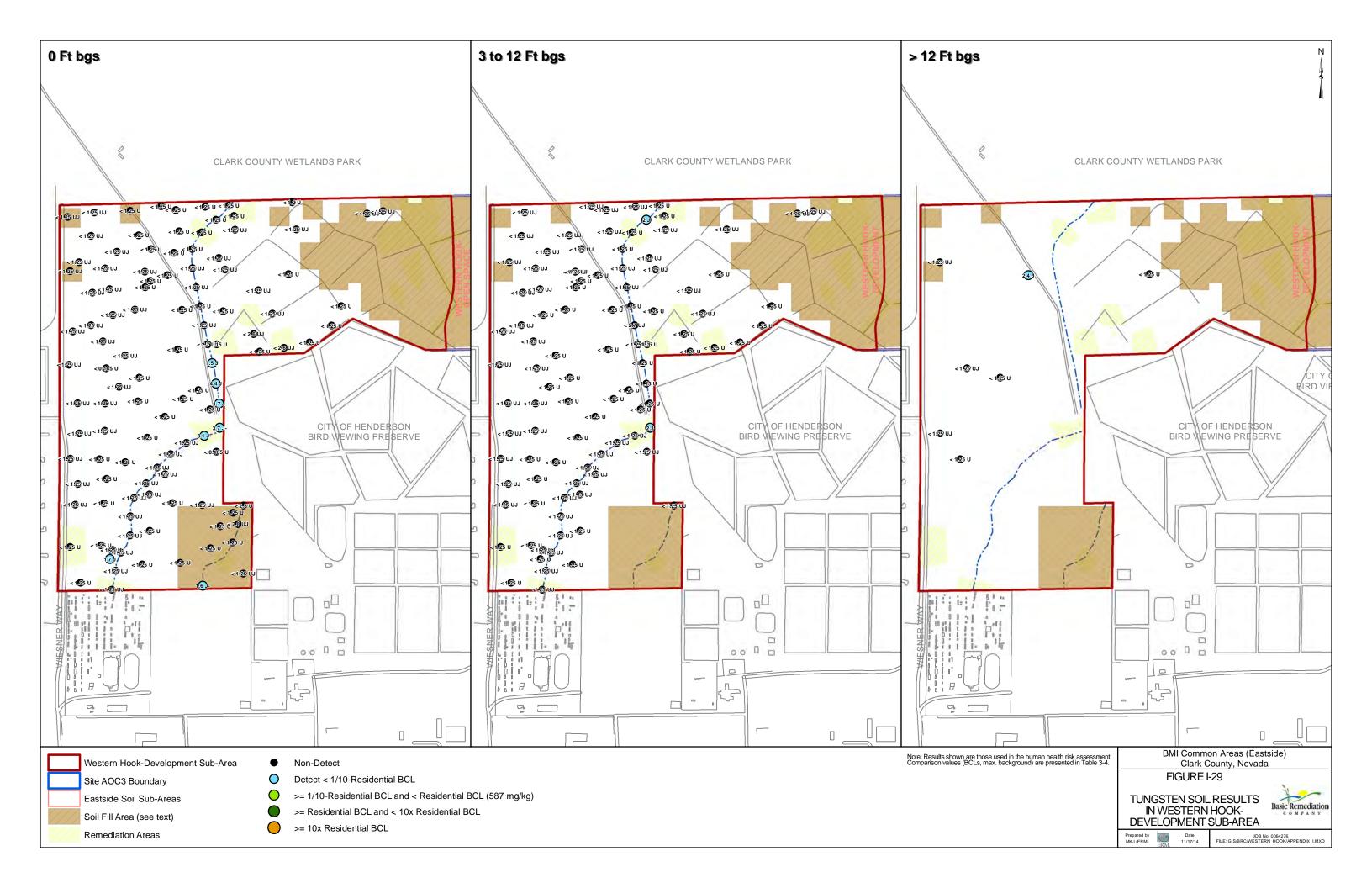


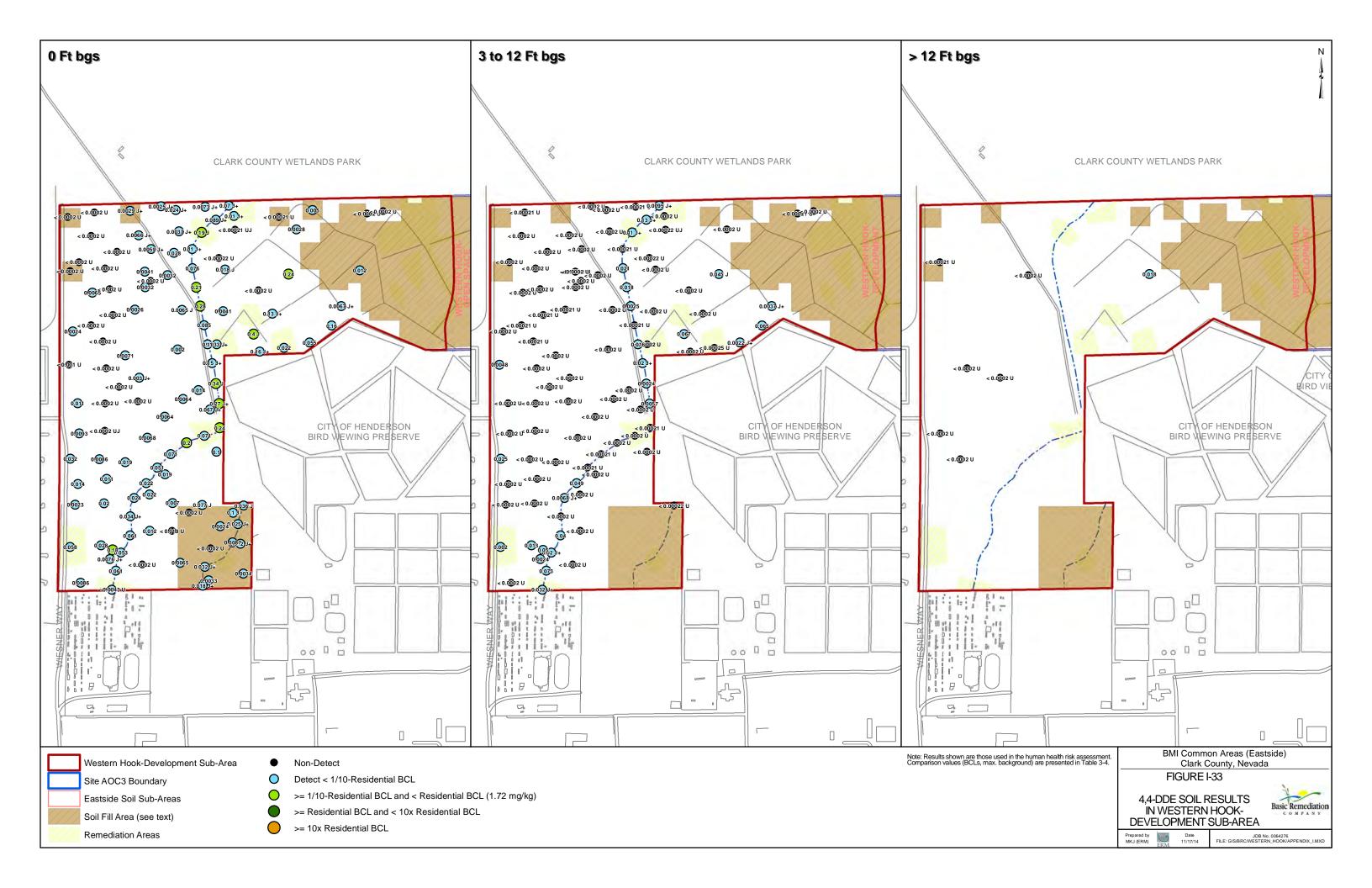


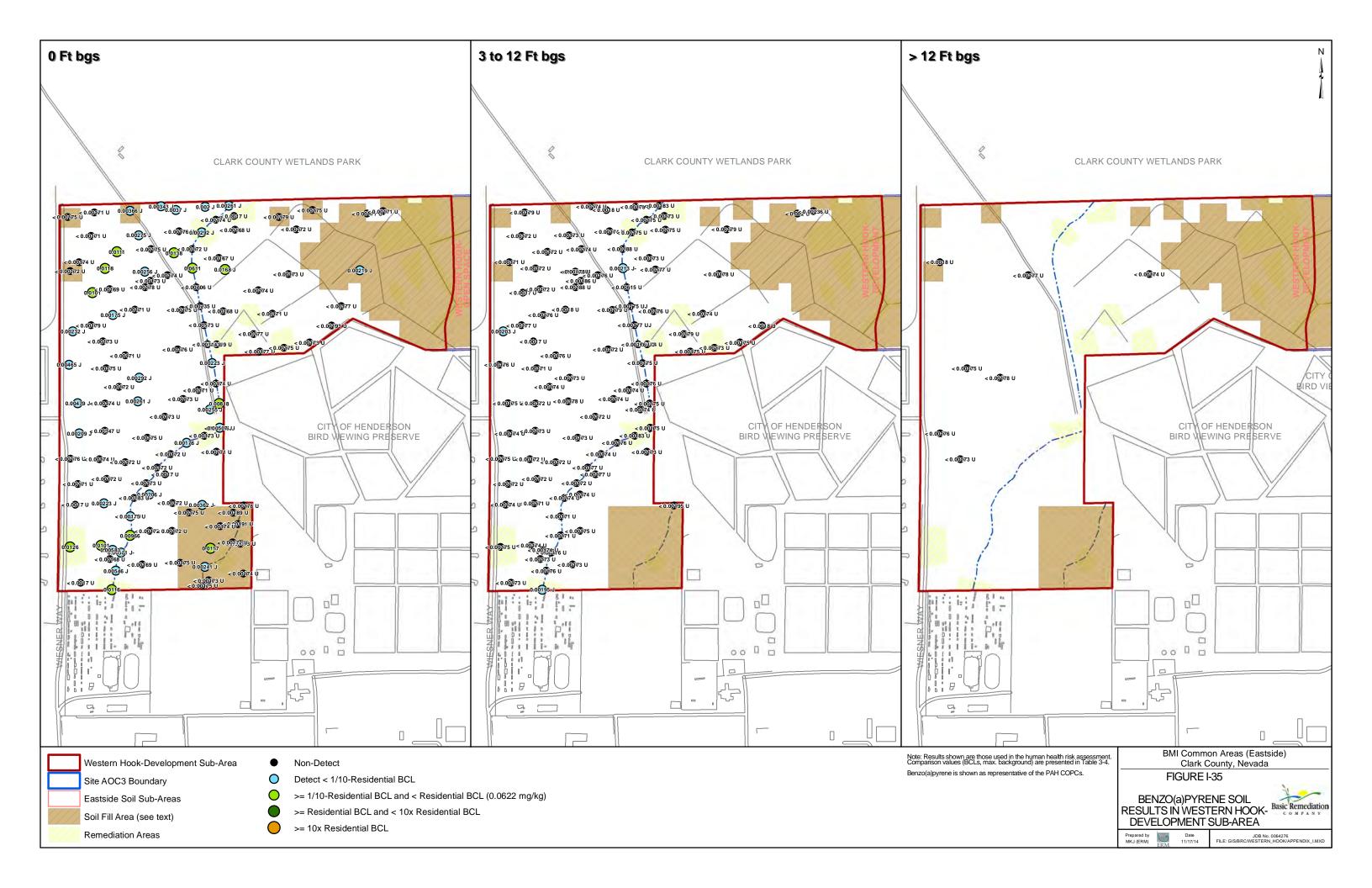


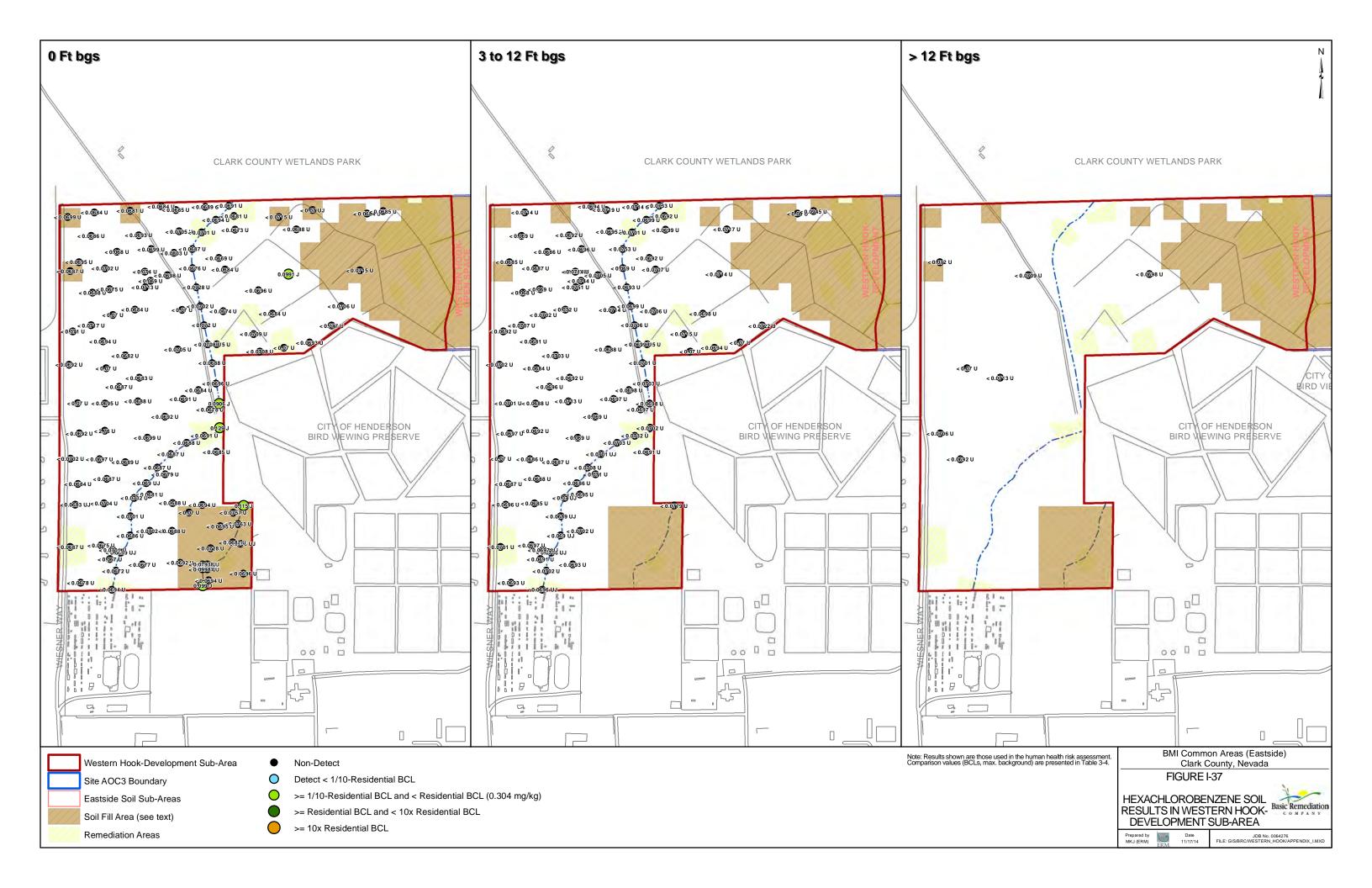












APPENDIX J

VAPOR INTRUSION TIER 2 ASSESSMENT AND COMPARISON STUDY AREA RESULTS (model files on the report CD in Appendix B)

LIST OF TABLES (APPENDIX J)

Table J-1	Tier 2 Assessment for the Western Hook-Development Sub-Area
Table J-2	Measured Soil Physical Properties from Comparison Study Area
Table J-3	Comparison Study Area Johnson and Ettinger Model Input Values
Table J-4	Comparison Study Area Surface Flux to Indoor Air Equation Input Value
Table J-5	Measured and Modeled Soil Gas, Surface Flux, and Indoor Air Results fo Chloroform
Table J-6	Chloroform Residential Indoor Air Risks from Surface Flux and Soil Gas Measurements

TIER 2 ASSESSMENT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 2)

		USEPA	AA-08	AA-10	PC-108
Chemical	Units	2002 VI SL ⁽¹⁾	Aug. 2009	Aug. 2009	Aug. 2009
1,1,1,2-Tetrachloroethane	μg/L	3.3	< 0.16 U	< 0.16 U	< 0.16 U
1,1,1-Trichloroethane	μg/L	3100	< 0.088 U	< 0.088 U	< 0.088 U
1,1,2,2-Tetrachloroethane	μg/L	3	< 0.11 U	< 0.11 U	< 0.11 U
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/L	1500	< 0.12 U	< 0.12 U	< 0.12 U
1,1,2-Trichloroethane	μg/L	5	< 0.071 U	< 0.071 U	< 0.071 U
1,1-Dichloroethane	μg/L	2200	< 0.083 U	< 0.083 U	< 0.083 U
1,1-Dichloroethene	μg/L	190	< 0.11 U	< 0.11 U	< 0.11 U
1,1-Dichloropropene	μg/L		< 0.068 U	< 0.068 U	< 0.068 U
1,2,3-Trichlorobenzene	μg/L		< 0.16 U	< 0.16 U	< 0.16 U
1,2,3-Trichloropropane	μg/L	290	< 0.23 U	< 0.23 U	< 0.23 U
1,2,4-Trichlorobenzene	μg/L	3400	< 0.16 U	< 0.16 U	0.28 J
1,2,4-Trimethylbenzene	μg/L	24	< 0.062 U	< 0.062 U	< 0.062 U
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	33	< 0.2 U	< 0.2 U	< 0.2 U
1,2-Dichlorobenzene	μg/L	2600	< 0.11 U	< 0.11 U	< 0.11 U
1,2-Dichloroethane	μg/L	5	< 0.05 U	< 0.05 U	< 0.05 UJ
1,2-Dichloroethene (total)	μg/L		< 0.21 U	< 0.21 U	< 0.21 U
1,2-Dichloropropane	μg/L	35	< 0.054 U	< 0.054 U	< 0.054 U
1,3,5-Trichlorobenzene	μg/L		< 0.12 U	< 0.12 U	0.19 J
1,3,5-Trimethylbenzene	μg/L	25	< 0.11 U	< 0.11 U	< 0.11 U
1,3-Dichlorobenzene	μg/L	830	< 0.081 U	< 0.081 U	0.21 J
1,3-Dichloropropane	μg/L	0.84	< 0.053 U	< 0.053 U	< 0.053 U
1,4-Dichlorobenzene	μg/L	8200	< 0.11 U	< 0.11 U	0.32 J
1,4-Dioxane	μg/L				
2,2-Dichloropropane	μg/L		< 0.1 U	< 0.1 U	< 0.1 UJ
2-Chlorotoluene	μg/L		< 0.11 U	< 0.11 U	< 0.11 U
2-Hexanone	μg/L		< 1.3 U	< 1.3 U	< 1.3 U
2-Nitropropane	μg/L	0.18	< 1.1 UJ	< 1.1 U	< 1.1 U
4-Chlorotoluene	μg/L		< 0.095 U	< 0.095 U	< 0.095 U
4-Methyl-2-pentanone	μg/L	14000	< 0.32 U	< 0.32 U	< 0.32 U
Acetone	μg/L	220000	< 0.42 U	< 0.42 U	< 0.42 U
Acetonitrile	μg/L	42000	< 4.2 U	< 4.2 U	< 4.2 UJ
Benzene	μg/L	5	< 0.06 U	< 0.06 U	< 0.06 U
Bromobenzene	μg/L		< 0.084 U	< 0.084 U	< 0.084 U
Bromodichloromethane	μg/L	2.1	< 0.098 U	< 0.098 U	< 0.098 U
Bromoform	μg/L	0.0083	< 0.15 U	< 0.15 U	< 0.15 U
Bromomethane	μg/L	20	< 0.096 U	< 0.096 U	< 0.096 U
Carbon disulfide	μg/L	560	< 0.52 U	< 0.52 U	< 0.52 U
Carbon tetrachloride	μg/L	5	< 0.073 U	< 0.073 U	< 0.073 U
Chlorobenzene	μg/L	390	< 0.06 U	< 0.06 U	0.59 J
Chlorobromomethane	μg/L	3.2	< 0.12 U	< 0.12 U	< 0.12 U
Chlorodibromomethane	μg/L	3.2	< 0.21 U	< 0.21 U	< 0.21 U
Chloroethane	μg/L	28000	< 0.085 U	< 0.085 U	< 0.085 U
Chloroform	μg/L	80	0.16 J	4.1	0.17 J
Chloromethane	μg/L	6.7	< 0.086 U	< 0.086 U	< 0.086 U
cis-1,2-Dichloroethene	μg/L	210	< 0.14 U	< 0.14 U	< 0.14 U

TIER 2 ASSESSMENT FOR THE WESTERN HOOK-DEVELOPMENT SUB-AREA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 2)

		USEPA	AA-08	AA-10	PC-108
Chemical	Units	2002 VI SL ⁽¹⁾	Aug. 2009	Aug. 2009	Aug. 2009
cis-1,3-Dichloropropene	μg/L	0.84	< 0.099 U	< 0.099 U	< 0.099 U
Cymene (Isopropyltoluene)	μg/L		< 0.11 U	< 0.11 U	< 0.11 U
Dibromomethane	μg/L	990	< 0.095 U	< 0.095 U	< 0.095 U
Dichlorodifluoromethane (Freon-12)	μg/L	14	< 0.058 U	< 0.058 UJ	< 0.058 U
Dichloromethane	μg/L	58	< 0.1 U	< 0.1 U	< 0.1 U
Dimethyl disulfide	μg/L		< 0.27 U	< 0.27 U	< 0.27 U
Ethanol	μg/L		< 85 UJ	< 85 U	< 85 UJ
Ethylbenzene	μg/L	700	< 0.11 U	< 0.11 U	< 0.11 U
Heptane	μg/L		< 0.12 U	< 0.12 U	< 0.12 U
Hexachlorobutadiene	μg/L				
Iodomethane	μg/L		< 0.091 U	< 0.091 U	< 0.091 U
Isopropylbenzene	μg/L	8.4	< 0.096 U	< 0.096 U	< 0.096 U
m,p-Xylene	μg/L	23000	< 0.19 U	< 0.19 U	< 0.19 U
Methyl ethyl ketone	μg/L	440000	< 0.83 U	< 0.83 U	< 0.83 U
MTBE (Methyl tert-butyl ether)	μg/L	120000	< 0.098 U	< 0.098 U	< 0.098 U
Naphthalene	μg/L	150			
n-Butylbenzene	μg/L	260	< 0.12 U	< 0.12 U	< 0.12 U
Nonanal	μg/L		< 1.2 U	< 1.2 U	< 1.2 U
n-Propylbenzene	μg/L	320	< 0.093 U	< 0.093 U	< 0.093 U
o-Xylene	μg/L	33000	< 0.055 U	< 0.055 U	< 0.055 U
sec-Butylbenzene	μg/L	250	< 0.085 U	< 0.085 U	< 0.085 U
Styrene	μg/L	8900	< 0.042 U	< 0.042 U	< 0.042 U
tert-Butylbenzene	μg/L	290	< 0.11 U	< 0.11 U	< 0.11 U
Tetrachloroethene	μg/L	5	< 0.065 U	0.54 J+	< 0.065 U
Toluene	μg/L	1500	< 0.07 U	< 0.07 U	< 0.07 U
Total Trihalomethanes	μg/L	80	0.62	4.6	0.63
trans-1,2-Dichloroethene	μg/L	180	< 0.081 U	< 0.081 U	< 0.081 U
trans-1,3-Dichloropropene	μg/L	0.84	< 0.23 U	< 0.23 U	< 0.23 U
Trichloroethene	μg/L	5	< 0.091 U	< 0.091 U	< 0.091 U
Trichlorofluoromethane (Freon-11)	μg/L	180	< 0.11 U	< 0.11 U	< 0.11 U
Vinyl acetate	μg/L	9600	< 0.23 U	< 0.23 U	< 0.23 U
Vinyl chloride	μg/L	2	< 0.091 U	< 0.091 U	< 0.091 U
Xylenes (total)	μg/L	22000	< 0.22 U	< 0.22 U	< 0.22 U

 $^{^{(1)}}$ Groundwater to indoor air vapor intrusion screening level; from USEPA. 2002. Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). Table 2c (Generic Screening Levels and Summary Sheet; Risk = 1×10^{-6}). Highlighted analytes have groundwater concentrations greater than 1/10 screening levels, therefore, these analytes are evaluated further in the Site-Specific Tier 3 Assessment (see Section 6.1.2).

TABLE J-2

MEASURED SOIL PHYSICAL PROPERTIES FROM COMPARISON STUDY AREA HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

Parameter	Sample ID	Sample Depth	Result	Units
Dry Bulk Density	STA-4C-0-SO	0	1.61	g/cm ³
	STA-4C-2-SO	2	1.69	g/cm ³
	STA-4C-4-SO	4	1.9	g/cm ³
	STA-4C-6-SO	6	1.76	g/cm ³
	STA-4C-8-SO	8	1.78	g/cm ³
	STA-4C-10-SO	10	1.84	g/cm ³
Percent Moisture	STA-4C-0-SO	0	3.9	percent
	STA-4C-0-SO	0	6.9	percent
	STA-4C-2-SO	2	3.6	percent
	STA-4C-2-SO	2	3.8	percent
	STA-4C-4-SO	4	2.8	percent
	STA-4C-4-SO	4	3.7	percent
	STA-4C-6-SO	6	3	percent
	STA-4C-6-SO	6	4.4	percent
	STA-4C-8-SO	8	4.7	percent
	STA-4C-8-SO	8	5.5	percent
	STA-4C-10-SO	10	4.4	percent
	STA-4C-10-SO	10	6.8	percent
Porosity	STA-4C-0-SO	0	39.9	percent
	STA-4C-2-SO	2	36.3	percent
	STA-4C-4-SO	4	28.8	percent
	STA-4C-6-SO	6	34.6	percent
	STA-4C-8-SO	8	32.9	percent
	STA-4C-10-SO	10	30.4	percent
Particle Density	STA-4C-0-SO	0	2.676	g/cm ³
	STA-4C-2-SO	2	2.658	g/cm ³
	STA-4C-4-SO	4	2.663	g/cm ³
	STA-4C-6-SO	6	2.696	g/cm ³
	STA-4C-8-SO	8	2.659	g/cm ³
	STA-4C-10-SO	10	2.652	g/cm ³

COMPARISON STUDY AREA JOHNSON AND ETTINGER MODEL INPUT VALUES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA

BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA (Page 1 of 1)

Parameter	Value	Source
Interval 1	(0-5 feet)	
Depth Below grade to bottom of enclosed floor space (cm)	15	Default
Depth to Soil Vapor Sample (ft)	5 or 10	Sample Specific
Average Soil Temperature (C)	16.67	Site-specific
Stratum Thickness (cm)	152.4	Site-specific
Interval 1 Dry Bulk Density (g/cm ³)	1.73	Site-specific Average
Interval 1 Total Porosity (unitless)	0.35	Site-specific Average
Interval 1 Water-Filled Porosity (unitless)	0.070	Site-specific Average
Interval 2 ((5-10 feet)	
Stratum Thickness (cm)	152.4	Site-specific
Vadose Zone Dry Bulk Density (g/cm ³)	1.79	Site-specific Average
Vadose Zone Total Porosity (unitless)	0.33	Site-specific Average
Vadose Zone Water-Filled Porosity (unitless)	0.068	Site-specific Average
Building Cha	aracteristics	
Enclosed space floor thickness (cm)	10	Default
Soil-building pressure differential (g/cm-s ²)	40	Default
Enclosed space floor length (cm)	1,000	Default
Enclosed space floor width (cm)	1,000	Default
Enclosed space floor are (cm ²)	1.0 E+6	Default
Enclosed space height (cm)	244	Default
Enclosed space volume (cm ³)	2.4 E+8	Default
Floor-wall seam crack width (cm)	0.1	Default
Indoor air exchange rate (1/hr)	0.50	Default (from Cal/EPA)

COMPARISON STUDY AREA SURFACE FLUX TO INDOOR AIR EQUATION INPUT VALUES HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

1)

(Page	1	of	1

Parameter	Abbrev.	Value	Units	Reference
Foundation crack fraction	η	0.01	unitless	ASTM 2000
Enclosed space volume/infiltration area ratio, residential	$L_{\rm r}$	200	cm	ASTM 2000
Enclosed space air exchange rate, residential	ER_r	12	1/day	ASTM 2000

TABLE J-5
MEASURED AND MODELED SOIL GAS, SURFACE FLUX, AND INDOOR AIR RESULTS FOR CHLOROFORM
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 1)

Location	Sample	Soil Vapor Sample Depth	Method	Measured Soil Vapor Conc. (ug/m³)	Modeled Indoor Air Conc. from Soil Vapor (ug/m³)	Measured Surface Flux (ug/m²-min)	Crack Fraction (unitless)	Volume:Area Ratio (m)	Air Exchange Rate (l/min)	Modeled Indoor Air Conc. from Measured Surface Flux (ug/m³)
4C	STA-4C-5	5	TO-15	137.3	0.117	<0.013 U	0.01	2	0.00833	ND
4C	STA-4C-5	5	TO-15 SIM	135.91 J	0.058	0.0067	0.01	2	0.00833	0.0040
4C	STA-4C-5B	5	TO-15	<0.26 U	ND	<0.013 U	0.01	2	0.00833	ND
4C	STA-4C-5B	5	TO-15 SIM	<0.026 U	ND	0.0067	0.01	2	0.00833	0.0040
4C	STA-4C-10	10	TO-15	239.03	0.086	<0.013 U	0.01	2	0.00833	ND
4C	STA-4C-10	10	TO-15 SIM	250.45 J	0.090	0.0067	0.01	2	0.00833	0.0040
4CR	STA-4CR-5	5	TO-15	146.62	0.063	<0.013 U	0.01	2	0.00833	ND
4CR	STA-4CR-5	5	TO-15 SIM	43.537 J	0.019	0.0074	0.01	2	0.00833	0.0044
4CR	STA-4C-5-DUP	5	TO-15	153.94	0.066	<0.013 U	0.01	2	0.00833	ND
4CR	STA-4C-5-DUP	5	TO-15 SIM	147.947 J	0.063	0.0080	0.01	2	0.00833	0.0048
4CR	STA-4CR-10	10	TO-15	184.85	0.066	<0.013 U	0.01	2	0.00833	ND
4CR	STA-4CR-10	10	TO-15 SIM	246.687 J	0.088	0.0074	0.01	2	0.00833	0.0044
4CR	STA-4C-10-DUP	10	TO-15	213.93	0.077	<0.013 U	0.01	2	0.00833	ND
4CR	STA-4C-10-DUP	10	TO-15 SIM	225.465 J	0.081	0.0080	0.01	2	0.00833	0.0048
4E	STA-4E-5	5	TO-15	302.65	0.129	0.0154 J	0.01	2	0.00833	0.0092
4E	STA-4E-5	5	TO-15 SIM	49.718 J	0.021	0.0260	0.01	2	0.00833	0.016
4E	STA-4E-10	10	TO-15	402.61	0.144	0.0154 J	0.01	2	0.00833	0.0092
4E	STA-4E-10	10	TO-15 SIM	274.322 J	0.098	0.0260	0.01	2	0.00833	0.016
4N	STA-4N-5	5	TO-15	125.18	0.053	0.0146 J	0.01	2	0.00833	0.0088
4N	STA-4N-5	5	TO-15 SIM	32.201 J	0.014	0.0185 J	0.01	2	0.00833	0.011
4N	STA-4N-10	10	TO-15	278.35	0.100	0.0146 J	0.01	2	0.00833	0.0088
4N	STA-4N-10	10	TO-15 SIM	<0.201 UJ	ND	0.0185 J	0.01	2	0.00833	0.011
4S	STA-4S-5	5	TO-15	103.16	0.044	<0.013 U	0.01	2	0.00833	ND
4S	STA-4S-5	5	TO-15 SIM	110.502 J	0.047	0.0026 J	0.01	2	0.00833	0.0016
4S	STA-4S-10	10	TO-15	225.84	0.081	<0.013 U	0.01	2	0.00833	ND
4S	STA-4S-10	10	TO-15 SIM	197.818 J	0.071	0.0026 J	0.01	2	0.00833	0.0016
4W	STA-4W-5	5	TO-15	111.38	0.048	<0.013 U	0.01	2	0.00833	ND
4W	STA-4W-5	5	TO-15 SIM	145.454 J	0.062	0.0123	0.01	2	0.00833	0.0074
4W	STA-4W-10	10	TO-15	111.77	0.040	<0.013 U	0.01	2	0.00833	ND
4W	STA-4W-10	10	TO-15 SIM	139.903 J	0.050	0.0123	0.01	2	0.00833	0.0074

TABLE J-6
CHLOROFORM RESIDENTIAL INDOOR AIR RISKS FROM SURFACE FLUX AND SOIL GAS MEASUREMENTS
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 1 of 2)

	Chloroform Re	sidential Indoor Air l	Risks	Indoor Air Concentration	Sampling
Site	Sample Location	HQ	ILCR	(ug/m³)	Method
Side-by-Side	STA-4C-5	0.0008	8 E-7	1.2 E-1	Soil Gas
Comparison	STA-4C-5 (SIM)	0.0004	4 E-7	5.8 E-2	Soil Gas
Study	STA-4C-5B			ND	Soil Gas
	STA-4C-5B (SIM)			ND	Soil Gas
	STA-4C-10	0.0006	6 E-7	8.6 E-2	Soil Gas
	STA-4C-10 (SIM)	0.0006	6 E-7	9.0 E-2	Soil Gas
	STA-4CR-5	0.0004	4 E-7	6.3 E-2	Soil Gas
	STA-4CR-5 (SIM)	0.00013	1 E-7	1.9 E-2	Soil Gas
	STA-4C-5-DUP	0.0004	4 E-7	6.6 E-2	Soil Gas
	STA-4C-5-DUP (SIM)	0.0004	4 E-7	6.3 E-2	Soil Gas
	STA-4CR-10	0.0005	4 E-7	6.6 E-2	Soil Gas
	STA-4CR-10 (SIM)	0.0006	6 E-7	8.8 E-2	Soil Gas
	STA-4C-10-DUP	0.0005	5 E-7	7.7 E-2	Soil Gas
	STA-4C-10-DUP (SIM)	0.0005	5 E-7	8.1 E-2	Soil Gas
	STA-4E-5	0.0009	8 E-7	1.3 E-1	Soil Gas
	STA-4E-5 (SIM)	0.00014	1 E-7	2.1 E-2	Soil Gas
	STA-4E-10	0.0010	9 E-7	1.4 E-1	Soil Gas
	STA-4E-10 (SIM)	0.0007	6 E-7	9.8 E-2	Soil Gas
	STA-4N-5	0.0004	4 E-7	5.3 E-2	Soil Gas
	STA-4N-5 (SIM)	0.00009	9 E-8	1.4 E-2	Soil Gas
	STA-4N-10	0.0007	7 E-7	1.0 E-1	Soil Gas
	STA-4N-10 (SIM)			ND	Soil Gas
	STA-4S-5	0.0003	3 E-7	4.4 E-2	Soil Gas
	STA-4S-5 (SIM)	0.0003	3 E-7	4.7 E-2	Soil Gas
	STA-4S-10	0.0006	5 E-7	8.1 E-2	Soil Gas
	STA-4S-10 (SIM)	0.0005	5 E-7	7.1 E-2	Soil Gas
	STA-4W-5	0.0003	3 E-7	4.8 E-2	Soil Gas
	STA-4W-5 (SIM)	0.0004	4 E-7	6.2 E-2	Soil Gas
	STA-4W-10	0.00027	3 E-7	4.0 E-2	Soil Gas
	STA-4W-10 (SIM)	0.0003	3 E-7	5.0 E-2	Soil Gas

TABLE J-6
CHLOROFORM RESIDENTIAL INDOOR AIR RISKS FROM SURFACE FLUX AND SOIL GAS MEASUREMENTS
HUMAN HEALTH RISK ASSESSMENT AND CLOSURE REPORT FOR WESTERN HOOK-DEVELOPMENT SUB-AREA
BMI COMMON AREAS (EASTSIDE), CLARK COUNTY, NEVADA

(Page 2 of 2)

	Chloroform Resi	Chloroform Residential Indoor Air Risks			
Site	Sample Location	HQ	ILCR	(ug/m^3)	Method
Side-by-Side	STA-4C	0.000027	3 E-8	4.0 E-3	Surface Flux
Comparison	STA-4CR	0.000030	3 E-8	4.4 E-3	Surface Flux
Study	STA-4C-DUP	0.000033	3 E-8	4.8 E-3	Surface Flux
	STA-4E	0.00011	1 E-7	1.6 E-2	Surface Flux
	STA-4N	0.000075	7 E-8	1.1 E-2	Surface Flux
	STA-4S	0.000011	1 E-8	1.6 E-3	Surface Flux
	STA-4W	0.000050	5 E-8	7.4 E-3	Surface Flux
Side-by-Side	Minimum Risk	0.000011	1 E-8	1.6 E-3	Surface Flux
Comparison	Minimum Risk	0.000094	9 E-8	1.4 E-2	Soil Gas
Study	Maximum Risk	0.00011	1 E-7	1.6 E-2	Surface Flux
	Maximum Risk	0.00098	9 E-7	1.4 E-1	Soil Gas

HQ = Hazard Quotient

ILCR = Incremental Lifetime Cancer Risk

APPENDIX K

LEGAL DESCRIPTION OF THE WESTERN HOOK-DEVELOPMENT SUB-AREA

Atkins North America, Inc. 2270 Corporate Circle, Suite 200 Henderson, Nevada 89074-7755

Telephone: 702.263.7275 Fax: 702.263.7200

EXHIBIT B NFA WESTERN HOOK DEVELOPMENT PARCEL

A PORTION OF SECTION 36, TOWNSHIP 21 SOUTH, RANGE 62 EAST, M.D.M., CITY OF HENDERSON, CLARK COUNTY, NEVADA, MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEGINNING AT THE NORTHWEST CORNER OF SAID SECTION 36; THENCE NORTH 88°32'22" EAST, ALONG THE NORTH LINE OF SAID SECTION 36, A DISTANCE OF 2632.44 FEET; THENCE NORTH 88°46'10" EAST, CONTINUING ALONG SAID NORTH LINE, 1406.81 FEET; THENCE SOUTH 02°51'15" EAST, DEPARTING SAID NORTH LINE, 376.66 FEET; THENCE SOUTH 01°19'30" EAST, 486.63 FEET TO THE BEGINNING OF A NON-TANGENT CURVE CONCAVE NORTHWESTERLY HAVING A RADIUS OF 1100.00 FEET, A RADIAL LINE TO SAID BEGINNING BEARS NORTH 88°58'12" EAST; THENCE ALONG SAID CURVE TO THE RIGHT THROUGH A CENTRAL ANGLE OF 24°00'29", AN ARC LENGTH OF 460.92 FEET TO THE BEGINNING OF A REVERSE CURVE CONCAVE SOUTHEASTERLY HAVING A RADIUS OF 120.00 FEET, A RADIAL LINE TO SAID BEGINNING BEARS NORTH 67°01'19" WEST: THENCE ALONG SAID CURVE TO THE LEFT THROUGH A CENTRAL ANGLE OF 26°48'37", AN ARC LENGTH OF 56.15 FEET; THENCE SOUTH 03°49'56" EAST, 236.32 FEET; THENCE SOUTH 88°30'11" WEST, 151.53 FEET; THENCE NORTH 72°05'25" WEST, 282.99 FEET; THENCE NORTH 67°44'33" WEST, 637.94 FEET; THENCE SOUTH 52°33'20" WEST, 483.37 FEET; THENCE SOUTH 71°39'24" WEST, 203.98 FEET; THENCE SOUTH 88°29'44" WEST, 744.27 FEET; THENCE SOUTH 00°17'51" WEST, 1522.65 FEET; THENCE NORTH 89°08'14" EAST, 330.73 FEET; THENCE SOUTH 00°08'47" WEST, 880.39 FEET; THENCE SOUTH 89°04'39" WEST, 1997.42 FEET TO THE WEST LINE OF SAID SECTION 36; THENCE NORTH 01°00'36" EAST, ALONG SAID WEST LINE, 1286.74 FEET; THENCE NORTH 00°01'22" WEST, CONTINUING ALONG SAID WEST LINE, 1351.00 FEET; THENCE NORTH 00°01'14" WEST, 1350.80 FEET TO THE POINT OF BEGINNING.

CONTAINING 10,490,869 SQUARE FEET (240.84 ACRES), MORE OR LESS, AS DETERMINED BY COMPUTER METHODS.

BASIS OF BEARING:

NORTH 88°32'22" EAST – BEING THE NORTH LINE OF THE NORTHWEST QUARTER (NW 1/4) OF SECTION 36, TOWNSHIP 21 SOUTH, RANGE 63 EAST, M.D.M., CITY OF HENDERSON, CLARK COUNTY, NEVADA, AS SHOWN ON A MAP IN FILE 190 OF SURVEYS, PAGE 90, OFFICIAL RECORDS, ON FILE IN THE OFFICE OF THE CLARK COUNTY RECORDER, CLARK COUNTY, NEVADA.

NFA DEVELOPMENT HOOK PARCEL

Point of Beginning: North: 31193.0686' East: 15194.1084'

Segment #1: Line

Course: N88° 32' 22"E Length: 2632.44' North: 31260.1621' East: 17825.6932'

Segment #2: Line

Course: N88° 46' 10"E Length: 1406.81' North: 31290.3760' East: 19232.1821'

Segment #3 : Line

Course: S2° 51' 15"E Length: 376.66' North: 30914.1876' East: 19250.9369'

Segment #4: Line

Course: S1° 19' 30"E Length: 486.63' North: 30427.6885' East: 19262.1885'

Segment #5 : Curve

Length: 460.92' Radius: 1100.00'
Delta: 24°00'29" Tangent: 233.89'
Chord: 457.56' Course: S10° 58' 27"W

Course In: S88° 58' 12"W Course Out: S67° 01' 19"E

RP North: 30407.9163' East: 18162.3662' End North: 29978.5004' East: 19175.0863'

Segment #6 : Curve

Length: 56.15' Radius: 120.00'
Delta: 26°48'37" Tangent: 28.60'
Chord: 55.64' Course: S9° 34' 23"W

Course In: S67° 01' 19"E Course Out: S86° 10' 04"W

RP North: 29931.6550' East: 19285.5649' End North: 29923.6350' East: 19165.8332'

Segment #7: Line

Course: S3° 49' 56"E Length: 236.32' North: 29687.8387' East: 19181.6276'

Segment #8: Line

Course: S88° 30' 11"W Length: 151.53' North: 29683.8804' East: 19030.1513'

Segment #9: Line

Course: N72° 05' 25"W Length: 282.99' North: 29770.9056' East: 18760.8735'

Segment #10 : Line

Course: N67° 44' 33"W Length: 637.94'

July 18, 2013

X:\Survey Southern

Nevada\Projects\LANDWELL\511629\Eastside\LEGALS\CLOSURES\NFA HOOK DEVELOPMENT-CLOSURES.docx

North: 30012.5385' East: 18170.4660'

Segment #11: Line

Course: S52° 33' 20"W Length: 483.37' North: 29718.6538' East: 17786.6974'

Segment #12: Line

Course: S71° 39' 24"W Length: 203.98' North: 29654.4596' East: 17593.0843'

Segment #13: Line

Course: S88° 29' 44"W Length: 744.27' North: 29634.9188' East: 16849.0752'

Segment #14: Line

Course: S0° 17' 51"W Length: 1522.65' North: 28112.2847' East: 16841.1671'

Segment #15: Line

Course: N89° 08' 14"E Length: 330.73' North: 28117.2642' East: 17171.8641'

Segment #16: Line

Course: S0° 08' 47"W Length: 880.39' North: 27236.8816' East: 17169.6136'

Segment #17: Line

Course: S89° 04' 39"W Length: 1997.42' North: 27204.7279' East: 15172.4511'

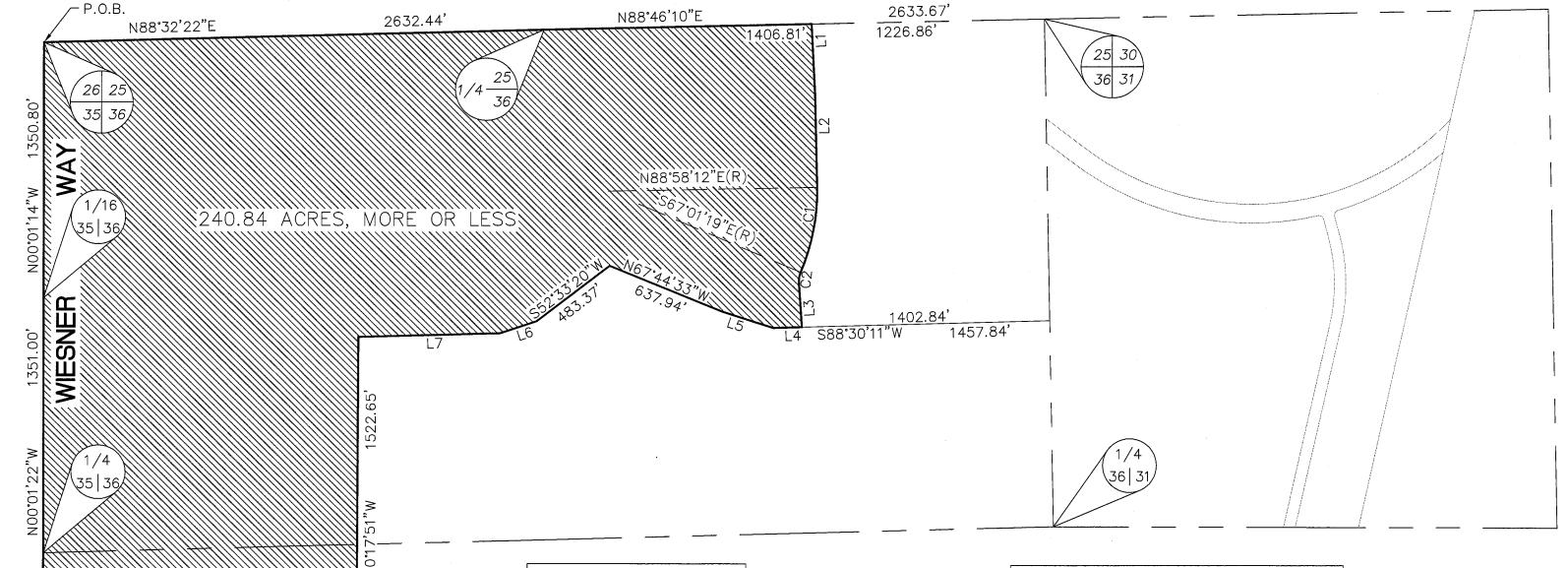
Segment #18: Line

Course: N1° 00' 36"E Length: 1286.74' North: 28491.2669' East: 15195.1345'

Segment #19: Line

Course: N0° 01' 22"W Length: 1351.00' North: 29842.2696' East: 15194.5944'

Segment #20 : Line


Course: N0° 01' 14"W Length: 1350.80' North: 31193.0686' East: 15194.1084'

Perimeter: 16879.74' Area: 10490869 Sq. Ft.

July 18, 2013
X:\Survey Southern
Nevada\Projects\LANDWELL\511629\Eastside\LEGALS\CLOSURES\NFA HOOK
DEVELOPMENT-CLOSURES.docx

NFA WESTERN HOOK DEVELOPMENT PARCEL EXHIBIT

A PORTION OF SECTION 36, TOWNSHIP 21 SOUTH, RANGE 62 EAST, M.D.M., CITY OF HENDERSON, CLARK COUNTY, NEVADA,

			S0.17'51"
1286.74"			880.39°
			S0.08'47"W
7,76,98,72	\$89°04'39"W	1997.42'	σ

2573.68

N01'00'36"E

	LINE TABLE				
LINE	BEARING	DISTANCE			
L1	S2°51'15"E	376.66			
L2	S1°19'30"E	486.63'			
L3	S3°49'56"E	236.32			
L4	S88°30'11"W	151.53'			
L5	N72°05'25"W	282.99'			
L6	S71°39'24"W	203.98'			
L7	S88°29'44"W	744.27'			
L8	N89°08'14"E	330.73'			

CURVE TABLE				
CURVE	RADIUS	DELTA	LENGTH	TANGENT
C1	1100.00	24°00'29"	460.92'	233.89
C2	120.00'	26°48'37"	56.15	28.60'

